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Abstract
Dispersed computing is a new resource-centric computing paradigm, which makes
use of idle resources in the network to complete the tasks. Effectively allocating tasks
between task nodes and networked computation points (NCPs) is a critical factor for
maximizing the performance of dispersed computing. Due to the heterogeneity of
nodes and the priority requirements of tasks, it brings great challenges to the task
allocation in dispersed computing. In this paper, we propose a task allocation model
based on incomplete preference list. The requirements and permissions of task nodes
and NCPs are quantitatively measured through the preference list. In the model, the
task completion rate, response time, and communication distance are taken as three
optimizing parameters. To solve this NP-hard optimization problem, we develop a new
many-to-manymatching algorithm based on incomplete preference list. The unilateral
optimal and stable solution of the model are obtained. Taking into account the needs
for location privacy-preserving, we use the planar Laplace mechanism to produce
obfuscated locations instead of real locations. The mechanism satisfies ε-differential

B Fuhong Lin
FHLin@ustb.edu.cn

Hongwen Hui
hhw21788712@163.com

Lei Meng
anthemmong@qq.com

Lei Yang
leiy@unr.edu

Xianwei Zhou
xwzhouli@sina.com

1 Department of Communication Engineering, University of Science and Technology Beijing
(USTB), Beijing 100083, China

2 Shunde Graduate School of University of Scienc and Technology Beijing, Guangdong 528300,
China

3 Department of Computer Science and Engineering, University of Nevada at Reno, Reno, State 89557,
USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00607-023-01160-2&domain=pdf


H. Hui et al.

privacy. Finally, the efficacy of the proposed model is demonstrated through extensive
numerical analysis. Particularly, when the number of task nodes and NCPs reaches
1:2, the task completion rate can reach 99.33%.

Keywords Dispersed computing · Networked computation points · Task allocation ·
Location privacy-preserving · Many-to-many matching

Mathematics Subject Classification 49

1 Introduction

1.1 Motivation

Dispersed computing describes a new computing paradigm that can perform compu-
tation in the most suitable location according to task requirements, which can greatly
reduce communication and computing costs [1]. A dispersed computing systems con-
sists of a group of highly heterogeneous networked computation points (NCPs) (such
as smart phones, tablets, internet of things terminal servers, base stations, and users
computers) that can provide computing services [2]. Compared with other computing
paradigms (cloud computing, fog computing, and edge computing), the advantage of
dispersed computing lies in the flexibility of choosing the most convenient location for
the mobile devices to carry out the computation [3–5], which relies on efficient task
allocation in dispersed computing. There are many challenges to the task allocation
of dispersed computing since the highly dynamic and unstable of dispersed comput-
ing environment(such as the heterogeneity in computation power and communication
bandwidth). Among them, one of the most important challenge for the task allocation
is how to quickly identify and deal with the instantaneous changes of the network.

In dispersed computing systems, the computing capabilities and types of compu-
tation that can be performed by different nodes are vary greatly. Strong nodes (such
as powerful servers and base stations) may be able to efficiently complete various
complex tasks, whereas weak nodes (such as smart phones and tablets) may perform
some simple tasks. The communication bandwidth between different nodes is limited
and heterogeneous. In addition, in many application scenarios of dispersed comput-
ing, tasks issued by task nodes are usually set with precedence requirements (captured
by a Directed Acyclic Graph), besides the requirements, such as computing power,
delay, and throughput [6–8]. Thus, the successful application of dispersed computing
depends closely on the design of efficient task allocation mechanisms, which requires
carefully consider the heterogeneity of computation and communication. To design
an effective task allocation mechanism suitable for dispersed computing environment,
the following three major challenges must be addressed:

• Heterogeneity The nodes and communication bandwidth in dispersed computing
are highly heterogeneous, and the tasks of different nodes are very different. To
establish a task allocation mechanism in a heterogeneous network, it must be con-
sidered that some NCPs are unable to complete all types of tasks. For example,
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high-throughput matrix operations have high requirements on the graphics pro-
cessing unit (GPU) of the computing device, and nodes with weak computing
power cannot complete such tasks. In the dispersed computing, some task nodes
require multiple NCPs to cooperate to complete their tasks, while some NCPs
can handle the tasks of multiple task nodes at the same time. In other words, task
allocation in this environment is a many-to-many relationship, not a one-to-one
relationship.

• Preference There is no fixed relationship between task nodes and the NCPs in the
dispersed computing environment. The task nodes and the NCPs that complete
the task establish a provisional cooperative relationship. Therefore, task nodes
need to explicitly attach some necessary conditions to ensure the quality of task
completion. Similarly, NCPs also have the right to choose their own preferred tasks
or reject some tasks. It is an important challenge that the designed task allocation
mechanism needs to have stronger compatibility and scalability. This mechanism
allows nodes to choose partners based on more objective needs and preferences,
thereby encouraging more NCPs to participate in computation.

• Location privacy-preserving The dispersed computing is a highly open comput-
ing paradigm that connects all devices in the word that can perform computing.
Location-based service and efficient task allocation usually requires the location
information of nodes. The increasing exposure of user location information raises
important privacy issues. Therefore, the location privacy protection of nodes is
a important factor that must be considered in task allocation for dispersed com-
puting. A novel task allocation mechanism is designed, which not only takes full
advantage of the convenience brought by location information, but also protects
the privacy information of nodes.

1.2 Related work

1.2.1 Dispersed computing

The conceptual roots and ideas of dispersed computing first came from Garcı́a-Valls’s
work [9], and the authors identified a new computing paradigm that was called
“social dispersed computing”. Dispersed computing has a unique advantage that it
can mission-aware and effectively use geographically dispersed and idle computing
resources,which called “dispersedmission-aware computation” [1]. Somepreliminary
research results have been achieved, mainly on the discussion of architecture concepts
and task scheduling. Yang et al. [5] discussed in detail the four different computing
architectures (mobile cloud computing, fog computing, mobile edge computing, and
mobile ad hoc network) and pointed out the limitations of these computing paradigms
in the tactical environment, which implies the necessity of proposing dispersed com-
puting. As a new computing paradigm, related research is still in its infancy, and it
is necessary and urgent to carry out research on broader topics (i.e., data security,
privacy protection, task allocation, intrusion detection, etc.) in dispersed computing
environment.
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1.2.2 Task allocation in dispersed computing

Some preliminary explorations are made task allocation in dispersed computing envi-
ronment.Yang et al. [2] studied the task scheduling problemof heterogeneous network,
proposed a max-weighted scheduling strategy for dispersed computing, and proved
that the strategy is throughput-optimal by using Lyapunov method. Hu et al. [10] pro-
posed a task scheduler based on two techniques (task duplication and task splitting)
to improve the task throughput of dispersed computing systems. Zhou et al. [11] pro-
posed a task-resource joint management model with state feedback control capability
by using the advantages of resource awareness in dispersed computing, and proved
that the stability of the system can be guaranteed in the mechanism. Ghosh et al. [12]
proposed a container orchestration architecture, and used a directed acyclic graph
(DAG) to distribute computation tasks to a set of network NCPs.

However, all these works ignore the heterogeneity of dispersed computing envi-
ronment (i.e., differences of node’s computing power and tasks). The assumption that
each server can handle any type of task does not in line with the actual processing
power of nodes in a heterogeneous environment. In addition, compared to throughput,
task completion rate is insufficient studied in task allocation of dispersed computing.
Nonetheless, task completion rate is a critical metric for studying task allocation of
highly dynamic scenarios.

