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Abstract

We discuss methods for visualizing neural network deci-
sion boundaries and decision regions. We use these visual-
izations to investigate issues related to reproducibility and
generalization in neural network training. We observe that
changes in model architecture (and its associate inductive
bias) cause visible changes in decision boundaries, while
multiple runs with the same architecture yield results with
strong similarities, especially in the case of wide architec-
tures. We also use decision boundary methods to visualize
double descent phenomena. We see that decision boundary
reproducibility depends strongly on model width. Near the
threshold of interpolation, neural network decision bound-
aries become fragmented into many small decision regions,
and these regions are non-reproducible. Meanwhile, very
narrows and very wide networks have high levels of re-
producibility in their decision boundaries with relatively
few decision regions. We discuss how our observations re-
late to the theory of double descent phenomena in convex
models. Code is available at https://github.com/
somepago/dbViz.

1. Introduction

The superiority of neural networks over classical linear
classifiers stems from their ability to slice image space into
complex class regions. While neural network training is cer-
tainly not well understood, existing theories of neural net-
work training mostly focus on understanding the geometry
of loss landscapes [5, 8, 25]. Meanwhile, considerably less
is known about the geometry of class boundaries. The ge-
ometry of these regions depends strongly on the inductive
bias of neural network models, which we do not currently
have tools to rigorously analyze. To make things worse, the
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Figure 1. The class boundaries of three architectures, plotted on
the plane spanning three randomly selected images. Each model is
trained twice with random seeds. Decision boundaries are repro-
ducible across runs, and there are consistent differences between
the class regions created by different architectures.

inductive bias of neural networks is impacted by the choice
of architecture, which further complicates theoretical anal-
ysis.

In this study, we use empirical tools to study the geom-
etry of class regions, and how neural architecture impacts
inductive bias. We do this using visualizations and quanti-
tative metrics calculated using realistic models. We start by
presenting simple methods for decision boundary visualiza-
tion. Using visualization as a tool, we do a deep dive on
three main issues:

* Do neural networks produce decision boundaries that
are consistent across random initializations? Put sim-
ply, can a neural network learn the same model twice?
We see empirically that the decision boundaries of a
network have strong similarities across runs, and we
confirm this using quantitative measurements.
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* Do different neural architectures have measurable dif-
ferences in inductive bias? Indeed, we find clear vis-
ible differences between the class regions of different
model architectures (e.g., ResNet-18 vs ViT).

* We use decision boundary visualizations to investigate
the “double descent” phenomenon. We see that de-
cision boundaries become highly unstable and frag-
mented when model capacity is near the interpolation
threshold, and we explore how double descent in neu-
ral networks relates to known theory for linear models.

2. Plotting decision boundaries

Most prior work on decision boundary visualization is
for the purpose of seeing the narrow margins in adversar-
ial directions [18,21]. Fawzi et al. [1 1] visualize the topo-
logical connectivity of classification regions. To facilitate
our studies, we seek a general-purpose visualization method
that is simple, controllable, and captures import parts of de-
cision space that lie near the data manifold.

2.1. On-manifold vs off-manifold behavior

When plotting decision boundaries, it is important to
choose a method that captures the behavior of models near
the data manifold. To understand why, consider the plots
of decision boundaries through planes spanning randomly
chosen points in input space as shown in Figure 2. We
see that decision regions are extremely smooth and uniform
with few interesting features. The training process, which
structures decision boundaries near the data manifold (e.g.
Fig. 1), fails to produce strong structural effects far from the
manifold (e.g. Fig. 2).

The uniform off-manifold behavior is not particular to
our training method or architecture but is rather an in-
evitable consequence of the concentration of measures phe-
nomenon [24,31]. In fact, we can show that any neural
network that varies smoothly as a function of its input will
assume nearly constant outputs over most of input space.
The proof of the following result is in Appendix A.

