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Bounding the forward classical capacity of bipartite
quantum channels
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Abstract—We introduce various measures of forward classical
communication for bipartite quantum channels. Since a point-to-
point channel is a special case of a bipartite channel, the measures
reduce to measures of classical communication for point-to-point
channels. As it turns out, these reduced measures have been
reported in prior work of Wang et al. on bounding the classical
capacity of a quantum channel. As applications, we show that
the measures are upper bounds on the forward classical capacity
of a bipartite channel. The reduced measures are upper bounds
on the classical capacity of a point-to-point quantum channel
assisted by a classical feedback channel. Some of the various
measures can be computed by semi-definite programming.

I. INTRODUCTION

The goal of quantum Shannon theory [1], [2], [3], [4] is to
characterize the information-processing capabilities of quan-
tum states and channels, for various tasks such as distillation
of randomness, secret key, entanglement or communication of
classical, private, and quantum information. With the goal of
simplifying the theory or relating to practical communication
scenarios, often assisting resources are allowed, such as shared
entanglement [5], [6], [7] or public classical communication
(81, [9], [10].

One of the earliest information-theoretic tasks studied in
quantum Shannon theory is the capacity of a point-to-point
quantum channel for transmitting classical information or
generating shared randomness [11], [12], [13]. It is well known
that the capacity for these two tasks is equal, and so we just
refer to them both as the classical capacity of a quantum
channel. A formal expression for the classical capacity of
a quantum channel is known, given by what is called the
regularized Holevo information of a quantum channel (see,
e.g., [1], [2], [3], [4] for reviews). On the one hand, it is
unclear whether this formal expression is computable for all
quantum channels [14], and it is also known that the Holevo
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information formula is generally non-additive [15]. On the
other hand, for some special classes of channels [16], [17],
[18], the regularized Holevo information simplifies to what is
known as the single-letter Holevo information. Even when this
simplification happens, it is not necessarily guaranteed that the
resulting capacity formula is efficiently computable [19].

This difficulty in calculating the classical capacity of a
quantum channel has spurred the investigation of efficiently
computable upper bounds on it [20], [21], [22]. The main
idea driving these bounds [20] is to imagine a scenario in
which the sender and receiver of a quantum channel could
be supplemented by the help of a coding scheme that is
simultaneously non-signaling and “positive-partial-transpose”
(PPT) assisted [23], [20]. These latter coding scenarios could
be considered fictitious from a physical perspective, but the
perspective is actually extremely powerful when trying to
provide an upper bound on the classical capacity, while being
faced with the aforementioned difficulties. The reason is that
the simultaneous constraints of being non-signaling and PPT-
assisted are semi-definite constraints and ultimately lead to
upper bounds that are efficiently computable by semi-definite
programming.

Another thread that has been pursued on the topic of
classical capacity, after the initial investigations of [11], [12],
[13], is the classical capacity of a quantum channel assisted
by a classical feedback channel. This direction started with
[9], [10] and was ultimately inspired by Shannon’s work on
the feedback-assisted capacity of a classical channel [24], in
which it was shown that feedback does not increase capacity.'
For the quantum case, it is known that a classical feedback
channel does not enhance the classical capacity of

1) an entanglement-breaking channel [10],
2) a pure-loss bosonic channel [25], and
3) a quantum erasure channel [25].

The first aforementioned result has been strengthened to a
strong-converse statement [26]. However, due to the quantum
effect of entanglement, it is also known that feedback can
significantly increase the classical capacity of certain quan-
tum channels [27]. More generally, [28] discussed several
inequalities relating the classical capacity assisted by classical
feedback to other capacities, and [29] established inequalities
relating classical capacities assisted by classical communica-
tion to other notions of feedback-assisted capacities.

INote that the model of classical feedback considered in [9] is more
restrictive than the general model considered in [10]—it is such that the
decoding measurement of the receiver is restricted to one-way local operations
and classical communication. See Section 4.2 of [1] for a review of the
feedback scheme of [9].
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Alice

Bob

Fig. 1. Depiction of a bipartite channel. A bipartite channel is a four-terminal
channel in which Alice has access to the input system A and the output system
A’, and Bob has access to the input system B and the output system B’.

In this paper, we generalize these tasks further by con-
sidering the forward classical capacity of a bipartite quan-
tum channel, and we develop various upper bounds on this
operational communication measure for a bipartite channel.
This communication task has previously been studied for the
special case of bipartite unitary channels [30] (see also [31],
[32], [33] for studies of classical communication over bipartite
unitary channels). To be clear, a bipartite channel is a four-
terminal channel involving two parties, who each have access
to one input port and one output port of the channel [34]
(see Figure 1). The forward classical capacity of a bipartite
channel is the optimal rate at which Alice can communicate
classical bits to Bob, with error probability tending to zero as
the number of channel uses becomes large.

A bipartite channel is an interesting communication scenario
on its own, but it is also a generalization of a point-to-point
channel, with the latter being a special case with one input
port trivial and the output port for the other party trivial. In
the same way, it is a generalization of a classical feedback
channel. This relationship allows us to conclude upper bounds
on the classical capacity of a point-to-point channel assisted by
classical feedback. Interestingly, we prove that the most recent
upper bound from [22], on the unassisted classical capacity,
is actually an upper bound on the classical capacity assisted
by classical feedback. As such, we now have an efficiently
computable upper bound on this feedback-assisted capacity.
By combining our results with [21, Section VI], we establish
the strong converse for the classical capacity of the quantum
erasure channel assisted by a classical feedback channel, thus
improving the weak converse result of [25].

The rest of the paper is structured as follows. We begin
in Section II by establishing some notation. In Section III,
we introduce a measure of forward classical communication
for a bipartite channel. Therein, we establish several of its
properties, including the fact that it is equal to zero for a
product of local channels, equal to zero for a classical feedback
channel, and that it is subadditive under serial compositions
of bipartite channels. We then introduce several variants of
the basic measure and show how they reduce to previous
measures from [20], [21], [22] for point-to-point channels. In
Section IV, we detail several of the applications mentioned
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above: we establish that our measures of forward classical
communication (in particular the ones based on geometric
Rényi relative entropy) serve as upper bounds on the forward
classical capacity of a bipartite channel and on the classical
capacity of a point-to-point channel assisted by a classical
feedback channel. In Section V, we explore the same applica-
tions but using the sandwiched Rényi relative entropy instead
of the geometric Rényi relative entropy, and in Section VI,
we show how these bounds simplify if the channels possess
symmetry. In Section VII, we evaluate our bounds for several
examples of bipartite and point-to-point channels. We finally
conclude in Section VIII with a summary and some open
questions for future work.

II. NOTATION

Here we list various notations and concepts that we use
throughout the paper. A quantum channel is a completely pos-
itive and trace-preserving map. We denote the unnormalized
maximally entangled operator by

Cra = [TXT|Ra, (1
d—1
D) ra =Y _ |i)rli)a, 2)
i=0
where R ~ A with dimension d and {|i)z }9=} and {|i) 4 }9=]

are orthonormal bases. The notation R ~ A means that the
systems R and A are isomorphic. The maximally entangled
state is denoted by

1
Pryg = EPRA; 3)

and the maximally mixed state by

1
TA = EIA. (4)

The Choi operator of a quantum channel N4 _,p (and more
generally a linear map) is denoted by

FJ}\%/B '=NaB(Tra). (5)

A linear map M 4_,p is completely positive if and only if
its Choi operator I‘ﬁ/‘B is positive semi-definite, and M 4,5
is trace preserving if and only if its Choi operator satisfies
TYB[I"I/%AB] = IR.

We denote the transpose map acting on the quantum sys-

tem A by
d—1

D liXilaC)li)] a- (6)

i,j=0

TA() =

A state psap is a positive partial transpose (PPT) state if
Tr(pap) is positive semi-definite. The partial transpose is its
own adjoint, in the sense that

Tr[YapTa(Xap)| = Tr[Ta(Yap) X aB] (7

for all linear operators X 45 and Y4p.
The following post-selected teleportation identity [35] plays
a role in our analysis:

Nasp(psa) = (T|arpsa @ T5IT) ar, ®)
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as it has in previous works on feedback-assisted capacities
[36], [37], [38], [39], [40], [22]. We also make frequent use
of the identities

Tra[Xap] = (Tlra(Ir ® XaB)|T) R4, )
Xagl)ar =Tr(XgB)|T')ar- (10)

Given channels N4_. g and M g_,¢, the Choi operator I‘/JQL’ICS’N
of the serial composition Mp_,c o Na_ g is given by

TN = (D] psTNp @ THEID) s (1)
= Trp[MNpTE(THL)], (12)

where B ~ S, the operator F’I\{ 5 1s the Choi operator of
Na_ B, and I‘fg\"c is the Choi operator of Mp_,¢.

ITI. MEASURES OF FORWARD CLASSICAL
COMMUNICATION FOR A BIPARTITE CHANNEL

A. Basic measure

Before defining the basic measure of forward classical
communication for a bipartite channel, let us recall some
established concepts from quantum information theory.

A bipartite channel M 45, 4/p/ is a completely positive-
partial-transpose preserving (C-PPT-P) channel if the output
state wr,a'B'Ry = Mapoa B (proaBRs) is a PPT state
for every PPT input state pr, apr, [41], [42], [23], [43]. To
be clear, the channel M 45_, 4-p/ is defined to be C-PPT-P if
Tp ry(wWr,a'B'RE) > 0 for every input state pr, apr, that
satisfies Tsr,, (PrAaBR,) > 0. Let 'Yy, 5 5, denote the Choi
operator of Map_,a/p/:

T sp = Mig ap(Tai®Cpp), (13)

where A ~ A and B ~ B. It is known that Map_ap is C-
PPT-P if and only if its Choi operator T'YY,, 5, is PPT (i.e.,
Tep (TYY 55) > 0) [23], [43]. Equivalently, it is known
that Map_ 4/ is C-PPT-P if and only if the map T o
Map_ 4 g o Ty is completely positive.

A C-PPT-P channel is not capable of generating entangle-
ment shared between Alice and Bob at a non-trivial rate when
used many times [37], [40]. As such, Alice cannot reliably
communicate quantum information to Bob at a non-zero rate
when using a C-PPT-P channel. This feature is helpful for
us in devising a measure that serves as an upper bound on
the forward classical capacity of a bipartite channel or on
the classical capacity of a point-to-point channel assisted by
classical feedback.

A bipartite channel M 4p_, 4+ is non-signaling from Alice
to Bob [44], [45] if the following condition holds [46]

TraoMapsap =TraoMapap oRY, (14)

where R7 is a replacer channel, defined as R7%(:) =
Tra[-]ma, with m4 = I4/da the maximally mixed state on
system A. To interpret this condition, consider the following.
For Bob, the reduced state of his output system B’ is obtained
by tracing out Alice’s output system A’. Note that the reduced
state on B’ is all that Bob can access at the output in this
scenario. If the condition in (14) holds, then the reduced state
on Bob’s output system B’ has no dependence on Alice’s input
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system. Thus, if (14) holds, then Alice cannot use M ap_, 4’/
to send a signal to Bob.

One of our main interests in this paper is to bound the
classical capacity of a quantum channel assisted by a classical
feedback channel from Bob to Alice. In such a protocol, local
channels are allowed for free, as well as the use of a classical
feedback channel. Both of these actions can be considered as
particular kinds of bipartite channels and both of them fall
into the class of bipartite channels that are non-signaling from
Alice to Bob and C-PPT-P (call this class NS 4.5 N PPT).
As such, if we employ a measure of bipartite channels that
involves a comparison between a bipartite channel of interest
to all bipartite channels in NS 4 » g N PPT, then the two kinds
of free channels would have zero value and the measure would
indicate how different the channel of interest is from this set
(i.e., how different it is from a channel that has no ability
to send quantum information and no ability to signal from
Alice to Bob). This is the main idea behind the measure that
we propose below in Definition 1, but one should keep in
mind that the measure below does not follow this reasoning
precisely.

In Definition 1, although we motivated the measure for
bipartite channels, we define it more generally for completely
positive bipartite maps, as it turns out to be useful to do so
when we later define other measures.

Definition 1: Let M ap_, 4 p be a completely positive
bipartite map. Then we define

Cs(Map—arp) i=1ogy f(Map—arp), (15)
B(Mapsarp) =
| Trap [Saasp]lls :
Tpp (Vaasp £y gp) >0,
s inf Saapp £Vaapp >0, ,
Vo  erm Tra/[SaaBp] =

A Q@ Traa[Saapp]

(16)

where Herm denotes the set of Hermitian operators and
'Y, g is the Choi operator of Map_a/p:

M ape = Mipap Tas ®Lpp) a7
In the above, A ~ A, B ~ B,
da—1 dp—1
Caa= > |iXila®liXils, Tpg= Y_ liXils®@li)ilz
i,j=0 i,j=0
(18)

and TA = IA/dA.

Just before Definition 1, we discussed how the /3 mea-
sure incorporates PPT constraints, as well as non-signaling
constraints. The constraint Tpp (Vaapp + Fﬁ"A, B B,) >0
involves a PPT condition, and the constraint Tr 4/ [Saa'5p/] =
A ® Traa[Saapp] involves a non-signaling condition.
Since Saa g’ = Vaa g > 0, it follows that S44.p > 0,
implying that the operator S44/pp’ corresponds to a com-
pletely positive map. The definition above becomes more
transparent, but however does not decrease, if we simply set
VaaBpr = Saapp- Then it is clear that there is just a
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PPT constraint and non-signaling constraint corresponding to
a single completely positive map. Furthermore, as we discuss
below, the objective function || Tra/p/[Saa/Bp]||,, measures
how close S44/pp/ is to being a trace preserving map, and
Proposition 2 states that the minimum value of the objective
function is one, in which case Sj4/pps corresponds to a
quantum channel.