1.2.3 Task allocation in mobile crowdsensing scenarios

There are similarities for task allocation in dispersed computing scenarios and in
mobile crowdsensing scenarios (MCS) [13–16]. They can all be attributed to a match-
ing relationship between the two groups (task publishers or task nodes, and workers
or NCPs). Two main modes of task allocation are proposed in MCS, namely, worker
selected task (WST) and server assigned task (SAT) [17–19]. WST model is user-
centric, and mobile users can choose tasks according to their location and preferences.
SAT model is platform-centric, the platform collects the tasks released by the task
requester and the information of all participants, which matches and distributes the
tasks and participants in order to maximize the benefits of the platform, such as max-
imizing the task completion rate and minimizing the platform cost [20, 21].

By contrast, task allocation in dispersed computing differs from MCS in three
aspects. First, the task allocation in MCS is mainly from the perspective of the plat-
form, with the goal of maximizing platform revenue. It lacks a task selection strategy
that considers the participants from the perspective of the participants. The dispersed
computing is a non-central distributed system designed to incentive all idle resources
to participate in computing. Second, the dispersed computing network is highly hetero-
geneous and dynamics. The computing power of nodes, the communication bandwidth
between nodes, and the types of tasks are very different. Third, tasks in MCS are usu-
ally offline tasks, and most of the tasks involved in dispersed computing are complex
online computing tasks (such tasks are more sensitive to network delay).
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1.3 Main contributions

In this paper, a task allocation model based on incomplete preference list in dispersed
computing is established, which is a multi-objective optimization model. The model
comprehensively consider the three optimization objectives of task completion rate,
response time, and communication distance. The incomplete preference list between
task nodes and NCPs is introduced to fully reflect the heterogeneity of nodes and the
difference of tasks, as well as the requirements and authority of both parties task nodes
and NCPs in task allocation. The coupling of the preference list and the optimization
problem induce great challenges for solving the task allocation model. We transform
a task allocation problem into a many-to-many matching with incomplete preference
list. In addition, the Planar Laplace mechanism is used to protect location privacy
information of nodes. The mechanism satisfies ε-differential privacy protection and
ε-geo-indistinguishability. The main contributions can be summarized as follows:

1. We establish a location privacy-preserving task allocation model is based on
incomplete preference list to tackle the challenge due to the heterogeneity of
nodes and the priority requirements of tasks. This model allows task nodes and
NCPs to actively make choices according to their own preferences, mobilizing
the enthusiasm of nodes to participate in joint computing.

2. We propose a many-to-many matching algorithm to solve the task allocation
problem that is a Mixed Integer Non-Linear Programming (MINLP) problem.
The algorithm is generalizable and can provide a new method for solving NP-
hard.

The remainder of this paper is organized as follows. An overview of system model
is presented in Sect. 2. The task allocation matching algorithm and relevant theoretical
analysis are presented in Sect. 3. Experimental simulations are discussed in Sect. 4.
Finally, the conclusion is made in Sect. 5.

2 Systemmodel and problem formulation

2.1 Problem description andmathematical formulation

We consider a task allocation process in dispersed computing scenario, which consists
of task nodes (allocating tasks) and NCPs (processing tasks), as shown in Fig. 1. In
this process, dispersed mission-aware computation and protocol stacks aims to jointly
manage computing and network resources, and share mission details through new
algorithms and protocols [1], which is the core in the dispersed computing architecture.
When computing tasks appear, the task allocation algorithm uses the idle computing
resources in the network to divide the tasks, and provides services to users in a way
of collaboration and sharing of NCPs. Generally, the arrival of task nodes and NCPs
obey a certain random process (such as a Poisson process [22–24]). The process of
task allocation is carried out in batches. When the number of task nodes and NCPs
reaches a certain threshold, the current batch of allocation will begin immediately. The
nodes that arrive later are boiled down to the next batch of task allocation.
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Task Task 1. System: records task nodes and 

NCPs

2. Task nodes and NCPs: release 

information 

3. Task nodes and NCPs: build 

preference lists

4. Task nodes and NCPs: matching 

tasks  

Task nodes 

NCPs
CloudCloud

Dispersed mission-aware computation

Programmable nodes and protocol stacks
Architecture

Fig. 1 Illustration of task allocation

The dispersed computing paradigm is suitable for applications in different scenar-
ios, including scientific research fields, military combat scenarios, daily life needs, etc.
The tasks involved range from complex mathematical or engineering problems (com-
pleting such tasks requires significant computing resources) to simple single-threaded
tasks.That is, tasks in a dispersed computing environment are veryheterogeneous.Task
allocation in different scenarios can be attributed to the matching problem between
task nodes and NCPs. It may be that one task node needs multiple NCPs, or one NCP
may complete the tasks of multiple task nodes.

Assuming that the system records the arrival ofm task nodes (the node that publishes
the task) in a batch and denoted by a set � � {ω1, ω2, · · · , ωm}, where ωi represents
the serial number of the task node. The type and size of tasks may be very different
due to the heterogeneity of nodes. At the same time, the system perceives n NCPs (the
node that processes the task) during computing power the time period denoted by a
set C � {c1, c2, · · · , cn}, where c j represents the serial number of the NCP. These
NCPs have different due to the heterogeneity of nodes.

The main purpose of our work is to allocate all tasks of m task nodes to n NCPs
reasonably and efficiently through the information exchange of middleware. Each task
node ωi reports its own actual location lωi , a requirement of computing power cωi ,
and the size of the task amount (denoted zωi , where zωi represents the total task of
task node ωi divided into zωi indivisible small units (jobs)). Similarly, each NCP c j
reports its own actual location lc j , a feature of computing power cc j , and the size of
the amount of calculation that can be provided (denoted zc j ). In addition, each node
only reports the location privacy protection version during the task allocation process
to protect its location privacy information.

Figure 1 illustrates a decentralized architecture with direct communication between
task nodes and NCPs. The tasks refer to online computing tasks, and each task has
requirements for computing power, maximum allowable delay, and deadline. First,
the dispersed computing system records task nodes and NCPs within a period of time
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through a unique mission-aware computation algorithm [1]. The workflow of the task
allocation is summarized as follow:

• The task nodes and NCPs release information based on their actual needs, includ-
ing their additional conditions with preferences. Then, according to the released
information, each node can calculate the priority order of its partners, which is
called a preference list.

• Then, task nodes andNCPs start the task allocation process based on the incomplete
preference list.

The task allocation model needs to satisfy the following characteristics:

1. Task node can add deadline and completion progress as requirements for each
task.

2. The task node will reject the NCP whose distance exceeds its allowable range and
computing power does not meet its requirements.

3. The NCP will reject the task node whose computing power does not meet its
requirements.

These features guarantee the quality of task completion, even if there are a small
number of tasks that are not completed in the first batch allocation. This is the charac-
teristic of our task allocation scheme. In addition, the task allocation process is about
time continuity, even if there are unfinished tasks in one batch allocation, it will auto-
matically be returned to the next batch allocation. In this paper, the emphasis is laid on
the task allocation within one batch, and each batch task allocation process is called a
matching [25–27], denoted by μ. The percentage of the number of completed jobs in
the total number of jobs is called the task completion rate for the matching μ, i.e.,

F(μ) =
∑m

i=1 z
′
ωi∑m

i=1 zωi

, (1)

where z
′
ωi

represents the jobs successfully allocated by task node ωi . Next, we will
establish a task allocationmodel. The optimization objectives include: task completion
rate, communication distance, and response time as follows, respectively

J1 = F(μ) =
∑m

i=1 z
′
ωi∑m

i=1 zωi

,

J2 =
m∑

i=1

n∑

j=1

xi j d(lωi , lc j ),

J3 = T ime1 − T ime0.