Lemma 2.1 Let f : [0,1]™ — [0, 1] be a neural network
satisfying | f(z) — f(y)| < \/LEHQS — yl||. Let f denote the
median value of f on the unit hypercube. Then, for an image
x € [0,1]™ of uniform random pixels, we have | f(z) — f| <
t with probability at least
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2.2. Capturing on-manifold behavior

1-—

The lemma above shows the importance of capturing the
behavior of neural networks near the data manifold. Unfor-
tunately, the structure of image distributions is highly com-
plex and difficult to model. Rather than try to identify and
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Figure 2. Off-manifold decision boundaries near “random” images
created by shuffling pixels in CIFAR-10 images. Each column’s
title shows the labels of the unshuffled base images. Below each
column we show the shuffled image triplet. Color-class mapping
is as follow Red:Frog, Green:Bird, Orange: Automobile.

flatten the complex structures on which images lie, we take
an approach that is inspired by the recent success of the
highly popular paper on the mixup regularizer [40], which
observed that, in addition to possessing structure near the
data manifold, decision boundaries are also structured in
the convex hull between pairs of data points.

We take a page from the mixup playbook and plot de-
cision boundaries along the convex hull between data sam-
ples. We first sample a triplet (21, 22, x3) ~ D? of i.i.d.im-
ages from the distribution D. Then, we construct the plane
spanned by the vectors v; = xo — 1, ¥3 = x3 — x1 and
plot the decision boundaries in this plane. To be precise, we
sample inputs to the network with coordinates

— —

o - max(vi - v1, |proj,; v2 - v1|)vi + B(v3 — proj,; v3)

for —0.1 < ¢, 5 < 1.1. This plotting methods using planes
has several advantages. It shows the regions surrounding
multiple data points at once and also the decision bound-
aries between their respective classes, using just one plot.
Furthermore, these classes can be chosen by the user. It
also focuses on the convex hull between points rather than
random directions that may point away from the manifold.

Figure | shows decision regions plotted along the plane
spanned by three data points chosen at random from the Air-
plane, Frog, and Bird classes of CIFAR-10 [23]. In these
plots, each color represents a class label. Same color-class
schema is maintained through out the paper and can be seen
in legends of multiple plots.
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Figure 3. Decision regions through a triplet of images, for various architectures (columns) and initialization seeds (rows).

2.3. Experimental Setup:

Architectures used: We select several well-known net-
works from diverse architecture families'. We con-
sider a simple Fully Connected Network with 5 hid-
den layers and ReLU non-linearities, DenseNet-121 [20],
ResNet-18 [17], WideResNet-28x10, WideResNet-28x20,
WideResNet-28x30 [38], ViT [9], MLPMixer [35], and
VGG-19 [32]. For fast training, our ViT has only 6 lay-
ers, 8 heads, and patchsize 4. The custom MLPMixer we
use has 12 hidden layers with hidden embedding dimension
512 and patch size 4. Unless otherwise stated, architec-
tures are trained for 100 epochs using SGD optimizer, and
3 multi-step learning rate drops. Random Crop and Hor-
izontal Flip data augmentations are used in training. For
distillation experiments, we also use a ViT-S/16 pretrained
on ImageNet [7] as a teacher [36]. Some experiments use
the Sharpness-Aware Minimization (SAM) optimizer [12]
adversarial radius set to p = 0.01.

We select learning rates using a grid search across {
0.001, 0.002, 0.005, 0.01, 0.02, 0.05} for each architec-
ture and optimizer (Adam [22] and SGD) combination, and
training for 200 epochs. Mean test accuracy over 3 runs per
model is reported in Table 1.

3. Model reproducibility and inductive bias

It is known that neural networks can easily overfit com-
plex datasets, and can even interpolate randomly labeled
images [39]. Despite this flexibility, networks have an im-
portant inductive bias — they have a strong tendency to con-
verge on decision boundaries that generalize well. Our goal
in this section is to display the inductive bias phenomenon

! Architecture implementations from https: //github . com/
kuangliu/pytorch-cifar and https://github . com/
lucidrains/vit-pytorch

using decision boundary visualizations. We ask two ques-
tions:

e Can a model replicate the same decision boundaries
twice, given different random initializations?

* Are there disparities between the inductive biases of
different model families that result in different decision
boundaries?

Below, we consider various sources of inductive bias, in-
cluding neural architecture family, network width, and the
choice of optimizer.

3.1. Inductive bias depends on model class

We choose three random images from the CIFAR-10
training set, construct the associated plane through input
space, and plot the decision regions for 7 different archi-
tectures in Figure 3. For each model, we run the training
script three times with different random initializations.