In Appendix A, we prove that S(M ap_ arp/) can alterna-
tively be expressed as follows:

B(Mapsarp) = inf |Sapsampl, (19
SaBa’B’s
Vap_ a/p €HermP
subject to
Tp o (Vapsap £ Mapsap)oTs >0,
Sapoap £Vapoap >0, , (20)

TraroSap—arpr = Tra oSap—arp o R

where HermP is the set of Hermiticity preserving maps,
|ISaB—arp/|l; is the trace norm of the bipartite map
SaB_a'B’, and the notation L4, 4pr > 0 means that
the Hermiticity preserving map Lap_.a/p: is completely
positive. Related to how Saa/pp > 0 as discussed above,
the constraint Sap_a'pr £ Vapap > 0 implies that
Sap—ap > 0, which is the same as Spp_, 4/p being
a completely positive map. Thus, the trace norm objective
function ||Sap—a’p||; measures how close Sap—a/p can
be to a trace preserving map, i.e., a quantum channel, while
satisfying the constraints given. With the expression in (20),
it might become more clear that 5(Map_, a'p/) involves a
comparison of M yp_, 47p to other Hermiticity-preserving
bipartite maps, which involves the C-PPT-P condition and the
non-signaling constraint. In Appendix A, not only do we prove
the equality above, but we also explain these concepts in more
detail.
We can also express S(Map_,a/p/) as follows:

A
Trap[Saasp] < Map
Tep (Vaass £ gp) >0,
Saapp £Vaapp >0,
Tra[SaaBp] =
7A@ Traa[Saasp]

inf
A>0,S44' 8B
Vsarppr €Herm

(21
By exploiting the equality constraint Tra:[Saapp/]| =
A ® Traa[Saa pp ], we find that
Tra s [Saa sl
= |Trp [Tra[Saa el (22)
= |Trp/[ma ® Traa [Saasp ]l (23)
= |lma ® Traap [Saa sl (24)
1
= —|Traa p [Saasp]lly - (25)

da
Then we find that

BMapoap) =
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1
7: ITraap [Saasp]l :
Tep (Vaarse £T4Y g5) >0,
inf Saasp £Vaapp >0,
SAA’BB’7 T S —
Viargpr €Herm I‘A/[ AA’BB/] -
A Q@ Traa[Sanpp]
(26)

Since Saapp’ £ Vaargp > 0 implies that Sqa g > 0,
we can also rewrite S(Map_ a/p’) as

B(Mapsarp) =
A
7 Traap [Saapp] < Mg,
nf Tep (Vaass £ 5p) >0,

Saapp £Vaap >0,
Tra[SaaBp] =
A @ Traa[Saapp]

ASaarppr 20,
Vaarppr€Herm

27)

B. Properties of the basic measure

We now establish several properties of C3(Nap_a'p'),
which are basic properties that we might expect of a measure
of forward classical communication for a bipartite channel.
These include the following:
1) non-negativity (Proposition 2),
2) stability under tensoring with identity channels (Propo-
sition 3),

3) zero value for classical feedback channels (Proposi-
tion 4),

4) zero value for a tensor product of local channels (Propo-
sition 5),

5) subadditivity under serial composition (Proposition 6),

6) data processing under pre- and post-processing by local
channels (Corollary 7),

7) invariance under local unitary channels (Corollary 8),

8) convexity of 5 (Proposition 9).

All of the properties above hold for bipartite channels, while
the second and fifth through eighth hold more generally for
completely positive bipartite maps.

Proposition 2 (Non-negativity): Let Nap_, a4'p: be a bipar-
tite channel. Then

Cs(Nap—arp) > 0. (28)

Proof: ~ We prove the equivalent statement
BNap—ap) > 1. Let X\, Saapp, and Vaapp be
arbitrary Hermitian operators satisfying the constraints in
(27). Then consider that

Mdp = \Trg[Ig] (29)
1
> —Tranpp(Sansp] 30)
A
1
> —Tranpp(Vayss] S
A
1
= a TraaBp [TBB/(VAA’BB’)] (32)
1 N
> o Traapp [T (I"iaBp)] (33)
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1

== Traape MY 4 pp] (34)
A
1

= Trag(las] (35)
A

—dp. (36)

This implies that A > 1. Since the inequality holds for all A,
Saapp, and V44 pps satisfying the constraints in (27), we
conclude the statement above. [ |

Proposition 3 (Stability): Let M ap_, 4-p be a completely
positive bipartite map. Then

=Cg(Mapoap).
(37
Proof: Let Sya pp' and V44 pp/ be arbitrary Hermitian
operators satisfying the constraints in (16) for Map_ 4/p'.
The Choi operator of id ;_, 1 ®Map 43 ®idg_, 5 is given
by

C’g(idg_hg ®MAB—>A/B’ @ idB—}B)

Pai®T4hpe ©Tgp 38)

Let us show that I 5 ;®S44'Bp @' 55 and I' 5 ;@Vaa g @
I' 5 5 satisfy the constraints in (16) forid ;_, ; ®Map 4B ®
idg_, 5. Consider that

Top (Vaase T4 pp) >0 (39)
& Tpp(Tz5®Vaapp @Tzg) >
+Tpp/(Li4 @D ypp ®T55)  (40)
& Tpppp(Tii®Vaass ®@lgp) >
+ Ty T ® T4y sp @Tgp) (D
and
Saaep' £Vaapp >0 (42)
< l'1i1®Saap ®T'gg >
11 ®Vaass ®@l'gg  (43)
and
Tra[Saapp]| =74 Traa[Saass] (44)
== TrA'A[FAA®SAA/BB' ®FBB]
=1;®7m4®Traa[Saapp @1 55] (45)
=miQ7TAa®Tr 014054 ® Saasp @lgpl.  (46)
Also, consider that
1
Ty ad 5T a4 © Sawms Tl
A A
1
:d d7||dATrAA’B’[SAA’BB’ ®IB]||oo (47)
Al A
1
N | Traa B [Saap] @ I5| (48)
1
= [Traap [Saa sl (49)
A

Thus, it follows that

BMapsarp) 2> B(ids, ; OMapoarp ®idg_, 5). (50)
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Now let us show the opposite inequality. Let S5 544 55 35
and V; 14 4- g 5 g D€ arbitrary Hermitian operators satisfying
the constraints in (16) forid ;_, ; ®Map_a'p®idg_, 5. Set

1
Shapp = 57— d1dg Tr 445054440 B8 85) (51
Viapp = dadp Tri1455Vaiaa s sl (52)

We show that S’ 4,55 and V} 4, pp satisfy the constraints
in (16) for M 4p_, o-p-. Consider that

id QN ®id

Adaappps —LAA® I pp ®Tpp (53)

Then

ToppsVaianpe st ai®@T e @l g5) >0 (54)

= TrzippTep58(Viiaasp s

T4 @ v pp ©T55)] 20 (55)

& Tpp(Vaanp £didgTiypp) >0 (56)
<:> TBB/ (VAA/BB/ Zl: FAMA’BB’) 2 0 (57)

Also

SAAAA’BB’BB + VAAAA'BB'B >0 (58)
= TrzipplSai AA/BB’BB + VAAAA’BB’B ] >0 (59

and

Tria(Ssiaa 8588 =714 @ Tr 1544154444 88 58]

(61)
= Triiap505ii44 85 85
=Tripp[maa @ Trzi40/Sa1i44 5555 (62)
=7ma®Tr 1500555444485 B8] (63)
= ’TI.A/[SAA’BB’] :7TA®’I‘I'AA/[S/AA/BB/]. (64)
Finally, let A be such that
1
- Tr 1444555144285 58] < Mps- (65)
dadz
Then it follows that
1
Trp - T i4aap 55144085 58] < TraMps]
dad,
(66)

= mTrAAAAfo 8lSiianpp el <dsgMp (67)

1
< aTrAA’B'[SZAA’BB/]S)\[B'

Thus, we conclude that

(68)

B(Mapsarp) < BAd;, 1 OMapsarp @idg_, 5). (69)

This concludes the proof. [ ]
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_ Proposition 4 (Zero on classical feedback channels): Let
Ap_, 4 be a classical feedback channel:

ANpar() Z i) ar (il 3()|3) (il o, (70)

where A’ ~ B and d = ds = dg. Then
Cs(Apar) =0. (71)
_ Proof: We prove the equivalent statement that
B(Apa) = 1. In this case, the A and B’ systems

are trivial, so that d4 = 1, and the Choi operator of Ap_, 4/
is given by

FgA’ =Tpa, (72)
where
dp—1
Tpa = Z li)i| B @ |i)i|a-. (73)
Pick Spa = Var = I'gas. Then we need to check that the

constraints in (16) are satisfied for these choices. Consider that

Ts(Vea £T5,) >0 (74)
& Tp(Tpa +Tpa) >0 (75)
=4 fBA’ :l:fBA/ >0, (76)
and the last inequality is trivially satisfied. Also,
Spar£Vpar >0 (77
< fBA’ ifBA’ > 0, (78)
and the no-signaling condition Tra/[Saapp]| = 74 ®

Traa[Saa pp] is trivially satisfied because the A system is
trivial, having dimension equal to one. Finally, let us evaluate
the objective function for these choices:

1
— ITraa/ B/ [Saa BB’ ||oo

p) = [ITra[Sasllle (79
A
= ||TI'A/[FBA/] IS (80)
= /5]l 81)
=1 (82)

Combined with the general lower bound from Proposition 2,
we conclude (71). [ |

Proposition 5 (Zero on tensor product of local channels):
Let £4_ 4/ and Fp_, g be quantum channels. Then

CB(£A—>A' X ]:B—>B’) =0. (83)

Proof: We prove the equivalent statement that 5(E4_, 4/ ®
Fpop) = 1. Set Saarpp = Vaasp = TS0 @55,
where 'Y ,, and T'% ;, are the Choi operators of €4, 4/ and
Fp_p, respectively. We need to check that the constraints in
(16) are satisfied for these choices. Consider that

TBB/(VAA/BB/ :I:FAA/ ®FBB/) Z O (84)
& 194 @ Tep (Thp) £T54 ® TBB«FBB/) >0, (86)
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and the last inequality trivially holds because Tgp/ acts as a
positive map on I'} 5,. Also,

Saasp £Vaapp >0 87)
& Th.®Thy £T54 @ >0, (88)
and

Tra[Saasp]=Tral50 @ T5p] (89)
=I2 @0 (90)
:7TA®TI'AA’[FAA' ®FBB’] 91
=74 ® Traa[Saapr]. 92)

Finally, consider that the objective function evaluates to
||TI'A/B’[SAA’BB/ = ||TI‘A/B/ FAA’ ®FBB’} (93)
= 148l (94)
=1. 95)

Combined with the general lower bound from Proposition 2,
we conclude (83). |

Proposition 6 (Subadditivity under composition): Let
MY 5 g and M2, 5., 4/, be bipartite completely pos-
itive maps, and define

MiB—)A"B" = M124/BIA)A//B// o MhB—)A’B" (96)

Then
CB(MBAB%A”B”) < Cﬁ(M?‘l’B/—LA”B”)+Cﬁ(M}43—>A’B/)'
o7

Proof: We prove the equivalent statement that

5(M?AB—>A”B”) < ﬂ(Mi/B’aA”B”) : 6(M1143—>A’B’)'

(98)
Let S%A/BB’ and V/}A’BB’ Satisfy
1
Top (Vaapp +T4app) 2 0, (99)
Saapp +Viapp 20, (100)
Tra[Shapp)=ma®Tran[Shappl, (101)
and let S%’A”B’B” and VE’A”B’B” Satisfy
2
TB’B”(VX{A//B/B// :l: F%A//B/B//) Z O7 (102)
Si/A/’B/B” + VAQ/A”B/B” Z 0, (103)
T‘I‘A// [Si’A"B’B”] =7a & T‘I‘A/AN [Si’A"B’B”]' (104)
Then it follows that
TBB/B/B’/ (VAA/BB/ ® Vj/A//B/B//
TN e @ TN pign) >0, (105)

5114A,BB/ ® Si/A//B/B// :t VjA/BB/ ® VzZ’A”B’B” Z 0. (106)

This latter statement is a consequence of the general fact that if
A, B, C, and D are Hermitian operators satisfying A+ B > 0
and C+ D > 0,then AR C £+ B® D > 0. To see this,
consider that the original four operator inequalities imply the
four operator inequalities (A + B) ® (C' + D) > 0, and then
summing these four different operator inequalities in various
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ways leads to AQC+£B®D > 0. See (377)—(385) for further
clarification of this point.
Now apply the following positive map to (105)—(106):

() = (Taa @ Tlp ) )T aa @ T)prpr), (107)

where
|F>A’A' = Z|i>A/‘i>A/’ (108)

i
|F>B’B’ = Z|Z>B/|Z>B/ (109)
This gives

T (Viarpps = D505 > 0, (110)
S3 vigpr £ Viaiggr >0, (111)

where

Vianppr = ((Llaa @ (Llpp)
(Vaarpp ®Vianpp)(D)aa ® D) pp),
(112)
20 1
X5 = ((Dlarar @ (Ulprpr)
1 2
MYy g @ TN 4 pp ) (D aa @ D) pipr),
(113)
Sharppr = ((Llarar @ (Tlpp)
(S}IA'BB’ ® SZ/A//B/B//)(|F>A/A/ ® |F>B/B/)7

(114)
and we applied (11) to conclude that
1 2
(Tlarar @ () C Xy pp © TX anprp)
2 1
(D) arar @ Dy prpe) = TXLSAL,. (115)

