
The Algorithmic Phase Transition of Random k-SAT

for Low Degree Polynomials

Guy Bresler∗ Brice Huang†

June 3, 2021

Abstract

Let Φ be a uniformly random k-SAT formula with n variables and m clauses. We study the algorithmic
task of finding a satisfying assignment of Φ. It is known that a satisfying assignment exists with high
probability at clause density m/n < 2k log 2 − 1

2
(log 2 + 1) + ok(1), while the best polynomial-time

algorithm known, the Fix algorithm of Coja-Oghlan [25], finds a satisfying assignment at the much
lower clause density (1 − ok(1))2k log k/k. This prompts the question: is it possible to efficiently find a
satisfying assignment at higher clause densities?

To understand the algorithmic threshold of random k-SAT, we study low degree polynomial algo-
rithms, which are a powerful class of algorithms including Fix, Survey Propagation guided decimation
(with bounded or mildly growing number of message passing rounds), and paradigms such as mes-
sage passing and local graph algorithms. We show that low degree polynomial algorithms can find a
satisfying assignment at clause density (1 − ok(1))2k log k/k, matching Fix, and not at clause density
(1 + ok(1))κ∗2k log k/k, where κ∗ ≈ 4.911. This shows the first sharp (up to constant factor) computa-
tional phase transition of random k-SAT for a class of algorithms. Our proof establishes and leverages a
new many-way overlap gap property tailored to random k-SAT.

1 Introduction

The k-SAT problem occupies a central role in complexity theory as the first and canonical NP-complete
problem [30]. Its average-case analogue, random k-SAT, likewise has an important role in average-case
computational complexity. In this problem, we are given a k-SAT formula with m clauses and n variables,
whose km literals are each sampled i.i.d. from the set of 2n possible literals, and our task is to produce a
satisfying assignment [1].1 There are two natural basic questions for random k-SAT. First, at what scalings
of (n, k,m) are there satisfying assignments? Second, when can they be found by efficient algorithms?

Early work showed that the interesting regime of random k-SAT (for fixed k) is when m = Θ(n), and that
the problem’s qualitative behavior in the large-n limit depends on the clause density (or clause-to-variable
ratio) α = m/n. Specifically, [37] showed that if α ≥ 2k log 2, the random k-SAT formula is unsatisfiable
with high probability, while [18] showed that if α < 2k/k, a simple algorithm (unit clause propagation)
will find a satisfying assignment with nontrivial probability. As we tune α, we encounter phase transitions
separating one qualitative behavior from another. Two such phase transitions are of primary interest to
us: the satisfiability threshold, below which the k-SAT formula admits a satisfying assignment with high
probability, and the algorithmic threshold, below which there exists a polynomial-time algorithm producing
a satisfying assignment with high probability. The satisfiability threshold is well understood: Kirousis,

∗Massachusetts Institute of Technology, Department of EECS. Email: guy@mit.edu. Supported by MIT-IBM Watson AI
Lab and NSF CAREER award CCF-1940205.

†Massachusetts Institute of Technology, Department of EECS. Email: bmhuang@mit.edu. Supported by NSF Graduate
Research Scholarship 1745302, a Siebel Scholarship, and NSF TRIPODS award 1740751.

Key words and phrases. Random k-SAT; average-case complexity; algorithmic phase transition; low degree polynomial
hardness; overlap gap property.

1In a variant of this definition, the m clauses are chosen uniformly and without replacement among all 2k
(n
k

)
clauses with

k distinct, non-complementary literals. This definition behaves identically to ours in the large-n limit, and all properties of
random k-SAT we show in this paper apply equally to this model.

1

Kranakis, Krizanc, and Stamatiou [58] showed that with high probability a satisfying assignment does not
exist at clause density 2k log 2 − 1

2 (log 2 + 1) + ok(1), where ok(1) denotes a term limiting to 0 as k → ∞,
while Coja-Oghlan and Panagiotou [29] showed that a satisfying assignment exists with high probability at
clause density 2k log 2 − 1

2 (log 2 + 1) − ok(1). Ding, Sly, and Sun [33] closed this ok(1) gap, showing that
for all sufficiently large k random k-SAT sharply transitions from satisfiable to unsatisfiable at a threshold
clause density αs which they determined.

In contrast, the algorithmic threshold is poorly understood. The current best polynomial-time algorithm,
the Fix algorithm of Coja-Oghlan [25], can find a satisfying assignment with high probability at clause density
(1−ok(1))2k log k/k, nearly a factor of k below the satisfiability threshold. A body of evidence, both rigorous
and non-rigorous, has emerged to suggest that this is the correct threshold, but until now there has been no
result ruling out any class of algorithms at this threshold.

In the early 2000s, statistical physicists developed a rich but non-rigorous theory describing the solution
geometry of random k-SAT, among other random constraint satisfaction problems [60]. This theory predicts
several phase transitions in the solution geometry as the clause density increases. At low clause density,
the random k-SAT instance is satisfiable by many assignments, which form one large cluster. When the
clause density increases past the uniqueness threshold, some additional disconnected solution clusters appear,
but the large cluster contains all but an exponentially small fraction of solutions. Past the clustering
threshold, the solution space shatters into an exponentially large number of disconnected clusters, each
with an exponentially small fraction of solutions. Past the condensation threshold, while there remain an
exponential number of clusters, the mass of the solutions is dominated by a few large clusters. Finally,
beyond the satisfiability threshold there are no satisfying assignments with high probability. For a pictorial
description of these phase transitions, see [60, Figure 2]. The authors of [60] also predicted that Markov Chain
Monte Carlo (MCMC) algorithms succeed up to the clustering threshold and no more. Their prediction of
the satisfiability threshold was later confirmed by the result of Ding, Sly and Sun [33] mentioned above.
Moreover, the physics prediction of the condensation threshold for random regular NAE-k-SAT was recently
confirmed by Nam, Sly, and Sohn [66].

Since then, the clustering threshold, which is predicted to be (suppressing lower order terms; see [60,
Equation 6] for a more precise expression) (1 + ok(1))2k log k/k, has emerged as the predicted limit of all
efficient algorithms. Above this threshold, structural phenomena of the solution space have been rigorously
established that (still non-rigorously) suggest algorithmic hardness. Achlioptas and Coja-Oghlan [3] showed
that above clause density (1 + ok(1))2k log k/k, for some setting of the ok(1) term, long-range correlations
appear in a k-SAT instance’s solution space, in the following sense. Say variable xi of a satisfying assignment
x ∈ {T, F}n is frozen if any satisfying assignment y with xi 6= yi is at Hamming distance Ω(n) from x. Above
this clause density, in all but an o(1) fraction of satisfying assignments, all but an ok(1) fraction of bits
are frozen with high probability. This suggests that above clause density (1 + ok(1))2k log k/k, local search
algorithms are unlikely to succeed, and any algorithmic solution to random k-SAT must use a qualitatively
different approach.

The rigorous evidence for the algorithmic threshold consists of exhibiting algorithms on one side and
producing bounds against specific algorithms or restricted computational models on the other side. There is a
long line of work on heuristic algorithms for k-SAT. The oldest such heuristic is the Davis-Putnam-Logemann-
Loveland (DPLL) algorithm [32, 31], a backtracking based search algorithm which still forms the basis for
many modern SAT solvers. Other heuristics that have emerged are the pure literal rule [48]; unit clause
propagation [18]; shortest clause [23, 39]; walksat [68, 27]; and Belief Propagation and Survey Propagation
guided decimation [65, 14]. However, there is no evidence, rigorous or non-rigorous, that any of these
algorithms succeed with high probability beyond clause density Ok(2k/k). The breakthrough result of Coja-
Oghlan [25] produced the algorithm Fix, which is proven to succeed up to clause density (1−ok(1))2k log k/k
with high probability. This is the best algorithm to date, and the above evidence from physics suggests that
this clause density is optimal.

In the way of rigorous negative results, the earliest work is by Luby, Mitzenmacher, and Shokrollahi
[62], who prove that the pure literal rule does not solve random 3-SAT above clause density approximately
1.63. Achlioptas and Sorkin [4] generalized this result, showing that the class of so-called myopic algorithms
cannot solve random 3-SAT above clause density approximately 3.26. For large k, the earliest work is by
Achlioptas, Beame, and Molloy [2], who show that beyond clause density Ok(2k/k), DPLL type algorithms
require an exponential running time. Gamarnik and Sudan [46] showed that the class of balanced sequential

2

local algorithms, which includes Belief Propagation and Survey Propagation guided decimation (with constant
or mildly growing number of message passing rounds) fail to solve random NAE-k-SAT at clause density
(1 + ok(1))2k−1 log2 k/k. The quantity 2k−1 is the NAE-k-SAT analogue of 2k for k-SAT. The remaining
negative results in the literature are bounds against specific algorithms, proved by tailored analysis. Hetterich
[52] proved that Survey Propagation guided decimation (without restriction on the number of message passing
rounds) fails at clause density (1 + ok(1))2k log k/k, and Coja-Oghlan, Haqshenas, and Hetterich [28] proved
that walksat fails at clause density Ok(2k log2 k/k). To date, all negative results in the literature have
been either not asymptotically tight against the conjectured threshold (1 + ok(1))2k log k/k or tailored to a
particular algorithm.

In this paper, we show the first hardness result for a class of algorithms that is asymptotically tight
against the conjectured threshold. We show that the class of low degree polynomial algorithms do not solve
random k-SAT past clause density (1+ok(1))κ∗2k log k/k, for a constant κ∗ ≈ 4.911. Low degree polynomial
algorithms include many of the above algorithms, including Fix, sequential local algorithms, message passing
algorithms, and local algorithms on the factor graph. By confirming the physics view to a large extent, this
gives strong evidence that (1 + ok(1))2k log k/k is the correct algorithmic threshold.

While our hardness result is meaningful in its own right, the machinery we use to prove it is significant
as well. Our proof is based on making rigorous an appropriate understanding of random k-SAT’s energy
landscape. This proof extends a line of work on the overlap gap property (OGP) and develops techniques
to overcome obstacles limiting the reach of prior OGP methodology. We now briefly summarize the OGP
program and our contribution to it; a more detailed discussion can be found in Section 3.

The OGP program, initiated by Gamarnik and Sudan in [45], is the first line of work to translate physics
intuitions about solution geometry to rigorous results ruling out classes of algorithms. In its basic form,
an OGP argument shows that beyond some phase transition, with high probability any two solutions to an
average-case problem have either small or large overlap; the exclusion of medium overlaps is one formalization
of the clustering phenomenon. The argument then shows that a smooth algorithm solving the problem can
be used to construct the forbidden structure, and thus such an algorithm cannot exist. To improve the
threshold at which algorithms are ruled out, these arguments have been generalized to consider forbidden
structures consisting of several solutions, which we term multi-OGPs. Using multi-OGPs, a line of work
[69, 43] culminating in the paper of Wein [71] tightly identified the algorithmic phase transition of maximum
independent set on a sparse Erdős-Rényi graph for low degree polynomials. Multi-OGPs have also been used
in [46, 44] to rule out classes of algorithms for random k-SAT and the number partitioning problem well
below the point where solutions exist, although these results are not tight against the best algorithms.

Establishing a multi-OGP for random k-SAT that produces a tight hardness result is far more challenging
than for maximum independent set. The difficulty lies in analyzing the free energy of an overlap structure
consisting of several satisfying assignments; to establish a multi-OGP, we must find an overlap structure
making this free energy negative. The solution geometry of maximum independent set made the analogous
free energy relatively simple, which made that problem amenable to OGP. In contrast, the free energy for
random k-SAT has complex dependencies which make this analysis difficult, and it is a priori not even clear
how to define the forbidden structure for which the multi-OGP holds. We identify the correct forbidden
structure and prove that with high probability it does not occur. To achieve this, we make three conceptual
contributions. First, we define a notion of overlap profile and conditional overlap entropy. Second, we define
the multi-OGP in terms of this formalism; this is itself a key innovation, as all the (multi-)OGPs in the
literature have not required the full power of the overlap profile, and the forbidden structure we use is more
intricate than those in the literature. Third, we perform a novel free energy analysis to show the desired
multi-OGP occurs. We are optimistic that many more problems, including those with complicated free
energies, may be amenable to the techniques developed in this paper.