(2)

where T ime1 and T imee represent the start time and end time of the task allocation,
respectively. Then the task allocation model based on preference list is represented as
follows:
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max J = J1 + J−1
2 + J−1

3

s.t .
m∑

i=1

xi j ≤ zc j , j = 1, 2, · · ·, n,

n∑

j=1

xi j ≤ zωi , i = 1, 2, · · ·,m,

xi j ∈ {0, 1}, i = 1, 2, · · ·,m, j = 1, 2, · · ·, n,

if xi j = 1, then ωi ∈ P(c j ) and c j ∈ P(ωi ),

(3)

where xi j = 1 represents the formation of the task allocation between ωi and c j . The
last constraint P(c j ) and P(ωi ) respectively represent the preference list of c j and
ω j , and the calculation method will be given in detail in Sect. 2.2. A preference list
is more generic than a constraint which can combine additional qualitative measures
extracted from the objective requirement to task nodes and NCPs. Therefore, the task
allocation model (3) is called “a task allocation model based on preference list”. In the
task allocation model (3), the first and second constraints use symbols of less than or
equal to, which means that maybe some tasks that are not allocated, and the resources
of the NCPs are still idle. In fact, the efficiency of task allocation can be improved by
controlling the ratio of the number of task nodes and NCPs.

2.2 Preference list

Next, we establish a preferences list is between task nodes and NCPs, and then built a
task allocation model based on the list. Since the process involves some mathematical
symbols inmatching theory, for convenience sake, throughout this paper, three symbols
are introduced in this paper, and their meanings are as follows:

1. ωi → c j , which means that node ωi sends a request to node c j ;
2. fωi→c j , which represents the degree of preference of node ωi to node c j under

rule f ;
3. ωi ↔ c j , which means that node ωi and c j form a cooperative relationship (or

form a matching pair).

A calculation rule of preference list (about task node ωi to NCP c j ) is defined as
follows:

fωi→c j ((lωi , cωi , zωi ), (lc j , cc j , zc j )) =
⎧
⎨

⎩

0, if cωi ≥ cc j or d(lωi , lc j ) ≥ rωi ,

α

d(lωi , lc j )
+ (1 − α)(cc j − cωi ), else,

(4)

where rωi represents the maximum allowable distance of task node ωi , α ∈ [0, 1] is a
positive constant, and d(lωi , lc j ) represent the Euclidean distance between ωi and c j .
In formula (4), task node ωi give a preference value of 0 for NCPs whose computing
power is less than cωi or distance exceeds rωi , which means that it will not assign tasks
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to such NCPs. The task node ωi will be used to calculate a higher preference value for
NCPs with the distance closer to ωi and has stronger computing power.

Similarly, a calculation rule of preference list (about NCP ωi to task node c j ) is
defined as follows:

fc j→ωi ((lωi , cωi , zωi ), (lc j , cc j , zc j ))

=

⎧
⎪⎨

⎪⎩

0, if cωi ≥ cc j and cωi < χ(c j ),

β

d(lωi , lc j )
+ 1 − β

(cc j − cωi )
, if χ(c j ) ≤ cωi < cc j ,

(5)

where β ∈ [0, 1] is a positive constant, χ(c j ) represents preference of c j for tasks in
terms of computing power, c j rejects tasks with computing power requirements lower
than χ(c j ), the size of χ(c j ) can be adjusted according to the size of the task and its
own idle resources.

Compared with NCP, task nodes prefer computing nodes with shorter communica-
tion distance because they aremore sensitive to delay. In order to improve the efficiency
of completing the task and reduce the delay, the task node will refuse to interact with
the NCP that exceeds the allowable distance. In addition, task nodes prefer NCP with
stronger computing power. On the contrary, the NCP prefers the task node which close
computing power requirements.

Algorithm 1 Preference list P(ωi ) of task nodes
Input: (lωi , lωi , zωi ), (lc j , cc j , zc j ), rωi , formula (4)
Output: Preference list P(ωi )

1: for i = 1 to m do
2: j ∈ {1, 2, · · · , n}, computing fωi→c j based on formula (4)
3: if fωi→c j = 0, then
4: c j /∈ P(ωi )

5: else
6: record fωi→c j
7: end if
8: end for
9: while compare the size of all fωi→c j do
10: sort by size P(ωi )

11: end while
12: return P(ωi )

Next, we can use computational rules (4) and (5) to calculate the strict preference
list corresponding for each node. For all task nodes and NCPs participating in this
batch of task allocation, the information between them is shared. The task node can
receive all NCPs data information (lc j , cc j , zc j ), and then calculate the preference
list. Specifically, executing Algorithm 1, then the preference lists of task nodes for all
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Algorithm 2 Preference list P(c j ) of NCPs
Input: (lωi , lωi , zωi ), (lc j , cc j , zc j ), χ(c j ), and formula (5)
Output: Preference list P(c j )
1: for j = 1 to n do
2: i ∈ {1, 2, · · · ,m}, computing fc j→ωi based on formula (5)
3: if fc j→ωi = 0, then
4: ωi /∈ P(c j )
5: else
6: record fc j→ωi
7: end if
8: end for
9: while compare the size of all fc j→ωi do
10: sort by size P(c j )
11: end while
12: return P(c j )

NCPs can be expressed as follows:

P(ω1) : c
ν

(1)
1

� c
ν

(1)
2

� · · · � c
ν

(1)
δω1

,

P(ω2) : c
ν

(2)
1

� c
ν

(2)
2

� · · · � c
ν

(2)
δω2

,

...

P(ωm) : c
ν

(n)
1

� c
ν

(n)
2

� · · · � c
ν

(n)
δωm

,

(6)

where δωi represents the number of NCPs that satisfied the requirements of task node
ωi . For any p and q, if fωi→cp > fωi→cq , then cp(i) � cq(i) in the preference list of

P(ωi ). For any i , {ν(i)
1 , ν

(i)
2 , · · · , ν

(i)
δωi

} ⊂ {1, 2, · · · , n}.
Executing Algorithm 2, the preference lists of NCPs for all task nodes is expressed

as follows:

P(c1) : ω
κ

(1)
1

� ω
κ

(1)
2

� · · · � ω
κ

(1)
σc1

,

P(c2) : ω
κ

(2)
1

� ω
κ

(2)
2

� · · · � ω
κ

(2)
σc2

,

...

P(cm) : ω
κ

(n)
1

� ω
κ

(n)
2

� · · · � ω
κ

(n)
σcm

,

(7)

where σc j represents the number of task node that satisfies the requirements of NCP

c j , and {κ( j)
1 , κ

( j)
2 , · · · , κ

( j)
σc j

} ⊂ {1, 2, · · · ,m}, for any j = 1, 2, · · · , n. Note that the
preference list (6) and (7) are incomplete, i.e., δωi < n and σc j < m.
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2.3 Preserving location privacy

Note that the task nodes andNCPs in themodel (3) provide actual locations.Obviously,
the location information belongs to the user’s private information. In fact, neither the
task node nor the NCP is willing to provide its actual locations. In order to prevent
the leakage of user privacy information, a privacy protection mechanism needs to be
established in the task allocation model. Both spatial cloaking and anonymity can
be used to protect the user’s location privacy information. However, if the adversary
possesses specific prior knowledge, the privacy guarantee can be easily lowered, which
is called an inference attack [28]. In contrast, the advantageof differential privacy is that
it does not require special attack assumptions and does not care about the background
knowledge possessed by the attacker. In this paper, we provide a differential privacy
protection method for nodes in task allocation.