Also, consider that
Trav[Sharppr]
= Trav[((Tlarar @ (Vlpp ) (Sharpp © Shanpipr)
(ID)arar @ T ppr)) (116)
= ((C|arar © (Tl ) (Sharpp © Tran[Shanp p])

(D) arar @ T)prpr) (117)
— (<F|A’A/ [29] <F|B/B’)
(8114A'BB’ QmTa & TrA/A// [Sz%/A//B/B”])
(IT)arar @ L) prp) (118)
1
— a(<F|A1A/ (029 <F|B’B’)
(SAA’BB’ ® IA’ & TrA’A” [5124/14”3’3”])
(Tyarar @ ) prp) (119)
1 1
- TA<P|B,B/ (Trar[Saa B
® Trarar [Si’A’/B’B”])‘F>B’B’ (120)
1
= d714/<P|B/B/ (ﬂ—A ® TrAA/ [S}4A/BB/]
®TrA/A” [Si’A/'B/B”])‘F>B’B’ (121)

1
=TA® E@'B/B/ (Traa [Shapp
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®T‘I‘A'A” [Si’A”B’B”])‘F>B/B/' (122)
Now consider that
Traar[Shanppr] =
1
Ol (TeawlSh a5 )5 Taea S DI
(123)
So we conclude that
TrA"[SflA”BB”] =A@ Trganr [SZA//BBH]. (124)
Finally, consider that
||TrA//B// [S.iA”BB”] ’OO
TI'A//B// [(<F|A’A’ ® <F|B/B/)
== (S}&A/BB/ ® Si/A//B/BH) (125)
(M) arar @ L) prp)] s
((Tarar @ (Clrpr)
= (S}L!A’BB’ ® T‘I’A//B” [Si’A//B’B”]) (126)
(M) ara @) ) .
S HTI'A//B// [Si/A//B/B//] 0o
(Plarar @ (Llprpr) (S,laxA'BB’ ® IA/B’) (127)
(D ara @ )prp) s
= HTI‘A//B// [Si/A//B/B//} 0 HTI‘A/B/ [S%A/BB/] o (128)

Since S3 4/ pps and V3, pp. are particular choices that
satisfy the constraints in (110), (111), and (124), we conclude
that

BMip_yanpn) <

||TI'ANB// [5124/14”3/3”]

1
OOHTI'A/B/[SAA/BB/] o " (129)
Since S} 4/ g and V1 4, 5 are arbitrary Hermitian operators
satisfying the constraints in (99)~(101) and S%, 4/ 55 and
V3, v pn are arbitrary Hermitian operators satisfying the

constraints in (102)-(104), we conclude (97). |

Corollary 7 (Data processing under local channels): Let
Map—ap be a completely positive bipartite map. Let
Kiia Lz g Nasar, and Ppi_,pr be local quantum
channels, and define the bipartite completely positive map
Fip_arpr as follows:

FiBoarpr =
(Narsar @ Pprospr)Mapoap (Ki o ®Lg  5)
(130)
Then
Co(Fipanpgr) < Cs(Mapoap). (131)
Proof: Apply Propositions 5 and 6 to find that
Co(Fapoarpr)
< Cp(Narsan @ Pprspr)
+Cp(Mapap)+Cs(Ki 2@ Lps ) (132)
= Cg(Mapoarp). (133)
This concludes the proof. [ ]
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Corollary 8 (Invariance under local unitary channels): Let
Map_. 4 p be a completely positive bipartite map. Let U,
Vg, Wa/, and Vg be local unitary channels, and define the
bipartite completely positive map F 4 5_, 4. g as follows:

Fapsap = Wa @ Vg )Mapsap (Usa@Vp). (134)

Then

Ca(Fapsap)=Cs(Mapap). (135)

Proof: Apply Corollary 7 twice to conclude that
Cs(Mapsap) > Cs(Fapsap) and Cg(Fapsarpr) >
Cs(Maparp). u

Proposition 9 (Convexity): The measure (3 is convex, in the
following sense:

BMipap) <
AN(Mhp_ap)+ (1 =X BMYp_ ap), (136)

where MY, 4 g and MY . 4, 5 are completely positive
bipartite maps, A € [0, 1], and

Mipap = Mg ap + (1 =) Mg, ap. (137)

Proof: Let S% 4, pp and V{4, g satisfy the constraints
in (16) for M% 5_, 4, for x € {0,1}. Then

Shapp =AShapp + (1 =N S
Viape =MNiapp + (1 =N Viipp,

(138)
(139)

satisfy the constraints in (16) for M 5_, 4 5, Then it follows
that

B(MAB%A’B’) < HTI"A’B’[SQ\xA'BB'] I (140)
< )\HTTA’B’ [S}AA’BB’] I
+(1-=X) HTTA’B’ [S%a BB/] oo
(141)

where the second inequality follows from convexity of the
oo-norm. Since the inequality holds for all S, 55 and
Via pp satistying the constraints in (16) for M%p_, 4/ 5
for x € {0,1}, we conclude (136). [ |

C. Related measures

We now define variations of the bipartite channel measure
from (16). We employ generalized divergences to do so, and
in doing so, we arrive at a large number of variations of the
basic bipartite channel measure.

Let D denote a generalized divergence [47], [48], which is
a function that satisfies the following data-processing inequal-
ity, for every state p, positive semi-definite operator o, and
quantum channel N:

D(pllo) = DN (p)N (o). (142)

In this paper, we make two additional minimal assumptions
about a generalized divergence:

1) First, we assume that

D(1]le) > 0 (143)
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for ¢ € (0,1). That is, if we plug in a trivial one-
dimensional density operator p (i.e., the number 1) and a
trivial positive semi-definite operator with trace less than
or equal to one (i.e., ¢ € (0,1]), then the generalized
divergence evaluates to a non-negative real.

2) Next, we assume that

D(plp) =0

for every state p. We should clarify that this assumption
is quite minimal. The reason is that it is essentially a
direct consequence of (142) up to an inessential additive
factor. That is, (142) implies that there exists a constant ¢
such that

(144)

D(pllp) = ¢

for every state p. To see this, consider that one can get
from the state p to another state w by means of a trace
and replace channel Tr[-Jw, so that (142) implies that

(145)

D(pllp) = D(w[lw). (146)

However, by the same argument, D(w||w) > D(p||p),
so that the claim holds. So the assumption in (144)
amounts to a redefinition of the generalized divergence
as

D'(p|lo) == D(p|lo) — c. (147)

Let us list particular choices of interest for a generalized
divergence. The quantum relative entropy [49] is defined as

D(pllo) == Tr[p(log, p — log, 7)] (148)

if supp(p) C supp(c) and it is equal to +oo otherwise.
The sandwiched Rényi relative entropy is defined for all
a € (0,1)U(1,00) as [50], [51]

Da(pllo) =

lim
e—0t v — 1

10g2 Tr[(aa—(1—@)/2ap0_€—(1—a)/2a)a]’ (149)

where o, := o + ¢I. In the case that supp(p) C supp(o), we
have the following simplification:

1

a1 10g2 Tr[(o-*(17a)/2ap0,7(1—a)/2a)a].

(150)
Note that Do (pllc) = +oo if @ > 1 and supp(p) &
supp(o). The sandwiched Rényi relative entropy obeys the
data-processing inequality in (142) for o € [1/2,1) U (1, c0)
[52], [53]. Some basic properties of the sandwiched Rényi
relative entropy are as follows [50], [51]: for all « > 3 >0

Da(pllo) > Dg(pllo),

Da(pllo) =

(151)

and

lim Da(pllo) = D(p|lo). (152)

The Belavkin—Staszewski relative entropy [54] is defined as

D(pllo) = Tr[plog,(p'/ 20 p'/?)] (153)
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if supp(p) C supp(o) and it is equal to +o00 otherwise. The
geometric Rényi relative entropy is defined for all a € (0,1)U
(1,00) as [55], [56], [57], [58]

lim
e—0t a—1

logy Tr[o= (o /2pa1/2)7],

(154)
where o, := o + ¢l. In the case that supp(p) C supp(o), we
have the following simplification:

1
a—1
The geometric Rényi relative entropy obeys the data-
processing inequality in (142) for o € (0,1) U (1,2]. Some
basic properties of the geometric Rényi relative entropy are as
follows [58]: for all « > 8 >0

Dy (pllo) > Dga(pllo),

Da(pllo) =

Dq(pllo) = log, Tr[o(o2pa= /). (155)

(156)

and

lim Da(pllo) = D(pl0). (157)
a—1

We are also interested in the hypothesis testing relative entropy
[59], [60], [61], defined for e € [0,1] as
D% (pllo) = —log, /{r;% {Tr[Ac] : Tr[Ap] > 1—¢, A<TI}.
a (158)

The property in (143) holds for all of the relative entropies that
we have listed above, while the property in (144) holds for all
of them except for the hypothesis testing relative entropy. For
the hypothesis testing relative entropy, the constant c in (145)
is equal to — log,(1—¢), and the alternative definition in (147)
is sometimes used [62].

A generalized channel divergence between a quantum chan-
nel N4, p and a completely positive map M 4_, g is defined
from a generalized divergence as follows [63]:

D(N||M) = sup D(Na— p(pra)[[Ma—5(pra)), (159)
PRA

where the optimization is with respect to every bipartite state

prA, With the system R arbitrarily large. By a standard

argument (detailed in [63]), the following simplification occurs

D(N||M) = ZUP DNaog(Wra)|Massp(¥ra)), (160)

where the optimization is with respect to all pure bipartite

states with R ~ A. Using this, we define the following:
Definition 10: For a bipartite channel N 4p_; o' 5, we define

the following measure of forward classical communication:

YNaposap) =

inf DNapsap|Maparp),
MuparpriBMap_arpr)<1
(161)

where the optimization is with respect to every completely
positive bipartite map M ag_,a'p/.

Using the quantum relative entropy, the sandwiched Rényi
relative entropy, the Belavkin—Staszewski relative entropy, and
the geometric Rényi relative entropy, we then obtain the
following respective channel measures:

Y(Napsap), (162)
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YTo(Napsap), (163)
Y(Napoap), (164)
YoNapsas), (165)

defined by substituting D with D, D., D, and D, in (161).
We now establish some properties of Y (Nap_ap/), anal-
ogous to those established earlier for Cz(Nap—a/p/) in
Section III-B.
Proposition 11 (Non-negativity): Let Nap_, a5 be a bi-
partite channel. Then

Y(Nap—ap)>0. (166)

Proof: Let M sp_, 4’p be an arbitrary completely pos-
itive bipartite map satisfying S(Map—ap) < 1. Then
consider that
D(Nap—ap||[Map—arp)
> D(Nap—ap (Pra @ Pps)||Mapsap (Pra® Ppg))
> D(Tr[Nap—ap (Pra ® ®p5)]||

Tr(Map—a 5 (Pra ® Pps)]) (167)
= D(1|| Tr[Map— a5 (Pra ® Pps)]). (168)
The first inequality follows because the quantity
D(Napsap||Mapap) involves an optimization

over all possible input states, and we have chosen the product
of maximally entangled states. The second inequality follows
from the data-processing inequality for the generalized
divergence. It then follows from Definition 10 that

YNapoarp) >

inf D1 Tr[Map-ap (Pra® Pps))).
AB—A'B’*
B(Map_arp)<L
(169)
Thus, the inequality follows if we can show that
Tr[Mapoap (Pra® Pps)] < 1. (170)

Let A\, Saa'Bp’, and V44 pps be arbitrary Hermitian opera-
tors satisfying the constraints in (27) for M 4p_, o'p:. Then,
we find that

Aadp = ANTrap[Ias] (171)

> Traapp[SaaBp] (172)

> Traa e [Vaa Bp] (173)

= Traa e [TBB (VaaBB')] (174)

> Transe [Tee (XY pp)] (175)

=Traa e [ pp] (176)

= T[Ty p), (177)

which is equivalent to

A>TrMapsap (Pra @ Pps)]. (178)

Taking an infimum over A\, Sa4/pp’, and V44 pp: satisfying
the constraints in (27) for Map_, o and applying the
assumption (M ap_a/p/) < 1, we conclude (170). [ |
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Proposition 12 (Stability): Let Nap_, 4 g be a bipartite
channel. Then

Y(Napoap)="Y(id;, s ONapsap®idg_,5). (179)

Proof: The definition of the generalized channel diver-
gence in (159) implies that it is stable, in the sense that
DNapsap|[Mapsap) =
D(id,, ;s @Napap @idg g
idA_>A QMaB_ap ® idg_ﬂg), (180)

for every channel Nap_, g and completely positive map
M ap_s 4. Combining with Proposition 3 and the definition
in (161), we conclude (179). [ |

_ Proposition 13 (Zero on classical feedback channels): Let
Ap_, 4 be a classical feedback channel:

d—1
Aposar() = Y1) arlilp()li) slilar, (181)
=0

where A’ ~ B and d = d4 = dg. Then

Y(Ap_a)=0. (182)

_ Proof: This follows from Proposition 4. Since

B(Ap_a) = 1, we can pick Mp_,4 = Ap_a/, and
then

D(Aga|Mpsa) =D(Ap_a||Ap_a)=0. (183)

So this estabgshes that ’I‘(ZBH 4) < 0, and the other
inequality Y(Ap_, /) > 0 follows from Proposition 11. H®

Proposition 14 (Zero on tensor product of local channels):
Let £4_ 4/ and Fp_, g be quantum channels. Then

Y(Easa ® Fpop) =0.

Proof: Same argument as given for Proposition 13, but
use Proposition 5 instead. ]

(184)

We now establish some properties that are more specific
to the Belavkin—Staszewski and geometric Rényi relative en-
tropies (however the first actually holds for quantum relative
entropy and other quantum Rényi relative entropies).

Proposition 15: Let N op_, o» g/ be a bipartite channel. Then
for all « € (1, 2],

Y(Napsap)<YTaNapsap)<Cs(Napap).