Reasoning about the power of restricted classes of algorithms is at the heart of theoretical computer
science. As discussed above, there is a line of work showing hardness (at suboptimal clause densities) of
random k-SAT against restricted computational models [2, 46]. More generally, for other problems, the
limits of various other restricted classes of algorithms have been studied, including circuits [5, 40, 50, 20],
the convex hierarchies of Sherali-Adams and Lóvász-Schrijver (see [19] and references therein), the sum of
squares hierarchy [49, 59, 9], and local algorithms on graphs [45, 69]. Recently, the class of low degree
polynomial algorithms has emerged as a prominent class in average case complexity and statistical inference.
As sketched in [43, Appendix A], this class contains many popular and powerful frameworks, including local

3

algorithms on graphs, power iteration, and approximate message passing [35, 11, 56, 64, 36]. In addition, a
recent flurry of work has shown that for many average-case problems in high-dimensional statistics, including
planted clique, sparse PCA, community detection, and tensor PCA, low degree polynomials are as powerful
as the best polynomial-time algorithms known [55, 54, 53, 7, 61, 34, 22, 15, 63, 70, 8, 16]. Thus, showing
that low degree polynomial algorithms fail at some threshold provides evidence that all polynomial-time
algorithms fail at that threshold.

1.1 Notation

For all positive integers n, [n] denotes the set {1, . . . , n}. For two assignments x, y ∈ {T, F}n, let ∆(x, y) =
1
n |i ∈ [n] : xi 6= yi| denote the normalized Hamming distance between x and y.

Throughout, log denotes the natural logarithm. The binary entropy function H : [0, 1] → [0, 1] is given
by H(x) = −x log x− (1− x) log(1− x). We will often use the basic inequality H(x) ≤ x log e

x . We will also
overload notation and use H(·) to denote the entropy of certain distributions, for instance H(π). These will
be carefully defined where first used.

All our results are in the double limit as n→∞, and then k →∞. Thus, the notations O(·),Ω(·), o(·), ω(·)
indicate asymptotic behavior in n, suppressing any dependence on k. When subscripted with k, these
notations indicate asymptotic behavior in k of a quantity independent of n.

Organization. The rest of this paper is structured as follows. In Section 2 we state our main impossi-
bility and achievability results, Theorems 2.6 and 2.10, that low degree polynomial algorithms cannot solve
random k-SAT beyond clause density (1 + ok(1))κ∗2k log k/k and can solve random k-SAT at clause density
(1 − ok(1))2k log k/k. In Section 3 we summarize the progress of the OGP program and place our work’s
contributions in context. Sections 4 through 6 are devoted to the proof of Theorem 2.6. Section 4 develops
the formalism needed to define our central multi-OGP and outlines the proof of Theorem 2.6. It proves this
theorem assuming Propositions 4.7(a) and 4.7(c), which control the probabilities of the low degree poly-
nomial output being stable and of the multi-OGP occurring. Section 5 proves Proposition 4.7(c), showing
that the multi-OGP occurs. The proofs in this section contain many of our main technical contributions.
Section 6 proves Proposition 4.7(a), completing the proof of Theorem 2.6. Finally, Section 7 shows our
converse achievability result, Theorem 2.10, by showing that low degree polynomials can simulate Fix.

Acknowledgements. We are grateful to David Gamarnik for useful conversations. BH is also grateful to
Alex Wein and Mehtaab Sawhney for useful discussions. This work was done in part while the authors were
participating in the Probability, Geometry, and Computation in High Dimensions program at the Simons
Institute for the Theory of Computing in Fall 2020.

2 Results

Throughout this paper, let V = {x1, . . . , xn} denote a set of propositional variables. The set of corresponding
literals, consisting of the variables in V and their negations, is denoted L = {x1, . . . , xn, x̄1, . . . , x̄n}. Let
Ωk(n,m) be the set of all k-SAT formulas, consisting of an AND of m clauses, each of which is an OR of k
literals from L. We allow variables to appear multiple times in the same clause, and for clauses to appear
multiple times in the formula. We treat each such formula as an ordered m-tuple of clauses, each of which
is an ordered k-tuple of literals. For Φ ∈ Ωk(n,m), let Φi (1 ≤ i ≤ m) denote the ith clause of Φ, and let
Φi,j (1 ≤ j ≤ k) denote the jth literal of Φi. The central object of this paper is the random k-SAT formula,
defined as follows.

Definition 2.1 (Random k-SAT). The random k-SAT distribution Φk(n,m) is the law of a uniformly
random sample from Ωk(n,m). Equivalently, we can sample a formula Φ ∼ Φk(n,m) by sampling the
literals Φi,j (1 ≤ i ≤ m, 1 ≤ j ≤ k) i.i.d. from unif(L).

We will study the class of low degree polynomial algorithms, defined as follows. This is the same com-
putational model considered in [43, 71].

4

Definition 2.2 (Low degree polynomial). A function f : RN → Rn is a polynomial of degree at most D if
it is of the form

f(x) = (f1(x), . . . , fn(x)) ,

where each fi : RN → R is a multivariate polynomial (in the ordinary sense) with real coefficients of degree
at most D. We will henceforth use “degree-D polynomial” to mean polynomial of degree at most D. A
random degree-D polynomial f : RN → Rn is defined in the same way, except the coefficients are allowed to
be random (but independent of the input x). Formally, for some probability space (Ω,Pω), f is a function
f : RN × Ω→ Rn such that for each ω ∈ Ω, f(·, ω) is a degree-D polynomial.

Remark 2.3. We will see in Lemma 4.1 below that randomness does not increase the power of the class of
low degree polynomials.

Let us define how to encode a k-SAT formula as an input to a low degree polynomial. Define an arbitrary
total order on L. Let N = m · k · 2n. We can encode each formula Φ ∈ Ωk(n,m) as a vector in {0, 1}N by
writing it as a collection of indicators Φi,j,s for 1 ≤ i ≤ m, 1 ≤ j ≤ k, and 1 ≤ s ≤ 2n, where Φi,j,s is the
indicator that the literal Φi,j is the sth element of L. This encoding is an input to a low degree polynomial.
Slightly abusing notation, we will identify Φ with its vector encoding. Note that if Φ ∼ Φk(n,m), then each

of the sub-vectors (Φi,j,s)
2n
s=1 for fixed i, j is drawn uniformly from the set of standard basis vectors in 2n

dimensions.
Next, let us define how to interpret the output of a polynomial as a Boolean assignment. Informally,

outputs that are at least 1 indicate the corresponding bit of the assignment is true, and outputs that are
at most −1 indicate the corresponding bit is false. It is important to exclude the interval (−1, 1), so that a
small change in the output of the polynomial cannot induce a large change in the interpreted assignment.
We allow the algorithm to make mistakes in up to an η fraction of positions (which include all the positions
where the polynomial outputs a value in (−1, 1), and possibly others), and we say the algorithm succeeds if
there is any way to fill in the mistakes to yield a satisfying assignment. Formally, this rounding procedure
is defined as follows.

Definition 2.4 (η-assisted rounding). Let f : RN × Ω → Rn be a random polynomial, and let η ∈ (0, 1).
Let B be a (computationally unbounded) deterministic subroutine, taking as input (Φ, y) ∈ RN × Rn and
outputting (B, z) with B ⊆ [n] and z ∈ {T, F}B . We say A : RN × Ω→ {T, F}n is an η-assisted rounding of
f if there exists B such that A runs as follows.

(1) Set y = f(Φ, ω). Set A = {i ∈ [n] : |yi| < 1} and (B, z) = B(Φ, y).

(2) Check that B ⊃ A and |B| ≤ ηn; otherwise output “fail.”

(3) Output x ∈ {T, F}n, where

xi =


T i 6∈ B and yi ≥ 1,

F i 6∈ B and yi ≤ −1,

zi i ∈ B.

Note that allowing a computationally unbounded assistant to repair an η fraction of mistakes makes the
algorithm class more powerful, which makes an impossibility result against this algorithm class stronger. We
next define what it means for a low degree polynomial to solve random k-SAT.

Definition 2.5 ((δ, γ, η)-solve). Let f : RN × Ω → Rn be a random polynomial, and let δ, η ∈ (0, 1) and
γ ≥ 1. We say f (δ, γ, η)-solves Φk(n,m) if there exists an η-assisted rounding A of f such that the following
conditions hold over independent Φ ∼ Φk(n,m) and ω ∼ (Ω,Pω).

(a) PΦ,ω [A(Φ, ω) satisfies Φ] ≥ 1− δ.

(b) EΦ,ω

[
‖f(Φ, ω)‖22

]
≤ γn.

Here, δ is the algorithm’s failure probability. Moreover, γ is a normalization parameter, which we think
of as a large constant; this is necessary because without it, the condition that valid outputs of f are outside
the interval (−1, 1) becomes meaningless because we can simply scale f by a large constant. An analogous

5

normalization condition appears in other hardness results against low degree polynomials in the literature
[43, 71]. The error tolerance of our rounding scheme is a small constant η, as discussed above.

We define the function ι : (1,+∞)→ R by

ι(β) =
β

1− βe−(β−1)
.

One can easily check that ι is concave and has minimum value κ∗ ≈ 4.911, which is attained at β∗ ≈ 3.513,
the unique solution to β2e−(β−1) = 1 in (1,+∞).

The following theorem is our main result, showing that no low degree polynomial can solve random k-SAT
at clause density κ2k log k/k for any κ > κ∗.

Theorem 2.6. Let κ > κ∗. Let α = κ2k log k/k and m = bαnc. There exists k∗ = k∗(κ) > 0 such that
for any k ≥ k∗, there exists n∗ > 0, η = Ωk(k−1), C1 > 0, and C2 > 0 (depending on κ, k) such that the
following holds. If n ≥ n∗, γ ≥ 1, 1 ≤ D ≤ C1n

γ logn and

δ ≤ exp (−C2γD log n) ,

then there is no random degree-D polynomial that (δ, γ, η)-solves Φk(n,m).

Several remarks about this result are in order.

Remark 2.7. The only property of low degree polynomials we use is their smoothness, in the sense of
Proposition 6.2. Thus Theorem 2.6 rules out any algorithm class satisfying the conclusion of this proposition.

Remark 2.8. The constant κ∗ in Theorem 2.6 can likely be optimized further, and improving this constant
would tighten the constant-factor gap between this theorem and Theorem 2.10 below. However, without using
additional properties of the interpolation path, our methods cannot improve κ∗ beyond a constant bounded
away from 1, approximately 1.716. Thus, further ideas are needed to close this gap. See Appendix B for a
discussion of these points.

In spite of Remark 2.8, we believe that the algorithmic phase transition for low degree polynomials does
occur at (1+ok(1))2k log k/k, matching the physics prediction. This is formalized in the following conjecture,
which we leave as an open problem.

Conjecture 2.9. Theorem 2.6 holds for all κ > 1.

The following result provides a converse to Theorem 2.6 at clause density (1− ε)2k log k/k for any ε > 0,
giving a lower bound on the algorithmic phase transition within a constant factor of Theorem 2.6 and tight
against Conjecture 2.9.

Theorem 2.10. Let ε > 0. Let α = (1 − ε)2k log k/k and m = bαnc. There exists k∗ = k∗(ε) > 0 such
that for any k ≥ k∗ and any η > k−12, there exists n∗ > 0, D > 0, γ ≥ 1, and function δ : N → [0, 1] with
δ(n) = o(1) (depending on ε, k, η) such that the following holds for all n ≥ n∗. If δ = δ(n), there exists a
(deterministic) degree-D polynomial that (δ, γ, η)-solves Φk(n,m).

Remark 2.11. The failure probability δ in Theorem 2.10 is not within the range ruled out by Theorem 2.6.
This is likely an artifact of our methods. We prove Theorem 2.10 by simulating (a part of) Fix using
a low degree polynomial, so our simulation inherits the failure probability of Fix proved in [25] (and our
simulation incurs only exp(−Ω(n1/3)) additional error probability). We believe this failure probability can be
improved to exponentially small, because the setting of [25] required the algorithm to find an exact satisfying
assignment, whereas our notion of (δ, γ, η)-solve allows a small constant fraction of mistakes.

The requirement that η > k−12 is likely also an artifact of our methods. This lower bound on the
error tolerance arises because we simulate only the first phase of Fix. This phase produces an assignment
within Hamming distance k−12 of a satisfying assignment, which is subsequently repaired by the rest of
the algorithm. Because the solution geometry at clause density (1 − ε)2k log k/k exhibits only short-range
correlations, we believe it is possible to simulate Fix by a low degree polynomial (in fact, by a local algorithm,
which we then simulate with a low degree polynomial as in Section 7.3) to arbitrary error tolerance, which
would show Theorem 2.10 for any η > 0. We do not attempt these improvements in this paper.

Remark 2.12. By similar methods to our proof, the sequential local algorithms considered in [46] can also
be simulated by a low degree polynomial. We will explain this in Section 7.2.

6

3 The Overlap Gap Program and Sketch of Main Ideas

In this section, we will discuss the recent line of work on the overlap gap property and place our methods
in this context. The OGP program draws a rigorous connection between the clustering phenomenon and
algorithmic hardness, and is the first line of work that translates properties of solution geometry to rigorous
hardness results against classes of algorithms. OGP formalizes the clustering phenomenon as a prohibition of
structures with medium overlaps, and then shows that any sufficiently smooth algorithm solving the problem
can be used to construct the forbidden structure. Thus, such algorithms do not exist beyond the onset of
(the appropriate notion of) clustering.

