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Abstract. Inspired by sum-of-infeasibilities methods in convex optimiza-
tion, we propose a novel procedure for analyzing verification queries on
neural networks with piecewise-linear activation functions. Given a convex
relaxation which over-approximates the non-convex activation functions,
we encode the violations of activation functions as a cost function and
optimize it with respect to the convex relaxation. The cost function,
referred to as the Sum-of-Infeasibilities (Sol), is designed so that its mini-
mum is zero and achieved only if all the activation functions are satisfied.
We propose a stochastic procedure, DeepSoI, to efficiently minimize the
Sol. An extension to a canonical case-analysis-based complete search
procedure can be achieved by replacing the convex procedure executed
at each search state with DeepSoI. Extending the complete search with
DeepSoI achieves multiple simultaneous goals: 1) it guides the search
towards a counter-example; 2) it enables more informed branching deci-
sions; and 3) it creates additional opportunities for bound derivation. An
extensive evaluation across different benchmarks and solvers demonstrates
the benefit of the proposed techniques. In particular, we demonstrate
that Sol significantly improves the performance of an existing complete
search procedure. Moreover, the Sol-based implementation outperforms
other state-of-the-art complete verifiers. We also show that our technique
can efficiently improve upon the perturbation bound derived by a recent
adversarial attack algorithm.

Keywords: neural networks - sum of infeasibilities - convex optimization
- stochastic local search.

1 Introduction

Neural networks have become state-of-the-art solutions in various application
domains, e.g., face recognition, voice recognition, game-playing, and automated
piloting [47,30,55,7]. While generally successful, neural networks are known to be
susceptible to input perturbations that humans are naturally invariant to [61,41].
This calls the trustworthiness of neural networks into question, particularly in
safety-critical domains.

In recent years, there has been a growing interest in applying formal methods
to neural networks to analyze certain robustness or safety specifications [43]. Such
specifications are often defined by a collection of partial input/output relations:



2 H. Wu et al.

e.g., the network uniformly and correctly classifies inputs within a certain distance
(in some [, norm) of a selection of input points. The goal of formal verification
is to either prove that the network meets the specification or to disprove it by
constructing a counter-example.

Most standard activation functions in neural networks are non-linear, making
them challenging to reason about. Consider the rectified linear unit (ReLU): if a
ReLLU can take both positive and negative inputs, a verifier will typically need
to consider, separately, each of these two activation phases. Naive case analysis
requires exploring a number of combinations that is exponential in the number
of ReLUs, which quickly becomes computationally infeasible for large networks.
To mitigate this complexity, neural network verifiers typically operate on convex
relaxations of the activation functions. The relaxed problem can often be solved
with an efficient convex procedure, such as Simplex [35,23] or (sub-)gradient
methods [51,21]. Due to the relaxation, however, a solution may be inconsistent
with the true activation functions. When this happens, the convex procedure
cannot make further progress on its own. For this reason, to ensure completeness,
the convex procedure is typically embedded in an exhaustive search shell, which
encodes the activation functions explicitly and branches on them when needed.
While the exhaustive search ensures progress, it also brings back the problem
of combinatorial explosion. This raises the key question: can we guide the
convex procedure to satisfy the activation functions without explicitly
encoding them?

In convex optimization, the sum-of-infeasibilities (SoI) [10] function measures
the error (with respect to variable bounds) of a variable assignment. Minimizing
the Sol naturally guides the procedure to a satisfying assignment. In this paper,
we extend this idea to instead represent the error in the non-linear activation
functions. The goal is to “softly” guide the search over the relaxed problem using
information about the precise activation functions. If an assignment is found
for which the Sol is zero, then not only is the assignment a solution for the
relaxation, but it also solves the precise problem. Encoding the Sol w.r.t. the
piecewise-linear activation functions yields a concave piecewise-linear function,
which is challenging to minimize directly. Instead, we propose to minimize the Sol
for individual activation patterns and reduce the Sol minimization to a stochastic
search for the activation pattern where the Sol is minimal. The advantage is that
for each activation pattern, the Sol collapses into a linear cost function, which
can be easily handled by a convex solver. We introduce a specialized procedure,
DeepSoI, which uses Markov chain Monte Carlo (MCMC) search to efficiently
navigate towards activation patterns at the global minimum of the Sol. If the
minimal Sol is ever zero for an activation pattern, then a solution has been found.

An extension to a canonical complete search procedure can be achieved
by replacing the convex procedure call at each search state with the DeepSoI
procedure. Since the Sol contains additional information about the problem, we
propose a novel Sol-aware branching heuristic based on the estimated impact
of each activation function on the Sol. Finally, DeepSoI naturally preserves new
bounds derived during the execution of the underlying convex procedure (e.g.,
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Simplex), which further prunes the search space in the complete search. For
simplicity, we focus on ReLU activation functions in this paper, though the
proposed approach can be applied to any piecewise-linear activation function.

We implemented the proposed techniques in the Marabou framework for
Neural Network Analysis [36] and performed an extensive performance evaluation
on a wide range of benchmarks. We compare against multiple baselines and
show that extending a complete search procedure with our Sol-based techniques
results in significant overall speed-ups. Finally, we present an interesting use
case for our procedure — efficiently improving the perturbation bounds found by
AutoAttack [17], a state-of-the-art adversarial attack algorithm.