(185)

Proof: PickAMABﬁA/B/ = mNAB_,A/B/ in

the definition of Y (Nap—.4/p/) and Yo (Napa/p/) and use
the fact that, for ¢ > 0, D(p|lco) = D(p|lo) — log, ¢ and

ﬁa(pHca) = lA)a(pHo) — logy ¢ for all a € (1,2]. We also
require (156). |

Proposition 16 (Subadditivity): For bipartite channels
Nig_ag and N3, 5, 45, the following inequality holds

for all a € (0,1) U (1,2]:

YoaWN2iprsarpr o Nipoap) <
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?Q(NE,BI*}A,,B”) + ?a(NéB*)A/B/)- (186)

Proof: This inequality is a direct consequence of the
subadditivity inequality in Eq. (18) of [22], Proposition 47
of [58], and the fact that if M' and M? are completely
positive bipartite maps satisfying 3(M1), 3(M?) < 1, then
B(M? o M) < 1 (see Proposition 6). [

D. Measure of classical communication for a point-to-point
channel

Let M 4_,p/ be a point-to-point completely positive map,
which is a special case of a completely positive bipartite map
with the Bob input B trivial and the Alice output A’ trivial.
We first show that 3 in (16) reduces to the measure from [20].

Proposition 17: Let M 4_, g/ be a point-to-point completely
positive map. Then

B(MA—US”) =
TI‘[SB/} :
T (Vap £T%%,) >0,
Iy ®Sp £Vap >0

in (187)
Spr,Vapr€Herm

Proof: In this case, the systems A’ and B are trivial. So
then the definition in (16) reduces to

B(MAAB’) =
[Trp [Sap]|lo
T (Vap £T4%,) >0,
Sap £ Vap >0,
Sapr =74 @ Tra[Sap]

inf
Sapr,Vap €EHerm

(188)

The last constraint implies that the optimization simplifies to

B(Ma_p)
[Trp/[rma ® Tra[Sap]

= VinfeH Tp (Vap £T44,) >0,
ABDYABIEEE 1) @ Tra[Sap] £ Vap >0
(189)
|Trp/(ma ® Splll -
= inf Tp (Vap £TH4,) >0, (190)
S5/, Vapr €Herm TA® S/B/ 4+ Vag >0
Tr[Sp ] lImall :
= inf T (Vap £ F%B’) >0, (191)
S5/, Vapr €Herm A ® S/B/ 4+ Vag >0
i Tr[Ss] :
= Vinf , Te (Vap £T45,) >0, (192)
B Ap’€Herm 7TA®SIB/ Zl:VAB/ 2 0
TI‘[SB/} :
= Vinf ; T (Vap £T45) >0, 3. (193)
B’V apr€Herm IA ®SB’ iVAB’ Z 0
This concludes the proof. [ ]

More generally, consider that the definition in (161) be-
comes as follows for a point-to-point channel N4, p/:

T(NA—)B/) = inf D(NA—>B’||MA_>B/),
MapriBMy,pr)<1
(194)
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which leads to the quantities T(/\/’ 4 p) and TQ(J\/ ASB)s
for which we have the following bounds for « € (1, 2]:

TNassp) < TaNasp) < Cs(Nasp).

Note that the quantities given just above were defined in [21],
[22], and our observation here is that the definition in (161)
reduces to them.

The next proposition is critical for establishing our upper
bound proofs in Section IV. It states that if one share of
a maximally classically correlated state passes through a
completely positive map M 4_, g/ for which S(Ma_p/) <1,
then the resulting operator has a very small chance of passing
the comparator test, as defined in (198).

Proposition 18 (Bound for comparator test success proba-

bility): Let
Z i)

denote the maximally classically correlated

(195)

il 4 ® |iX (196)

state, and

let My _,p be a completely positive map for which
B(Ma_p) <1. Then
1
Tr[HAB/MAaB/(q) )] < g (197)
where II 4 5, is the comparator test:
Mp = Zl (il 4 ® liXil B, (198)

and A~ A~ B

Proof: Recall the expression for S(M4_,p/) in (187).
Let Spr and V4 be arbitrary Hermitian operators satisfying
the constraints for 5(M a_ /). An application of (8) implies
that

Masp (D4,) = (Tl 441P 44 ® FQAB/\DAA (199)
where A ~ A. This means that
Tl Masspr (P 44)]
=T[5 (T] 4 4% 44 @ T 53 0D 44) (200)
= Tr[Tp (11 AB/)<F|AA ia® FQAB/|F>AA~] (201)
=Tl (Pl 44% 44 ® Tp (D5 )I0) 4] (202)
< T (T i® 50 © T (Vi )D) i) (203)
= Te [T (W45 ) (T4 4P a4 ® Vip L) 44l (204)
= Tr[I 5 (U] 4 4% 44 ® VipIT) a4l (205)
< Tl (T[4 4® 44 @ 15 @ SprIT) 4 4] (206)
= Tr[l;p <F|AA(I)AA ®1;0) 04 ® Sp] 207)
=T[5 Tra[®;,] ® Sk’ (208)
= CliTr[HAB,I ® Sp/] (209)
= éTr[SB/]. (210)

Since this holds for all Sp: and V4 p/ satisfying the constraints
for B(Ma_,p’), we conclude that

TI‘[HAB,MAQBI(iA

Al < 11

&l
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This concludes the proof. [ ]

We finally state another proposition that plays an essential
role in our upper bound proofs in Section IV.
Proposition 19: Suppose that A4, g is a channel with A ~

B that satisfies
1 _ _
3 |[NasB(®ra) — PrB, <e.

%Zi liXi|r ® |i)i|p and

212)

for ¢ € [0,1) and where ®rp =
d:dR :dA :dB. Then
logy d <

inf

D5 (N, ) M Dra)),
M e 7 (Nasp(Pra)||Ma—B(PRA))

(213)
and for all @ € (1,2],

logy, d <
Do(Nassp(®pa)|Masp(Pra))

inf
MA—»B:ﬁ(MA—»B)Sl

« 1
1 . (214
+oz—lOg2<1—f3) @14
Proof: We begin by proving (213). The condition

215)

1 _ _
3 [Nasp(®ra) — PrB||, <€

implies that

Tr[llrpNasp(Pra)l > 1 —¢, (216)

where IIgp = ), |i)i|r ® |i)(i|p is the comparator test.
Indeed, applying a completely dephasing channel Ag(-) =
> 1)@l ()]i)i| to the output of the channel N4_,p and
applying the data-processing inequality for trace distance, we
conclude that

1 _ _
€2 B} [NasB(®ra) — (I)RBH1 217)
1, = _ o
> 5 [[(ApoNavp)(®ra) - Ap(@rp),  (218)
1, — _ _
=5 (B o Nas5)(@ra) — Prs, 219)
Let wrp = (Ap oNa_p)(Pra) and observe that it can be
written as

Nilr @ 15)(jlB (220)

WRB = dzp jli)l

for some conditional probability distribution p(j|i). Then

L - _
2 H(AB oNaB)(Pra) — (I)RBHl

_ ! Z” p(jli)|i)ilr ® 13)i|B

: H st e s |, 2V

- 2%12 >_(Gli) = 8i5)liXils (222)

N %Z )+ plili) (223)
i JFi
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1
= 5" (1= p(li) (224)
1 .
=1- Z (). (225)
This implies that
S Tplili) > 1< (226)
Now consider that
Tr[IlrpNa—B(Pra)]
= Tr[Ap(Ire)NasB(Pra)] (227)
= Tr[llrp(Ap o NasB)(®ra)] (228)
= TI"[HRBWRB] (229)
1 ..
= Z =p(ili). (230)
So we conclude that
Tr[rpNa5(Pra) > 1 —¢. (231)

Applying the definition of the hypothesis testing relative
entropy from (158), we conclude that

inf Dy (Nap(Pra)[Masp(Pra)) =

Masp:f(Masp)<1
Tr[ARBMAHB@ )] :

RA
—log, sup inf Te[ArpNa—5(Pra)l
Map: Arp20 >1—¢,
AMa—p)<l Arp < Irp

Now consider that
Tr[ArpMa—5(Pra)) :

MSUP ' A§§f>o Tr[ArpNa—p(Pra) > 1—¢,
BMasm<t Arp < Igp
< sup Tr[rpMap(Pra)l (232)
Masp:B(Masp)<l
1
<1 233
S5 (233)

where the first inequality follows from (231) and the definition
in (158) and the last inequality follows from Proposition 18.
Then applying a negative logarithm gives (213).

The inequality in (214) follows as a direct application of the
following relationship between the hypothesis testing relative
entropy and the geometric Rényi relative entropy:

- =~ o 1
Dirlpllo) < Dalpllo) + w122 ) 239

as well as the previous proposition. The proof of (234) follows
the same proof given for [64, Lemma 5]. ]

IV. APPLICATIONS

A. Bounding the forward classical capacity of a bipartite
channel

We now apply the bipartite channel measure in (161) to
obtain an upper bound on the forward classical capacity
of a bipartite channel Msp_,4.5. We begin by describing

© 2023 IEEE. Personal use is permitted, but re?ublication/redistribution requires IEEE permission. See https://www.ieee.org/rublications/rights/index.html for more information.
BRARY. Downloaded on February 16,2023 at 23:03:05 UTC from

Authorized licensed use limited to: UNIV OF CHICAGO L

a forward classical communication protocol for a bipartite
channel and then define the associated capacities.

Fix n,M € N and € € [0,1]. An (n,M,¢) protocol for
forward classical communication using a bipartite channel
Nap_ apr begins with a reference party preparing the state
3" . and sending the A system to Alice, where @, ; is the
following classically correlated state:

. M
Tl =Y plm)|[m)mlr ® [m)m| 4,

m=1

(235)

and p(m) is a probability distribution over the messages. Alice

acts on the system A with a local encoding channel SI%OL ATAL
1

resulting in the following state: '

— £

P
O-RA/I,Al N A—)AlllAl( RA) (236)

Bob prepares the local state 7/, , so that the initial global
state of the reference, Alice, and Bob is

O'RA/llAl ® TBirBl . (237)

The systems A; B are then fed into the first use of the channel,
producing the output state
(1)
PRrRAY A, By B,

0’(1) = O ®T "
RAYA1B/B; * AY Ay BY'B;-

(238)
(239)

. (1)
= NAlBlﬁA’lBi (URA/llAlBilBl)’

Then Alice applies the local channel 5511,12 Alaya, O her

systems, and Bob applies the local channel ]-'g,z B BB, ©
. . 1 1

his systems. The systems A B are fed into the next channel

use, leading to the state

(2) o (2)
pRA'Q'A'QBé'Bé T NAZ By—AL B (O-RA'QIAQBQ'BQ)’ (240)
e L
RAYAsBY By "
(1) (1) (1
(SA'{AQ*AQM ® ]:BilBi—>B§'B2>(pRA’1’A’1B1’Bi)- (241)
This process iterates n — 2 more times, and we define
(%) — (i)
Pravar gy = NaB—aB (R a,prp,): (242)

i -
ORAYA;BYB; =
(i-1) (i-1) (i-1)
Earar_ ara,®Fpr g o) Prav a5y )

i—17i—1

(243)

for ¢+ €
(n)
PRA" A

{3,...,n}. The final channel output state
g 1s processed a final time with the local channels

E,Exn;l;)A;a@ = Trara and -F,(E:/L/)B, _ > Where () indicates a

trivial system, to produce the final protocol state

(n)

— (g™ o
W = a0 ® P p) Phiaga ) Q4

For an (n,M,¢) protocol, the final state w’l’?é satisfies the
following condition '

1 _
WP . P
max 5 HwRB’ @RBHl <e, (245)
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where the maximization is over all probability distributions
p(m) and

B M
‘I)?zé = Z p(m)|m)m| ; @ [m)m| ;.

m=1

(246)

Note that the condition in (245) is equivalent to the tradi-
tional condition on the decoding error probability (see [65,
Lemma 6.2]). Figure 2 depicts such a protocol with n = 4.
Let us denote the set consisting of the initially prepared
state and the sequence of local channels as the protocol P(™):

(n) . (0) .
P = {gAﬁA’l’Al ©TByB:>

n

(i—1) (i—1)
{gAﬁ,/—lAé_lﬂAQ’Ai®}—B£'—13§—1”B§/3i i=2’

2
() (n)
Exrtar 0 ® fBgB;ﬁB}- (247)

Then we can write the final state w Rp 88

Wb =Ca5(@pa), (248)
where

Ci,p= Lo Nor V. .o @ oNorMoNo 5(0)7
R - (249)
£ acts on system A of ® rAi to prepare the state
@
TRAY Ay B! By’

i-1) _ o(i=1) (i-1)
L0V =€y oara © T 5y pymrpe @50
fori € {2,...,n}, and
n) — ¢(n) (n)
Lo = EA;;A;aw ® ‘FB;{B;%B' (@51

The n-shot forward classical capacity of a bipartite channel
Nuap_sap is then defined as follows:

C"*(Napoap) =

1
sup { logy M : 3(n, M, €) protocol P(”)} . (252)
MeN, pm) (T

The forward classical capacity and strong converse forward
classical capacity of the bipartite channel N p_, 45 are

defined as
C(NAB%A/B’) ‘= inf liminfC”’g(NABﬁA/B,),
e€(0,1) n—o0

5(]\/,43%,4/3/):: sup limsup C™*(Nap_arp/). (254)

e€(0,1) n—o0

(253)

From the definitions, it is clear that
C(Napoap) < CNapoap).