3.1 OGP for Maximum Independent Set

The first problem where a sharp algorithmic phase transition was derived using OGP was maximum inde-
pendent set in sparse random graphs. In this problem, we are given a sample G ∼ G(n, d/n) of a sparse
Erdős-Rényi graph and our task is to output an independent set of a specified size; the desired size of the set
controls the problem difficulty. We work in the double limit where n → ∞, and then d → ∞. It is known
[38, 10] that the largest independent set of this graph has size 2 log d

d n. More precisely, if Smax is a largest

independent set, then as n→∞ for fixed d we have 1
n |Smax| → αd, for some αd = (1+od(1)) 2 log d

d . However,

the best polynomial-time algorithm to date [57] can only find an independent set of asymptotic size log d
d n,

half the optimum. It is conjectured that no polynomial-time algorithm can find an independent set that
is asymptotically larger. Rigorous results about this problem’s solution geometry support this conjecture:
Coja-Oghlan and Efthymiou [26] showed that independent sets of size (1 + ε) log d

d n, for any constant ε > 0,
are clustered in a way that implies slow mixing of any local Markov chain to sample these sets (but not
necessarily that a local Markov chain cannot find a single such set).

Hardness against local algorithms via OGP and multi-OGP. The first negative result against a
class of algorithms was proved by Gamarnik and Sudan [45], who showed that local algorithms (also called

factors of i.i.d. algorithms) cannot find independent sets of asymptotic size larger than
(

1 + 1√
2

)
log d
d n.

Their argument consists of two parts. First, they show that with high probability, a graph G ∼ G(n, d/n)

does not have two independent sets of size asymptotically larger than
(

1 + 1√
2

)
log d
d n with intersection in

an interval
[
(1− ε) log d

d n, (1 + ε) log d
d n

]
. Then, they construct an interpolation between two executions of

a putative local algorithm that outputs an independent set of this size. The two executions are correlated,
with some internal randomness shared and some internal randomness independent. By continuously tuning
the amount of shared internal randomness, they extract from this interpolation two large independent sets
with medium intersection, yielding a contradiction.

Rahman and Virág [69] generalized this argument, showing that for any ε > 0, local algorithms can find
an independent set of size (1 − ε) log d

d n, but not one of size (1 + ε) log d
d n. The key idea of their negative

result is to consider a forbidden overlap structure involving several large independent sets, generated from
several correlated runs of a local algorithm. This is the first instance of a multi-OGP identifying a sharp
algorithmic phase transition against some class of algorithms.

Hardness against low degree polynomials by the ensemble innovation. A later line of work
extended this impossibility result to low degree polynomials, a much more powerful class of algorithms.
Gamarnik, Jagannath, and Wein [43] showed that low degree polynomials cannot find independent sets of

asymptotic size larger than
(

1 + 1√
2

)
log d
d n.2 Their argument leverages an ensemble OGP, an idea introduced

in [21]. In this approach, they construct an interpolation, this time over a sequence of correlated problem
instances, whose endpoints are independent problem instances. They show that with high probability, there
do not exist two independent sets, possibly of different problem instances in the sequence, of asymptotic size

larger than
(

1 + 1√
2

)
log d
d n with intersection in

[
(1− ε) log d

d n, (1 + ε) log d
d n

]
. Due to the smoothness of low

2In this paper, they also show that the Hamiltonian of the spherical or Ising p-spin glass model cannot be optimized within
some ε > 0 of its maximum by low degree polynomials or Langevin dynamics (applicable only to the spherical model).

7

degree polynomials, the outputs of a low degree polynomial on two consecutive instances of this interpolation
are close with nontrivial probability. So, a putative low degree polynomial finding independent sets of this
size can be used to construct such a forbidden structure with nontrivial probability, yielding a contradiction.

Wein [71] generalized this result by leveraging an ensemble multi-OGP, an approach that combines the
multi-OGP and ensemble OGP ideas. In this approach, the interpolation is over a sequence of correlated
problem instances, and the forbidden structure consists of several independent sets, possibly of different
problem instances in the sequence, with prescribed multi-way overlaps. For any ε > 0, Wein showed that a
putative low degree polynomial algorithm that finds independent sets of size at least (1+ε) log d

d n can be used
to construct the forbidden structure, and thus low degree polynomial algorithms cannot find independent sets
of this size. Conversely, the local algorithms finding independent sets of size (1− ε) log d

d n can be simulated
by low degree polynomials. Thus, low degree polynomial algorithms find independent sets of asymptotic size
log d
d n and no more.

Main idea of ensemble multi-OGP. At a high level, Wein’s ensemble multi-OGP technique chains
together many small negative free energy contributions to force a free energy to be negative. To simplify the
discussion, we assume all the independent sets in the forbidden structure are independent sets of the same
problem instance; this will capture the correct exponential rate (see Remark 5.4). Consider the normalized
log first moment

lim sup
n→∞

1

n
log E

G∼G(n,d/n)
#

(
(S(1), . . . , S(L)) : S(1), . . . , S(L) are independent

sets of G of size (1 + ε) log d
d n satisfying P

)
, (3.1)

where P is a set of conditions on how S(1), . . . , S(L) overlap. This can be thought of as the free energy density
of the uniform model over tuples (S(1), . . . , S(L)) of independent sets of G of size (1+ε) log d

d n satisfying P ; we
will henceforth refer to (3.1) as a free energy. The structure inside the expectation in (3.1) is the forbidden
structure we wish to rule out, defined in terms of overlaps between the sets. If the free energy (3.1) is
negative, then with high probability this structure does not occur, and we say that the multi-OGP occurs.

The key idea is to set P as the intersection of conditions P2 ∩ P3 ∩ · · · ∩ PL, where P` is a condition on
how S(`) overlaps with S(1), . . . , S(`−1), such that the following occurs for all 2 ≤ ` ≤ L.

(1) Let E` denote (3.1) with (S(1), . . . , S(`)) in place of (S(1), . . . , S(L)) and P2 ∩ · · · ∩ P` in place of P .
Then, E` is smaller than E`−1 by an amount bounded away from 0. Informally, P` requires S(`) to
overlap with its predecessors in a way that contributes a small negative free energy to (3.1).

(2) For any fixed S(1), . . . , S(`−1), if S(`) starts at S(`−1), evolves without large jumps, and eventually
evolves far away from all of S(1), . . . , S(`−1), then at some point along this evolution the condition P`
occurs. Informally, the condition P` defines a high-dimensional moat that a stably evolving S(`) must
cross.

Due to condition (1), if we set L large enough, (3.1) becomes negative, and the structure in (3.1) with
high probability does not occur. Due to condition (2), we can construct this structure by taking L sets
from a sequence of low degree polynomial outputs on correlated problem instances, which is (with nontrivial
probability) a stable sequence. Specifically, we take S(1) to be the first output in the sequence, and then for
` ≥ 2 we take S(`) to be the first output after S(`−1) such that P` holds. This gets the desired contradiction.

The main technical challenge of this approach is to design the conditions P` such that (1) and (2) both
hold. Effectively, one needs to construct a moat topologically disconnecting a high-dimensional space such
that, for all values of S(`) in the moat, the free energy decrease required by (1) occurs. The requirement
that the moat topologically disconnects the space gives us little control, and therein lies the difficulty.

In [71, Proposition 2.3], Wein carries out this approach by constructing P` as the condition that∣∣∣S(`) \
(
S(1) ∪ · · · ∪ S(`−1)

)∣∣∣ ∈ [ε log d

4d
n,
ε log d

2d
n

]
and proving it has the required properties. Maximum independent set is amenable to the negative free
energy chaining approach because the energy (3.1) enjoys a geometric independence property : given the
induced subgraph of G ∼ G(n, d/n) on any subset of vertices V ⊆ [n], the edges from V to any vertex

8

v ∈ [n] \ V are independent randomness. This property makes the analysis of the free energy (3.1) tractable
and shows in the relative simplicity of the definitions of the moats P`, which only consider each independent
set’s non-intersection with the union of its predecessors.

3.2 OGP for Random k-SAT and Our Contributions

This paper completes a similar picture for random k-SAT. Prior to our work, Gamarnik and Sudan [46]
showed that balanced sequential local algorithms do not solve random NAE-k-SAT beyond clause density
(1 + ok(1))2k log2 k/k using a (non-ensemble) multi-OGP. They considered a forbidden overlap structure
involving several satisfying assignments, generated from correlated runs of such an algorithm. They required
the algorithm to be balanced, meaning that on any input, over the algorithm’s internal randomness each
of its outputs is unbiased; because of this requirement, their result required the symmetry provided by the
NAE variant of random k-SAT. Balance is necessary in their interpolation argument to ensure that two fully
independent outputs of the sequential local algorithm have high disagreement. We improve on this result in
three ways:

(1) We improve the threshold clause density by a logarithmic factor, to (1 + ok(1))κ∗2k log k/k.

(2) We generalize the algorithm class ruled out from balanced sequential local algorithms to low degree
polynomial algorithms.

(3) We show hardness for random k-SAT instead of NAE-k-SAT; a simple adaptation of our argument
shows hardness of random NAE-k-SAT at clause density (1 + ok(1))κ∗2k−1 log k/k.

Improvements due to ensemble OGP. Unlike [46], we consider an ensemble multi-OGP, where the
random variable being resampled is the k-SAT instance instead of the algorithm’s internal randomness. This
generalization allows us to rule out low degree polynomial algorithms, a much more powerful class than
balanced sequential local algorithms. It also obviates the requirement of balance, so we no longer require
the additional symmetry provided by NAE-k-SAT. This achieves improvements (2) and (3).

A tighter free energy analysis. Most crucially, we conduct a tighter free energy analysis than [46],
which allows us to achieve improvement (1). In contrast to [46], whose forbidden structure only considers
pairwise Hamming distances, the forbidden structure we use considers all 2k ways k+1 satisfying assignments
y(0), . . . , y(k) can agree or disagree. We formalize such an agreement pattern as an overlap profile π, which
we rigorously introduce in Section 4.3. As shown in Lemma 5.1, the analogue of the free energy (3.1) for
random k-SAT at clause density α for a set of overlap constraints P can then be expressed as

log 2 + max
π∈P

[
H(π)− α

2k
E

I∼unif([n]k)

∣∣∣{y(`)[I] : 0 ≤ ` ≤ k
}∣∣∣] ,

where y(0), . . . , y(k) have overlap profile π and π ∈ P denotes the set of overlap profiles π consistent with the

constraints P . Here, y(`)[I] is the bit string obtained by indexing y(`) in positions I, namely (y
(`)
I1
, . . . , y

(`)
Ik

).
H(π) is the entropy of a certain probability distribution associated to overlap profile π and the negative
term is interpreted as an energy and captures the log likelihood that a random formula will have the y(`)

as solutions. Whenever this free energy is negative, existence of tuples of satisfying assignments with profile
π ∈ P has exponentially small probability. We will choose P to capture an appropriate notion of (violation
of) OGP.

Like before, we will chain together many small negative free energies to make this free energy negative.
Unlike for maximum independent set, where there is the geometric independence property, for random k-SAT
this free energy is highly dependent and hard to control. This makes it difficult to identify the correct high-
dimensional moats in the negative free energy chaining approach. In the multi-OGP of [46], the condition P
stipulates that the normalized Hamming distances ∆(y(i), y(j)) for the satisfying assignments in the forbidden
structure are pairwise approximately log k

k . Given this, the term EI∼unif([n]k)

∣∣{y(`)[I] : 0 ≤ ` ≤ k
}∣∣ in the

free energy can be lower bounded by an inclusion-exclusion expansion truncated at level 2. This inclusion-
exclusion estimate is not sharp, and consequently requires the larger value α = (1+ok(1))2k log2 k/k to show

9

that the contribution of each y(`) to the free energy is a small negative number. The fact that this natural
estimate of the free energy gives a threshold too large by a log k factor highlights the difficulty of accurately
controlling the k-SAT free energy and the necessity of finding the correct high-dimensional moats.

We find the correct moats. Like above, we set P = P1 ∩ · · · ∩ Pk, where P` governs how y(`) overlaps
with its predecessors y(0), . . . , y(`−1) and defines a moat that a smooth evolution of y(`) starting from y(`−1)

must cross. In order to obtain a fine control over the tradeoff between entropy and energy in the free
energy, we develop a notion of conditional overlap entropy H(π(y(`)|y(0), . . . , y(`−1))), which we think of as
the contribution of y(`) to the entropy term H(π). Our condition P` will stipulate that this conditional

overlap entropy lies in an interval
[
β−

log k
k , β+

log k
k

]
. This choice of forbidden structure in terms of the

conditional overlap entropy is an important contribution of our work. The choice is motivated by the
subsequent free energy analysis, which entails showing a lower bound on the energy contribution of each y(`)

that counterbalances the entropy increase. We next summarize the argument.