Several interesting trends emerge in this visualization.
First, we observe systematic differences between model
families. Convolutional models all share similar decision
boundaries, while the boundaries of Fully Connected Nets,
ViT, and MLP Mixer share noticeable differences. For ex-
ample, ViT and MLP Mixer consistently show the presence
of an orange “Automobile” region that CNNs do not. Fully
Connected Nets show considerably more complex and frag-
mented decision regions than other model families.

At the same time, we observe strong reproducibility
trends across runs with different random seeds. This trend
is particularly high for convolutional architectures, and the
effect is quite strong for WideResNet, which leads us to hy-
pothesize that there may a link between model width and
reproducibility — an issue that we will investigate in more
detail below.
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3.2. Quantitative analysis of decision regions

The visualizations in Figure 3 suggest that reproducibil-
ity is high within a model class, while differences in induc-
tive bias result in low similarities across model families. To
validate our intuitions, we use quantitative metrics derived
from the decision plots averaged over many trials to provide
a more sensitive and conclusive analysis.

Reproducibility Score: We define a metric of similarity
between the decision boundaries of pairs of models. We first
sample triplets T; = (zo, 21, x2); of i.i.d. images from the
training distribution. Let S; be the set of points in the plane
defined by T; at which the decision regions are evaluated.
We define the reproducibility score:

R(01,02) = Eqyp | (| £(Sis 01) N0 f(Si, 02))/1Sil| (1)

where for notation simplicity we denote the set of class
predictions within each decision region as f(S5;,6) =
{(z, f(2;60))}rcs, for a model with parameters 6. Practi-
cally, we estimate the expectation in Eq. (1) by sampling
500 triplets and 2500 points in each truncated plane for
a total of 1.25M forward passes. Simply put, this corre-
sponds to the “intersection over union” score for two deci-
sion boundary plots.

This score can quantify reproducibility of decision re-
gions across architectures, initializations, minibatch order-
ing, etc. In earlier work [3], variability of the decision
boundaries is studied by examining the similarity of pre-
dictions at test points. In contrast, our method gives a much
richer picture of the variance of the classification regions
not just at the input points, but also in the regions around
them and can be applied to both train and test data.

Measuring architecture-dependent bias We apply the
reproducibility score to measure model similiarity between
different training runs with the same architecture and across
different architectures. For each model pair, we compute
the reproducibility score across 5 different training runs and
500 local decision regions, each containing 2,500 sampled
points (6.25M total forward passes compared).

Figure 4 shows reproducibility scores for various archi-
tectures, and we see that quantitative results strongly reflect
the trends observed in the decision regions of Figure 3. In
particular, it becomes clear that

* The inductive biases of all the convolutional architec-

tures are highly similar. Meanwhile, MLPMixer, ViT
and FC models have substantially different decision re-
gions from convolutional models and from each other.

* Wider convolutional models appear to have higher

reproducibility in their decision regions, with
WideRN30 being both the widest and most repro-
ducible model in this study.
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Figure 4. Reproducibility across several popular architectures.

e Skip connections have little impact on the shape of
decision regions. ResNet (with residual connections
across blocks), DenseNet (with many convolutional
connections within blocks), and VGG (no skip connec-
tions) all share very similar decision regions. However
it is worth noting that skip connection architectures
achieve slightly higher reproducibility scores than the
very wide VGG network.

3.3. Does distillation preserve decision boundaries?

Distillation [19] involves training a student model on the
outputs of an already trained teacher model. Some believe
that distillation does indeed convey information about the
teacher’s decision boundary to the student [15], while oth-
ers argue distillation improves generalization through other
mechanisms [34]. We calculate the relative similarity of
the student’s decision boundary to its teacher’s boundary
and compare this to the similarity between teacher network
and a network of the student’s architecture and initializa-
tion but trained in a standard fashion. Across the board, dis-
tilled students exhibit noticeably higher similarity to their
teachers compared with their vanilla trained counterparts.
In Figure 5, we see that almost every student-teacher com-
bination has a higher reproducibility score than the same
teacher compared to an identically initialized model trained
without distillation.