An (n, M, e) randomness transmission protocol is exactly
as specified above, but with p(m) = 1/M (i.e., the uniform
distribution) in (235). Let us define

;M
Bpi =77 > [m)m|r @ [m)m] 4.
m=1

(255)

(256)
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Then the error criterion for such a protocol is

1 _
Do ~Tsl, < @s)

where wp 5 is defined as in (248) but with EI;{ 4 Teplaced by
D, 4. Also,

B M

Crp =g > Im)ml 4 © [m)ml 5.

m=1

(258)

Note that the condition in (257) is equivalent to the traditional
condition on the average decoding error probability (see [65,
Lemma 6.2]).

We define the following quantities for the randomness
transmission capacity of Nap_, 4/ p:

R (Nap-sap) =

1
sup { logy M : 3(n, M,e) RT protocol ’P(n)} ’
MEeN, P LT

(259)

where RT is an abbreviation for “randomness transmission.”
The randomness transmission capacity and strong converse
randomness transmission capacity of the bipartite channel
Nap_a g are defined as

R(NAB%A’B’) ‘= inf liminfR"’E(NABHA/B/), (260)
€€(0,1) n—o0
R(Nap—arp) = sup limsup R**(Nap_ap). (261)

€€(0,1) n—o0

From the definitions, it is clear that
RNapsap) < IA:L;(NAB—>A’B/)~

Since every (n, M, ) forward classical communication pro-
tocol is an (n, M, e) randomness transmission protocol, the
following inequality holds

C"*(Napsap) < RV (Napoarp).

(262)

(263)

By the standard expurgation argument (throwing away the
worst half of the codewords to give maximal error probability
< 2¢; see, e.g., [4, Exercise 2.2.1]), the following inequality
holds

1
R"(Nap—sap) — - < C"*(Napoarp). (264)
By employing definitions, we conclude that
C(Nap—ap) = RNap—arpr) (265)
< C(Napsapr) (266)
< R(Nap—a'pr). (267)

In what follows, we establish an upper bound on the strong
converse randomness transmission capacity of Nag a5/,
and by the inequalities above, this gives an upper bound on
the forward classical capacity and strong converse forward
classical capacity of Nap_,a'p.

Theorem 20: The following upper bound holds for the n-
shot randomness transmission capacity of a bipartite channel
Napoarp:
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Reference

A; A Al
1) (2 (3)
A, 8 A, A, g A, A, g Ay
iy ELY ryminiggy EUl ppiutugy
1) 2 (3)
p F'Ls Fl s F'l s

Bob

Fig. 2. Depiction of a protocol for forward classical communication over a bipartite channel, by making n = 4 uses of the bipartite channel Nyg_, 4/ p/.

R (Napoap) <
= «@ 1
Yo(Napsarp)+ I log, (1 — E) ., (268)

for all « € (1,2] and € € [0,1).

Proof: Consider an arbitrary n-shot randomness trans-
mission protocol of the form described above. Focusing in
particular on (245) and (248), we apply (214) of Proposition 19
to conclude that

logy M

: MAqéiﬁi(rfl\f/‘lA_,B)Sl Da(Ciyp(®@pa)IMi,5(®Ra))
o loga{ 7 i 6) (269)

S'Ta(CA_)g)JraillogQ(liE), (270)

where the inequality follows from the definition in (194) with
D set to D,. Eq. (248) indicates that the whole protocol is a
serial composition of bipartite channels. Then we find that

TalCip)
=YL o N o L™ ..o L@ o NoL®oNoL®)
(271)
<nYaW) + ) TalL®) (272)
1=0
=nTa(N) (273)

The inequality follows from Proposition 6 and the last equality
from Proposition 14. We also implicitly used the stability
property in Proposition 12. Then we find that

1 = a 1
—loga M <Y log . 274
n B2 = Q(N)+n(a—l) Og2(1—5> (274

Since the upper bound holds for an arbitrary protocol, this
concludes the proof. |

Theorem 21: The following upper bound holds for the strong
converse randomness transmission capacity of a bipartite chan-
nel Nap_,ap:

R(Napap) < T(Napsap), (275)
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where ?(NAB%A/B/) is defined from (161) using the
Belavkin—Staszewski relative entropy.

Proof: Applying the bound in (268) and taking the n —
oo limit, we find that the following holds for all o € (1,2]
and € € [0,1):

limsup R™(Nap—a'p)

o

< liTIlTi}SOIiP /I\‘a(NAB%A'B’) + - (aa_ 0 log, (1 i 5)]
(276)

= TaNaposas). Q77)

Since the upper bound holds for all o € (1,2], we can take
the infimum over all these values, and we conclude that the
following holds for all € € [0,1):

limsup R (Naparp) < T(Napsap).

n—o0

(278)

Here we applied the definitions of ?(N AB—A'p’) and
?a(/\f AB—a'p’) and Proposition 36 in Appendix B. The
upper bound holds for all € € (0,1) and so we conclude the
statement of the theorem. [ |

B. Bounding the classical capacity of a point-to-point quan-
tum channel assisted by a classical feedback channel

One of the main applications in our paper is an upper bound
on the classical capacity of a point-to-point quantum channel
assisted by classical feedback. For a point-to-point channel
Na_.p, this capacity is denoted by C_ (N ASBY)-

In what follows, we briefly define the classical capacity of a
point-to-point quantum channel N4, 5/ assisted by classical
feedback. Before doing so, let us first expand the notion of an
n-shot protocol for forward classical communication from the
previous section, such that each use of the bipartite channel is
no longer constrained to be identical. The final state of such
a protocol is then a generalization of that in (248):

(ﬁ(") o N o p(n=1) .
oL@ o N@ oW o NV o £O)(@] 1), (279)

wt .
RB
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and the protocol is an (n, M, €) protocol if the inequality

-3

RBH1 <e (280)

o o
p

holds with 6[1; p the classically correlated state as defined in
(246). Note that the following bound holds for all (n, M,¢)
forward classical communication protocols, with n, M € N

and € € (0,1], and « € (1, 2]:
« 1 1
a—1%\1-¢)

(281)
by following the same steps given in the proof of Theorem 20.
With the more general definition in hand, we define an
(n, M, €) protocol for classical communication over a point-to-
point channel NV4_, g/ assisted by a classical feedback channel
as a special case of a (2n, M, ¢) protocol of the form above,
in which every N with i odd is replaced by a classical
feedback channel A Bi— Al (with d; ==dp, =d 4, and trivial
input system A; and trivial output system BY) and every N'()
with 7 even is replaced by the forward point-to-point channel
Na_,pr (such that the input system B; and the output system
A’ are trivial). The final state of the protocol is given by

n
10g2 M S Z T(x(./\/:glé_)A/B/) +

i=1

Wrp =
2n N 2n—2
(ﬁ( ) ONAQn%Bé,L o o AanflﬁA;n_l o L:( Jo

oL oNa,—py 0 LW o Ap, a0 5(1))(61«21@)'
(282)

E(Qn—l)

Let P(3") denote the protocol, which consists of £(0), £,
., L") This protocol is depicted in Figure 3.
The n-shot classical capacity of the point-to-point channel
Na_ p: assisted by classical feedback is defined as

CE*Nasp) =

1
sup { logs M : 3(n, M, &) protocol 79(2”)} )
MeN, pen (N

(283)

That is, it is the largest rate at which messages can be
transmitted up to an € error probability. The classical capacity
of the point-to-point channel N4_,p/ assisted by classical
feedback is defined as the following limit:

« (Nasp) = inf liminf C?*(Na_p), (284)
e€(0,1) n—o0
and the strong converse classical capacity as
« (NMasyp) = sup limsupCP*(Na_p). (285)
e€(0,1) n—oo

The following inequality is an immediate consequence of
definitions:

%(NA%B/) < 5% (NA%B’)'

Theorem 22: Fix n € N and ¢ € [0,1). The n-shot
classical capacity C?¢(N4_,p+) of the point-to-point channel

(286)
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Na_, g assisted by classical feedback is bounded from above
as follows:

R 1
O Wanp) < YalNasp) + o= Lo, (1 - 62 ’
(287)

for all « € (1,2].

Proof: Applying the bound in (281) with the choices in
(282), we conclude that the following bound holds for all « €
(1,2] and for an arbitrary (n, M, ¢) classical communication
protocol assisted by a classical feedback channel:

logy M
< n?a(NAHBI) + Z ffa(AleflﬁAzl 1)
=1
N L L (288)
1 OgQ 1— €
a 1
— nTa(NAHB» —+ 1 10g2 (15) (289)

The equality follows from Proposition 13. This then implies
the following bound

g, M < TuWam) + o, (1 ! E) - @90)
Since the bound in (290) holds for an arbitrary protocol,
we conclude the statement of the theorem after applying the
definition in (283). |
Theorem 23: The strong converse classical capacity of a
point-to-point quantum channel N4 _, g assisted by a classical
feedback channel is bounded from above as follows:

 (Nassp) < TNasp).

Proof: The reasoning here is the same as that given in
the proof of Theorem 21. [ |

(291)

Before proceeding to the next section, let us finally note
that our bounds above apply in a more general setting
in which the classical feedback channel is replaced by an
entanglement-breaking channel [66]. This follows because
every entanglement-breaking channel can be written as a
composition of a general pre-processing quantum channel,
followed by a classical channel, which is in turn followed
by a general post-processing quantum channel [66]. It is then
clear that the pre-processing channel can be absorbed into a
local operation of the receiver Bob, while the post-processing
channel can be absorbed into a local operation of Alice, so
that this is essentially just assistance by a classical feedback
channel again, and our result thus applies.

V. EMPLOYING THE SANDWICHED RENYI RELATIVE
ENTROPY

In this section, we explore what kinds of bounds we can
obtain on the previously defined capacities, by making use of
the sandwiched Rényi relative entropy.

Let us define the amortized sandwiched Rényi divergence of
the completely positive maps Ny_,g and M 4_,p as follows
[67]:

EEE Xplore. Restrictions apply.



This article has been accepted for publication in IEEE Transactions on Information Theory. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TIT.2022.3233924

Reference

A A AL

(1) (2) (3)
EN a E 2 €| A
Vs AT T
F(l) . _F(Z) . _F(3) B

Bob

Fig. 3. Depiction of a protocol for classical communication over a point-to-point channel with classical feedback, by making n = 2 uses of the point-to-point
channel A4 _, gs. This protocol is related to the one in Figure 2, by replacing every odd use of N yp_, 4s g/ with the classical feedback channel Ag_, 4/

and every even use of Ny g_, o/ g With the point-to-point channel N'4_, p.

Dé(NA—)B”MA—)B) =

sup  Do(Na—sg(pra)Masp(0ra))—Da(prallora),
PRAORA

(292)

for o € (0,1) U (1,00), where the optimization is over all
density operators pr4 and or4. By exploiting the definition
of the sandwiched Rényi relative entropy, it follows that
the quantity above does not change if we optimize more
generally over positive semi-definite operators pra and o4
with strictly positive trace.

The amortized sandwiched Rényi divergence is subadditive
in the following sense:

Proposition 24 (Subadditivity): Let Ni_,p. NE_c.
MYy _.p> and M% _,c be completely positive maps. Then

DAN? o N [MZ o M) <
DANYIMY) + DA M), (293)
for all @ € (0,1) U (1,00).

Proof: Let pra and ora be arbitrary positive semi-
definite operators. Then

DaWNB,cWiL(pra))IME o(Mh_ 5(0RA)))

— Du(prallora) (294)
= ﬁa(Né—)C(N/IXHB(pRA))HMQBHC(MAHB(URA)))

— Do(NAiL5(pra) MY 5(0RA))

+ Do(NALp(pra) [MA5(0RA)) = Dalprallora)
(295)

< DI NHIMY) + DI IM?). (296)
The desired inequality follows because pra and opra are
arbitrary. |

The regularized sandwiched Rényi divergence of the com-
pletely positive maps Na g and M4 ,p is defined for
a € (0,1)U(1,00) as follows:

T . 1~ n n
Bt (N5 Macs) = lim L5, (NG M5, ).
(297)
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and the limit exists, as argued in [68, Theorem 5.4].
The following equality holds for all @ > 1 [68, Theo-
rem 5.4]:

DANaLBIMasp) = D¥(NapllMap). (298

As such, by applying (298) and Proposition 24, it follows that

DN o N[ MPo M) < DEEN M) + DE (N2 M?)
(299)
for all a > 1.

We can then replace the use of the geometric Rényi rel-
ative entropy in Theorems 20 and 22 with the regularized
sandwiched Rényi relative entropy and arrive at the following
statements:

Corollary 25: The following upper bound holds for the n-
shot randomness transmission capacity of a bipartite channel
Naparp:

R™(Napap) <

rreg . o 1
Ta (NAB—>AB)+n(a_1) 10g2<1_€>3 (300)

for all &« > 1 and ¢ € [0, 1), where

T8 (Napsarp) =

inf DEE(Naparp|IMap—ap). (301)

Mauparpr:
BMaparp)<1
Corollary 26: The following upper bound holds for the
n-shot randomness transmission capacity of a point-to-point
channel NV4_, g/ assisted by a classical feedback channel:

o 1

n(a—1) 10g2(1 —(5322’)

C™ (Nassp) < TE8(Na,p/) +

for all & > 1 and ¢ € [0, 1), where

TrB(N s p) =

inf  D'¥(Nap|[Mass). (303)
Moy pr:
B(My, )<l
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These bounds are not particularly useful, because the quan-
tities Y2°8(Nap_a'p) and YT8(N4_, p/) may be difficult
to compute in practice. However, see the discussions in
[68, Section 5.1] for progress on algorithms for computing
Dreg(N||M). In the next section, we show how these bounds
simplify when the channels of interest possess symmetry.

VI. EXPLOITING SYMMETRIES

In this section, we discuss how to improve the upper bounds
in Corollaries 25 and 26 when a bipartite channel and point-
to-point channel possess symmetries, respectively.