Energy increment bound via decoupling. We can express the energy term as

E
I∼unif([n]k)

∣∣∣{y(`)[I] : 0 ≤ ` ≤ k
}∣∣∣ =

∑
σ∈{T,F}k

P
I∼unif([n]k)

[
σ = y(`)[I] for some 0 ≤ ` ≤ k

]
. (3.2)

The complement of a probability on the right of (3.2) is the probability that σ 6= y(`)[I] for all 0 ≤ ` ≤ k.
This can be conditionally expanded as a product of k factors, where the `th factor is the probability that
σ 6= y(`)[I] given the values of y(0)[I], . . . , y(`−1)[I]; we think of this factor as the contribution of y(`). We
truncate these factors by rounding any that are less than 1 − 1

k log k up to 1. We choose the value 1
k log k in

order to apply the estimate that for 0 ≤ ε1, . . . , εk ≤ 1
k log k ,

1− (1− ε1)(1− ε2) · · · (1− εk) ≈ ε1 + ε2 + · · ·+ εk.

This decouples the contributions of the y(`). We can then bound the total contribution of y(`) to the left-hand
side of (3.2) by summing the now-decoupled contributions over σ ∈ {T, F}k.

Probabilistic reinterpretation. Miraculously, this sum can be reinterpreted as the success probabil-
ity of an experiment involving a sum of k i.i.d. random variables, which can be controlled by concen-
tration inequalities. We find that if the contribution of y(`) to H(π) is β log k

k , then its contribution to

EI∼unif([n]k)

∣∣{y(`)[I] : 0 ≤ ` ≤ k
}∣∣ is at least 1− βe−(β−1). This motivates the choice of ι(β) as the ratio of

these contributions, and κ∗ as the best possible ratio. When α = κ2k log k/k for κ > κ∗, the condition P`
requires β to be in the range where the overall contribution of y(`) to the free energy is negative. Then, by
the negative free energy chaining technique, the multi-OGP occurs.

This energy analysis via decoupling and probabilistic reinterpretation is original and is another key
contribution of our work.

Future directions. Because we successfully implement the negative free energy chaining method for the
random k-SAT free energy at an asymptotically optimal clause density, we believe our methods are evidence
that the negative free energy chaining method can be used to establish sharp algorithmic hardness thresholds
via multi-OGP for many other problems.

4 Forbidden Structures from Overlap Gap Property

This section and the next two sections are devoted to proving our main impossibility result, Theorem 2.6.
Throughout these sections, we fix κ > κ∗. We set α = κ2k log k/k and m = bαnc.

4.1 Reduction to Deterministic Low Degree Polynomial

The following lemma shows that randomness does not significantly improve the power of low degree polyno-
mial algorithms.

10

Lemma 4.1. Suppose there exists a random degree-D polynomial that (δ, γ, η)-solves Φk(n,m). Then, there
exists a deterministic degree-D polynomial that (3δ, 3γ, η)-solves Φk(n,m).

Proof. Let f be a random degree-D polynomial that (δ, γ, η)-solves Φk(n,m). By definition of (δ, γ, η)-solve,

we have Eω PΦ [A(Φ, ω) does not satisfy Φ] ≤ δ and Eω EΦ

[
‖f(Φ, ω)‖22

]
≤ γn. By Markov’s inequality,

P
ω

[
P
Φ

[A(Φ, ω) does not satisfy Φ] ≥ 3δ
]
≤ 1

3
and P

ω

[
E
Φ

[
‖f(Φ, ω)‖22

]
≥ 3γn

]
≤ 1

3
.

So, there exists some ω such that PΦ [A(Φ, ω) satisfies Φ] ≥ 1− 3δ and EΦ

[
‖f(Φ, ω)‖22

]
≤ 3γn.

By Lemma 4.1, it suffices to rule out deterministic low degree polynomials. For the rest of this section
and Section 6, except where stated, f : RN → Rn will be a deterministic degree-D polynomial and A is some
η-assisted rounding of f , for η we will set later. Because f is deterministic, A is also deterministic.

4.2 The Interpolation Path

We can enumerate the km literals of a formula Φ ∈ Ωk(n,m) in lexicographic order:

Φ1,1,Φ1,2, . . . ,Φ1,k,Φ2,1, . . . ,Φm,k.

For 1 ≤ s ≤ km, let L(Φ, s) denote the sth literal in this order. Formally, L(Φ, s) = Φi,j , where (i, j) is the
unique pair of integers satisfying 1 ≤ i ≤ m, 1 ≤ j ≤ k, and k(i− 1) + j = s. We now define a sequence of
correlated random k-SAT formulas that will be central to our argument.

Definition 4.2 (Interpolation path). Let T = k2m. Let Φ(0), . . . ,Φ(T) ∈ Ωk(n,m) be the interpolation path
of k-SAT instances sampled as follows. First, sample Φ(0) ∼ Φk(n,m). For each 1 ≤ t ≤ T , let σ(t) be the
unique integer such that 1 ≤ σ(t) ≤ km and t− σ(t) is a multiple of km. Then, Φ(t) is obtained from Φ(t−1)

by resampling L(Φ(t), σ(t)) from unif(L). Moreover, for 0 ≤ t ≤ T , let x(t) = A(Φ(t)).

In other words, we start from a random k-SAT instance and resample the literals one by one in lexi-
cographic order. After we have resampled all the literals we start over, repeating the procedure until each
literal has been resampled k times. Note that each Φ(t) is marginally a sample from Φk(n,m). Further, note
that if |t − t′| ≥ km, then Φ(t) and Φ(t′) are independent. We run our assisted low degree algorithm A on
all these k-SAT instances and collect the outputs as the sequence x(0), x(1), . . . , x(T).

4.3 Overlap Profiles

We introduce the notion of the overlap profile of an ordered list of assignments, which will be central to our
proof of impossibility. The overlap profile summarizes the bitwise agreement and disagreement pattern of
a list of assignments. In the proof of Theorem 2.6, we will use these overlap profiles to reason about the
assignments x(0), . . . , x(T) arising in the interpolation of Definition 4.2.

We begin with a notion of partition. Let P2(`) denote the set of unordered partitions of {0, . . . , ` − 1}
into two (possibly empty) sets. For example, the set P2(3) consists of the following four partitions:

{{0, 1, 2}, ∅} , {{0, 1}, {2}} , {{0, 2}, {1}} , {{1, 2}, {0}} .

Note that |P2(`)| = 2`−1.

Definition 4.3 (Overlap profile). Let y(0), . . . , y(`−1) ∈ {T, F}n be a list of ` assignments. The overlap

profile of y(0), . . . , y(`−1), denoted π(y(0), . . . , y(`−1)), is a vector π ∈ R2`−1

indexed by unordered pairs
{S, T} ∈ P2(`), where

πS,T =
1

n

∣∣∣i ∈ [n] : all {y(t)
i : t ∈ S} equal one value and all {y(t)

i : t ∈ T} equal the other value
∣∣∣ .

11

Example 4.4. Let ` = 3. The overlap profile π = π(y(0), y(1), y(2)) consists of four entries π012,∅, π01,2,
π02,1, and π12,0, where

π012,∅ =
1

n

∣∣∣i ∈ [n] : y
(0)
i = y

(1)
i = y

(2)
i

∣∣∣ and π01,2 =
1

n

∣∣∣i ∈ [n] : y
(0)
i = y

(1)
i 6= y

(2)
i

∣∣∣ ,
and analogously for π02,1 and π12,0.

We can understand an overlap profile as a probability distribution: πS,T is the probability that in a

uniformly random position i ∼ unif([n]), all the {y(t)
i : t ∈ S} agree, all the {y(t)

i : t ∈ T} agree, and these
two sets disagree with each other. Thus, we can naturally define the entropy of an overlap profile by

H
(
π(y(0), . . . , y(`−1))

)
= −

∑
{S,T}∈P2(`)

πS,T log πS,T .

This is the entropy of the unordered pair of sets {S, T} obtained by sampling i ∼ unif([n]) and partitioning

{0, . . . , `− 1} based on the value of y
(t)
i .

As the overlap profile of y(0), . . . , y(t−1) refines the overlap profile of any subsequence of y(0), . . . , y(t−1),
we can extend Definition 4.3 verbatim to unordered pairs {S, T} of disjoint sets S, T ⊆ {0, . . . , `− 1}. These
overlaps are determined by the overlaps πS,T for {S, T} ∈ P2(`): for example, when ` = 3, π0,1 = π02,1+π12,0.

This refinement property also allows us to define a notion of conditional overlap profile. Let π =
π(y(0), . . . , y(`−1)). Then, we can define the conditional overlap profile π·|· = π(y(`−1)|y(0), . . . , y(`−2)) as
follows. For each {S, T} ∈ P2(`− 1) with πS,T > 0, π·|S,T is a probability distribution on the two partitions
{S ∪ {`− 1}, T} and {S, T ∪ {`− 1}} with

πS∪{`−1},T |S,T =
πS∪{`−1},T

πS,T
and πS,T∪{`−1}|S,T =

πS,T∪{`−1}

πS,T
.

(If πS,T = 0, we can define this distribution arbitrarily.) This is the probability distribution of the agree-
ment pattern of y(0), . . . , y(`−1) on a uniformly random position, conditioned on the agreement pattern of
y(0), . . . , y(`−2) in that position being {S, T}. We can analogously define the conditional overlap entropy by

H
(
π(y(`−1)|y(0), . . . , y(`−2))

)
=

∑
{S,T}∈P2(`−1)

πS,TH(π·|S,T).

Before proceeding, we collect some properties of overlap profiles which will be useful in the rest of the
section. The proofs of these assertions follow readily from the above definitions.

Fact 4.5. Overlap profiles have the following properties.

(a) There are at most n2`−1

distinct overlap profiles of ` assignments y(0), . . . , y(`−1) ∈ {T, F}n.

(b) The entropy of overlap profiles satisfies the chain rule

H
(
π(y(0), . . . , y(`−1))

)
= H

(
π(y(0), . . . , y(`−2))

)
+H

(
π(y(`−1)|y(0), . . . , y(`−2))

)
.

(c) If z(0), . . . , z(r−1) are the distinct elements of y(0), . . . , y(`−1), then

H
(
π(y(0), . . . , y(`−1))

)
= H

(
π(z(0), . . . , z(r−1))

)
.

If z(0), . . . , z(r−2) are the distinct elements of y(0), . . . , y(`−2), then

H
(
π(y(`−1)|y(0), . . . , y(`−2))

)
= H

(
π(y(`−1)|z(0), . . . , z(r−2))

)
.

Furthermore, if y(`−1) ∈ {y(0), . . . , y(`−2)}, then H
(
π(y(`−1)|y(0), . . . , y(`−2))

)
= 0.

12

4.4 Outline of Proof of Impossibility

Recall that ι(β) = β
1−βe−(β−1) is convex with minimum κ∗ attained at β∗. This function is strictly decreasing

on (1, β∗] and strictly increasing on [β∗,+∞). Moreover, ι(β) tends to +∞ when β → 1+ or β → +∞.
Because κ > κ∗, there exist two solutions βmin, βmax to ι(β) = κ, with βmin ∈ (1, β∗) and βmax ∈

(β∗,+∞). Set β− = βmin+β∗

2 and β+ = βmax+β∗

2 . (This choice is arbitrary; any deterministic choice with

βmin < β− < β+ < βmax will do.) Set ε > 0 such that β+ε
1−βe−(β−1) ≤ κ for all β ∈ [β−, β+]. Thus β−, β+, ε

are all deterministic functions of κ.
We will define the events Svalid, Sconsec, Sindep, Sogp as the following events of the interpolation path

defined in Definition 4.2. Define

Svalid =
{
x(t) satisfies Φ(t) for all 0 ≤ t ≤ T

}
.

This is the event that A succeeds on all instances in the interpolation path. Define

Sconsec =

{
∆(x(t), x(t−1)) ≤ β+ − β−

2k
for all 1 ≤ t ≤ T

}
.

This is the event that outputs of A on consecutive instances in the interpolation path are not too far in
Hamming distance. Define Sindep as the event that there do not exist k+1 indices 0 ≤ t0 ≤ t1 ≤ · · · ≤ tk ≤ T
and an assignment y ∈ {T, F}n such that

(IND-A) For all 0 ≤ ` ≤ k − 1, |tk − t`| ≥ km;

(IND-B) y satisfies Φ(tk); and

(IND-C) H
(
π(y|x(t0), . . . , x(tk−1))

)
< β−

log k
k .