To summarize, the contributions of the paper are: (i) a technique for guiding
a convex solver with an Sol function w.r.t. the activation functions; (ii) DeepSoI—
a procedure for minimizing the non-linear Sol via the interleaving use of an
MCMC sampler and a convex solver; (iii) an Sol-aware branching heuristic, which
complements the integration of DeepSoI into a case-analysis based search shell;
and (iv) a thorough evaluation of the proposed techniques.

The rest of the paper is organized as follows. Section 2 presents an overview of
related work. Section 3 introduces preliminaries. Section 4 introduces the Sol and
proposes a solution for its minimization. Section 5 presents the analysis procedure
DeepSol, its use in the complete verification setting, and an Sol-aware branching
heuristic. Section 6 presents an extensive experimental evaluation. Conclusions
and future work are in Section 7.

2 Related Work

Approaches to complete analysis of neural networks can be divided into SMT-
based [35,36,23], reachability-analysis based [5,64,65,29,25], and the more general
branch-and-bound approaches [1,63,24,44,13,37,9]. As mentioned in [14], these
approaches are related, and differ primarily in their techniques for bounding and
branching. Given the computational complexity of neural network verification, a
diverse set of research directions aims to improve performance in practice. Many
approaches prune the search space using tighter convex relaxations and bound in-
ference techniques [64,23,31,58,56,45,76,70,67,66,20,63,69,52,62,51,73,26,68,59,8,57].
Another direction leverages parallelism by exploiting independent structures in
the search space [48,75,71]. Different encodings of the neural network verification
problems have also been studied: e.g., as MILP problems that can be tackled by
off-the-shelf solvers [63,2], or as dual problems admitting efficient GPU-based
algorithms [12,21,22,19]. DeepSoI can be instantiated with any sound convex
relaxations and matching convex procedures. It can also be installed in any case-
analysis-based complete search shell, therefore integrating easily with existing
parallelization techniques, bound-tightening passes, and branching heuristics.
Two approaches most relevant to our work are Reluplex [35] and Pere-
griNN [37]. Reluplex invokes an LP solver to solve the relaxed problem, and then
updates its solution to satisfy the violated activation functions — with the hope
of nudging the produced solutions towards a satisfying assignment. However,
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the updated solution by Reluplex could violate the linear relaxation, leading to
non-convergent cycling between solution updates and LP solver calls, which can
only be broken by branching. In contrast, our approach uses information about
the precise activation functions to actively guide the convex solver. Furthermore,
in the limit DeepSoI converges to a solution (if one exists). PeregriNN also uses
an objective function to guide the solving of the convex relaxation. However,
their objective function approzrimates the ReLU violation and does not guaran-
tee a real counter-example when the minimum is reached. In contrast, the Sol
function captures the exact ReLU violation, and if a zero-valued point is found,
it is guaranteed to be a real counter-example. We compare our techniques to
PeregriNN in Section 6.

We use MCMC-sampling combined with a convex procedure to minimize the
concave piecewise-linear Sol function. MCMC-sampling is a common approach for
stochastically minimizing irregular cost functions that are not amenable to exact
optimization techniques [32,53,3]. Other stochastic local search techniques [54,27]
could also be used for this task. However, we chose MCMC because it is adept at
escaping local optima, and in the limit, it samples more frequently the region
around the optimum value. As one point of comparison, in Section 6, we compare
MCMC-sampling with a Walksat-based [54] local search strategy.

3 Preliminaries

Neural Networks. We define a feed-forward, convolutional, or residual neural
network with k& + 1 layers as a set of neurons N, topologically ordered into
layers Ly, ..., Ly, where Lg is the input layer and Ly, is the output layer. Given
ni,n; € N, we use n; < n; to denote that the layer of n; precedes the layer of n;.
The value of a neuron n; € N\L is computed as act;(b; + an<ni w;j * M), an
affine transformation of the preceding neurons followed by an activation function
act;. We use n? and n? to represent the pre- and post-activation values of such a
neuron: n¢ = act;(n?). For n; € Lo, n? is undefined and we assume n¢ can take
any value. In this paper, we focus on ReLU neural networks. That is, act; is the
ReLU function (ReLU(x) = max(0,2)) unless n; belongs to the output layer Ly,
in which case act; is the identity function. We use R(N) to denote the set of
ReLU neurons in N. An activation pattern is defined by choosing a particular
phase (either active or inactive) for every n € R(N) (i.e., choosing either n® < 0
or n? > 0 for each n; € R(N)).

Neural Network Verification as Satisfiability. Consider the verification of
a property P over a neural network N. The property P has the form P;, = Py,
where P;, and P,,; constrain the input and output layers, respectively. P states
that for each input point satisfying P;,, the output layer satisfies P,,;. To
formalize the verification problem, we first define the set of variables in a neural
network N, denoted as Var(N), to be Uy, en\r, {0} U UnieN\Lo{nﬁ}. We define
a variable assignment, o : Var(N) — R, to be a mapping from variables in N to
real values. The verification task thus can be formally stated as finding a variable
assignment « that satisfies the following set of constraints over Var(N) (denoted
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as ¢):3
Vn; € N\Lo,n? =b; + Z Wij * n; (1a)
nj<n;
Vn; € R(N),n¢ = act;(n?) (1b)
}Din A _‘Pout (1C)