We begin by recalling the definition of a bicovariant bi-
partite channel [40]. Let G and H be finite groups, and for
g € Gand h € H, let g —» Ua(g) and h — Vg(h)
be unitary representations. Also, let (g,h) — Wa/(g,h)
and (g,h) — Yp/(g,h) be unitary representations. A bipar-
tite channel Nap_. a/p/ is bicovariant with respect to these
representations if the following equality holds for all group
elements g € G and h € H:

Napsarp o (Ua(g) @ Vp(h) =
War(g,h) @ Yp:(g,h)) o Nap—sarpr, (304)
where Ua(g)(-) = Ua(g)(:)Ua(g)", with similar definitions
for Vg(h), Was(g,h), and Yp/(g,h). A bipartite channel is

bicovariant if it is bicovariant with respect to groups that have
representations as unitary one-designs, i.e.,

@ G| > Ualg Tr[X]ma, (305)
geG

I H| > Vs(h Te[Y]7p. (306)
heH

Two bipartite maps Map_ /g and Map_, 4/ g are jointly
bicovariant if they are bicovariant with respect to the same
representations, i.e., if (304) holds for both N4p_, 4/p- and
Muapsarp.

Proposition 27: Let Nap_s op’ be a bipartite channel that
is bicovariant with respect to unitary representations as defined
above. Then

YNapoap) =

2111) DNapoap (Wra)|Map—ap (Yrag)),
€S

1nf

GiAD<1
(307)

where S is the set consisting of every pure state 9 pap such
that the reduced state 14 satisfies

LS Walg) @ Ve(h) (),

G ETen

Yap = (308)

and C is the set of all completely positive bipartite maps
that are bicovariant with respect to the unitary representations
defined above. In the case that N4 p_, 4’ is bicovariant, then

Y(Napoap)=

inf  DN(® 4, © Ppp)lM(P
Mect:
BM)<1

AA ® (PBB)), (309)
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where ® ; , ®® 5 is a tensor product of maximally entangled

states and C! is the set of all completely positive bicovariant

maps M ap_, o' (i.e., covariant with respect to one-designs).
Proof: Let 1rap be an arbitrary pure state. Define

LS Wale) © V() (Yas):

(310)
[Gl1H] geG,heH

PaB =

Let ¢% 4 € S be a purification of p, 5. Another purification
of p4p is given by

Vrrpan = WX UP |G RAB, (311)
where
|wﬁ>GHRAB =
9clh)a(Ua(g) @ Va(h))|[Y)raB-
312)

Let M4sp_,4a-pr be an arbitrary completely positive map
satisfying B(Mapg—a/p/) < 1. Define

Mupoap =
1

- S Warlg.h) ® V(g b))

geG,heH
oMuaparp o (Ua(g) ®Ve(h)),

and observe that M sp_, 4-p € C. Consider the development
in (314)—(318). The first equality in (314) holds because all
purifications are related by an isometric channel acting on the
purifying system, the channel N'sp_, 4-p- commutes with the
action of this isometric channel because they act on different
systems, and the generalized divergence is invariant under
the action of isometric channels. The first inequality in (315)
follows by acting with a completely dephasing channel on the
systems G H and then applying the data-processing inequality.
The second equality in (316) follows from the bicovariance of
Nap_s 4 with respect to the given representations. The third
equality in (317) follows by applying the unitary

> |g.h)g, hlan ® Wi (g,h) @ Y}, (g, h),
g€G,heH

(313)

(319)

and from the unitary invariance of the generalized divergence.
We have also defined

MAB—>A’B’ =

War(g,h)@V5:(g,h)) o Map—arp o (Ua(g)@Vi(h)).
(320)

The last inequality in (318) follows from tracing over the
registers GH and from the data-processing inequality. Since
the inequality holds for all pure states, we conclude that
sup D(Napap(¢sap)|Mapsap(dsan))
¢saBES
> D(Nap-ap/|Map-as)
> Y(Nap-ap).

(321)
(322)

The second inequality follows because Map_sa g satisfies
BMap—ap) < 1 if Map_ap does. This in turn is
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D(Nap—ap (9% 4p)IMap—an (6%,5))

= D(NABHA’B’(ngRAB)HMABHA'B'WEHRAB)) (314)
1
>D| ——— Y. l9.h)ghler @ Nap—ap o Ualg) @ Vs(h)(Yras)
|GI1H| geG heH
1
== > g, h)Xg, hlag ® (Mapap o (Ualg) @ Va(h)))(YraB) (315)
IGIH| | Een
1
:D<|G||H| Z ‘g’h><gah|GH®((WA/(gah)®yB’(ga h))ONAB%A'B/)(iﬂRAB)
geG,he H
1
TATTE Z lg, h)g, hler @ (Map—ap o (Ua(g) ® Vp(h)))(YraB) (316)
IGHA e
1
=D <|G||H| > lg.h)g hler ® Nap—ars (Yras)
g€G,heH
1
ST 19 h)gs hlar © M5 a0 (Yran) (317)
|G 1H]| geG heH
> D(Nap—a B (Yrag)|Map—a s (Yrag)). (318)

a consequence of the convexity of 3 (Proposition 9) and
its invariance under local unitary channels (Corollary 8).
Since the inequality holds for all Map_,4/p/ satisfying
B(Map—ap) <1, we conclude that

inf sup D(Nap—ap/(¢sap)IMap—ap (¢san))
sM<1 75

> Y (Napsap).

However, the definition of Y (Nap_a-p/) implies that

(323)

Y (Napsap) >
inf sup DNap—ap (¢san)||Map—ap (Psar)).

B(A<1 9€5
(324)

So we conclude the equality

YNaposap) =
inf sup D(Napap(¢sap)|[Map—a s (dsan))-
M: $eS
BM)<1
(325)

Now suppose that M 4p_, 4/’ is an arbitrary completely pos-
itive map satisfying S(Map—a/p) <1, and let pgap € S.
Then by (321), we conclude that

sup D(Nap—a g (¢saB)|Map—ap (dsan))
$¢saABES

> inf sup D(Nap-ap/(dsaB)|[Map-ap (dsan)).
MeC: ¢eS
BM)<1
(326)
Since this holds for every completely positive map

Map_ap satisfying B(Mapap) < 1, we conclude that

© 2023 IEEE. Personal use is
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YNapoap) >

Cinf  sup D(Nap—ap (dsan)|Map—ap (dsap))-
MeC: ¢S
BM)<1

(327)

However, from the definition of X (Nap_ a'5/), we have the
inequality

YNapoap) <

“inf  sup D(Nap—ap (¢sap)|Map—ap (dsap))-
MeC: ¢es
BM)<1

(328)

Thus, the equality in (307) follows. The equality in (309)
follows because the only state satisfying (308) for one-designs
is the tensor product of maximally mixed states, and the tensor
product of maximally entangled states purifies this state. M

Recall from Section V that the bounds in Corollaries 25
and 26 are not particularly useful on their own because
T8(Nap_ a/p’) may be difficult to compute in practice.
However, if the bipartite channel is bicovariant, then (309)
implies that the regularized quantity is bounded from above
by a single-letter quantity:

T8 (Napsap) < Ta(Napoas).

We then obtain the following:

Corollary 28: The following upper bound holds for the
n-shot randomness transmission capacity of a bicovariant
bipartite channel Nag_s a/p/:

(329)

R (Napoap) <

=~ 1
ToNapsap) + - (aa, 0 log, <1 — 5) , (330)
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forall & > 1 and ¢ € [0, 1).

By applying the same reasoning in the proof of Theorem 21,
we conclude the following:

Corollary 29: The following upper bound holds for the
strong converse randomness transmission capacity of a bico-
variant bipartite channel Nap_, 4/ p:

E(NAB—)A’B’> < T(NAB*)A/B/).

Let G be a group and let Us(g) and Vp/(g) be unitary
representations of ¢g. A point-to-point channel N4_,p/ is
covariant with respect to these representations if the following
equality holds for all g € G [69]:

NaprolUa(g) = Ve (9) oNapr.

A point-to-point channel is covariant if it is covariant with
respect to a one-design.

By applying the same reasoning as given above, we have
the following results:

Corollary 30: The following upper bound holds for the n-
shot classical capacity of a covariant point-to-point channel
N4_, g assisted by a classical feedback channel:

(331)

(332)

CZE(NA%B’) S TOL(NA*)B’) + n (aa, 1) 10g2 <1 162 )
(333)
forall « > 1 and € € [0,1).
Corollary 31: The following upper bound holds for the
strong converse classical capacity of a covariant point-to-point
channel MV4_ p:

CeNasp) € TWNasp). (334)

VII. EXAMPLES

In this section, we apply the bounds to some key examples
of bipartite and point-to-point channels. The Matlab code used
to generate the plots below is available with the arXiv posting
of our paper.

A. Fartial swap bipartite channel

The partial swap unitary is defined for p € [0,1] as [70],
[71]

Shp =1 —plap +iy/pSas, (335)
d—1
Sap =) li)ila ® |i)ils, (336)
4,j=0
where A ~ B and d = d4 = dpg. The following identity holds
Shp = €947 = cos(t)lap + isin(t)Sap, (337)

where /1 —p = cost. Thus, we can understand the unitary
operator S% ;; as arising from time evolution according to the
Hamiltonian S4p. We then define the bipartite partial swap

channel as
SZB(') = SZB(')(S.ZB)T'

Suppose that p = 1. Then the channel S% ; is equivalent
to a swap channel. In this case, the forward classical capacity
is equal to 2log, d. This follows by an argument given in

(338)
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Fig. 4. Upper bound on the forward classical capacity of the partial swap
bipartite channel in (338), with d = 2.

[30]. To see that the rate 2log, d is achievable, consider the
following strategy. On the first use of the channel, Alice inputs
one classical dit to her input and Bob inputs one share of
a maximally entangled state. Bob can decode the classical
dit, and after the first channel use, they share a maximally
entangled state ®, Before the second channel use, Alice
can employ a super-dense coding strategy [5]. She applies
one of the d?> Heisenberg—Weyl unitaries to her share of ®¢
and transmits it through her input to the channel. Bob again
prepares ®? and sends one share through his channel input.
Bob can then decode the message Alice sent, by performing a
Bell measurement, and they again share ®?. They then repeat
this procedure many times. Even though the first channel
use allows for only log, d bits to be transmitted, all of the
other channel uses allow for 2log, d bits to be transmitted.
So in the limit of many channel uses, the rate 2log,d is
achievable. An upper bound of 2log,d is argued in [30]
by employing a simulation argument. Alternatively, it can
be seen from our approach by employing Theorem 21 and
Proposition 15, and picking Saa'5p' = Vaasp = IaaBp
in the definition of Cg. These choices satisfy the constraints
and 10g2 ||T1"A’B’ [SAA’BB’]HOO = 210g2 d.

At the other extreme, when p = 0, the channel 8% 5 reduces
to the tensor product of identity channels. Since this channel
is a product of local channels, Theorem 21 and Proposition 14
imply that C(S% ;) = 0. Thus, the partial swap unitary
interpolates between these two extremes.

Interestingly, the partial swap unitary is not bicovariant for
p € (0,1) because the general definition involves both the
identity and the swap. As such, our bound from Theorem 21 is
useful in such a case. By employing a semi-definite program to
calculate Y, (8% ) ford = 2 and @ = 1427, with £ = 4, we
arrive at the plot given in Figure 4. The semi-definite program
is included in the arXiv posting of this paper and is based on
the methods mentioned in [22, Remark 4].

We remark that the partial swap channel is bicovariant
with respect to all unitaries of the form U ® U. As such,
by applying Proposition 27, we conclude that it suffices to
maximize Y, (8% ;) over input states Ypap possessing the
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Fig. 5. Upper bound on the forward classical capacity of the noisy CNOT
bipartite channel in (343), with d = 2.

following symmetry:

Yag = /dU (Ua®Up)ap(Ua®@Up)', (339)

where dU denotes the Haar measure. States possessing this
symmetry are known as Werner states [72] and can be written
in terms of a single parameter ¢ € [0, 1] as follows:

WL = (1 g) I, (340)

2 2
dd+ 1) A T lgg
where Hf g = (Iap £ Sag) /2 are the projections onto the
symmetric and antisymmetric subspaces of A and B, with
Sap defined in (336). Additionally, by exploiting the same
symmetry, it suffices to minimize over completely positive
bipartite maps M 4p_, 4-p- such that

Maposap = /dU (U @UB )T oMap_arpo(Us@UB).

(341)
This is equivalent to their Choi operators satisfying

FQAA’BB’ :/dU (Z/{A/®Z/{B/®HA®HB)(FAMA/BB/), (342)

where U/ denotes the complex conjugate. This further re-
duces the number of parameters needed in the optimization
task, which is useful for computing Y, (S% ;) for higher-
dimensional partial swap bipartite channels. We note that Haar
integrals of the form in (342) can be computed by generalizing
the methods of [73], [74] (see also [75, Section VII]).

B. Noisy CNOT gate
Another example of a bipartite channel of interest is a noisy
CNOT gate, defined as follows:
Dlip() == (1 —p)CNOT 45(-)CNOT 45 + PR 5(), (343)

where
d—1
CNOTp = Y _ [iXila @ X(i)5,
=0

(344)
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Fig. 6. Lower and upper bounds on the classical-feedback-assisted classical
capacity of the qubit depolarizing channel in (348), with d = 2. The dashed
vertical line indicates that the qubit depolarizing channel is entanglement
breaking for p > 2/3, so that the Holevo information is equal to the feedback-
assisted capacity for these values [10], [26].

d-1
X(i)p =Y _li®j)il, (345)
=0
W) =Trap[|maB, (346)
Y
TAB ‘= dndp (347)

When p = 0, the channel is a perfect CNOT gate, and when
p = 1, it is a replacer channel. Thus, when p = 0, the result
from [30] applies, implying that C (DZTBO) = log, d, and when
p =1, the forward classical capacity C(D%,") = 0.