This is the event that relative to any collection of outputs of A, all the solutions to an independent k-SAT
instance have high conditional overlap entropy. Finally, define Sogp as the event that there do not exist k+1
indices 0 ≤ t0 ≤ t1 ≤ · · · ≤ tk ≤ T and assignments y(0), . . . , y(k) ∈ {T, F}n such that

(OGP-A) For all 0 ≤ ` ≤ k, y(`) satisfies Φ(t`); and

(OGP-B) For all 1 ≤ ` ≤ k, H
(
π(y(`)|y(0), . . . , y(`−1))

)
∈
[
β−

log k
k , β+

log k
k

]
.

The structure ruled out by Sogp is the main forbidden structure of our argument. Informally, this forbidden
structure consists of k+1 assignments, satisfying possibly different k-SAT instances in the interpolation path,
where each satisfying assignment has a medium conditional overlap entropy relative to its predecessors.

The key ingredients in our proof of Theorem 2.6 are the following two propositions. Proposition 4.6 estab-
lishes the key relationship between the four events defined above. Proposition 4.7 controls the probabilities of
these events. We will use these two propositions to derive the main contradiction in the proof of Theorem 2.6:
if a low degree polynomial algorithm (δ, γ, η) solves Φk(n,m) for the requisite (δ, γ, η), then Proposition 4.6
implies Svalid ∩ Sconsec ∩ Sindep ∩ Sogp = ∅, while Proposition 4.7 implies Svalid ∩ Sconsec ∩ Sindep ∩ Sogp 6= ∅.

Proposition 4.6. For all sufficiently large k, Svalid ∩ Sconsec ∩ Sindep ⊆ Scogp.

This proposition states that if Svalid, Sconsec, and Sindep all occur, we can construct an example of the
structure forbidden by Sogp.

Proposition 4.7. Suppose f is a deterministic degree-D polynomial that (δ, γ, η)-solves Φk(n,m), where

η = β+−β−
8k . For all sufficiently large k, the following inequalities hold.

(a) P(Svalid ∩ Sconsec) ≥ (2n)−4γDk2/(β+−β−) − (T + 1)δ.

(b) P(Scindep) ≤ exp(−Ω(n)).

(c) P(Scogp) ≤ exp(−Ω(n)).

13

The remainder of this section and Sections 5 and 6 will be devoted to proving these two propositions.
We will prove Proposition 4.6 in Section 4.5 and Proposition 4.7(b) in Section 4.6. We will prove Propo-
sition 4.7(c), which establishes the presence of the main multi-OGP, in Section 5. Finally, we will prove
Proposition 4.7(a) in Section 6. Let us first see how these results imply Theorem 2.6.

Proof of Theorem 2.6. Set η = β+−β−
8k . Assume for sake of contradiction that there exists a (random)

degree-D polynomial g : RN → Rn that (δ, γ, η)-solves Φk(n,m). By Lemma 4.1, there exists a deterministic
degree-D polynomial f : RN → Rn that (3δ, 3γ, η)-solves Φk(n,m). We set k∗ = k∗(κ) large enough that
Propositions 4.6 and 4.7 both hold.

By Proposition 4.6, Svalid ∩ Sconsec ∩ Sindep ∩ Sogp = ∅. By Proposition 4.7,

P(Svalid ∩ Sconsec ∩ Sindep ∩ Sogp) ≥ (2n)−12γDk2/(β+−β−) − 3(T + 1)δ − exp(−Ω(n)).

We will show this probability is positive, which implies that Svalid ∩ Sconsec ∩ Sindep ∩ Sogp 6= ∅ and yields a
contradiction.

Pick C2 = 2 + 12k2

β+−β− . Recall that T = k2m = k2bαnc. We can check that if δ ≤ exp(−C2γD log n), then

3(T + 1)δ ≤ 1
3 (2n)−12γDk2/(β+−β−) for sufficiently large n. We can pick C1 small enough that if D ≤ C1n

γ logn ,
then

(2n)−12γDk2/(β+−β−) ≥ n−24γDk2/(β+−β−) ≥ exp

(
− 24C1k

2

β+ − β−
n

)
is asymptotically larger than the exp(−Ω(n)) term. Then, for sufficiently large n, the exp(−Ω(n)) term is at

most 1
3 (2n)−12γDk2/(β+−β−). Therefore, there exists n∗ such that if n ≥ n∗, then P(Svalid ∩Sconsec ∩Sindep ∩

Sogp) > 0.

4.5 Constructing the Forbidden Structure from Low Degree Polynomial Out-
puts

In this section, we will prove Proposition 4.6, that if Svalid, Sconsec, and Sindep all hold, then an instance of
the structure forbidden by Sogp exists.

We will need the following auxiliary lemma, which shows that a small change of x ∈ {T, F}n in Hamming
distance induces a small change in the conditional overlap entropy H(π(x|y(0), . . . , y(`−1))). This lemma
allows us to convert Sconsec to a guarantee that consecutive conditional overlap entropies are small. We defer
the proof of this lemma to Appendix A.

Lemma 4.8. Let ` ∈ N be arbitrary and let x, x′, y(0), . . . , y(`−1) ∈ {T, F}n. If ∆(x, x′) ≤ 1
2 , then∣∣∣H (π(x|y(0), . . . , y(`−1))

)
−H

(
π(x′|y(0), . . . , y(`−1))

)∣∣∣ ≤ H (∆(x, x′)) .

The H(·) on the right denotes the binary entropy function.

Proof of Proposition 4.6. Set k large enough that β+−β−
2k ≤ 1

2 and H
(
β+−β−

2k

)
≤ (β+−β−) log k

k . The second

inequality holds for all sufficiently large k due to the inequality H(x) ≤ x log e
x .

Suppose that Svalid, Sconsec, and Sindep all hold. We will construct an example of the structure forbidden
by Sogp. For 0 ≤ ` ≤ k, we will set y(`) = x(t`), where 0 ≤ t0 ≤ t1 ≤ · · · ≤ tk ≤ T are defined as follows. Let

t0 = 0. For 1 ≤ ` ≤ k, let t` be the smallest t > t`−1 such that H(x(t)|y(0), . . . , y(`−1)) ∈
[
β−

log k
k , β+

log k
k

]
.

We will show that such t` exists and satisfies t` ≤ t`−1 + km.
At t = t`−1, we have H

(
π(x(t)|y(0), . . . , y(`−1))

)
= 0 by Fact 4.5(c). Consider repeatedly incrementing t.

Because Sconsec holds, we have ∆(x(t), x(t−1)) ≤ β+−β−
2k . By Lemma 4.8, this implies that∣∣∣H (π(x(t)|y(0), . . . , y(`−1))

)
−H

(
π(x(t−1)|y(0), . . . , y(`−1))

)∣∣∣ ≤ H (∆(x(t), x(t−1))
)

≤ H
(
β+ − β−

2k

)
≤ (β+ − β−)

log k

k
.

14

Here, we use that β+−β−
2k ≤ 1

2 and H
(
β+−β−

2k

)
≤ (β+ − β−) log k

k . Thus, H
(
π(x(t)|y(0), . . . , y(`−1))

)
never

skips over the interval
[
β−

log k
k , β+

log k
k

]
. We will show that for t′ = t`−1+km, H

(
π(x(t′)|y(0), . . . , y(`−1))

)
≥

β−
log k
k ; this will imply that H

(
π(x(t)|y(0), . . . , y(`−1))

)
∈
[
β−

log k
k , β+

log k
k

]
for some t`−1 < t ≤ t′.

In the definition of Sindep, set t`−1 = t` = t`+1 = · · · = tk−1 and tk = t′. Then (using Fact 4.5(c),

which allows us to ignore the duplicated t`, . . . , tk−1), we see that Φ(t′) has no satisfying assignment y
with H

(
π(y|y(0), . . . , y(`−1))

)
< β−

log k
k . But, because Svalid holds, x(t′) satisfies Φ(t′). It follows that

H
(
π(x(t′)|y(0), . . . , y(`−1))

)
≥ β− log k

k .

Because the interpolation path has length T = k2m, and t` ≤ t`−1 + km for all 1 ≤ ` ≤ k, this procedure
sets all of t1, . . . , tk before the end of the interpolation.

Finally, because Svalid holds, y` satisfies Φ(t`) for all 0 ≤ ` ≤ k. We have thus constructed the structure
forbidden by Sogp.

4.6 Solutions to Independent Instances Contribute Large Overlap Entropy

In this section, we will prove Proposition 4.7(b), that if Φ(tk) is independent of x(t0), . . . , x(tk−1), then
satisfying assignments y of Φ(tk) do not have conditional overlap entropy with x(t0), . . . , x(tk−1) that is too
small. We will prove this proposition by a first moment argument.

Proof of Proposition 4.7(b). By Markov’s inequality, P(Scindep) is upper bounded by the expected number of

(t0, . . . , tk, y) satisfying conditions (IND-A), (IND-B), and (IND-C) of Sindep. There are at most (T + 1)k+1

possible choices of 0 ≤ t0 ≤ t1 ≤ · · · ≤ tk ≤ T satisfying condition (IND-A). By condition (IND-A), Φ(tk) is
independent of x(t0), . . . , x(tk−1).

Let P = P (x(t0), . . . , x(tk−1)) denote the set of all overlap profiles π = π(x(t0), . . . , x(tk−1), y) over y ∈
{T, F}n with H(π(y|x(t0), . . . , x(tk−1))) < β−

log k
k . By Fact 4.5(a), |P | ≤ n2k . Thus,

P(Scindep) ≤ (T + 1)k+1n2k max
0≤t0≤···≤tk≤T

satisfying (IND-A)

max
π∈P (x(t0),...,x(tk−1))

E
Φ(tk)

[
#
(
y ∈ {T, F}n : y satisfies Φ(tk) and π(x(t0), . . . , x(tk−1), y) = π

)]
We can evaluate this inner expectation by linearity of expectation. The number of y satisfying that
π(x(t0), . . . , x(tk−1), y) = π is

∏
{S,T}∈P2(k)

(
πS,Tn

πS∪{k},Tn

)
= exp

n ∑
{S,T}∈P2(k)

πS,TH

(
πS∪{k},T

πS,T

)
+ o(n)


= exp

(
nH

(
π(y|x(t0), . . . , x(tk−1))

)
+ o(n)

)
≤ exp

(
nβ−

log k

k
+ o(n)

)
.

Because Φ(tk) is independent of x(t0), . . . , x(tk−1), the probability that any one of these y satisfies Φ(tk) is

(1− 2−k)m ≤ exp
(
−2−km

)
= exp

(
−nκ log k

k
+ o(n)

)
.

Here we used that m = bαnc and α = κ2k log k/k. Thus,

P(Scindep) ≤ exp

(
−n(κ− β−)

log k

k
+ o(n)

)
,

where the (T+1)k+1n2k is absorbed in the o(n). Finally, note that β−+ε ≤ β−+ε

1−β−e−(β−−1) ≤ κ, so κ−β− ≥ ε.
Thus P(Scindep) = exp(−Ω(n)).

15

5 Proof of Presence of Ensemble Multi-OGP

In this section, we will prove Proposition 4.7(c), which shows that the forbidden structure in Sogp does not
occur with high probability.

5.1 Proof Outline

We first give a high level overview of the proof of Proposition 4.7(c).
The proof is by another first moment computation. Throughout this section, for a k-tuple of indices

I ∈ [n]k and x ∈ {T, F}n, let x[I] = (xI1 , . . . , xIk) be the string of bits in x indexed by I. We begin with the
following lemma, which bounds the exponential rate of P(Scogp) in terms of a maximum over overlap profiles.
We will prove this lemma in Section 5.2.

Lemma 5.1. Let P denote the set of overlap profiles π = π(y(0), . . . , y(k)) over y(0), . . . , y(k) ∈ {T, F}n

satisfying that for all 1 ≤ ` ≤ k, H
(
π(y(`)|y(0), . . . , y(`−1))

)
∈
[
β−

log k
k , β+

log k
k

]
. The following inequality

holds.

lim sup
n→∞

1

n
logP(Scogp) ≤ log 2 + max

π∈P

[
H(π)− κ log k

k
E

I∼unif([n]k)

∣∣∣{y(`)[I] : 0 ≤ ` ≤ k
}∣∣∣] , (5.1)

where y(0), . . . , y(k) ∈ {T, F}n is a sequence of assignments with overlap profile π.