If such an assignment « exists, we say that ¢ is satisfiable and can conclude

that P does not hold, as from « we can retrieve an input x € P;,, such that
the neural network’s output violates P,,;. If such an « does not exist, we say
¢ is unsatisfiable and can conclude that P holds. We use « |= ¢ to denote that
an assignment « satisfies ¢. In short, verifying whether P holds on a neural
network N boils down to deciding the satisfiability of ¢. We refer to ¢ also as
the verification query in this paper.
Convex Relaxation of Neural Networks. Deciding whether P holds on a
ReLU network N is NP-complete [35]. To curb intractability, many verifiers
consider the convex (e.g., linear, semi-definite) relaxation of the verification
problem, sacrificing completeness in exchange for a reduction in the computational
complexity. We use ¢ to denote the convex relaxation of the exact problem ¢.
If ¢ is unsatisfiable, then ¢ is also unsatisfiable, and property P holds. If the
convex relaxation is satisfiable with satisfying assignment « and « also satisfies
¢, then P does not hold.

In this paper, we use the Planet re- n®
lazation introduced in [23]. It is a linear
relaxation, illustrated in Figure 1. Each -7
ReLU constraint ReLU(n?) = n is over- L
approximated by three linear constraints: -
n® >0, n® > n’, and n® < ﬁnbfgill, Pt
where u and [ are the upper and lower PR
bounds of n®, respectively (which can be ] 0 w
derived using bound-tightening techniques
such as those in [67,58,76]). If Constraint
1c is also linear, the convex relaxation ¢ is a Linear Program, whose satisfiability
can be decided efficiently (e.g., using the Simplex algorithm [18]).
Sum-of-Infeasibilities. In convex optimization [10,39], the sum-of-infeasibilities
(SOI) method can be used to direct the feasibility search. The satisfiability of
a formula ¢ is cast as an optimization problem, with an objective function
representing the total error (i.e., the sum of the distances from each out-of-
bounds variable to its closest bound). The lower bound of f is 0 and is achieved
only if ¢ is satisfiable. In our context, we use a similar function f,,;, but with
the difference that it represents the total error of the ReLU constraints in ¢. In
our case, fso; is non-convex, and thus a more sophisticated approach is needed
to minimize it efficiently.

Fig. 1: The Planet relaxation.

3 The verification can also be equivalently viewed as an optimization problem [14].
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Complete Analysis via Exhaustive Search. One common approach for
complete verification involves constructing a search tree and calling a convex
procedure SOLVECONV at each tree node, as shown in Algorithm 1. SOLVECONV
solves the convex relaxation ¢ and returns a pair r, « where either: 1) 7 = SAT
and o |= ¢; or 2) r = UNSAT and & is unsatisfiable. If ¢ is unsatisfiable or «
also satisfies ¢, then the result for ¢ also holds for ¢ and is returned. Otherwise,
the search space is divided further using BRANCH, which returns a set ¥ of
sub-problems such that ¢ and \/ ¥ are equisatisfiable.
Before invoking SOLVECONV to Algorithm 1 Complete search.

solve ¢, it 15 common to ﬁrst 1: Input: a verification query ¢.
call an efficient bound-tightening 5. Output: SAT/UNSAT

procedure (TIGHTENBOUNDS) to 3. function cOMPLETESEARCH(¢))

prune the search space or even 4: ¢ < TIGHTENBOUNDS(¢)
derive UNSAT preemptively. This 5. r a < sovECoNV(g)
TIGHTENBOUNDS procedure can be  6: if r = UNSATV a = ¢ then
instantiated in various ways, in- 7 return r
cluding with analyses based on 8 for ¢ € BRANCH(¢) do
LiPRA [74,76758,70], kReLLU [56], or 9: if COMPLETESEARCH(¢;) = SAT then
PRIMA [49]. In addition to the ded- 1 return SAT

11:  return UNSAT

icated bound-tightening pass, some
convex procedures (e.g., Simplex) also naturally lend themselves to bound in-
ference during their executions [38,35]. The overall performance of Algorithm 1
depends on the efficacy of bound-tightening, the branching heuristics, and the
underlying convex procedure.

Adversarial attacks. Adversarial attacks [61,46,28,15] are another approach
for assessing neural network robustness. While verification uses exhaustive search
to either prove or disprove a particular specification, adversarial attacks focus on
efficient heuristic algorithms for the latter. From another perspective, they can
demonstrate upper bounds on neural network robustness. In Section 6, we show
that our analysis procedure can improve the bounds found by AutoAttack [17].

4 Sum of Infeasibilities in Neural Network Analysis

In this section, we introduce our Sol function, consider the challenge of its
minimization, and present a stochastic local search solution.

4.1 The Sum of Infeasibilities

As mentioned above, in convex optimization, an Sol function represents the sum
of errors in a candidate variable assignment. Here, we build on this idea by
introducing a cost function fs,;, which computes the sum of errors introduced
by a convex relaxation of a verification query. We aim to use f,,; to reduce the
satisfiability problem for ¢ to a simpler optimization problem. We will need the
following property to hold.

Condition 1. For an assignment o, a = ¢ iff a = @ A fsos < 0.