This channel is bicovariant, as argued in [40], and so
Corollary 29 applies. Evaluating the Y-information of D ,
we obtain the plot in Figure 5.

C. Point-to-point depolarizing channel

Here we consider the point-to-point depolarizing channel,
defined as

DP(X):=(1-p) X +pTr[X]r,
w=1/d.

(348)
(349)

It was already established in [22] that Y(DP) is an upper
bound on its (unassisted) classical capacity, and the Holevo
information is equal to its classical capacity [17]. Our contri-
bution here is that T(DP) is an upper bound on its classical
capacity assisted by a classical feedback channel. Figure 6
plots this upper bound and also plots the Holevo information
lower bound when d = 2. The latter is given by 1 — ha(p/2),
where hs is the binary entropy function. Note that the depo-

larizing channel is entanglement breaking for p > #‘ll. As
such, the bounds from [10], [26] apply, so that, for p > #17

the Holevo information 1 — ha(p/2) is equal to the classical
capacity assisted by classical feedback.
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D. Point-to-point erasure channel

The point-to-point quantum erasure channel is defined for
p € [0,1] and integer d > 2 as [76]

&Ep.alp) = (1 —p)p + ple)el,

where |e)(e] is a quantum erasure symbol, orthogonal to every
d-dimensional input state p, so that the channel output has
dimension d+ 1. This channel is covariant, as defined just after
(332). Thus, by combining [21, Lemma 12] with Corollary 31,
we conclude that the strong converse holds for the classical
capacity of the erasure channel &, 4 assisted by classical
feedback; i.e.,

C(Epa(p) = C(Epalp)) = (1 — p) logy d.

(350)

(351)

E. Other point-to-point channels

We note here that the reader can consult [22, Section 6.4] to
find other examples of channels for which the T-information
has been calculated, including dephrasure and generalized am-
plitude damping channels. In all cases, our results strengthen
those findings, because our results imply that these quantities
are upper bounds on the classical-feedback-assisted classical
capacity, rather than just the unassisted classical capacity.

VIII. CONCLUSION

In this paper, we established several measures of classical
communication and proved that they are useful as upper
bounds on the classical capacity of bipartite quantum channels.
We did so by establishing several key properties of these
measures, which played essential roles in the upper bound
proofs. One of the most critical properties is that the measures
are subadditive under serial composition of bipartite channels,
which is a property that is useful in the analysis of feedback-
assisted protocols. One important application of our results is
improved upper bounds on the classical capacity of a quantum
channel assisted by classical feedback, which is a problem that
has been analyzed in the literature for some time now [10],
[28], [26], [29], [25].

Going forward from here, an open question is whether our
bounds could be improved in any way. The recent techniques
of [68] might be helpful in obtaining refined non-asymptotic
bounds, but the main result of [77] implies that the sharp
Rényi divergence of [68] will not be helpful in the asymptotic
case. As a key example, we wonder whether classical feedback
could increase the classical capacity of the depolarizing chan-
nel. We also wonder whether our new bounds on the classical
capacity assisted by classical feedback generally improve upon
the entropy bound from [25].
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APPENDIX A
ALTERNATIVE FORMULATION OF MEASURE OF FORWARD
CLASSICAL COMMUNICATION FOR A BIPARTITE CHANNEL

In this appendix, we prove the equality in (20), and we
also provide the background needed to understand it. We
also provide an alternate proof of Proposition 6, in order to
showcase the utility of the expression in (20).

By definition, P4s_,p is Hermiticity preserving if
Pa—p5(X4) is Hermitian for every Hermitian X 4.
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A linear map P4, p is Hermiticity preserving if and only if
its Choi operator is Hermitian. Suppose that the Choi operator
I'Z is Hermitian. Then by the standard construction,

Passp(Xa) = (LlarXa @ T L5 1) AR (352)

Since Fsz is Hermitian and X 4 is also, it follows that
Pa—p(X4) is Hermitian. Now suppose that P4_, g is Her-
miticity preserving. Then

(T75)" = (Pass(Tra))T = Pasp(Th )

=Pasp(lra) =Thp. (353)

To every Hermitian operator R4 4/pp’, there is an associ-

ated Hermiticity-preserving map, defined as

Rap—sap(Xap) =

(T4 @ (Clpp)(Xap @ R4 5p)(IT) 44 ® 1) 5p)-
(354)

Consider that

Rap—ap(Xap)
= (T, 4® Tlpp)(Xap® R4 55) (D) 44 ® 1) 55)

(355)
= (<F|AA ® <F|BB)(TA B (XAB)RAA’BB/)(|F>AA ® ‘F>BB)
(356)
=Tri3Tip(Xip)Riappl- (357)

Also, if R4a'gp’ > 0, then R 45—, o' p/ is completely positive.
We also make the abbreviation

Rap-sap >0 < Rap-ap € CP.  (358)
Then consider that, for positive semi-definite R44/pp,

|Trarp [Raasp]lls

= sup Trpap Trarp/[Raa s (359)
paB>0,Tr[pap]l=1

= sup Tr{(pap @ Iarp)Raaep]  (360)
paB>0,Tr[pap]=1

= sup Tr[Rap—ap (pa)] (361)
paB>0,Tr[pap]l=1

= |Rapsasl; - (362)

Thus, the function (M ap_, 4/p/) for a completely positive
map M ap_, o/p/ can be written as

B(Mapsarp) = s inf |Sap—apll; (363)
AB—A'B/>
VaB_ a’ g’ €HermP
subject to
Tpr o (Vap—arp £ Mapsap)oTp >0, . G6d)

Sapsap £Vapsap >0,
TraroSapsarp = Tra oSapsap o RY

where R7 (+) == Tra[-]ma and w4 = I4/d 4 is the maximally
mixed state. Note that Sap_arp > 0 follows because
Sap—ap £Vap—ap > 0 and adding these allows us to
conclude that Spp_, a'5 > 0.
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For a point-to-point channel N4 _, g/, this translates to

ﬂ(NA—>B’)

[Sa-plly -
_ inf Tpro(Vasp £ Masp) >0,
. Sasprs SA—>B’ + VA_>B/ Z O,
V4 _, gr €EHermP SA%B’ — SA—)B’ ORZ
(365)
IR,
= inf Tp o(Vasp £ Map) >0,
S €PSD,
VAfB/eeHermP Ri%B/ +Vasp 20
(366)
T‘I‘[SB/] .
= iHESD Tpro(Vasp £ Myp) >0, p,
1€ s
VAjBIEHermP Ri—)B’ + VA—)B’ Z 0
(367)
where RS, 5/(-) = Tra[]Sp is a replacer map. Thus,
/B(NA%B/) =
TI‘[SB/] :
inf Tpr o (Vasp £ Map) >0, (368)

S E€PSD,

S
Va_, gr €HermP RA—)B’ + V45 >0

This kind of formulation is general. For example, consider
the following SDP for the diamond norm:

1
S I =M, =

inf {|TrpZrslll. : Zre > TN — T35}, (369)
rB20

Z

Using the above rephrasing, we can rewrite this optimization
as

1
S IV =M, =

ZAir}ngCP{HZAHBnl :Zasp > Nasp — MA*)B} .
(370)

We can use the expression in (363) to provide an alternate
proof of Proposition 6:

Proposition 32: Let MYy . 45 and M, 5 4npn be
completely positive maps. Then

B(Mi’B’%A”B” o M}ABHA’B’) <
BMZprsanpr)  BMyp ap)- (371)

Proof: Let Sip .4 p and Vg, 4 p be Hermitic-
ity preserving maps satisfying the constraints in (363) for
M}43—>A’B/’ and let Si’B’—)A”B” and V,24/B’—>A”B” be Her-
miticity preserving maps satisfying the constraints in (363) for

2 .
M g1, 4 g Then pick

SZB_)AHB// == S%lB/_}A//B// (@] S}%B_)AIB/7 (372)
V%B_}A//B// - Vi/B/_}A//B// [0} V}AB—)A/B/ . (373)

Also, set
M1343_>A//B// = M?AlB/_}A//B// O MIAB%AIB/ (374)
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Then it follows that
TB// (o) (ViB%A”B” :l: M?‘lB—)A”B”) o TB Z 07 (375)
S3poanpr EVigangs >0.  (376)

This follows from the general observation that if 4 +5 > 0
and C+D >0, then AoC + B oD > 0. This in turn follows
because

A+B>0, A-B>0, C+D>0, C—D>0, 377)

implies that

0<(A+B)o(C+D) (378)
=AoC+AoD+BoC+BoD, (379)
0<(A+B)o(C—-D) (380)
=AoC—-—AoD+BolC—-BoD, (381)
0<(A—B)o(C+D) (382)
=AoC+AoD—-BoC—BoD, (383)
0<(A—B)o(C—-D) (384)
=AoC—-—AoD—-BoC+BoD. (385)

Now add the first and last to get AoC + B oD > 0 and the
second and third to get AoC — BoD > 0.
Now consider that

TI'A// OS?&B—)A”B”

= Trar OSE\’B’%A”B” © SilB%A’B’ (386)
= Try» OSEVB’HA”B” o R}y o S%B%A’B’ (387)
=Trpan oS3 5 s angn 0 PR oTraoShp g (388)
=Tran oS3/ 5 anpn © PR 0oTra oShp . ap ©RY
(389)
=Tran oS4 gy arpn © Ry 0 Shpap ©RE. (390)

Since the first two lines show that Trar oS35 . 4vpn =
Tran o83, 5 anpgr © R% 0S4 5, 4rp» We conclude that

TI'A// OS%B%A”B” == TI'A” OSEZB*}A”B” 9] RZ (391)
Finally, consider that
IS = |53 o S) { (392)
AB—A"B"||1 = ||9A'B'»A7B" ©OAB—AB |1
2 1
S HSA'B,*)A”B” 1 ° HSAB%A,B/ 1° (393)

The inequality follows because the trace norm on superop-
erators is submultiplicative. So 8% 5, 4/ g and V35, 41 pn
satisfy the constraints in (363) for M35, 4np5/, SO we
conclude that

- (394)

BMp s a050) < 1S5 400 S

Since the argument holds for all k5, 45 and Vig 45
satisfying the constraints in (363) for MY 5 . 4 5/, and for
all 83,5/, anps and V3,5 _, 4 g, satisfying the constraints
in (363) for M?%, 5/, 4.5, We conclude the statement of the
proposition. [ ]
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APPENDIX B
THE o — 1 LIMIT OF RENYI CHANNEL DIVERGENCES

The following lemma was claimed in [64], but the proof
there is not correct. Here, for completeness, we provide a
proof, and we note that a different proof has been derived
as well [79].

Lemma 33: Let Na_,p be a quantum channel, and let
M, p be a completely positive map. The following limits
hold

lim D (A M) = DWIM), (395)
lim Do (N[ M) = DV M), (396)

where D, (N|M) is the sandwiched Rényi channel diver-
gence, D, (N||M) is the Petz—Rényi channel divergence, and
D(N||M) is the channel relative entropy. Specifically,

Do(N|M) = sup Do (Na—5(pra)lMa_s5(pra)),

PRA

Do (N|M) = sup Do (Nass5(pra)lMassp(pra)),

PRA

D(N|IM) = sup D(Na—5(pra)|Ma-p(pra)), (397)
PRA
where the optimizations are over every state pra, with the
reference system R arbitrarily large. The sandwiched Rényi
relative entropy D, (p||lo) is defined in (149) and the quantum
relative entropy D(p|lo) in (148). The Petz—Rényi relative
entropy is defined for all « € (0,1) U (1,00) as [80], [81]

1
a—1
if @ € (0,1) or, @« € (1,00) and supp(p) C supp(o).
Otherwise, we define D, (p||o) = +o0.

Proof: We first prove (395) and then argue that similar
reasoning establishes (396).

If there exists a state pra such that supp(Na_,g(pra))
supp(Ma—5(pra)), then it follows that the limit on the left-
hand side of (395) and the quantity on the right are both equal
to +o00. The same is true for (396).

So let us instead consider the case when
supp(Na—n(pra)) < supp(Ma-p(pra)) for every
state pr4, which is equivalent to the single condition
supp(I'¥5) C supp(Tyy), where T4, and T'pL are the
Choi operators of N4, g and M 4_., g, respectively. If this is
the case, then it follows that

Da(pllo) == —— log, Tr[p"o" ]

(398)

Dpax(N||M) < oo, (399)
where
Dinax(NM)
= SUp Dimax(Na—5(pra) [Ma—B(pRA)) (400)
= g:ax(rNHFM), 401)

with the latter equality established in [67].
First, we show the following equality, by a straightforward
argument:

lim_ Da(N|M) = DN M). (402)
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Indeed, consider that
lim l~)a(N||M)
a—1—
= sup Dy(N|M) (403)
a€(0,1)
= sup sup Do(Nass(pra)|Masp(pra))  (404)
ae(0,1) pPrA
=sup sup Da(Nasp(pra)Massp(pra))  (405)
PrRA a€(0,1)
= sup D(Na—g(pra)|lMa—p(pra)) (406)
PRA
— D(N||M). (407)

The first equality is a consequence of the a-monotonicity
of D,. The fourth equality is a consequence of (152) and
the a-monotonicity of D,,.