3.4. The effect of the optimizer

In addition to the influence of initialization, data order-
ing, and architecture, the choice of optimizer/regularizer
used during training can greatly impact the resulting model
[13]. Thus, we study the effect of optimizer choice on
the reproducibility of a network’s decision boundary. In
Table I, we can see that SAM [12] induces more repro-
ducible decision boundaries than standard optimizers such
as SGD and Adam. This observation suggests that SAM
has a stronger regularization effect. However, more reg-
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Figure 5. Differences in reproducibility comparing distilled model
to vanilla trained model. *The reproducibility score is not appli-
cable for this diagonal entry because we start from the same pre-
trained model.

Reproducibility
Adam SGD  SGD + SAM
ResNet-18  79.81% 83.74% 87.22%
VGG 81.19% 80.92% 84.21%
MLPMixer 67.80% 66.51% 68.06%
VIT 69.55% 75.13% 75.19%
Test Accuracy
Adam SGD SGD + SAM
ResNet-18  93.04 95.30 95.68
VGG 92.87 93.13 93.90
MLPMixer  82.22 82.04 82.18
VIT 70.89 75.49 74.72

Table 1. Reproducibility of different models when using different
optimizers. SGD produces more reproducible decision boundaries
relative to Adam, and SGD+SAM almost always consistently in-
crease reproducibility of the model relative to SGD.

ularization doesn’t always mean better test accuracy. For
example, for MLPMixer and ViT, using SAM does not al-
ways achieve the highest test accuracy but does achieve the
highest reproducibility.

4. Double descent

In classical learning theory, it is thought that models with
too few parameters (e.g., low width) generalize poorly be-
cause they are not expressive enough to fit the data, while
models with too many parameters generalize poorly be-
cause of over-fitting. This is known as the Bias-Variance
trade-off [14]. In contrast, the strong inductive bias of neu-
ral networks enables them to achieve good performance
even with extremely large numbers of parameters. Belkin
et al. [4] and Nakkiran et al. [27] have shown that under the
right training conditions, we can see neural models oper-

04 3 Label Noise
-0 0
~ \ /"x"xx % 20
?_ 03 % ,xx *%sex
2 “f‘x"x x\x\
Bo2 '\. e
s0q,
0.1 “‘“‘u\.
1Ty d

*—e
0246 8101214161820222426283032343638404244464850525456586062 6466
Width parameter, k

Figure 6. Test error curves with 0 and 20% label noise in training.

ating in both the classical and over-parameterized regimes.
This is depicted in Fig. 6, which plots test error as a func-
tion of model width on CIFAR-10. We observe a classic U-
shaped curve for widths less than 10 (the underparametrized
regime). For models of width greater than 10, the test er-
ror fall asymptotically (overparametrized regime). This be-
haviour is referred to as “double descent” and discussed in
generality in Belkin et al. [4]. Between the two regimes
is a model that lives at the “interpolation threshold”; here,
the model has too many parameters to benefit from clas-
sical simplicity bias, but too few parameters to be regular-
ized by the inductive bias of the over-parameterized regime.
Double descent has been studied rigorously for several sim-
ple and classical model families, including kernel methods,
linear models, and simple MLPs [2, 6, 16, 26, 29, 30, 33].
Double descent is now well described for linear models and
random feature networks in [1, 6, 10, 16]. In the classical
regime, bias decreases with increased model complexity,
while the variance increases at the same time, resulting in a
U-shaped curve. Then, in the overparameterized regime, the
variance decreases rapidly while bias remains low [28,37].
In our studies above, we visualized the over-parameterized
regime and saw that models become highly reproducible,
with wide architectures producing nearly identical models
across training runs. These visualizations captured the low-
variance of the over-parameterized regime.

In this section, our goal is to gain insight into the model
behaviors that emerge at the interpolation threshold, caus-
ing double descent. We observe closely what is happening
at critical points (i.e., the transition between the under and
overparameterized regimes), and how the class boundaries
transition as we increase the capacity of the model class.
We find that the behaviour of class boundaries aligns with
the bias-variance decomposition findings of [28,37], how-
ever the model instabilities that cause variance to spike in
neural networks is manifested as a complex fragmentation
of decision space that is not, to the best of our knowledge,
described in the literature on classical models.