Efficient Neural Network Analysis with Sum-of-Infeasibilities 7

If Condition 1 is met, then satisfiability of ¢ reduces to the following mini-
mization problem:
minimize  fso;
(0%

. ~ (2)
subject to « | ¢

To formulate the Sol for ReLU networks, we first define the error in a ReLU
constraint n as:
E(n) = min(n® — n® n%) (3)

The two arguments correspond to the error when the ReLU is in the active and
inactive phase, respectively. Recall that the Planet relaxation constrains (n®, n%)
in the triangular area in Figure 1, where n® > n® and n® > 0. Thus, the minimum
of E(n) subject to ¢ is non-negative, and furthermore, E(n) = 0 iff the ReLU
constraint n is satisfied (this is also true for any relaxation at least as tight as the
Planet relaxation). We now define fs,; as the sum of errors in individual ReLUs:

fsoi = Z E(n) (4)

neR(N)

Theorem 1. Let N be a set of neurons for a neural network, ¢ a verification
query (an instance of (1)), and ¢ the planet relaxation of ¢. Then feo; as given
by (4) satisfies Condition 1.

Proof. Tt is straightforward to show that fs,; subject to @ is non-negative and is
zero if and only if each E(n;) is zero. That is, min f,,; subject to @ is zero if and
only if all ReLUs are satisfied. Therefore, if « satisfies ¢, then « = fs,; = 0. On
the other hand, since an assignment « that satisfies ¢ can only violate the ReLU
constraints in ¢, if @ | fso; = 0, then all the constraints in ¢ must be satisfied,

ie, al ¢. O

Note that the error E, and its extension to Sol, can easily be defined for
other piecewise-linear functions besides ReLU. We now turn to the question of
minimizing fs,;. Observe that

min f,,; = min Z E(n) = min ({f | f= Z ti, ti€ {n?—n?anf}})

ne€R(N) n;ER(N)
(5)

Thus, fs»; is the minimum over a set, which we will denote S,,;, of linear
functions. Although min fs,; cannot be used directly as an objective in a convex
procedure, we could minimize each individual linear function f € S,,; with a
convex procedure and then keep the minimum over all functions. We refer to
the functions in S,,; as phase patterns of f,,;. For notational convenience, we
define cost(f, ¢) to be the minimum of f subject to ¢. The minimization problem
(2) can thus be restated as searching for the phase pattern f € S,,;, where
cost(f, ) is minimal. Note that for a particular activation pattern, fs,; = f for
some f € S,;. From this perspective, searching for the f € Sy,; where cost(f, @)
is minimal can also be viewed as searching for the activation pattern where the
global minimum of f,,; is achieved.
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4.2 Stochastically Minimizing the Sol with MCMC Sampling

In the worst case, finding the minimal value of cost(f, ¢) requires enumerating
and minimizing each f in Ss,; (or equivalently, minimizing fs,; for each activation
pattern), which has size 2/%(N)|, However, importantly, the search can terminate
immediately if a phase pattern f is found such that cost(f,®) = 0. We leverage
this fact below. Note that each phase pattern has |R(N)| adjacent phase patterns,
each differing in only one linear subexpression. The space of phase patterns is
thus fairly dense, making it amenable to traversal using stochastic local search
methods. In particular, intelligent hill-climbing algorithms, which can be made
robust against local optima, are well suited for this task.

Markov chain Monte Carlo (MCMC) [11] methods are such an approach.
In our context, MCMC methods can be used to generate a sequence of phase
patterns fy, f1, fo... € Ssoi, with the desirable property that in the limit, the
phase patterns are more frequently from the minimum region of cost(f, @).

We use the Metropolis-Hastings (M-H) algorithm [16], a widely applicable
MCMC method, to construct the sequence. The algorithm maintains a current
phase pattern f and proposes to replace f with a new phase pattern f’. The
proposal comes from a proposal distribution q(f'|f) and is accepted with a certain
acceptance probability m(f— f'). If the proposal is accepted, f’ becomes the new
current phase pattern. Otherwise, another proposal is considered. This process is
repeated until one of the following scenarios happen: 1) a phase pattern f is chosen
with cost(f, ) = 0; 2) a predetermined computational budget is exhausted; or 3)
all possible phase patterns have been considered. The last scenario is generally
infeasible for non-trivial networks. In order to employ the algorithm, we transform
cost(f, @) into a probability distribution p(f) using a common method [34]:

p(f) o exp(=p - cost(f,P))

where ( is a configurable parameter. If the proposal distribution is symmetric
(i.e, q(f1f) = q(f']f)), the acceptance probability is the following (often referred
to as the Metropolis ratio) [34]:

!/

m(f—f") = min(1, ];((ff))) = min <l,exp ( -5 (cost(f’, @) — cost(f, 5))))
Importantly, under this acceptance probability, a proposal reducing the value of
the cost function is always accepted, while a proposal that does not may still be
accepted (albeit with a probability that is inversely correlated with the increase
in the cost). This means that the algorithm always greedily moves to a lower cost
phase pattern whenever it can, but it also has an effective means for escaping
local minima. Note that since the sample space is finite, as long as the proposal
strategy is ergodic,® in the limit, the probability of sampling every phase pattern
(therefore deciding the satisfiability of ¢) converges to 1. However, we do not

4 A proposal strategy is ergodic if it is capable of transforming any phase pattern
to any other through a sequence of applications. We use a symmetric and ergodic
proposal distribution as explained in Section 5.1.
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have formal guarantees about the convergence rate, and it is usually impractical
to prove unsatisfiability this way. Instead, as we shall see in the next section, we
enable complete verification by embedding the M-H algorithm in an exhaustive
search shell.