The basic principle of the Planar Laplacemechanism is to generate obfuscated loca-
tions through probability distributions in place of real positions. Given the parameter
ε ∈ R+, and the actual location l̃ ∈ R

2, for any other point l ∈ R
2, the probability

density function of the Planar Laplace mechanism is as follows [16]:

Mε(l)(l̃) = ε2

2π
e−εd(l,l̃), (8)

where ε2

2π is a normalization factor, d(l, l̃) is the distance between l and l̃. It is assumed
that there are two actual positions l1 and l2, and the farthest distance between them is
r . Further, it is assumed that the probabilities of these two actual locations producing
obfuscated locations l∗ by the Planar Laplace mechanism are P1 and P2, respectively.
Then the Planar Laplace mechanism guarantees that the difference between P1 and P2
is at most multiplied by a multiplier e−εd(l1,l2).

Bordenabe et al. [16] proved that the Planar Laplace mechanism satisfies satisfies
the (ε, r)-geo-indistinguishability. Wang et al. [19] proved that the Planar Laplace
mechanism satisfies satisfies the ε-differential-privacy, ε is the privacy budget (the
smaller ε, the higher privacy). In this paper, we use the the Planar Laplace mechanism
to protect the location privacy of task nodes and NCPs.

Under the privacy protection mechanism, the actual location is replaced with the
obfuscated locations of the participant, and then the model (3) can be rewritten as
follows:

max J = J1 + J−1
2 + J−1

3 ,

s.t .
m∑

i=1

xi j ≤ zc j , j = 1, 2, · · ·, n,

n∑

j=1

xi j ≤ zωi , i = 1, 2, · · ·,m,

xi j ∈ {0, 1}, i = 1, 2, · · ·,m, j = 1, 2, · · ·, n,

if xi j = 1, then ωi ∈ P(c j ) and c j ∈ P(ωi ),

(9)
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where J2 = ∑m
i=1

∑n
j=1 xi j d(l∗ωi

, l∗c j ), l
∗
ωi

is the obfuscated position generated by l∗ωi

under the Planar Laplace mechanism, and l∗c j is the obfuscated position generated by
lc j under the Planar Laplace mechanism.

3 Algorithm design and theoretical analysis

3.1 Many-to-manymatching algorithm

This task allocation problem (9) is classified as a Mixed Integer Non-Linear Program-
ming (MINLP) problem, which is NP-hard problem. Traditional heuristic algorithms
(such as centralized optimization techniques) generate significant overhead and com-
plexity when solving intensive network optimization problems with a huge number
of nodes [29]. As a promising task allocation technology, matching theory provides a
new method for task allocation between two disjoint sets of heterogeneous environ-
ments. Thus, in this paper, we developed a new many-to-many matching algorithm to
solve the task allocation model (9). The optimization problem is solved by solving the
many-to-many matching problem under incomplete preference list between the task
nodes and NCPs.

Aiming at the characteristics of dispersed computing scenarios, there are still some
major challenges in solvingmodel (9) withmatching algorithms. The number of nodes
involved in our task allocation is huge, and each node has explicit additional conditions,
which makes the structure of the matching relationship between task nodes and NCPs
complicated, and it is impossible to use enumeration or visualization methods for
reasoning. Thus, the many-to-many matching algorithm in paper [20] could not be
applied to our model. In addition, the preference list between model (9) nodes is
incomplete, and the matching relationship has a more complex topology than the
literature [30, 31]. Thus, it is necessary to expand on these works and propose a new
matching algorithm suitable for our model solving. To express the core idea of many-
to-many matching algorithmmore clearly, the main matching process in the algorithm
3 is first introduced.

1. In order to improve the efficiency of matching, before performing matching, the
structure of the task node’s preference list is first optimized to reduce unnecessary
matching requests.

2. In the first matching, task nodes sends matching requests to NCPs in sequence
according to their preference list, and NCPs will choose to accept or reject accord-
ing to its preference list.

3. In the second matching, task nodes that have not formed a saturated matching pair
continue to send a second matching request to NCPs. The difference is that in
the second matching, NCPs need to compare with the first matching pairs when
making a decision, and it is possible to break the first match result.

4. Following this method, due to the limited number of nodes and the limited length
of the preference list, the algorithm will definitely end after a limited number of
matching.
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The specific formal algorithm steps are as follows.
Step 1: Update preference list (6). Note that this situation exists in the preference list

(6) and (7): c j ∈ P(ωi ), but ωi /∈ P(c j ). In this situation, ωi is not necessary to send a
matching request to c j , which can also improve the efficiency of the algorithm.Because
task nodes cannot obtain the preference list of NCPs through direct observation, so
they must interact with each other to achieve the purpose of updating the preference
list.

Specifically, for eachωi ∈ T , sending amatching request to eachNCP in set P(ωi ),
the NCP c j ∈ P(ωi ) only needs to give back ‘Yes’ (when ωi ∈ P(c j )) or ‘No’ (when
ωi /∈ P(c j )). When ωi receives c j ’s feedback message as ‘No’, ωi removes c j from
its preference list. Perform this step for all elements in T , and get the following new
preference list

P(ω1) : c
ν

(1)
1

� c
ν

(1)
2

� · · · � c
ν

(1)
ρ1

,

P(ω2) : c
ν

(2)
1

� c
ν

(2)
2

� · · · � c
ν

(2)
ρω2

,

...

P(ωm) : c
ν

(n)
1

� c
ν

(n)
2

� · · · � c
ν

(n)
ρωm

.

(10)

Obviously, ρωi ≤ δωi .
Step 2: Divide all task nodes into two categories according to the number of task

splitting, the task nodes with one job denoted by {ωp1, ωp2 , · · · , ωpl }, and task nodes
with many job denoted by {ωq1, ωq2 , · · · , ωqk }, where zωpi

= 1, (i = 1, 2, · · · , l),
and zωq j

> 1, ( j = 1, 2, · · · , k), l + k = m. Make all task nodes send a matching
request to the NCPs for the first time based on the preference list as formulas (11) and
(12),

⎛

⎜
⎝

ωp1 ωp2 · · · ωpl
↓ ↓ ↓

c
ν

(p1)

1
c
ν

(p2)

1
· · · c

ν
(pl )
1

⎞

⎟
⎠ , (11)

⎛

⎜
⎝

ωq1 ωq2 · · · ωqk
↓ ↓ ↓

(c
ν

(q1)

1
, · · · , c

ν
(q1)
zωq1

) (c
ν

(q2)

1
, · · · , c

ν
(q2)
zωq2

) · · · (c
ν

(qk )

1
, · · · , c

ν
(qk )
zωqk

)

⎞

⎟
⎠ , (12)

where ν
(i)
j indicates that the position of NCP c

ν
(i)
j
in the preference list of task node

ωi is j-th. Note that the matching request in the formula (12) is only a special case,
which means that

zc
ν
(qi )
1

= zc
ν
(qi )
1

= · · · = zc
ν
(qi )
zωqi

= 1. (13)
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If the Eq. (13) does not hold, it can be further discussed based on the relationship
between zωqi

and zc
ν
(qi )
1

, zc
ν
(qi )
2

, · · · , zc
ν
(qi )
zωqi

. If zωqi
≤ zc

ν
(qi )
1

, then thematching request

has the following form (take ωqi as an example)