Experimental setup: We follow the experimental setting
from Nakkiran et al. [27] to replicate the double descent
phenomenon for ResNet-18 [17]. We increase model capac-



ity by varying the number of filters in the convolutional lay-
ers by a “width” parameter, k. Note that a standard ResNet-
18 model has & = 64 and lives in the over-parameterized
regime on CIFAR-10. We train models with cross-entropy
loss and the Adam optimizer with learning-rate 0.0001 for
4000 epochs. This gentle but long training regiment en-
sures stability and convergence for the wide range of mod-
els needed for this study.

It was observed in [27] that label noise is important for
creating easily observable double descent in realistic mod-
els. We train two sets of models, one with a clean train-
ing set and another with 20% label noise (uniform random
incorrect class labels). In both cases, we use the standard
(clean) test set. For noisy experiments, the same label er-
rors are used across epochs and experiments. RandomCrop
and RandomHorizontalFlip augmentations are used while
training. We observe a pronounced double-descent when
label noise is present. See Figure 6, which replicates the
double-descent curve of Nakkiran et al. [27].

We focus on several important model widths: k& = 4 is
the local minimum of test error in the underparametrized
regime, and k£ = 10 achieves peak error (& interpolation
threshold) beyond which the test error will continually fall.
We refer the reader to Appendix D for training error plots
showing the onset of interpolation near k = 10.

4.1. How do decision boundaries change as we cross
the interpolation threshold?

In Figure 7, we plot decision boundaries for models
trained with and without label noise and with varying ca-
pacities. As above, visualizations take place in the plane
spanned by three data points. We present examples using
two different methods for sampling — one with all three
images from the same class and one with three different
classes. The three images are drawn from the training set
and are correctly labeled (even for the experiments involv-
ing label noise). Similar behaviours are observed for other
randomly sampled images and with other combinations of
classes. See Appendix D for additional examples.

As we move from left to right in the figure, model ca-
pacity sweeps from k£ = 1 (under-parameterized) to k = 64
(standard ResNet-18, which is over-parameterized). As the
models become increasingly over-parameterized, the mod-
els are getting confident about their predictions, as seen by
the intensity of the color. When models are trained with
clean labels, the model fits all three points with high con-
fidence by the time £ = 4, and the decision boundaries
change little beyond this point.

The mechanism behind the error spike in the double de-
scent curve is captured by the visualizations using label
noise. In this case, the under-fitting behavior of the clas-
sical regime is apparent at k¥ = 4, as the model fits only
1 out of 3 points correctly, and confidence in predictions is

low. When we reached k£ = 10 (the interpolation threshold),
the model fits most of the training data, including the three
points in the visualization plane. As we cross this thresh-
old, the decision regions become chaotic and fragmented.
By the time we reach k& = 20, the fragmentation is reduced
and class boundaries become smooth as we enter the over-
parameterized regime.

To refine our picture of double descent, we visualize the
class boundaries at £ = 10 for a range of different image
triplets in Figure 8, both with and without label noise. We
see that in the label noise case, where double descent is ob-
served, there is a clear instability in the classification behav-
ior at the interpolation threshold.

Let’s now see what happens to the decision boundaries
around mislabeled images. Figure 9 shows decision bound-
aries around three points from the Automobile class, where
one of the points is mislabeled in the training set. When
k = 10, we see chaotic boundaries. The mislabeled points
are assigned their (incorrect) dataset label, but they are just
barely interpolated in the sense that they lie very near the
decision boundary. For k& = 64, the boundaries are seem-
ingly regularized by inductive bias; the mislabeled points
lie in the center of their respective regions, and boundaries
are much more smooth.

Having observed the qualitative behaviour of correctly
labeled and mislabeled points in models with and without
label noise at various capacities, we ask the following ques-
tions:

* Can quantitative methods validate that fragmentation
behavior persists across multiple decision regions at
the interpolation threshold and vanishes elsewhere?

¢ Is the fragmentation at the interpolation threshold in-
deed caused by model variance? In other words, do we
observe different decision boundaries across training
runs, or are the chaotic regions reproducible like the re-
gions we observed in the over-parameterized regime?

e What is the mechanism for the decrease in test error
in the wide model regime? Is it caused by shrinkage
of the misclassified regions around mislabeled points,
causing them to stop contaminating the test accuracy?
Or is it merely caused by the vanishing of unnecessary
fragmentation behavior for large k?

In the subsequent sub-sections, we investigate these issues
using quantitative measurements of decision regions.