5 The DeepSol Algorithm

In this section, we introduce DeepSoI, a novel verification algorithm that leverages
the Sol function, and show how to integrate it with a complete verification
procedure. We also discuss the impact of DeepSoI on complete verification and
propose an Sol-aware branching heuristic.

5.1 DeepSol

Our procedure DeepSol,
shown in Algorithm 2,
takes an input verifica-
tion query ¢ and tries
to determine its sat-
isfiability. DeepSoI fol-
lows the standard two-
phase convex optimiza-
tion approach. Phase I

Algorithm 2 Analyzing ¢ with DeepSolI.
1: Input: A verification query ¢.

2: Output: SAT/UNSAT/UNKNOWN

3: function DEEPSOI(¢)

4
5 if » = UNSAT V ap = ¢ then return r, ap
6: k,f < 0,INITPHASEPATTERN ()
7 a,c+ oPTIMIZECONV(f, §)

8:  while ¢ > 0 A “EXHAUSTED() Ak < T do

ﬁndS some aSSignment 9 f/ — PROPOSE(f)

ap satisfying ¢, and 10: o, ¢« optimizECONV(f', §) »Phs.
phase II attempts to opti- 11: if accerT(c,c’) then f,c,a + f',c/, o

mize the assignment us- 12 elsek + k+1

ing the M-H algorithm. 13: if ¢ =0 then return SAT,«
Phase II uses a convex 14: elsereturn EXHAUSTED() ? UNSAT : UNKNOWN

optimization procedure

OPTIMIZECONV which takes an objective function f and a formula ¢ as in-
puts and returns a pair «,c, where a |= ¢ and ¢ = cost(f,$) is the optimal
value of f. Phase II chooses an initial phase pattern f based on ag (Line 6) and
computes its optimal value c¢. The M-H algorithm repeatedly proposes a new
phase pattern f’ (Line 9), computes its optimal value ¢/, and decides whether to
accept f’ as the current phase pattern f. The procedure returns SAT when a phase
pattern f is found such that cost(f, @) = 0 and UNSAT if all phase patterns have
been considered (EXHAUSTED returns true) before a threshold of T rejections is
exceeded. Otherwise, the analysis is inconclusive (UNKNOWN).

The ACCEPT method decides whether a proposal is accepted based on the
Metropolis ratio (see Section 4). Function INITPHASEPATTERN proposes the
initial phase pattern f induced by the activation pattern corresponding to
assignment ag. Our proposal strategy (PROPOSE) is also simple: pick a ReLU n
at random and flip its cost component in the current phase pattern f (either
from n® — n® to n%, or vice-versa). This proposal strategy is symmetric, ergodic,

7, ap < SOLVECONV() >P1 !
1S
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and performs well in practice. Both the initialization strategy and the proposal
strategy are crucial to the performance of the M-H Algorithm, and exploring more
sophisticated strategies is a promising avenue for future work. Importantly, the
same convex procedure is used in both phases. Therefore, from the perspective
of the convex procedure, DeepSol solves a sequence of convex optimization
problems that differ only in the objective functions, and each problem can be
solved incrementally by updating the phase pattern without the need for a restart.

5.2 Complete Analysis and Pseudo-impact Branching

To extend a canonical complete verification procedure (i.e., Algorithm 1), its
SOLVECONV call is replaced with DeepSoI. Note that the implementation of
BRANCH in this algorithm has a significant influence on its performance. Here,
we consider an Sol-aware implementation of BRANCH, which makes decisions by
selecting a particular ReLU to be active or inactive. The choice of which ReLU
is crucial. Intuitively, we want to branch on the ReLLU with the most impact on
the value of f,,;. After branching, DeepSoI should be closer to either: finding
a satisfying assignment (if fs,; is decreased), or determining unsatisfiability (if
fsoi is increased). Computing the exact impact of each ReLU n on fs,; would be
expensive; however, we can estimate it by recording changes in f,,; during the
execution of DeepSol.

Concretely, for each ReLU n, we maintain its pseudo-impact,> PI(n), which
represents the estimated impact of n on fg,;. For each n, PI(n) is initialized to
0. Then during the M-H algorithm, whenever the next proposal flips the cost
component of ReLU n, we calculate the local impact on fo;: A = |cost(f, @) —
cost(f',@)|. We use A to update the value of PI(n) according to the erponential
moving average (EMA): PI(n) = v« PI(n) + (1 — ) - A, where ~ attenuates
previous estimates of n’s impact. We use EMA because recent estimates are
more likely to be relevant to the current phase pattern. At branching time,
the pseudo-impact heuristic picks arg max,, PI(n) as the ReLU to split on. The
heuristic is inaccurate early in the search, so we use a static branching order
(e.g., [71,13]) while the depth of the search tree is shallow (e.g., < 3).

6 Experimental Evaluation

In this section, we present an experimental evaluation of the proposed techniques.
Our experiments include: 1. an ablation study to examine the effect of each pro-
posed technique; 2. a run-time comparison of our prototype with other complete
analyzers; 3. an empirical study of the choice of the rejection threshold 7' in
Algorithm 2; and 4. an experiment in using our analysis procedure to improve the
perturbation bounds found by AutoAttack [17], an adversarial attack algorithm.
An artifact with which the results can be replicated is available on Zenodo [72].

® The name is in analogy to pseudo-cost branching heuristics in MILP, where the
integer variable with the largest impact on the objective function is chosen [6].
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6.1 Implementation.