⎛

⎜
⎜
⎜
⎜
⎝

ωq1
↓

c
ν

(qi )
1

, · · · , c
ν

(qi )
1︸ ︷︷ ︸

zωqi th

⎞

⎟
⎟
⎟
⎟
⎠

, (14)

where

c
ν

(qi )
1

, · · · , c
ν

(qi )
1︸ ︷︷ ︸

zωqi th

means there are zωqi
NCPs. If zc

ν
(qi )
1

< zωqi
≤ (zc

ν
(qi )
1

+ zc
ν
(qi )
2

), then the matching

request has the following form

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

ωq1
↓

c
ν

(qi )
1

, · · · , c
ν

(qi )
1︸ ︷︷ ︸

zc
ν
(qi )
1

th

, c
ν

(qi )
2

, · · · , c
ν

(qi )
2︸ ︷︷ ︸

(

zωqi −zc
ν
(qi )
1

)

th

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (15)

Otherwise, we need to continue to discuss the relationship between zωqi
and

(zc
ν
(qi )
1

+ zc
ν
(qi )
2

+ zc
ν
(qi )
3

). For the convenience of discussion, we describe the matching

request as formula (12) when it does not affect the design of the subsequent algorithm.
Step 3: Record the NCPs in the matching requests (11) and (12) as the set C1. For

any ci ∈ C1, we assume that K (ci ) represents the number of occurrences of ci in
the request (11) and (12). If K (ci ) ≤ zci , then all matching requests about ci form
matching pair. If K (ci ) > zci , all requesters (K (ci ) task nodes) have a sequence in
preference list of ci , and ci selects zci requesters with higher priority to formmatching
pair. Specifically, in this case, we assume that the preference list of ci has the following
form

P(ci ) = ω
κ

(i)
1

� ω
κ

(i)
2

� · · · � ω
κ

(i)
σci

. (16)

Defining a mapping τci (ω j ) = μ, its meaning is that the μ-th preference of ci is the
task node ω j . We record the K (ci ) task nodes that who sent the matching request
to the NCP ci in the matching request (11) and (12), are ωλ1 , ωλ2 , · · · , and ωλK (ci )

,
respectively. Arrange τci (ωλ1), τci (ωλ2), · · · , and τci (ωλK (ci )

) in ascending lists, and
take the top zci . If K (ci ) ≤ z(ci ) is satisfied for all ci ∈ C1, then the algorithm ends
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and all matching pairs are output. Otherwise, there is ci ∈ C such that K (ci ) > zci .
From Step 3, there is K (ci ) − zci matching requests was rejected.

Step 4: For task nodes that do not form a matching pair (i.e., in (11)) and task nodes
that do not form a saturated matching pair (i.e., in (12)) are recorded as a set �1. For
any ωi ∈ �1, we assume that the preference list of NCP that form a matching pair
with ωi is: c

(i)
ν1 � c(i)

ν2 � · · · � c(i)
νγ , (where γ < zωi ). We need to investigate whether

c(i)
νγ has formed a saturated matching pair, i.e., compareing the size of K (c(i)

νγ ) and

z
c(i)
νγ
. If K (c(i)

νγ ) < z
c(i)
νγ
, then ωi needs to c

(i)
νγ and NCP whose preference is lower than

c(i)
νγ send zωi − γ matching requests. If K (c(i)

νγ ) = z
c(i)
νγ
, then ωi needs to NCP whose

preference is lower than c(i)
νγ send zωi − γ matching requests.

According to the above method, a matching request is sent to all elements in �1
for the second time, then returns to Step 2. For task nodes that do not form a matching
pair or do not form a saturated matching pair, they are still recorded as a set �1.

Step 5: Repeat Step 4 and Step 3 for the set �1 until �1 = ∅, i.e., all elements
in �1 form a saturated matching pair, or a task node has sent a matching request to
all NCP in its preference list, but still has not form a saturated matching pair. The
algorithm is terminated and all formed pairs are output. The many-to-many matching
algorithm is outlined in Algorithm 3.

In order to clearly illustrate the implementation of the algorithm, an example is
taken as follows. Example The task node set is denoted as

� = {(ω1, 1), (ω2, 3), (ω3, 3), (ω4, 5), (ω5, 1)}, (17)

The second coordinate in (ωi , x) indicates that the task of task node ωi can be divided
into x jobs. The NCP set is denoted as

C = {(c1, 2), (c2, 2), (c3, 1), (c4, 2), (c5, 2), (c6, 5), (c7, 1), (c8, 1)}. (18)

The second coordinate in (c j , y) indicates that the NCP c j can complete y jobs.
The preference of task nodes to NCP is as follows:

P(ω1) =c5 � c3 � c2, P(ω2) = c2 � c5 � c7 � c1,

P(ω3) =c5 � c6 � c2 � c4 � c3, P(ω4) = c5 � c6 � c7 � c8 � c3 � c4,

P(ω5) =c4 � c3 � c1 � c2 � c5 � c8 � c7 � c6,

(19)

The preference of NCP to task nodes is as follows:

P(c1) =ω3 � ω2 � ω1 � ω4, P(c2) = ω3 � ω4 � ω1 � ω2,

P(c3) =ω2 � ω3 � ω1 � ω5, P(c4) = ω5 � ω4 � ω1 � ω3,

P(c5) =ω5 � ω4 � ω2 � ω1 � ω3, P(c6) = ω1 � ω2 � ω3 � ω5,

P(c7) =ω1 � ω4 � ω3 � ω2, P(c8) = ω5 � ω3 � ω1.

(20)
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Algorithm 3 Many-to-many matching
Input: T , C , P(ωi ), P(c j ), zωi , zc j , where i ∈ [1,m] and j ∈ [1, n]
Output: All matching pairs ωi ↔ c j
1: for i ≤ m do
2: Update P(ωi )

3: if ωi ∈ P(c j ), where c j ∈ P(ωi ), then
4: keep c j in the P(ωi )

5: else
6: remove c j from the P(ωi )

7: end if
8: end for
9: while For all ωi ∈ � send matching requests based on (10), and get (11) and (12) do
10: if K (c j ) ≤ zc j , then
11: c j accept all matching requests
12: else
13: c j selects the top zc j task nodes and forms a pair with them
14: end if
15: end while
16: while Build a set �1, for all ωi ∈ �1, send matching requests based on (10)
17: if K (c j ) ≤ zc j , where c j ∈ C1, then
18: c j accept all matching requests
19: else
20: c j selects the top zc j task nodes and forms a pair with them,
21: end if
22: end while
23: while Update �1 do
24: if �1 = ∅, then
25: output all matching pairs, the algorithm ends
26: Else
27: execution algorithm 16-22
28: end if
29: end while
30: return ωi ↔ c j

Next, we apply the many-to-many matching algorithm proposed in this paper to
solve the above task allocation problem.

Step 1 Update preference list (19). The node ω1 sends matching requests to c5,
c3, and c2, respectively, and gets feedback all is ‘Yes’, then keep c5, c3, and c2 in the
preference list of ω1. Perform this step on all task nodes to get a new preference list
as follows:

P(ω1) =c5 � c3 � c2, P(ω2) = c2 � c5 � c7 � c1,

P(ω3) =c5 � c6 � c2 � c4 � c3, P(ω4) = c5 � c7 � c4,

P(ω5) =c4 � c3 � c5 � c6.