4.2. Quantifying fragmentation

We have observed that decision regions appear to be-
come highly fragmented as we cross the interpolation
threshold. To verify that our results are repeatable across
many experiments and triples, we introduce the fragmen-
tation score, which counts the number of connected class
regions in the plane spanned by a triplet of images.

Let .S; be a local classification region spanned by a triplet



" AIRPL W AUTO W BIRD [ CAT

N DEER W DOG

I FROG HEE HORSE WEE SHIP Fm TRUCKJ

k= k:

Model trained w.
no label noise

Ground truth:

Model trained w.
20% label noise
- .

k=20

@ Truck A Ship  # Frog

(a) All the points in the triple are from different classes, and are correctly labeled in the train set (even in the label noise case).

Model trained w.
no label noise

Model trained w.
20% label noise

Ground truth: @ Automobile

k=20 k=064

/A Automobile € Automobile

(b) All points in the triple are from the same class, Automobile, and are correctly labeled in the train set (even in the label noise case).

Figure 7. Decision boundaries for models of varying width. Label noise induces chaotic fragmentation of decision regions as we cross
the threshold of interpolation (k=10), while very narrow and wide models remain smooth.
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Figure 8. Decision boundaries of 3 correctly labeled points at &k =
10 on models with and without label noise.

T;. We create a decomposition S;(0) = U<, P;(0) where
each P;(#) is a disjoint, maximal, path-connected compo-
nent corresponding to a single predicted class label for the
model with parameters . The fragmentation score F'(6, T;)
of model # within the decision region defined by 7; is then
the number of path-connected regions. The overall frag-
mentation score for a model is

In practice, we compute the fragmentation score of a model
using a watershed method to find connected regions in de-
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Ground truth: @ Automobile A Automobile ¥ Automobile

k=10

Figure 9. Decision boundaries with 1 mislabeled automobile and 2
correctly labeled automobiles. Each column represents a different
image triplet. The mislabeled point is marked by x.

cision region spanned by the triplet and then by averaging
such fragmentation counts over 1000 triplets.

Note that prior work [1 1] proposes a metric to under-
stand class connectivity that requires solving a non-convex
optimization problem to find an explicit path between any
two given points. In contrast, our fragmentation score is
scalable, does not require any backward passes to approx-
imate the complexity of decision boundaries, and can be
averaged over a large number of input triples.

Fragmentation scores as a function of model width are
depicted in Figure 10. With label noise, we see a sharp peak
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Figure 10. Fragmentation scores as a function of model width for
models trained with and without label noise.

in fragmentation score as the model capacity crosses the
interpolation threshold, confirming our observations from
the visualization in the figures above. Interestingly, this
highly sensitive analysis is also able to detect a peak (around
k = 7) in the fragmentation score for models trained with-
out label noise. The bottom part of Figure 10 quantifies
the fragmentation trend for the decision regions spanned by
triplets of the same class (like in Figure 8).

4.3. Quantifying class region stability
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Figure 11. Reproducibility with respect to random initialization
for models of different widths.

Theoretical studies of double descent predict that, for
simple linear model classes, model variance spikes near the
interpolation threshold as decision regions become highly
unstable with respect to noise in the data sampling pro-
cess. Using reproducibility scores, we observe that the frag-
mentation of neural decision boundaries at the interpolation
threshold is associated with high variance and model insta-
bility. Figure 11 shows reproducibility scores across model
capacities with and without label noise. We see that re-
producibility across training runs is high in the under- and
over-parameterized regimes, but breaks down at the interpo-
lation threshold. Interestingly, our quantifications are sen-
sitive enough to detect a dip in reproducibility even without
label noise, although the variance introduced by this effect
is not strong enough to cause double descent. Note that the
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Figure 12. Median Margins - models with and without label noise.
Y-axis reflects the average perturbation size needed to reach deci-
sion boundary in a random direction.

model variance in Figure 11 is caused by differences in ran-
dom initialization. Classical convex learning theory studies
variance with respect to random data sampling. We find
that a similar curve is produced by freezing initialization
and randomizing the sampling process (see Appendix D).