We implemented our techniques in Marabou [36], an open-source toolbox for
analyzing Neural Networks. It features a user-friendly python API for defining
properties and loading networks, and a native implementation of the Simplex
algorithm. Besides the Markov chain Monte Carlo stochastic local search algorithm
presented in Section 5.1 and the pseudo-impact branching heuristic presented in
Section 5.2, we also implemented a Walksat-inspired [54] stochastic local search
strategy to evaluate the effectiveness of MCMC-sampling as a local minimization
strategy. Concretely, from a phase pattern f, the strategy greedily moves to a
neighbor f’ of f, with cost(f’,¢) < cost(f,@). If no such f’ exists (i.e., a local
minimum has been reached), the strategy moves to a random neighbor.

The soLvECONV and OPTIMIZECONV methods in Algorithm 2 can be instan-
tiated with either the native Simplex engine of Marabou or with Gurobi, an
off-the-shelf (MI)LP-solver. The TIGHTENBOUNDS method is instantiated with
the DeepPoly analysis from [58], an effective and light-weight bound-tightening
pass, which is also implemented in Marabou.

6.2 Benchmarks.

We evaluate on networks from four different applications: MNIST, CIFAR10,
TaxiNet, and GTSR. The network architectures are shown in Table 2.
The MNIST [42] and CIFAR10 [40] net-

works are established benchmarks used _Bench. Model ~ Type RelUs Hid. Layers
in previous literature (e.g., [19,37,71,75])  MNIST ﬂﬂi:? E(C:, 150121 i
as well as in the 2021 VNN Competi- MNIST; FC 1536 6
tion [4]. Notably, the same MNIST net- 1. iver Taxii  Conv 688 6
works are used to evaluate the original Taxi2 Conv 2048 4
. Taxi3 Conv 2752 6

PeregriNN work.

CIFAR10 CIFAR10, Conv 1226 4
For MNIST and CIFAR.10 networks, CIFAR10, Conv 4804 4
we check robustness against targeted CIFAR10; Conv 5196 6
lo attacks on randomly selected images  aTsw GTSR, FC 600 3
GTSR, Conv 2784 4

from the test sets. The target labels are
chosen randomly from the incorrect la-  Fig 2: Architecture overview.

bels, and the perturbation bound is sam-

pled uniformly from {0.01,0.03,0.06,0.09,0.12,0.15}. The TaxiNet [33] bench-
mark set comprises robustness queries over regression models used for vision-based
autonomous taxiing. Given an image of the taxiway captured by the aircraft, the
model predicts its displacement (in meters) from the center of the taxiway. A
controller uses the output to adjust the heading of the aircraft. Robustness is
parametrized by input perturbation ¢ and output perturbation €; we sample (J, €)
uniformly from {0.01,0.03,0.06} x {2,6}. The GTSR benchmark set comprises
robustness queries on image classifiers trained on a subset of the German Traffic
Sign Recognition benchmark set [60]. Given a 32 x 32 RGB image the networks
classify it as one of seven different kinds of traffic signs. A hazing perturbation [50]
drains color from the image to create a veil of colored mist. Given an image I, a
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Bench. (#) MILPyrpverisy Lpse soIsne, SoTP: SOTP:,.
Solv. Time  Solv. Time Solv. Time Solv. Time Solv. Time
MNIST; (90) 77 19791 47 6892 66 5635 70 5976 68 5388
MNIST, (90) 29 6125 24 514 36 4356 31 757 31 909
MNIST; (90) 23 957 21 1609 34 9519 35 8327 33 5270
Taxi; (90) 920 786 61 9054 80 4257 89 1390 90 1489
Taxi, (90 40 17093 2 891 70 5503 71 6389 71 7407

)
Taxis (90) 80 5058 64 69715 87 1034 88 2164 87 997
CIFAR10, (90) 76 4316 26 7425 69 6286 73 16469 69 5200

(

(

)

CIFAR10, (90) 38 9879 18 845 41 4619 42 8129 42 6415
CIFAR104 (90) 30 4198 21 3395 51 17679 51 15056 51 15015

GTSR; (90 90 2541 90 2435 89 4900 90 15238 90 4805
GTSR, (90) 90 23613 90 4456 90 7507 90 10426 90 6180

Total (990) 673 94354 463 107230 711 71294 730 90822 721 59073

Table 1: Instances solved by different configurations and their runtime (in seconds)
on solved instances.

perturbation parameter ¢, and a haze color C7, the perturbed image I’ is equal
to (1 —€)-I+e-CS. The robustness queries check whether the bound yielded by
the test-based method in [50] is minimal.All pixel values are normalized to [0, 1],
and the chosen perturbation values yield a mix of non-trivial SAT and UNSAT
instances.

6.3 Experimental Setup.

Experiments are run on a cluster equipped with Intel Xeon E5-2637 v4 CPUs
running Ubuntu 16.04. Unless specified otherwise, each job is run with 1 thread,
8GB memory, and a 1-hour CPU timeout. By default, the SOLvECONV and
OPTIMIZECONV methods use Gurobi. The following hyper-parameters are used:
the rejection threshold T" in Algorithm 2 is 2; the discount factor v in the EMA
is 0.5; and the probability density parameter S in the Metropolis ratio is 10.
These parameters are empirically optimal on a subset of MNIST benchmarks.
In practice, the performance is most sensitive to the rejection threshold 7', and
below (Section 6.6), we conduct experiments to study its effect.