(21)

Step 2 The first matching request is as follows:

⎛

⎝
ω1 ω5
↓ ↓
c5 c4

⎞

⎠

⎛

⎝
ω2 ω3 ω4
↓ ↓ ↓

(c2, c2, c5) (c5, c5, c6) (c5, c5, c7, c4, c4)

⎞

⎠ . (22)
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Step 3 Since K (c2) ≤ zc2 , K (c6) ≤ zc6 , and K (c7) ≤ zc7 , it can initially form a
matching pair as follows:

⎛

⎝
ω2 ω3 ω4

 
 


(c2, c2, ∗) (∗, ∗, c6) (∗, ∗, c7, ∗, ∗)

⎞

⎠ . (23)

For K (c5) > zc5 , we need to find out the task nodes that send matching requests to
c5, and then compare these task nodes in c5. In the type (22) there are ω2, ω3, and ω4
sent a matching request to c5. Note that the preference list of c5 are

P(c5) : ω5 � ω4 � ω2 � ω1 � ω3, (24)

and zc5 = 2, so c5 will reject ω1, ω2, ω3 and accept ω4, forming two matching pairs.
Similarly, c4 will accept ω5 and reject a matching requests ω4, forming two matching
pairs. In summary, the matching pair formed is as follows:

⎛

⎝
ω1 ω5

 

∗ c4

⎞

⎠

⎛

⎝
ω2 ω3 ω4

 
 


(c2, c2, ∗) (∗, ∗, c6) (c5, c5, c7, c4, ∗)

⎞

⎠ (25)

Step 4Note that neither ofω1,ω2,ω3, andω4 all form saturatedmatching pairs, i.e.,
�1 = {ω1, ω2, ω3, ω4}. The last request inω2 was rejected by c5, soω2 sends requests
to NCP whose preference list is lower than c5, i.e., ω2 → c7. In the matching pairs
formed by ω3, the last term NCP c6 has not reached saturation. Therefore, ω3 sends
requests to c6 and NCP whose preference is lower than c6, i.e., ω3 → c6. Since the
last request in ω4 was rejected by c4, there is no more preferred NCP in the preference
list of ω4. The task of ω4 can only be temporarily put on hold and is unwilling to send
a matching request anymore. The second matching request is described as

⎛

⎝
ω1 ω2 ω3
↓ ↓ ↓
c3 c7 (c6, c6)

⎞

⎠ . (26)

In matching request (26), note that K (c7) = 2 > zc7 , c7 will reject ω2, and accept
ω4 to form a matching pairs because c7 prefers ω4 to ω2. c6 did not reach saturation,
and formed two matching pairs with ω3, i.e., ω3 ↔ c6. NCP c3 appears for the first
time and forms a matching pair with ω1, i.e., ω1 ↔ c3. Update matching pair (25),
we have

⎛

⎝
ω1 ω5

 

c3 c4

⎞

⎠

⎛

⎝
ω2 ω3 ω4

 
 


(c2, c2, ∗) (c6, c6, c6) (c5, c5, c7, c4, ∗)

⎞

⎠ . (27)

Updating set �1, we can get �1 = {ω2}.
Step 5 Similar to the discussion of Step 4, ω2 send the third matching request as

ω2 → c1. Since c1 appears for the first time, it can form a matching pair with ω2, i.e.,
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ω2 ↔ c1. Node that ω4 sends two matching requests to c4, and c4 only accepted one
and formed a matching pair, i.e., ω4 ↔ c4. Updating matching pair (27), we get the
latest matching pair

⎛

⎝
ω1 ω5

 

c3 c4

⎞

⎠

⎛

⎝
ω2 ω3 ω4

 
 


(c2, c2, c1) (c6, c6, c6) (c5, c5, c7, c4, ∗)

⎞

⎠ . (28)

Although ω4 does not form a saturated matching pair, there is no NCP that can send
matching requests. Therefore,�1 = ∅ can be obtained, the algorithmends, and outputs
matching pair (28).

Note that in the final matching pair (28), there is still a job in the task node ω4 that
has not been allocated successfully. In order to describe the completion efficiency of
the matching algorithm, we need to calculate the task completion rate. In view of the
definition (1), we have

F(μ) =
∑5

i=1 z
′
ωi

∑5
i=1 zωi

= 12

13
= 92.31%. (29)

For the above example, the task nodes initiate a total of three matching requests
and formed three matching pairs in the example, respectively, i.e., (23), (26), and the
latest matching pair (27). Therefore, the number of iterations isG(μ) = 3. To evaluate
the performance of a matching μ, the task completion rate F(μ) and the number of
iterations G(μ) are two important indicators.

3.2 Theoretical analysis

In this subsection, we mainly discuss the stability and time complexity of the many-
to-many matching Algorithm 3. According to the definition in Ref. [25]: a matchingμ

is stable if it is not blocked by any individual or any task-NCP pair; a stable matching
is called optimal if every test is at least as well off as under any other matching. For
the NP-hard problems, we weaken the requirement objective, do not search for the
global optimal solution, but only search for the unilateral optimal (about task nodes).
In the following theorem, we give the conclusion about the unilateral optimal solution
of the task node.

Theorem 1 For the matching problem (� ,C , P�→C , PC→� , z�, zC ), if the pref-
erence list (6) and (7) are strict, then the matching obtained by applying the
Many-to-manymatching Algorithm 3must be unique, stable, and optimal matching for
the task node. That is, the corresponding optimization model (9) to the matching prob-
lem (� ,C , P�→C , PC→� , z�, zC ) admits a unique, stable, and optimal solution for
the task node.

Proof The existence of solution is proved firstly. Note that the number of tasks � and
NCPC is limited, so the preference list (6) for each taskmust be limited. In the rules of
our algorithm, if the task ωi is rejected by NCP c j , it is not allowed to send matching
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requests repeatedly, and can only send requests to the NCP with lower preference list.
Therefore, it will be terminate the algorithm after a limited number of requests.

Next, the stability of matching μ is proved. If the matching is unstable, then there
are two matching pairs ωi ↔ c j and ω

′
i ↔ c

′
j , although ωi prefers c

′
j to c j and c

′
j

prefers ωi to ω
′
i , but c

′
j /∈ μ(ωi ). Since ωi prefers c

′
j to c j , ωi must send a matching

request to c
′
j earlier than c j . In view of c

′
j prefers ωi to ω

′
i and ω

′
i ↔ c

′
j , therefore,

c
′
j will inevitably accept ωi ’s matching request, a matching pair ωi ↔ c

′
j is formed.

Note that the condition c
′
j /∈ μ(ωi ), this is contradiction. Therefore, there is no such

unstable matching pair.
Finally, it is suggested that the matching result must be optimal for task nodes.

Each task node selects the favorite among all NCPs (in her preference list) that send
matching requests to it and forms a matching pair. For any ωi ∈ �, the algorithm can
guarantee the following two properties

1) For any c j ∈ P(ωi ), then ωi prefers c j to c j ′ , where c j ′ ∈ � and c j ′ /∈ P(ωi ).
This is obvious, because the preference list P(ωi ) is calculated according to your
own preference.

2) For any c j ′ ∈ μ(ωi ), then ωi prefers c j ′ to c j ′′ , where c j ′′ ∈ P(ωi ) and c j ′′ /∈
μ(ωi ). If there is c j∗ ∈ P(ωi ) andωi prefers c j∗ to c j ′ , but c j∗ /∈ μ(ωi ), then there
is only one situation that ωi does not appear in preference list c j∗. According to
the preference list update rule in Algorithm 3, ωi has no right to send a matching
request to c j∗. Otherwise, ωi and c j∗ will form a matching pair, which contradicts
c j∗ /∈ μ(ωi ).

According to the arbitrariness of c j and c j ′ , the desired conclusion can be obtained.

Remark 1 From the property i) and property i i) in the proof of the Theorem 1, it can
be known that the so-called task optimal is not an absolute optimal solution. Due to the
matching request sent by the task node, it has an advantage over NCPs in the matching
process. Of course, the algorithm also guarantees that NCP selects the best among all
available task nodes.

Theorem 2 The total time complexity of the many-to-many matching Algorithm 3 is
polynomial in the order of O(n2 ∗ m).