4.4. Why does label noise amplify double descent?

The dramatic effect of label noise near the interpolation
threshold could be caused by two factors: (i) the necessary
regions of incorrect class labels that must emerge around
mislabeled points for the model to interpolate them, or (ii)
instability in the class boundaries, resulting in oscillations
that are not needed to interpolate the data. Quantitative
evidence presented above suggests that (ii) is the predom-
inant mechanism of double descent. The lower fragmen-
tation scores in over-parameterized regime (where almost
all mislabeled points are interpolated) compared to critical
regime as seen in Figure 10 shows that the extra regions are
not needed for interpolation.

To lend more strength to this conclusion, we investigate
hypothesis (i) by measuring the “mean margin,” which we
define to be the average distance between an image and the
edge of its class region in a random direction. For each
image, we approximate this value using a bisection search
in 10 random directions. We compute the mean margin for
5000 data points and report the median for models with and
without label noise in Figure 12.

Both with and without label noise, the margins are in-
creasing for k& > 10 (the over-parameterized regime). The
interesting observation is, when we computed margins of
only the mislabeled points, they go up too! The fact that
test error descends, even as the regions around mislabeled
points grow, lends further strength to the notion that double
descent is predominantly driven by the “unnecessary” oscil-
lations resulting from model instability, and not by the error
bubbles around mislabeled points.



5. Conclusion

In this article, we use visualizations and quantitative
methods to investigate model reproducibility, inductive
bias, and double descent from an empirical/scientific per-
spective. These explorations reveal several interesting be-
haviors of neural models that we do not think have been
previously observed. Curiously, the results of Section 3 in-
dicate that different model families achieve low test error
by different inductive strategies; While ResNet-18 and ViT
make similar predictions on test data, there are dramatic dif-
ferences in the decision boundaries they draw. Also, while
our studies of double descent found that the model insta-
bility predicted for linear models is also observed for neu-
ral networks, we saw that this instability is manifested as
the dramatic fragmentation of class regions. These oscil-
lations in the model output are reminiscent of “Gibbs phe-
nomenon,” and do not appear to be described in the theoret-
ical literature.
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Can You Learn the Same Model Twice? Investigating Reproducibility and
Double Descent from the Decision Boundary Perspective

Supplementary Material

A. Proof of Lemma 2.1

For clarity, we restate the lemma here.

Lemma 2.1 Let f : [0,1]" — [0,1] be a neural network
satisfying | f(x) — f(y)| < ﬁHI — y||. Let f denote the
median value of f on the unit hypercube. Then, for an image
x € [0,1]" of uniform random pixels, we have | f(z) — f| <
t with probability at least

L6727rnt2/L2

t/n

Consider a set A C [0, 1]™, and let d denote the /5 dis-
tance metric. We define the e-expansion of the set A as
A(e) = {z € [0,1]™]| d(z,.A) < €}. In plain words, A(e)
is the set of all points lying within € units of the set .A.

Our proof will make use of the isoperimetric inequality
first presented by Ledoux [24]. We use the following variant
with tighter constants proved by Shafahi et al.in [31].

1-—

Lemma A.1 (Isoperimetric inequality on the unit cube)
Consider a measurable subset of the cube A C [0,1]",
and a 2-norm distance metric d(z,y) = ||z — yl||o. Let
B(z) = (2m)" 2 I e~t"/2dt, and let « be the scalar that
satisfies ®(a) = vol|A]. Then

vol[A(e)] > @ (a + e\/ﬂ) . 3)
In particular, if vol(A) > 1/2, then we simply have
6—27152
vol[A(€)] > 1 — 5o 4)

To prove Lemma 2.1, we start by choosing A =
{z|f(x) < f}. Now, consider any z € A (t@) . From
the Lipschitz bound on f we have

F(@) - F)] < %ux —yl,

for any y. If we choose y = argmin,c 4 || — z|| to be the

closest point to x in the set A, we have that ||z —y|| < t@,
and so

[f(z) = fly)l <t

But f(y) < f because y € A. From this, we see that for
any choice of x € A (t@) we have

fla)—f<t Q)

Recall that f is the median value of f on the unit cube, and
so we have that

vol[A] >

| —

We can then apply Lemma A.l with € = t¥™ and we see
L6727rt2n/L2

that
A (Y] 1 L

We conclude that a randomly chosen x € [0, 1]™ will lie in
A (%) , and therefore satisfy (5) with probability at least