6.4 Ablation study of the proposed techniques.

To evaluate each individual component of our proposed techniques, we run several
configurations across the full set of benchmarks described above.

We first consider two baselines that do not minimize the Sol: 1. LP***— runs
Algorithm 1 with the Split-and-Conquer (SnC) branching heuristic [71], which
estimates the number of tightened bounds from a ReLU split; 2. MILPurpverisy—
encodes the query in Gurobi using MIP Verify’s MILP encoding [63].6

We then evaluate three configurations of Sol-based complete analysis parame-

snc

terized by the branching heuristic and the Sol-minimization algorithm: 1. SOI3% —

5 This configuration does not use the LP/MILP-based preprocessing passes from
MIPVerify [63] because they degrade performance on our benchmarks.
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Bench. (#) SOIP: PeregrillN ERAN; ERAN,
Solv. Time Solv. Time Solv. Time Solv. Time
MNIST; (90) 70 5976 64 11117 76 18679 75 19520
MNIST, (90) 31 757 31 2287 28 1910 28 3126
MNIST; (90) 35 8327 26 2344 24 1538 24 3292
Taxi; (90) 89 1390 - - 20 1653 90 3262
Taxi, (90) 71 6889 - - 40 16460 35 31778
Taxiz (90) 88 2164 - - 88 1389 88 4581
CIFAR10, (90) 73 16469 - - 77 4604 77 14269
CIFAR10, (90) 42 8129 - - 41 14403 37 14453
CIFAR104 (90) 51 15056 - - 31 7587 26 5245
GTSR; (90) 90 15238 - - 20 2023 90 32585
GTSR, (90) 920 10426 - - 78 77829 75 81232
Total (990) 730 90822 - - 663 148075 645 213343

Table 2: Instances solved by different complete verifiers and their runtime (in
seconds) on solved instances.

runs DeepSoI with the SnC branching heuristic; 2. SOIBL,— runs DeepSoI with
the pseudo-impact (PI) heuristic; 3. SOIY;,.— runs the Walksat-based algorithm
with the PI heuristic. Each Sol configuration differs in one parameter w.r.t. the
previous, so that pair-wise comparison highlights the effect of that parameter.
Table 1 summarizes the runtime performance of different configurations on
the four benchmark sets. The three configurations that minimize the Sol, namely
SO0Ifcnc, SOIP,,. and SOISES , all solve significantly more instances than the two
baseline configurations. In particular, SOIZ2S solves 248 (53.4%) more instances
than LP*"¢. Since all configurations start with the same variable bounds derived
by the DeepPoly analysis, the performance gain is mainly due to the use of Sol.
Among the three Sol configurations, the one with both pi and mcmc solves the
most instances. In particular, it solves 8 more instances than S0I%,,., suggesting
that MCMC sampling is, overall, a better approach than the Walksat-based
strategy. On the other hand, SDIﬁimc and SOIZ2C show complementary behaviors.
For instance, the latter solves 5 more instances on MNIST;, and the former
solves 11 more on the Taxi benchmarks. This motivates a portfolio configuration
SO0Iportfo110,Which runs S0I5che and SOIZ2S. in parallel. This strategy is able to
solve 742 instances overall with a 1-hour wall-clock timeout, yielding a gain of at

least 12 more solved instances compared with any single-threaded configuration.

6.5 Comparison with other complete analyzers.

In this section, we compare our implementation with other complete analyzers.
We first compare with PeregriNN, which as described in Section 2 introduces a
heuristic cost function to guide the search. We evaluate PeregriNN on the MNIST
networks, the same set of networks used in its original evaluation. We did not
run PeregriNN on the other benchmarks because it only supports .nnet format,
which is designed for fully connected feed-forward ReLLU networks.

In addition, we also compare with ERAN, a state-of-the-art complete analyzer
based on abstract interpretation, on the full set of benchmarks. ERAN is often
used as a strong baseline in recent neural network verification literature and was
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among the top performers in the past VNN Competition 2021. We compare with
two ERAN configurations: 1. ERAN; — ERAN using the DeepPoly analysis [58] for
abstract interpretation and Gurobi for solving; 2. ERAN, — same as above except
using the k-ReLU analysis [56] for abstract interpretation. We choose to compare
with ERAN instead of other state-of-the-art neural network analyzers, e.g., alpha-
beta crown [76,68], OVAL [19], and fast-and-complete [75], mainly because the
latter tools are GPU-based, while ERAN supports execution on CPU, where our
prototype is designed to run. This makes a fair comparison possible. Note that
our goal in this section is not to claim superiority over all state-of-the-art solvers.
Rather, the goal is to provide assurance that our implementation is reasonable.
As explained earlier, our approach can be integrated into other complete search
shells with different search heuristics, and is orthogonal to techniques such as
GPU-acceleration, parallelization, and tighter convex relaxation (e.g., beyond
the Planet relaxation), which are all future development directions for Marabou.

Table 2 summarizes the runtime performance of different solvers. We include
again our best configuration, SO0Ihene, for ease of comparison. On the three
MNIST benchmark sets, PeregriNN either solves fewer instances than SO0Ihenc
or takes longer time to solve the same number of instances. We note that
PeregriNN’s heuristic objective function could be employed during the feasibility
check of DeepSoI (Line 4, Algorithm 2). Exploring this complementarity between
PeregriNN and our approach is left as future work.