Proof During the first matching process (steps 9-15),m nodes sendmatching requests,
and the list length of each node does not exceed n, so the algorithm has an O(n ∗ m)

worst-case time bound. For any task node ωi , it is rejected at most n times, that is, at
most n matches are performed (i.e., steps 16-22 at most cycles (n−1) times). In steps
1-8, the list is updated so that the preference list of each task node becomes shorter,
which not only does not increase the total computational complexity, but optimizes
the computational structure. Thus, the many-to-many matching Algorithm 3 has an
O(n2 ∗ m).

123



H. Hui et al.

4 Numerical simulation

4.1 Simulation setup

The experimental data includes information the label of the node (i.e., ωi or c j ), the
coordinate position of the node (i.e., (xωi , yωi ) or (xc j , yc j )), the size of the task (zωi

or zc j ), the additional requirements of the task node (including minimum computing
power requirement cωi and allowable distance rωi ), the physical performance of the
NCP cc j and its requirements χ(c j ) for task screening (i.e., threshold).

Data set construction: The format of the data set we constructed is in Table 1 and
Table 2, respectively. Specifically, two types of nodes are generated from randomly
in the area 1000 ∗ 1000, and then the coordinates of nodes are recored(the number
of nodes depends on the experimental requirements). Specifically, two types of nodes
are generated from certain construction methods in the area 1000 ∗ 1000, and then
the coordinates of nodes are recored(the number of nodes depends on the experimen-
tal requirements). For example, in a 1000*1000 area, there is a 50*50 dense area
where 200 points are randomly generated, and 10 points are randomly generated in
the remaining area. By this method, the globally sparse and locally clustered node
distribution can be generated. As long as the node coordinates are determined, we
can always calculate the preference list for all nodes. For all zωi and zc j , integers are
randomly selected in interval [1, 5], and for all (cωi and cc j ), integers are randomly
selected in interval [1, 5]. As for our choice, rωi = 8 , (for all i), χ(c j ) = 0.5cc j ,
α = 0.7, and β = 0.4.

Calculate preference list and match tasks: the data is input in Table 1 as Algorithm
1 and the algorithm is executed to get the preference list of each task node about
all NCPs. Similarly, the data is input in Table 2 as Algorithm 2 and the algorithm is
executed to get the preference list of each NCP about all tesk nodes.

Finally, the obtained data set is input into Algorithm 3 to get our matching result.
Python has been used for validating the proposed approach experimentally. The input
of the program includes: data sets Table 1, Table 2, the output of the Algorithm 1 and
Algorithm 2. The output of the algorithm is a successful matching pair.

Next, two types of experiments are set up. In the first experiment, it mainly verifies
that the solution obtained by the many-to-many matching algorithm proposed in this
paper is stable and optimal for task nodes. In the second experiment, the performance
of the many-to-many matching algorithm is verified by setting different comparative
experiments.

Table 1 Distribution
information of task nodes

Tags Location Computing power Jobs Threshold

ω1 (xω1 , yω1 ) cω1 zω1 rω1

ω2 (xω2 , yω2 ) cω2 zω2 rω2

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

ωm (xωm , yωm ) cωm zωm rωm
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Table 2 Distribution
information of NCPs

Tags Location Computing power Jobs Threshold

c1 (xc1 , yc1 ) cc1 zc1 χ(c1)

c2 (xc2 , yc2 ) cc2 zc2 χ(c2)

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

cn (xcn , ycn ) ccn zcn χ(cn)

1 2 3 4 5

Task nodes

1

2

3

4

5

D
ev

ia
ti

on

 (Algorithm 3)

1
 (Random matching)

2
 (Random matching)

Fig. 2 Degree of deviation in different matching methods

4.2 Results and discussions

In order to verify the conclusion of Theorem 1, the degree of deviation is introduced
as a measure of the matching result. Assuming that c j has the highest priority among
the successfullymatched results ofωi , the position of c j in P(ωi ) is called the deviation
degree of ωi . Obviously, the smaller the deviation is, the higher the satisfaction of the
task node with the matching conclusion will be.

AsExample 3.1 in Sect. 3 is taken as an illustration, and the deviation degree of task
nodes is shown by the black line in Fig. 2. The blue line and the red line respectively
indicate the degree of deviation under the two random matches, and y = 1 represents
the lowest degree of deviation. Since the degree of deviation of μ1 is lower than that
of Algorithm 3 in this paper, the stability of μ1 needs to be verified.

In μ1, ω3 forms a matching pair with at least c5, which will inevitably destroy the
matching pair ω4 ↔ c5. However, c5 prefers ω4 to ω3, and ω4 is the most preferred
position in P(c5). There is at least one unstable matching in μ1, which means μ1 is an
unstable matching. It can be further verified that the degrees of deviation lower than
Algorithm 3 are all unstable matching. This verifies the conclusion of Theorem 1 that
the solution obtained by Algorithm 3 is stable and optimal for task nodes.
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Fig. 3 Task completion rate and number of iterations of the Example 1
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Fig. 4 Task completion rate and number of iterations of the Example 2

In more detail, among the three optimization objectives, minimizing response time
and communication distance are achieved in accordance with certain preference rules
during the matching process. Therefore, we only need to verify the task completion
rate of the model to test the optimality of the solution obtained in the Algorithm 3.
Next, two example are given to examine the task completion rate of the model.

Example 1 The task nodes and NCPs have the same number, which are increased from
20 to 100, respectively. An important parameter introduced to replace zωi and zc j , i.e.,
set k = max1≤i≤m,1≤ j≤n{zωi , zc j }, where k represents another topological property
of the network in addition to the number and location of nodes, which is called the
maximum task amount of nodes. The task completion rate is shown in Fig. 3(a), and
the number of iterations required for the matching process is shown in Fig. 3(b).

Note that when the number of nodes is equal, the task completion rate for each
matching is more than 70%, concentrated around 90%, and it does not show regularity
with the change in the number of nodes. The number of iterations increases as the
number of nodes increases, and as k increases, it also increases. However, it should
be noted that the increase mentioned here is not strictly a monotonic increase, but a
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Fig. 5 Task completion rate when the ratio of task node to NCP is 1: 2

description of a general trend, and individual inconsistencies are allowed. For example,
in terms of the number of nodes, 60 nodes (details such as (60 60 5)) are significantly
more than 50 (details such as (50 50 5)) nodes, but the number of iterations is smaller
than the latter. An important reason for this is that in addition to the number of nodes,
the key factors that determine the difficulty of matching are related to the network
topology of the nodes, which can be uniquely reflected in the preference list.

Example 2 The number of task nodes is fixed at 50, and the number of NCPs is
increased from 20 to 100. The task completion rate is shown in Fig. 4(a), and the
number of iterations required for the matching process is shown in Fig. 4(b). Obvi-
ously, as the number of NCPs increases, the task completion rate shows an increasing
trend. In particular, when the number of NCPs exceeds 60, the task completion rate
can reach more than 90%, and when the number of NCPs reaches 80, the task com-
pletion rate can reach 98.70%. This experimental group shows that an effective way
to improve the completion rate of each matching task is to increase the proportion
of NCPs. When the ratio of NCPs to task node reaches 50 : 80 = 1 : 1.6, the task
completion rate can reach 98.70%.

In order to get amore general and stable conclusion, five sets of data are established,
the ratio of task node to NCP in each set of data is 1:2, and the task completion rate
is shown in Fig. 5. After calculation, the task completion rate can reach an average of
99.33%.