1_ Le—27rt2n/L2
2mt\/n B
An analogous argument with A = {z|f(x) > f} shows
that a randomly chosen = € [0, 1]™ will satisfy

f—flx) <t (6)

with the same probability. Applying a union bound, we see

that a randomly chosen z will satisfy (5) and (6) simultane-
Lefﬂ'tzn/ L2

ously with probability at least 1 — =— T

B. Decision regions

Off-manifold decision regions We present a few off-
manifold decision boundaries in this section. In Fig. 13,
we show decision regions of multiple off manifold images
where all the pixels are uniformly sampled in the image
space. Each row is a model, and each column is a randomly
sampled triplet. We observe that the decision regions as-
signed to such off-manifold images are quite uniform for a
given model. For example, in DenseNet, all such images
are assigned to Bird class, while in ViT, they are assigned
to Frog or Automobile. In Fig. 14, we show decision re-
gions for a multiple triplets of shuffled images. (Expanded
version of Fig.2). Even in this type of off-manifold images,
we see a similar pattern that the models are assigning the
samplings to a certain set of classes. This emphasises that
the decision regions are more structured close to the image
manifold and are rather uniform farther away from the man-
ifold.

C. Additional Reproducibility results

With and without Mixup in training In order to under-
stand how having mixup in the training affects the deci-
sion boundaries, we examined 2 cases, ResNet18 and Vi-
sion Transformer. In Fig. 15, we show 5 randomly sampled
triplets and their decision regions produced by ResNetl8
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Figure 13. Decision regions when all the images are uniformly sampled. Each row corresponds to a model,while each column is a new
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Figure 14. Decision regions when the pixels are randomly shuffled. Each row corresponds to a model,while each column is a new sampling

of the triplet. Extended version of Fig 2.

trained with and without mixup. We can see there is a
slight difference, but not quite significant. We quantified
how “similar” the decision surfaces are with reproducibility
score introduced in Section 3.2. The score for Resnet18 is
0.774, and for ViT is 0.808.

D. Additional Double Descent results

Additional error plots In Fig. 6, we have seen how the
test errors change as we progressively increase the model
capacity. Figure 16 shows how training errors change in ad-
dition to test errors. We can see that the train error reaches
0 at much higher k with label noise than without. In model
without label noise, the interpolation begins at k& = 10
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Figure 15. We present decision regions for random triplets sampled from the training set for ResNet18. We see the decision regions are

almost same with and without mixup.
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Figure 16. In this figure we show the train and test errors with and
without label noise.

which is the true interpolation threshold when there is no
label noise. We further examine how correctly labeled and
mislabeled points are behaving in Figure 17. The green
lines represent the overall train error, while orange shows
the error on correctly labeled points. The mislabeled points
are shown in grey, and the error is computed as incorrect
predictions with respect to assigned class. We see that till
k = 4 the mislabeled points are not fit to their assigned
class which partially explains the low test error of test data.
However at & = 10 most of the correctly labeled points
are fit while some of the mislabeled points are still not fit
to their assigned class. This trend diverges from what is
seen in simple model families where the second peak of test
error coincides with the model capacity with O training er-
ror. This shows that double descent in more complicated
in neural-network architectures than what is seen in simple
linear models.

Reproducibility scores from random data sampling In
Figure 11, we have seen how decision boundaries change
when we compare two runs of the same model architecture
with different initializations. In Figure 18, we show how
the ordering of the data changes the decision boundaries.
We see that the reproducibility across training runs is high
in the under- and over-parametrized regimes, but it drops
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Figure 17. In this figure, we show the train data errors for with and
without label noise cases in green color. We also investigate how
the errors are changing for correctly labeled points (orange curve)
and in mislabeled points (grey curve).
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Figure 18. Reproducibility with respect to random data samplings
for models of different widths

drastically closer to the interpolation threshold. This is the
exact same behaviour observed in Figure 11. This shows
that £ = 10 is a quite unstable with respect to different
types of variations in the model training.

Additional plots across varying model capacities and
noise In Figure 19, we show how the decision regions
change with and without label noise and with varying model
capacities across different samplings of triplets.
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Figure 19. Decision boundaries for models of varying width. We show additional decision surfaces with different types of triplets here.
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