The following inequality

lim DN M) > DN M) (408)

is straightforward, being a consequence of monotonicity in «
of the sandwiched Rényi relative entropies [50], as well as
the a — 1 limit [50], [51]. To see it, let pr4 be an arbitrary
state. Then it follows from a-monotonicity that the following
inequality holds for all a > 1:

Do(Nassp(pra)lMasp(pra)) >

DWNasB(pra)Ma—p(pra)). (409)
Then

O}H% Da(N|IM)

= inf Do(N|M) (410)

= inf sup Do(Nassp(pra)IMass(pra)) (411
>l pra

> sup 11;’1"1 Do(Nass(pra)Mass(pra)) (412)
prA

> sup D(Na—p(pra)lMa—np(pra)) (413)
PRA

= D(N|M). (414)

The first equality is a consequence of a-monotonicity.

Let us then establish the opposite inequality. Let p be a state
and o a positive semi-definite operator. Recall the following
bound from Lemma 8 of [78] (see also Lemma 6.3 of [82]):

Di4s(pllo) < D(pllo) + 48 [log, v(p, o), (415)

which holds when supp(p) C supp(c) and for & €

In3
(O7 S V(p)a)), where
v(p,o) = Tr[pgaf%] + Tr[péaé] +1 (416)
1 - _1 o
— 9zDglello) | 5=3Dyelle) , o (417)

Note that v(p, o) > 3 (as argued just after [78, Eq. (22)]), as
well as
v(p,0) < 23Pmax(el) £\ /Ty[o] + 1, (418)

which follows because D%(pHO’) < Ds(p|lo) < Dmax(pllo),
which in turn follows from the a-monotonicity of the Petz—
Rényi relative entropy and the latter inequality was proven
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in [59, Lemma 7]. Also, we applied the Cauchy—Schwarz
inequality to conclude that Tr[pzo2] < \/Tr[o]. From the
fact that Di5(pllo) < Di4s5(pllo) for all 6 > 0 [51], we
conclude that

Dits(pllo) < D(pllo) + 45 [logy (v(p,0)* . (419)
By picking d € (0, ¢), where
In3
T i v(N, M)’ (420
where
VN, M) :=supv(Nap(pra); Masp(pra)), (421)

PRA

with the optimization over every state pra, we find that the
following inequality holds for every input state pra:

Di15(Nassp(pra)|Massp(pra)) <
D(Nasp(pra)lMasB(pra))
+ 40 [logy v(Nass 5 (pra)s Mass(pra))) -

Note that v(N, M) < oo because Dpax(N||M) < oo.
Indeed, from (418), we conclude that

(422)

(N, M) < 22 PmesWIM0 L Jiml 1, @23)
where the diamond norm of M is defined as [83]
M|, = sup Masp(pra)ll, - (424)
prA>0,Tr[pra]=1
(We could also set
In3
= (425)

ci= .

41n(22 PmaxVIM) - /TM]|, + 1)

if desired, and we note here that an advantage of doing so is

that both Dyyax (N|| M) and || M|, are efficiently computable

by semi-definite programming.) Now taking a supremum over
every input state pr4, we conclude that

Di45s(N[[M) < DNIM) + 48 [logy (N, M)]*.
Thus, by taking the limit of (426) as 6 — 0, we conclude that
lim Do(N|M) < DIN|M). (427)

a—

(426)

Putting together (408) and (427), we conclude (395).

A proof of (396) follows exactly the same approach, but
we finally use (415) directly instead and similar reasoning as
above to establish that lim,_,;+ Dy (N||M) < D(N||M). =

Now we discuss how to generalize this development to the
geometric Rényi and Belavkin—Staszewski relative entropies.
We first begin with the following simple extension of Lemma 8
of [78]:

Lemma 34: Let p be a quantum state and o a positive semi-
definite operator. Then

Diys(pllo) < Dipllo) + 45 [logy B(p,0))*,  (428)
holds for § € (O, #&0)) where
O(p, o) = 23Dsr2(ello) | 9=3D12(ello) 11 >3 (429)
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Proof: The proof below follows the proof of Lemma 8 of
[78] quite closely, with some slight differences to account for
the different entropies involved. We provide a detailed proof
for completeness. First, suppose that supp(p) € supp(o).
Then both the left-hand side and right-hand side of (428) are
equal to +00, so that there is nothing to prove in this case.
Now suppose that supp(p) C supp(c), which implies that
we can restrict the development to the support of o, and on
this space, o is invertible. Let us suppose furthermore for now
that supp(p) = supp(o), and then we apply a limit at the
end of the proof. As observed in [58, Proposition 72], we can

write
1

Dris(pllo) = 5 loga (1 X°|¢”), (430)
where
X =piolpr @1, (431)
[0°) = (p* @ I)|T), 432)
and |T') is defined in (2). Then consider that
1 1 1 4
Slogy (0| X°¢”) < ——— ((¥fIX°le”) = 1),  (433)

1) ~— 6In2

where we have applied the inequality Inx < z — 1, which
holds for all = > 0. Now expand X? as

X0 =146 X +rs5(X), (434)
where 75(X) := X° — §In X — I. Then it follows that

131+6(PHU)

1
< 51 0@ X[f) +{elrs(X)lef))  (435)

=~ 1

=D ——{pP|rs(X)|"). 4

(bll0) + 55 (s (XO)l") 436)

Now, again applying the inequality Inz < x — 1 for = > 0,
consider that

rs(z) =M% — §lng — 1 (437)
1
=4 ln<5) -1 (438)
x
ge‘“‘”wié—z (439)
x
_ eSlnx + efélnx —9 (440)
= 2(cosh(dlnz) — 1) (441)
=: ss5(x). (442)

Since a%s(;(:c) = 2dsinh(dlnx)/z and thus %sa(x) >0
for x > 1, it follows that ss(z) is monotonically increasing
in z for x > 1. Also, since 88—:285(@ = 20(d cosh(dInz) —
sinh(§Inx))/x? and thus 88—;55(@ < 0 for all 6 < 1/2 and
x > 3, it follows that ss(z) is concave in z for all 6 < 1/2
and x > 3. Furthermore, we have that

ss(z) = ss(1/), (443)

ss(2?) = s25(). (444)
Then we find, for all x > 0, that
1

ss(x) < s5 (x + - + 2) (445)
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s <(¢5 n \}5) 2) (446)
~ 025 <\/5 + %) (447)

< So5 <\/5+ % + 1) . (448)
The first inequality follows from monotonicity of ss(z) in z
for x > 1, as well as ss(x) = s5(1/z). Indeed, for z > 1, we
apply monotonicity to conclude that s5(z) < s5(z + % +2).
For z € (0,1), it follows that 1/z > 1, and so (443) and
monotonicity imply that s5(z) = ss(1/z) < ss(z + L +2).
The second equality follows from applying (444). The last
inequality again follows from the facts that /z + % >1
for > 0 and from applying monotonicity of ss(x) in x for
x > 1. Now consider that

{?lrs (X))

< (]55(X)] ") (449)
< (¢]525 (ﬁ + Tl)? + I) l”) (450)
< s25(0(p, 0)). 451

The first inequality follows because the scalar inequality
rs(x) < ss(x) extends to the operator inequality rs5(X) <
s5(X), holding for all positive definite X. The second in-
equality follows for a similar reason, but using the scalar
inequality ss(x) < sa5 (ﬁ + ﬁ + 1). The final inequality
follows from Jensen’s inequality (see [78, Lemma 11]) and
the fact that [58, Eq. (H.172)]

U(p,0) = (P"|(VX + 1/VX + T)|¢),

and also because v/ X + \/% + I has its eigenvalues in [3, 00).
Note that this latter statement justifies the inequality (p, o) >
3, which implies that 26 < 22— < 3. Letting f(y) =
2 (cosh(y) — 1), Taylor’s theorem implies that there exists a

constant ¢ € [0,] such that

(452)

1w =0+ row+ 0 asy
G 2(0) )2 (454)
= cosh(c)y? (455)
< cosh(y)y®. (456)

Using this and the fact that so5(2) = f(20 Inz), we find that

1 o~
51 2°2(0(p,0))
< ﬁ cosh(28 In0(p, o)) (26 InT(p, U))z 457)
n
= 46 (log, D(p,0))° In2cosh(20 I B(p, o)) (458)
< 46 (log, (p. ). 40

The last inequality follows from the assumption that § <

In3
Tmoipa) O that

In3
In 2 cosh(26 In0(p, o)) < 1n2008h(r;) <1. (460)
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In the case that supp(p) C supp(c), we define p) =
(1 =X p+ Ay, where A € [0,1] and 7, = II,/ Tr[II,].
Then applying the above development we find that

Diys(palle) < D(pallo) + 46 [logy D(pa, o). (461)

The inequality in (428) then follows by taking the limit A — 0.

|

Now by applying Lemma 34, and an argument similar to
that given for Lemma 33, so that

Dus(N[M) < DIN|M) + 46 [logy DN, M), (462)

where

(N, M) :=supV(Nap(pra) Map(pra)),

PRA

(463)

we conclude the following:

Lemma 35: Let Na_,p be a quantum channel, and let
Ma_.p be a completely positive map. The following limit
holds R R

lim Do (N[ M) = DN M), (464)
where_ Dy (N]|M) is the geometric Rényi channel divergence
and D(N||M) is the Belavkin-Staszewski channel relative
entropy, both defined from (159).

Finally, we have the following:

Proposition 36: Let N4_,p be a quantum channel, and let
C be a compact set of completely positive maps. Then

lim inf D,(N||M)= inf DWN|M), (465)
a—1 MeC Mec
lim inf Dy(N||M) = inf DN]|M), (466)
a—1 MeC Mec
lim inf Do(N||M) = inf DN|M). (467)
a—1 MeC Mec

Proof: First, if there does not exist M € C such that
Diax(N||M) < oo, then all quantities are equal to +oo.
This is because the condition Dy (N || M) < oo holds if
and only if supp(I'¥;) C supp(I'AL;), where TN, and T,
are the Choi operators of N4_.g and M 4_, g, respectively,
and all of the underlying quantities are equal to +oo if this
condition does not hold (this is the case for D, D,, and D,
for « > 1 and it is also the case for these quantities in the
limit @ — 17).

So let us suppose that there is such an M € C. We conclude
that

lim inf Dy (N|M) = inf DN[M), (468)
a—1- MeC MeC
lim inf Dy(N|M) = inf DN[M), (469)
a—1- MeC MecC
lim inf Do(N|M)= inf DN|M), (470)
a—1— MeC Mec

by applying Lemmas 33 and 35, the a-monotonicity of the
underlying Rényi divergences, as well as [84, Corollary A2],
along with the facts that Do (N[ M), Du(N[M), and
Dy (N]|M) are lower semi-continuous in M (see Lemma 37
below).

By employing the fact that the channel relative entropies are
ordered with respect to «, so that the limit as o — 1t is the
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same as the infimum over o > 1, and applying Lemmas 33
and 35, we conclude that

lim inf Dy(N|M) = inf DN|M), 471)
a—1t MeC Mec
lim inf Dy(N|M) = inf DWN|M), (472)
a—1t MeC Mec
lim inf Dy (N|M) = inf DN[M). (473)
a—1t MeC Mec

This concludes the proof. ]

Lemma 37: Let N be a quantum channel and M a com-
pletely positive map. The channel divergences D, (N[ M),
Dy (N||M), and D, (N||M) are lower semi-continuous in
N and M for the values of « for which the data-processing
inequality holds.

Proof: For a state p and a positive semi-definite opera-
tor o, it is known that the underlying divergences D, (plo),
D, (pllo), and D,(pl|lo) are lower semi-continuous in p and
o for the values of o for which the data-processing inequality
holds. This follows from the reasoning in [68, Lemma A.3].
We can then use this prove the desired statement for the
channel divergences, and we show the proof explicitly for
D, (N]|M), with the proofs for the other quantities following
the same line of reasoning. Let A, be a sequence of channels
that converge to A/, and let M,, be a sequence of completely
positive maps that converge to M (we can take the conver-
gence to be in the diamond norm, but it is not so relevant
since we are in the finite-dimensional case). Then the desired
statement is equivalent to proving that

hnllnfDa(NnHMn) > Da(NHM)
To this end, let pra be an arbitrary state. It then
follows that (idgp ®@N,)(pra) — (idr®N)(pra) and

(idg ®M ) (pra) — (idg ®M)(pra). From the lower semi-
continuity of D,, we conclude that

lim inf Do, ((idr @A) (pra)[[(idr ©M2)(pRA))

(474)

> Do ((idr ®N)(pra)ll(idr @M)(pra)).  (475)
Since this holds for every state prpa, we conclude that
Do (N[IM)
= sup Do ((idr ®N)(pra) | (idr @M)(pra)) (476)
PRA
< suplim inf D ((idg @NG) (pra) [[(ldr @M )(pRA))
prA T
477)
< lirginf sup Do, ((idg @N, ) (pra)||(Idr @M.,)(pRA))
n oo PRA
478)
= liminf Dy (N, || My). 479)
n—oo

The second inequality follows because the quantity can only
increase with the supremum on the inside. ]

Remark 38: One can extend the statement of Lemma 37 to
values of a beyond those for which data processing holds, by
the following argument. For all o € (0,00) and ¢ > 0, the
relative entropies D, (p||o +I) and D, (p||o + €I) are con-
tinuous in (p, o) and monotone decreasing in . Furthermore,

D (pllo) = sugDa(pllrerd), (480)
e>
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Dao(pllo) = sugﬁa(pﬂa—i—al). (481)
£>

Since the supremum of a set of lower semi-continuous func-
tions is lower semi-continuous, it follows that D, (pl[|c) and
D, (p|lo) are lower semi-continuous in (p,o). Since this is
all that Lemma 37 relies upon, the desired statement folloxvs
for D, and D,. A similar conclusion can be made for D,
by invoking Theorem 5.5 of [85], where it was shown that
the maximal f-divergence is lower semi-continuous for an
arbitrary operator convex function f, and also noting that D,,
is an example of a maximal f-divergence.
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