Since the arrival of task nodes and NCPs obey a certain random process, so the
arrival rate can be controlled. It is only necessary to adjust the intensities to control
the ratio of task nodes to NCPs to achieve a higher task completion rate. An interest-
ing conclusion is that as the task completion rate increases, the number of iterations
decreases significantly, even if the number of nodes increases. In short, by increasing
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the ratio of NCPs to task nodes, the task completion rate can not only be improved,
but also the number of iterations can be reduced (i.e., increased efficiency).

Compared with the existing work [2, 10], the innovation of our work is that we
consider the heterogeneity of nodes and the difference of tasks, which are the most
important features of task allocation in dispersed computing scenarios. In terms of
performance indicators, Ref. [2, 10] mainly aims at maximizing network throughput,
while themodel in this papermainly aims to optimize the task completion rate. In other
scenarios, such as business process scenarios, the author also uses the task completion
rate as the research goal, and the conclusion reached is that the completion rate is
always around 85%, and the highest is around 90%. The task completion rate of this
paper can be stabilized at 99.33% when the ratio of task nodes to NCPs reaches 1:2.
Obviously, the conclusion of this paper is improved on the basis of Ref. [32].

5 Conclusion

In this paper, a task allocation model is studied in dispersed computing environment,
where the task node publish tasks as well as NCPs complete tasks in a collaborative
way. In the model, we aims at with maximizing task completion rate, minimizing
response time, and minimizing communication distance. Specifically, we first intro-
duced a incomplete preference list to quantitatively characterize complex requirements
between task nodes and NCPs. These requirements are usually difficult to formally
reflect, and the preference list just solves this problem. Secondly, we developed a
multi-objective optimization model is established based on an incomplete preference
list. In fact, themodel can be transformed into amatching problem between two groups
(task nodes and NCPs). We then proposed a new many-to-many matching algorithm,
and obtained the stability and the unilateral optimal solution (for task nodes) of the
model. In addition, the location privacy-preserving of the node is realized by applying
the planar Laplace mechanism. Finally, we validated the performance of the task allo-
cation model and many-to-many matching algorithm in different scenarios through
theoretical proof as well as numerical simulation.

Acknowledgements This work was supported in part by the National Science Foundation Project of P.
R. China (No. 61931001), the Scientific and Technological Innovation Foundation of Foshan, USTB (No.
BK20AF003), NSF under Grants IIS-1838024, CNS-1950485, and OIA-2148788.

Declarations

Conflict of interest We claim that we have no conflict of interest with other researchers with regard to the
paper.

References

1. Schurgot MR, Wang M, Conway AE, Greenwald LG, Lebling PD (2019) A dispersed computing
architecture for resource-centric computation and communication. IEEE Commun Mag 57(7):13–19

2. Yang CS, Pedarsani R, Avestimehr AS (2019) Communication-aware scheduling of serial tasks for
dispersed computing. IEEE ACM Trans Network 27(4):1330–1343

123



Many-to-many matching based task allocation for dispersed…

3. Knezevic A, NguyenQ, Tran JA, Ghosh P, AnnavaramM (2017) CIRCE-a runtime scheduler for DAG-
based dispersed computing. In: Proceedings of the 2nd ACM/IEEE symposium on edge computing,
San Jose/Silicon Valley, CA, USA, pp 1–2

4. ConwayAE,WangM, Ljuca E, Lebling PD (2020) ADynamic Transport Overlay System forMission-
Oriented Dispersed Computing Over IoBT. In: MILCOM 2019–2019 IEEE military communications
conference (MILCOM), Norfolk, VA, USA, pp 815–820

5. Yang H, Li G, Sun G, et al (2021) Dispersed computing for tactical edge in future wars: vision,
architecture, and challenges. Wirel Commun Mob Comput 2021:8899186:1-8899186:31

6. Kao YH, Krishnamachari B, Ra MR, Bai F (2017) Hermes: latency optimal task assignment for
resource-constrained mobile computing. IEEE T Mobile Comput 16(11):3056–3069

7. Wang H, Gong J, Zhuang Y, Shen H, Lach J (2017) Healthedge: task scheduling for edge computing
with health emergency and human behavior consideration in smart homes. In: 2017 IEEE international
conference on big data (big data), MA, USA, pp 1213–1222

8. Gu Y, Wu CQ, Liu X, Yu D (2013) Distributed throughput optimization for large-scale scientific
workflows under fault-tolerance constraint. J Grid Comput 11(3):361–379

9. Garcı́a-VallsM, DubeyA, Botti V (2018) Introducing the new paradigm of social dispersed computing:
applications, technologies and challenges. J Supercomput 91:83–102

10. Hu D, Krishnamachari B (2019) Throughput optimized scheduler for dispersed computing systems.
In: 7th IEEE international conference on mobile cloud computing, services, and engineering (Mobile-
Cloud), Newark, CA, USA, pp 76–84

11. ZhouC,GongC,Hui H, Lin F, ZengG (2021)A task-resource jointmanagementmodel with intelligent
control for mission-aware dispersed computing. China Commun 18(10):214–232

12. Ghosh P, Nguyen Q, Krishnamachari B (2019) Container orchestration for dispersed computing, In
Proceedings of the 5th International Workshop on Container Technologies and Container Clouds,
Davis, CA, USA, pp 19–24

13. Zhang M, Yang L, He S, Li M, Zhang J (2021) Privacy-preserving data aggregation for mobile crowd-
sensing with externality: an auction approach. IEEE ACM Trans Network 29(3):1

14. Krontiris I, Dimitriou T (2013) Privacy-respecting discovery of data providers in crowd-sensing appli-
cations. In: IEEE international conference on distributed computing in sensor systems, Cambridge
MA, USA, pp 249–257

15. Rohilla A, Khurana M, Singh L (2017) Location privacy using homomorphic encryption over cloud.
Int J Comput Sci Net 10(8):32–40

16. Andrés ME, Bordenabe NE, Chatzikokolakis K, et al (2013) Geo-indistinguishability: differential
privacy for location-based systems. In: Proceedings of the 2013ACMSIGSACconference onComputer
and communications security, Xi’an China, pp 901–914

17. Xie Z, Hu L, Huang Y, Pang J (2021) A semiopportunistic task allocation framework for mobile
crowdsensing with deep learning. Wirel Commun Mob Comput 2021:6643229:1–6643229:15

18. Kazemi L, Shahabi C (2012) Geocrowd: enabling query answering with spatial crowdsourcing. In:
Proceedings of the 20th international conference on advances in geographic information systems,
Redondo Beach, CA, USA, USA, pp 189–198

19. Wang L, Yang D, Han X, Wang T, Zhang D, Ma X (2017) Location privacy-preserving task allocation
for mobile crowdsensing with differential geo-obfuscation. In: Proceedings of the 26th international
conference on world wide web, Perth, Australia, pp 627–636

20. Wang Z, Hu J, Zhao J, Yang D, Chen H, Wang Q (2018) Pay on-demand: dynamic incentive and task
selection for location-dependent mobile crowdsensing systems. In: IEEE 38th international conference
on distributed computing systems (ICDCS), Vienna, Austria, pp 611–621

21. Gong W, Zhang B, Li C (2017) Location-based online task scheduling in mobile crowdsensing. In:
GLOBECOM 2017–2017 IEEE Global Communications Conference, Singapore, pp 1–6

22. Khaluf Y, Birattari M, HamannH (2014) A swarm robotics approach to task allocation under soft dead-
lines and negligible switching costs. In: International conference on simulation of adaptive behavior.
Springer, Cham, pp 270–279

23. Ross SM (2013) Applied probabilitymodels with optimization applications. Courier Corporation, New
York
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