Note that the expectation EI∼unif([n]k)

∣∣{y(`)[I] : 0 ≤ ` ≤ k
}∣∣ has the same value for any sequence of

assignments y(0), . . . , y(k) with overlap profile π. So, the quantity inside the maximum is a function of π.
The negative term in (5.1) arises as an upper bound on the exponential rate of the probability that

y(0), . . . , y(k) all respectively satisfy Φ(t0), . . . ,Φ(tk), for fixed y(0), . . . , y(k) and t0, . . . , tk. Let us first argue
heuristically that this bounds the exponential rate; we will formalize this reasoning in Lemma 5.3 below. We
expect the probability that y(0), . . . , y(k) satisfy Φ(t0), . . . ,Φ(tk) to be maximized when t0 = · · · = tk, because
making the ti different only introduces additional randomness (see Remark 5.4). So, let Φ(t0), . . . ,Φ(tk) all
equal the same k-SAT instance Φ ∼ Φk(n,m). The probability that y(0), . . . , y(k) all satisfy the first clause
Φ1 of Φ is 1− 2−k EI∼unif([n]k)

∣∣{y(`)[I] : 0 ≤ ` ≤ k
}∣∣, because if Φ1 contains the variables xI1 , . . . , xIk , there

are exactly
∣∣{y(`)[I] : 0 ≤ ` ≤ k

}∣∣ ways to set these variables’ polarities in Φ1 so that one of y(0), . . . , y(k)

does not satisfy Φ1. Then, the probability that y(0), . . . , y(k) all satisfy Φ is upper bounded by(
1− 2−k E

I∼unif([n]k)

∣∣∣{y(`)[I] : 0 ≤ ` ≤ k
}∣∣∣)m ≈ exp

(
−nκ log k

k
E

I∼unif([n]k)

∣∣∣{y(`)[I] : 0 ≤ ` ≤ k
}∣∣∣) .

The second ingredient in the proof of Proposition 4.7(c) is the following proposition, which lower bounds the
expectation in the negative term of (5.1). We will prove this proposition in Section 5.3. Proving the bound
in this proposition is one of the main technical challenges of this paper, which we overcome via a surprising
probabilistic reformulation of the left-hand expectation.

Proposition 5.2. Let β1, . . . , βk ∈ [β−, β+], and let y(0), . . . , y(k) ∈ {T, F}n be assignments satisfying that
H
(
π(y(`)|y(0), . . . , y(`−1))

)
= β`

log k
k . Then,

E
I∼unif([n]k)

∣∣∣{y(`)[I] : 0 ≤ ` ≤ k
}∣∣∣ ≥ (1− ok(1))

k∑
`=1

(
1− β`e−(β`−1)

)
.

From Lemma 5.1 and Proposition 5.2, we can see the main ideas of the proof of Proposition 4.7(c) and
understand the motivation of the definition of Sogp. The main ideas are as follows.

We will prove Proposition 4.7(c) by showing that the right-hand side of (5.1) is negative. For each
π ∈ P , this quantity can be regarded as a free energy, with entropy term log 2 + H(π) and energy term
κ log k

k EI∼unif([n]k)

∣∣{y(`)[I] : 0 ≤ ` ≤ k
}∣∣. This free energy exhibits a tradeoff where as the entropy term

increases, the assignments y(0), . . . , y(k) become more diverse, and so the energy term increases too. The
event Sogp is selected so that for overlap profiles π ∈ P , where P is defined in Lemma 5.1, the energy term is

16

larger than the entropy term, which makes the free energy negative. In particular, (due to Fact 4.5(b)) we
think of H

(
π(y(`)|y(0), . . . , y(`−1))

)
as the amount that y(`) contributes to the free energy’s entropy term.

Given this contribution, Proposition 5.2 lower bounds the amount that y(`) contributes to the energy term.

In the definition of Sogp, we require the entropy contribution to be in a medium range
[
β−

log k
k , β+

log k
k

]
,

because in this range the energy-to-entropy ratio is favorable to the energy term. Specifically, we show that
if y(`) contributes an entropy in this range, the energy it contributes is at least ε log k

k more. Thus each

y(`) decreases the free energy by at least ε log k
k . Together, the k assignments y(1), . . . , y(k) contribute a free

energy decrease of ε log k, which dominates the starting free energy of log 2 and makes the overall free energy
negative.

We now formally prove Proposition 4.7(c) given Lemma 5.1 and Proposition 5.2.

Proof of Proposition 4.7(c). We begin from the bound (5.1). Let P be as in Lemma 5.1. Let π ∈ P , and let
y(0), . . . , y(k) ∈ {T, F}n with π(y(0), . . . , y(k)) = π. Define β1, . . . , βk as in Proposition 5.2; note that these are

determined given π. By definition of P , we have β1, . . . , βk ∈ [β−, β+]. By Fact 4.5(b), H(π) = log k
k

∑k
`=1 β`.

By Proposition 5.2,

−κ log k

k
E

I∼unif([n]k)

∣∣∣{y(`)[I] : 0 ≤ ` ≤ k
}∣∣∣ ≤ −(1− ok(1))

log k

k

k∑
`=1

κ
(

1− β`e−(β`−1)
)

≤ −(1− ok(1))
log k

k

k∑
`=1

(β` + ε) .

The last inequality uses that β+ε
1−βe−(β−1) ≤ κ for all β ∈ [β−, β+]. Therefore,

H(π)− κ log k

k
E

I∼unif([n]k)

∣∣∣{y(`)[I] : 0 ≤ ` ≤ k
}∣∣∣ ≤ ok(1)

log k

k

k∑
`=1

β` − (1− ok(1))ε log k

≤ ok(1)β+ log k − (1− ok(1))ε log k

= −(1− ok(1))ε log k.

This bound holds for an arbitrary π ∈ P , and thus for the maximum over π ∈ P . So, by (5.1),

lim sup
n→∞

1

n
P(Scogp) ≤ log 2− (1− ok(1))ε log k < 0

for sufficiently large k. Thus P(Scogp) ≤ exp(−Ω(n)).

5.2 Bounding the Exponential Rate by a Free Energy

In this section, we will prove Lemma 5.1. We begin with the following lemma, which bounds the probability
term arising in the first moment upper bound of P(Scogp).

Lemma 5.3. Suppose y(0), . . . , y(k) ∈ {T, F}n is a sequence of assignments and 0 ≤ t0 ≤ t1 ≤ · · · ≤ tk ≤ T .
Then,

1

n
logP

[
y(`) satisfies Φ(t`) for all 0 ≤ ` ≤ k

]
≤ −κ log k

k
E

I∼unif([n]k)

∣∣∣{y(`)[I] : 0 ≤ ` ≤ k
}∣∣∣+ o(1).

Proof. For 1 ≤ i ≤ m, the collections of clauses {Φ(t)
i : 0 ≤ t ≤ T} are mutually independent. So,

P
[
y(`) satisfies Φ(t`) for all 0 ≤ ` ≤ k

]
=

m∏
i=1

P
[
y(`) satisfies Φ

(t`)
i for all 0 ≤ ` ≤ k

]
.

We say a clause index i ∈ [m] is interrupted if for some 0 ≤ ` ≤ k, t` satisfies 1 ≤ σ(t`)− (i− 1)k ≤ k − 1,
where σ(·) is defined in Definition 4.2. Informally, i is interrupted if there is some ` such that Φ(t`) is partway

17

through resampling the ith clause. Note that each t` interrupts at most one clause, so there are at most
k+ 1 interrupted clause indices. Because so few clause indices are interrupted, it does not hurt our analysis
to throw them out. We clearly have

P
[
y(`) satisfies Φ(t`) for all 0 ≤ ` ≤ k

]
≤

∏
i∈[m]

not interrupted

P
[
y(`) satisfies Φ

(t`)
i for all 0 ≤ ` ≤ k

]
. (5.2)

We now fix a single non-interrupted index i ∈ [m] and analyze the last probability. We exploit the following

stochastic property of non-interrupted clauses: if i is not interrupted, then the clauses Φ
(t0)
i ,Φ

(t1)
i , . . . ,Φ

(tk)
i

can be partitioned into equivalence classes, such that all clauses in the same equivalence class are identical
and all clauses in different equivalence classes are mutually independent. Formally, for some 1 ≤ r ≤ k + 1,
there is a surjective map τ : {0, . . . , k} → [r] (dependent only on the indices t0, . . . , tk and i) such that for
i.i.d. clauses C1, . . . , Cr ∼ Φk(n, 1),(

Φ
(t0)
i ,Φ

(t1)
i , . . . ,Φ

(tk)
i

)
=d

(
Cτ(0), Cτ(1), . . . , Cτ(k)

)
.

For 1 ≤ s ≤ r, let Bs = τ−1(s) be the set of ` ∈ {0, . . . , k} such that Φ
(t`)
i corresponds to Cs. Thus

B1, . . . , Br partition {0, . . . , k}. Now,

P
[
y(`) satisfies Φ

(t`)
i for all 0 ≤ ` ≤ k

]
=

r∏
s=1

P
[
y(`) satisfies Cs for all ` ∈ Bs

]
. (5.3)

Let I ∈ [n]k be the indices of the k variables sampled by Cs, so I ∼ unif([n]k). Given I, there are∣∣{y(`)[I] : ` ∈ Bs
}∣∣ ways to assign polarities to these k variables such that for some ` ∈ Bs, y(`) does not satisfy

Cs. Thus, conditioned on I, the probability that y(`) satisfies Cs for all ` ∈ Bs is 1− 2−k
∣∣{y(`)[I] : ` ∈ Bs

}∣∣.
It follows that

P
[
y(`) satisfies Cs for all ` ∈ Bs

]
= 1− 2−k E

I∼unif([n]k)

∣∣∣{y(`)[I] : ` ∈ Bs
}∣∣∣

≤ exp

(
−2−k E

I∼unif([n]k)

∣∣∣{y(`)[I] : ` ∈ Bs
}∣∣∣) .

So, using (5.3) and recalling that B1, . . . , Br partition {0, . . . , k}, we have

P
[
y(`) satisfies Φ

(t`)
i for all 0 ≤ ` ≤ k

]
≤ exp

(
−2−k E

I∼unif([n]k)

r∑
s=1

∣∣∣{y(`)[I] : ` ∈ Bs
}∣∣∣)

≤ exp

(
−2−k E

I∼unif([n]k)

∣∣∣{y(`)[I] : 0 ≤ ` ≤ k
}∣∣∣) .

Next, we substitute into (5.2). There are at most k+ 1 interrupted clauses, and thus at least m− (k+ 1) ≥
nα− k − 2 non-interrupted clauses. So,

P
[
y(`) satisfies Φ(t`) for all 0 ≤ ` ≤ k

]
≤ exp

(
−(nα− k − 2)2−k E

I∼unif([n]k)

∣∣∣{y(`)[I] : 0 ≤ ` ≤ k
}∣∣∣) .

Thus,

1

n
logP

[
y(`) satisfies Φ(t`) for all 0 ≤ ` ≤ k

]
≤ −α2−k E

I∼unif([n]k)

∣∣∣{y(`)[I] : 0 ≤ ` ≤ k
}∣∣∣+ o(1).

The result follows from α = κ2k log k/k.

Proof of Lemma 5.1. By Markov’s inequality, P(Scogp) is upper bounded by the expected number of 0 ≤ t0 ≤
t1 ≤ · · · ≤ tk ≤ T and (y(0), . . . , y(k)) satisfying conditions (OGP-A) and (OGP-B) of Sogp. There are at

18

most (T + 1)k+1 choices of (t0, . . . , tk), and (by Fact 4.5(a)) |P | ≤ n2k . By linearity of expectation,

P(Scogp) ≤ (T + 1)k+1n2k max
0≤t0≤···≤tk≤T

π∈P

E

#

 (y(0), . . . , y(k)) ∈ {T, F}n×(k+1) :
y(`) satisfies Φ(t`) for all 0 ≤ ` ≤ k
and π(y(0), . . . , y(k)) = π

 .
Let πn be the scalar product of π, treated as a vector, by n. There are 2n

(
n
πn

)
sequences of assignments

(y(0), . . . , y(k)) with π(y(0), . . . , y(k)) = π: 2n ways to choose y(0), and then
(
n
πn

)
ways to assign the positions

[n] to the partitions of {0, . . . , k}. Over all of these sequences of assignments, the probability of the event that
y(`) satisfies Φ(t`) for all 0 ≤ ` ≤ k is uniformly upper bounded by Lemma 5.3. By linearity of expectation,
the last expectation is upper bounded by

2n
(
n

πn

)
exp

(
−nκ log k

k
E

I∼unif([n]k)

∣∣∣{y(`)[I] : 0 ≤ ` ≤ k
}∣∣∣+ o(n)

)
.

Because
(
n
πn

)
= exp (nH(π) + o(n)), the result follows.

Remark 5.4. The step in the proof of Lemma 5.3 where we lower bound
∑r
s=1

∣∣{y(`)[I] : ` ∈ Bs
}∣∣ by∣∣{y(`)[I] : 0 ≤ ` ≤ k

}∣∣ is tight when t0, . . . , tk are all equal, because in this case r = 1 and B1 = {0, 1, . . . , k}.
Thus the exponential rate of P(Scogp) is dominated by the case when the ti are equal. In other words, P(Scogp)

has the same exponential rate as if, in the definition of Sogp, we required all the y(`) to be satisfying assign-
ments to the same Φ(t). This shows the power of the “ensemble” part of the ensemble multi-OGP: for no
cost in the exponential rate, we can generalize the forbidden structure to an ensemble, which we create by
running a smooth algorithm on all problem instances in an interpolation path. All ensemble (multi-)OGPs
in the literature share this property, see [43, 71].