Compared with ERAN; and ERAN,,
S0Ibenc also solves significantly more i
instances overall, with a performance 700 e
gain of at least 10.1% more solved in-
stances. Taking a closer look at the
performance breakdown on individual
benchmarks, we observe complemen-
tary behaviors between S0Iben. and
ERAN,, with the latter solving more

600

~#- MILP
— LP"snc
-7~ SOl*snc_mcme

Number of Instances Solved

~& SOI"pi_wsat

. i 5 "SOPpi_ meme
instances than S0Ihenc on 3 of the 11 _— Dy
benchmark sets. Figure 3 shows the 400 - ERAN.2

0 1,000 2,000 3,000

cactus plot of configurations that run Time ()
on all benchmarks. ERAN, is able to
solve more instances than all the other
configurations when the time limit is short, but is overtaken by the three Sol-
based configurations once the time limit exceeds 30s. One explanation for this
is that the Sol-enabled configurations spend more time probing at each search
state, and for easier instances, it might be more beneficial to branch eagerly.

Fig. 3: Cactus plot on all benchmarks.

Finally, we compare the portfolio strategy S0Iyortzo1i0 described in the previ-
ous subsection to ERAN; running 2 threads. The latter solves 10.3% fewer instances
(673 overall). Figure 4 shows a scatter plot of the runtime performance of these
two configurations. For unsatisfiable instances, most can be resolved efficiently
by both solvers, and each solver has a few unique solves. On the other hand,
S0Iportsorio 1S able to solve significantly more satisfiable benchmarks.
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Fig. 4: Runtime of S0Iportfo1i0 and ERAN; Fig. 5: Improvements over the pertur-
running with 2 threads. bation bounds found by AutoAttack.

6.6 Incremental Solving and the Rejection Threshold T

The rejection threshold T" in Algorithm 2 controls the number of rejected proposals
allowed before returning UNKNOWN. An incremental solver is one that can accept
a sequence of queries, accumulating and reusing relevant bounds derived by
each query. To investigate the interplay of T' and incrementality, we perform
an experiment using the incremental simplex engine in Marabou while varying
the value of T'. We additionally control the branching order (by using a fixed
topological order). We conduct the experiment on 180 MNIST; and 180 Taxi,
benchmarks from the aforementioned distributions.

Table 3 shows the number of solved instances, as well as the average time (in
seconds) and number of search states on the 95 commonly solved UNSAT instances.
As T increases, more satisfiable benchmarks are solved.

Rejection threshold T' 1 2 3 4 5 6
SAT Solv. 192 199 196 204 203 207
UNSAT Solv. 91 90 90 89 90 89
Avg. time (common) 97.75 129.0 83.6 108.1 137.0 187.8
Avg. states (common) 12948 12712 6122 5586 6404 8948

Table 3: Effect of the rejection threshold.

Increasing T can also result in improvement on unsatisfiable instances—either
the average time decreases, or fewer search states are required to solve the same
instance. We believe this improvement is due to the reuse of bounds derived
during the execution of DeepSoI. This suggests that adding incrementality to the
convex solver (like Gurobi) could be highly beneficial for verification applications.
It also suggests that the bounds derived during the simplex execution cannot be
subsumed by bound-tightening analyses such as DeepPoly.



16 H. Wu et al.

6.7 Improving the perturbation bounds found by AutoAttack

Our proposed techniques result in significant performance gain on satisfiable
instances. It is natural to ask whether the satisfiable instances solvable by the
Sol-enabled analysis can also be easily handled by adversarial attack algorithms,
which as mentioned in Section 2, focus solely on finding satisfying assignments. In
this section, we show that this is not the case by presenting an experiment where
we use our procedure in combination with AutoAttack [17], a state-of-the-art
adversarial attack algorithm, to find higher-quality adversarial examples.

Conceretely, we first use AutoAttack to find an upper bound on the minimal
perturbation required for a successful [, attack.We then use our procedure to
search for smaller perturbation bounds, repeatedly decreasing the bound by 2%
until either UNSAT is proven or a timeout (30 minutes) is reached. We use the
adversarial label of the last successful attack found by AutoAttack as the target
label. We do this for the first 40 correctly classified test images for the three
MNIST architectures, which yields 120 instances. Figure 5 shows the improvement
of the perturbation bounds. Reduction of the bound is obtained for 53.3% of the
instances, with an average reduction of 26.3%, a median reduction of 22%, and a
maximum reduction of 58%. This suggests that our procedure can help obtain a
more precise robustness estimation.

7 Conclusions and Future Work

In this paper, we introduced a procedure, DeepSoI, for efficiently minimizing
the sum of infeasibilities in activation function constraints with respect to the
convex relaxation of a neural network verification query. We showed how DeepSoI
can be integrated into a complete verification procedure, and we introduced a
novel Sol-enabled branching heuristic. Extensive experimental results suggest
that our approach is a useful contribution towards scalable analysis of neural
networks. Our work also opens up multiple promising future directions, including;:
1) improving the scalability of DeepSoI by using heuristically chosen subsets of
activation functions in the cost function instead of all unfixed activation functions;
2) leveraging parallelism by using GPU-friendly convex procedures or minimizing
the Sol in a distributed manner; 3) devising more sophisticated initialization and
proposal strategies for the Metropolis-Hastings algorithm; 4) understanding the
effects of the proposed branching heuristics on different types of benchmarks; 5)
investigating the use of DeepSol as a stand-alone adversarial attack algorithm.
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