5.3 Lower Bounding the Energy Term

In this section, we will prove Proposition 5.2. Let y(0), . . . , y(k) and β1, . . . , βk be as in Proposition 5.2.
Without loss of generality, we can set y(0) = Tn.

To analyze the expectation in Proposition 5.2, we introduce the following probabilistic quantities. For
0 ≤ ` ≤ k and σ ∈ {T, F}k, define

E`(σ) =
{
I ∈ [n]k : y(`′)[I] = σ for some 0 ≤ `′ ≤ `

}
and p`(σ) = P

I∼unif([n]k)
(E`(σ)) .

In other words, E`(σ) is the event that σ appears in the set
{
y(`′)[I] : 0 ≤ `′ ≤ `

}
, and p`(σ) is the probability

of this event. The probabilities pk(σ) will be relevant to our analysis by the following identity (5.4), while
the probabilities p`(σ) for ` < k will arise in our inductive analysis below, where we lower bound pk(σ) by
peeling off one of y(1), . . . , y(k) at a time. We have that

E
I∼unif([n]k)

∣∣∣{y(`)[I] : 0 ≤ ` ≤ k
}∣∣∣ = E

I∼unif([n]k)

 ∑
σ∈{T,F}k

1 {I ∈ Ek(σ)}

 =
∑

σ∈{T,F}k
pk(σ). (5.4)

To prove Proposition 5.2, we will need to lower bound the right-hand side of (5.4). This task will require
several definitions; to motivate these definitions, let us first outline our technique for deriving this lower
bound. The first idea of our technique is a conditional expansion. We can reveal the k bit strings in the
tuple (y(1)[I], . . . , y(k)[I]) one by one; conditioned on its predecessors y(1)[I], . . . , y(`−1)[I], the distribution of
y(`)[I] can be described in terms of the conditional overlap profile π(y(`)|y(0), . . . , y(`−1)) (recall here that we
set y(0) = Tn). Then, 1−pk(σ), which is the probability that σ does not appear in the set

{
y(`)[I] : 0 ≤ ` ≤ k

}
,

can be expanded as a product of k factors: the `th factor is the (conditional) probability that the revealed
value of y(`) does not equal σ. Thus the `th factor of this product can be thought of as the contribution of
y(`).

Our second idea is to estimate this product by a sum, whose `th summand is the contribution of y(`).
The purpose of this estimation is to decouple the contributions of the y(`), so that we can analyze the overall

19

contribution of y(`) by summing over σ ∈ {T, F}k. We achieve this by truncating the factors in the product
at 1 − 1

k log k ; any factor smaller than this gets rounded up to 1. Then we can, by an inductive argument,

separate off the contributions of y(1), . . . , y(k) to pk(σ) one by one. We choose 1
k log k to be slightly smaller

than 1
k , so that the resulting estimation by a sum results in 1− ok(1) multiplicative error. Propositions 5.5

and 5.6 below carry out this technique. Finally, our third idea is to collect the (now additive) contribution
of each y(`) over all σ ∈ {T, F}k. Miraculously, we can reformulate this contribution as a probability of a
sum of k i.i.d. random variables, which can be controlled by a Chernoff bound. This step is carried out in
Proposition 5.7.

Formally, for 0 ≤ ` ≤ k and i ∈ [n], let y
(≤`)
i = (y

(1)
i , . . . , y

(`)
i). Similarly, for I ∈ [n]k, let y(≤`)[I] =

(y(1)[I], . . . , y(`)[I]). Because y(0) = Tn, the overlap profile π determines the distribution of y
(≤k)
i , where

i ∼ unif([n]). Namely, for τ ∈ {T, F}k,

P
i∼unif([n])

[
y

(≤k)
i = τ

]
= πS∪{0},T

where S = {` ∈ [k] : τ` = T} and T = {` ∈ [k] : τ` = F}. Moreover, the distribution of y(≤k)[I], where
I ∼ unif([n]k), is the product of k i.i.d. copies of this distribution. For 1 ≤ ` ≤ k, b ∈ {T, F}, and
τ ∈ {T, F}`−1, define

φ`(b|τ) = P
i∼unif([n])

[
y

(`)
i = b|y(≤`−1)

i = τ
]
.

The probabilities in the aforementioned conditional expansion are products of conditional probabilities

φ`(b|τ). Namely, the probability that y(`)[I] 6= σ given y(≤`−1)[I] is 1−
∏k
r=1 φ`(σr|y

(≤`−1)
Ir

).

For 1 ≤ ` ≤ k, σ ∈ {T, F}k and I ∈ [n]k, further define

Q`(σ, I) =

k∏
r=1

φ`(σr|y(≤`−1)
Ir

)1

{
k∏
r=1

φ`(σr|y(≤`−1)
Ir

) ≤ 1

k log k

}
and q`(σ) = E

I∼unif([n]k)
[Q`(σ, I)] .

Thus, 1−Q`(σ, I) is a term in the conditional expansion, truncated at 1− 1
k log k in the aforementioned sense,

and q`(σ) is its expectation.
For each σ ∈ {T, F}k, the following two propositions lower bound pk(σ) in terms of q1(σ), . . . , qk(σ) by

peeling off one of y(1), . . . , y(k) at a time.

Proposition 5.5. For each σ ∈ {T, F}k and 1 ≤ ` ≤ k, we have that

p`(σ) ≥
(

1− 1

k log k

)
p`−1(σ) + q`(σ).

Proof. Note that

1− p`(σ) = P
I∼unif([n]k)

[
y(`′)[I] 6= σ for all 0 ≤ `′ ≤ `

]
= E
I∼unif([n]k)

[
1
{
y(`′)[I] 6= σ for all 0 ≤ `′ ≤ `− 1

}(
1−

k∏
r=1

φ`(σr|y(≤`−1)
Ir

)

)]
.

Here, we use that the event inside the indicator is y(≤`−1)[I]-measurable, and conditioned on y(≤`−1)[I] the

probability that y(`)[I] = σ is
∏k
r=1 φ`(σr|y

(≤`−1)
Ir

). Moreover, we have
∏k
r=1 φ`(σr|y

(≤`−1)
Ir

) ≥ Q`(σ, I) by
definition. So,

1− p`(σ) ≤ E
I∼unif([n]k)

[(1− 1 {I ∈ E`−1(σ)}) (1−Q`(σ, I))]

≤ E
I∼unif([n]k)

[
1−

(
1− 1

k log k

)
1 {I ∈ E`−1(σ)} −Q`(σ, I)

]
= 1−

(
1− 1

k log k

)
p`−1(σ)− q`(σ).

The second-last line uses the fact that Q`(σ, I) ≤ 1
k log k almost surely, and the last line uses the definitions

of p`−1(σ) and q`(σ). Rearranging yields the desired bound.

20

Proposition 5.6. For each σ ∈ {T, F}k, we have that

pk(σ) ≥
(

1− 1

log k

) k∑
`=1

q`(σ).

Proof. By iterating Proposition 5.5, we get

pk(σ) ≥
(

1− 1

k log k

)k
p0(σ) +

k∑
`=1

(
1− 1

k log k

)k−`
q`(σ) ≥

(
1− 1

k log k

)k k∑
`=1

q`(σ).

The result follows from the bound
(

1− 1
k log k

)k
≥ 1− 1

log k , by Bernoulli’s inequality.

Equation (5.4) and Proposition 5.6 leave the task of lower bounding
∑
σ∈{T,F}k

∑k
`=1 q`(σ). This is

achieved by the following proposition, which reinterprets
∑
σ∈{T,F}k q`(σ), the total contribution of y(`), as a

probability.

Proposition 5.7. For each 1 ≤ ` ≤ k, we have that∑
σ∈{T,F}k

q`(σ) ≥ 1− β`e−(β`−1) − ok(1).

Proof. Using the definition of q`(σ), we have

∑
σ∈{T,F}k

q`(σ) = E
I∼unif([n]k)

 ∑
σ∈{T,F}k

k∏
r=1

φ`(σr|y(≤`−1)
Ir

)1

{
k∏
r=1

φ`(σr|y(≤`−1)
Ir

) ≤ 1

k log k

}
= E
I∼unif([n]k)

 ∑
σ∈{T,F}k

k∏
r=1

φ`(σr|y(≤`−1)
Ir

)1

{
−

k∑
r=1

log φ`(σr|y(≤`−1)
Ir

) ≥ log k + log log k

} .
This quantity is the success probability of the following experiment. Sample positive random variables
u1, . . . , uk by the following procedure, repeated independently for each r ∈ [k]. Sample i ∈ unif([n]); this

determines the value of y
(≤`−1)
i . Then, sample b ∈ {T, F} from the measure φ`(·|y(≤`−1)

i). Finally, set

ur = − log φ`(b|y(≤`−1)
Ir

). The experiment succeeds if
∑k
r=1 ur ≥ log k + log log k.

For r ∈ [k], let vr = min(ur, log k). Informally, vr is a proxy for ur with an almost sure upper bound,
which allows us to control the experiment’s failure probability by a Chernoff bound. This failure probability
is bounded by

P

[
k∑
r=1

ur < log k + log log k

]
≤ P

[
k∑
r=1

vr < log k + log log k

]
= P

[
k∑
r=1

vr
log k

< 1 +
log log k

log k

]
.

Note that the vr
log k are i.i.d. random variables in [0, 1] almost surely. To bound this last probability by a

Chernoff bound, we will lower bound E[vr]. By the definition of φ`,

E[ur] = E
i∼unif([n])

E
b∼φ`(·|y(≤`−1)

i)

[
− log φ`(b|y(≤`−1)

i)
]

= H(π(y(`)|y(0), . . . , y(`−1))) = β`
log k

k
.

Moreover,

E[ur − vr] = E [(ur − log k)1 {ur ≥ log k}]

= E
i∼unif([n])

 ∑
b∈{T,F}

φ`(b|y(≤`−1)
i) log

1

kφ`(b|y(≤`−1)
i)

1

{
φ`(b|y(≤`−1)

i) ≤ 1

k

}

21

For each i, the quantity inside the last expectation is nonzero for at most one b ∈ {T, F} (for k ≥ 3).
Moreover, on the interval [0, 1

k], the function x 7→ x log 1
kx has maximum value 1

ek , attained at x = 1
ek . Thus,

E[ur − vr] ≤ 1
ek . It follows that E[vr] ≥ β` log k

k −
1
ek . So,

E

[
k∑
r=1

vr
log k

]
≥ β` −

1

e log k
.

Furthermore, (1 + log log k
log k)/(β` − 1

e log k) = 1
β`

+ ok(1). So, by a Chernoff bound,

P

[
k∑
r=1

vr
log k

< 1 +
log log k

log k

]
≤

 e
−(1− 1

β`
−ok(1))(

1
β`

+ ok(1)
) 1
β`

+ok(1)


β`−ok(1)

= β`e
−(β`−1) + ok(1).

Hence,

P

[
k∑
r=1

ur ≥ log k + log log k

]
≥ 1− β`e−(β`−1) − ok(1),

as desired.

We can now combine these propositions to prove Proposition 5.2.

Proof of Proposition 5.2. By combining (5.4), Proposition 5.6, and Proposition 5.7, we have

E
I∼unif([n]k)

∣∣∣{y(`)[I] : 0 ≤ ` ≤ k
}∣∣∣ ≥ (1− 1

log k

) k∑
`=1

∑
σ∈{T,F}k

q`(σ)

≥ (1− ok(1))

k∑
`=1

(
1− β`e−(β`−1)

)
.

6 Stability of Low Degree Polynomials

In this section, we will prove Proposition 4.7(a), which lower bounds the probability that x(t) satisfies Φ(t)

for all 0 ≤ t ≤ T and the sequence x(t) has no large jumps in Hamming distance.

6.1 An Upper Bound on the Rate of Bad Steps

We begin by defining the notion of c-badness, which will be crucial to our proof. Informally, (Φ,Φ′) is c-bad if
the output of f has a large jump between inputs Φ and Φ′. Recall that N = m ·k ·2n, and each Φ ∈ Ωk(n,m)
can be identified with a vector of indicators in {0, 1}N , which is the input of a low degree polynomial.

Definition 6.1 (c-badness). Let c > 0 and let f : RN → Rn be a deterministic degree-D polynomial. A

pair of formulas (Φ,Φ′) ∈ Ωk(n,m)2 is c-bad (with respect to f) if ‖f(Φ)− f(Φ′)‖22 > cEΦ∼Φk(n,m) ‖f(Φ)‖22.

Recall the interpolation path Φ(0),Φ(1), . . . ,Φ(T) defined in Definition 4.2. We will prove Proposi-
tion 4.7(a) via the following proposition, which controls the probability that the output of f does not
have a large jump between any pair of consecutive assignments in the interpolation path.

Proposition 6.2. Let f : RN → Rn be a deterministic degree-D polynomial. With probability at least
(2n)−4Dk/c, (Φ(t−1),Φ(t)) is not c-bad with respect to f for any 1 ≤ t ≤ T .

22

We will prove this proposition in Section 6.3. The objective of this subsection is to prove Proposition 6.3
below, which upper bounds the fraction of possible steps that can be bad. To this end, for 1 ≤ j ≤ km,
define Φk(n,m; j) as the measure of a sample (Φ,Φ′) ∈ Ωk(n,m)2 obtained by sampling Φ ∼ Φk(n,m),
and then obtaining Φ′ from Φ by resampling the jth lexicographic literal L(Φ′, j) from unif (L \ {L(Φ, j)}).
Define

λj = P
(Φ,Φ′)∼Φk(n,m;j)

((Φ,Φ′) is c-bad with respect to f) .

This is the fraction of pairs of formulas in Ωk(n,m), differing in exactly the jth lexicographic literal, that
are c-bad with respect to f .

Proposition 6.3. If f is a deterministic degree-D polynomial, then
∑km
j=1 λj ≤

4D
c .

We recall the following orthogonal decomposition property of functions on product measures, which can
be thought of as a generalization of Fourier analysis on the Boolean cube. We will give brief self-contained
proofs of the relevant facts; a full discussion can be found in [67, Chapter 8.3]. Let π be a probability measure
on an arbitrary space X , and let J be a positive integer. Let X = (X1, . . . , XJ) ∈ X J . For j ∈ [J], define
the operators Dj and Ej as follows. For any function g : X J → R, Ejg is the function satisfying

Ejg(X) = E
Xj∼π

g(X),

where in the right-hand side the coordinate Xj of X is resampled from π. Let Djg = g−Ejg. Note that the
operators Dj ,Ej commute (including across multiple j ∈ [J]). For S ⊆ [J], define the functions

ĝS =
∏
j∈S

Dj
∏

j∈[J]\S

Ejg.

Note that g =
∑
S⊆[J] ĝS . Moreover, ĝS depends only on the inputs {Xj : j ∈ S}. For any j,

E
Xj∼π

g(X)2 = E
Xj∼π

[
(Djg)(X)2

]
+ (Ejg)(X)2,

and so by induction

E
X∼π⊗J

g(X)2 =
∑
S⊆[J]

E
X∼π⊗J

ĝS(X)2.

For j ∈ [J], define Varjg(X) = EXj∼π
[
(Djg)(X)2

]
. We begin with the following inequality, which can be

considered a converse to the Efron-Stein inequality.

Lemma 6.4. Suppose a function g : X J → R can be written in the form g(X) =
∑I
i=1 gi(X), where each

gi(X) depends on at most D coordinates of X. Then,

D Var
X∼π⊗J

g(X) ≥
J∑
j=1

E
X∼π⊗J

Varjg(X).

Proof. By the orthogonal expansion above, we have

Var
X∼π⊗J

g(X) =
∑
S⊆[J]
S 6=∅

E
X∼π⊗j

ĝS(X)2 and E
X∼π⊗J

Varjg(X) =
∑
S⊆[J]
S3j

E
X∼π⊗j

ĝS(X)2.

We claim that for all S ⊆ [J] with |S| > D, we have ĝS ≡ 0. For each i ∈ [I], we have
∏
j∈S Djgi ≡ 0,

because S contains at least one j such that gi(X) does not depend on Xj . Thus,
∏
j∈S Djg ≡ 0, and so

ĝS ≡ 0, as desired. Hence,

J∑
j=1

E
X∼π⊗J

Varjg(X) =
∑
S⊆[J]

|S| E
X∼π⊗j

ĝS(X)2 ≤ D Var
X∼π⊗J

g(X).

23

Proof of Proposition 6.3. Note that Φk(n,m) is composed of km i.i.d. literals, and thus can be thought of
as the product measure unif(L)⊗km. By slight abuse of notation, for 1 ≤ j ≤ km, we can define Dj and Ej
as the above operators with respect to the jth lexicographic literal of Φ.

For 1 ≤ ` ≤ n, let f` denote the `th component of f . By Markov’s inequality and the inequality
(a− b)2 ≤ 2a2 + 2b2, we have

km∑
j=1

λj ≤
km∑
j=1

E(Φ,Φ′)∼Φk(n,m;j) ‖f(Φ)− f(Φ′)‖22
cEΦ∼Φk(n,m) ‖f(Φ)‖22

=

∑n
`=1

∑km
j=1 E(Φ,Φ′)∼Φk(n,m;j)((Djf`)(Φ)− (Djf`)(Φ

′))2

c
∑n
`=1 EΦ∼Φk(n,m) f`(Φ)2

≤
2
∑n
`=1

∑km
j=1 E(Φ,Φ′)∼Φk(n,m;j)

(
(Djf`)(Φ)2 + (Djf`)(Φ

′)2
)

c
∑n
`=1 EΦ∼Φk(n,m) f`(Φ)2

=
4
∑n
`=1

∑km
j=1 EΦ∼Φk(n,m) Varjf`(Φ)

c
∑n
`=1 EΦ∼Φk(n,m) f`(Φ)2

.

Now, each f` is a degree-D polynomial in the indicators Φi,j,s that Φi,j is the sth literal in L. So, each
monomial of each f` depends on at most D literals of Φ. By Lemma 6.4,

km∑
j=1

E
Φ∼Φk(n,m)

Varjf`(Φ) ≤ D Var
Φ∼Φk(n,m)

f`(Φ) ≤ D E
Φ∼Φk(n,m)

f`(Φ)2.

So,
∑km
j=1 λj ≤

4D
c .

6.2 Bounding the Probability of no Bad Step

Proposition 6.3 bounds the combined rate of c-bad steps. To derive Proposition 6.2, we must translate this
bound on the rate of c-bad steps to a bound on the probability that interpolation path never takes a c-bad
step. To make the ideas in our argument more clear, we abstract to the following graph theoretic problem,
which is interesting in its own right.

Let Σ be a set of symbols and J, T be positive integers. Let G be a graph on ΣJ , where two nodes are
adjacent if their Hamming distance is exactly 1. Each edge has a direction j ∈ [J], the index on which its
endpoints disagree. Let an arbitrary subset of edges be bad ; for adjacent vertices v, w, let B(v, w) denote
the event that the edge (v, w) is bad. For j ∈ [J], let λj denote the fraction of edges in direction j that are
bad. Equivalently, λj = P(B(v, w)), where v ∼ unif(G) and w is obtained from v by resampling wj from
unif (Σ \ {vj}).

Let σ : [T] → [J] be an arbitrary map. Consider the (lazy) random walk v(0), v(1), . . . , v(T) such that

v(0) ∼ unif(G) and for 1 ≤ t ≤ T , v(t) is obtained from v(t−1) by resampling v
(t)
σ(t) from unif(Σ).

Lemma 6.5. With probability at least |Σ|−
∑T
t=1 λσ(t) , no step of the random walk v(0), v(1), . . . , v(T) traverses

a bad edge.

Note that at each step, the random walk either traverses an edge or does not move; we say that the steps
that do not move do not traverse a bad edge. The lemma is sharp, for example, when all the λj are 0 or 1:
in this case, the random walk does not traverse a bad edge if it does not move at all times t with λσ(t) = 1.

Proof. For v ∈ ΣJ , let q(v) be the probability that the random walk v(0), v(1), . . . , v(T) does not traverse a
bad edge, starting from v(0) = v. We will prove by induction on T that

E
v∼unif(G)

log q(v) ≥ − log |Σ| ·
T∑
t=1

λσ(t).

The lemma then follows from Jensen’s inequality, because logE q(v) ≥ E log q(v).

24

The base case of the claim, T = 0, follows trivially. For the inductive step, let q̃(v) be the probability
that the random walk v(1), v(2), . . . , v(T) does not traverse a bad edge, starting from v(1) = v. Let j = σ(1).
Let v∼j ∈ ΣJ−1 denote an element of ΣJ with the jth coordinate left blank. For s ∈ Σ, let v∼j [s] ∈ ΣJ

denote v∼j with the jth coordinate set to s.
For now, fix some v∼j ∈ ΣJ−1. For s ∈ Σ, we have that

q(v∼j [s]) =
∑
s′∈Σ

1

|Σ|
1
{
s′ = s or B (v∼j [s], v∼j [s

′])
c}
q̃(v∼j [s

′])

=
∑

s′∈Σ\{s}

1

|Σ| − 1

(
1

|Σ|
q̃(v∼j [s]) +

|Σ| − 1

|Σ|
1
{
B (v∼j [s], v∼j [s

′])
c}
q̃(v∼j [s

′])

)
.

By Jensen’s inequality, this implies

log q(v∼j [s]) ≥
∑

s′∈Σ\{s}

1

|Σ| − 1
log

(
1

|Σ|
q̃(v∼j [s]) +

|Σ| − 1

|Σ|
1
{
B (v∼j [s], v∼j [s

′])
c}
q̃(v∼j [s

′])

)
.

Taking an expectation over s ∼ unif(Σ), we have

E
s∼unif(Σ)

log q(v∼j [s]) ≥
∑
s,s′∈Σ
s6=s′

1

|Σ|(|Σ| − 1)

[
log

(
1

|Σ|
q̃(v∼j [s]) +

|Σ| − 1

|Σ|
1
{
B (v∼j [s], v∼j [s

′])
c}
q̃(v∼j [s

′])

)]

=
∑
s,s′∈Σ
s6=s′

1

2|Σ|(|Σ| − 1)
ξ(v∼j , s, s

′), (6.1)

where for s 6= s′,

ξ(v∼j , s, s
′) = log

(
1

|Σ|
q̃(v∼j [s]) +

|Σ| − 1

|Σ|
1
{
B (v∼j [s], v∼j [s

′])
c}
q̃(v∼j [s

′])

)
+ log

(
1

|Σ|
q̃(v∼j [s

′]) +
|Σ| − 1

|Σ|
1
{
B (v∼j [s], v∼j [s

′])
c}
q̃(v∼j [s])

)
.

If B (v∼j [s], v∼j [s
′]) holds, then ξ(v∼j , s, s

′) = log q̃(v∼j [s])+log q̃(v∼j [s
′])−2 log |Σ|. Otherwise, by Jensen’s

inequality we have

log

(
1

|Σ|
q̃(v∼j [s]) +

|Σ| − 1

|Σ|
1
{
B (v∼j [s], v∼j [s

′])
c}
q̃(v∼j [s

′])

)
≥ 1

|Σ|
log q̃(v∼j [s]) +

|Σ| − 1

|Σ|
log q̃(v∼j [s

′])

and similarly for the other term of ξ(v∼j , s, s
′). In this case, ξ(v∼j , s, s

′) ≥ log q̃(v∼j [s]) + log q̃(v∼j [s
′]). So,

in all cases
ξ(v∼j , s, s

′) ≥ log q̃(v∼j [s]) + log q̃(v∼j [s
′])− 21 {B (v∼j [s], v∼j [s

′])} log |Σ|.
Substituting into (6.1), we have

E
s∼unif(Σ)

log q(v∼j [s]) ≥ E
s∼unif(Σ)

log q̃(v∼j [s])− log |Σ| ·
∑
s,s′∈Σ
s6=s′

1 {B (v∼j [s], v∼j [s
′])}

|Σ|(|Σ| − 1)
.

Taking an expectation over v∼j yields

E
v∼unif(G)

log q(v) ≥ E
v∼unif(G)

log q̃(v)− log |Σ| · λj .

By induction, we have

E
v∼unif(G)

log q̃(v) ≥ − log |Σ| ·
T∑
t=2

λσ(t),

and the result follows.

25

6.3 Completing the Proof of Stability

Proof of Proposition 6.2. Our interpolation scheme can be modeled as the random walk in Section 6.2, with
Σ = L, J = km, T = k2m, σ(t) defined in Definition 4.2, and where the bad edges are the c-bad edges. This
correspondence is consistent because the steps in the interpolation path where a formula transitions to itself
are never c-bad.

Since σ maps to every value in [km] k times and |L| = 2n, Proposition 6.3 and Lemma 6.5 imply that
the probability of never traversing a c-bad edge is at least (2n)−4Dk/c.

Proof of Proposition 4.7(a). Set c = β+−β−
γk . Let Sno-bad be the event that for all 1 ≤ t ≤ T , (Φ(t−1),Φ(t)) is

not c-bad with respect to f . By Proposition 6.2, P(Sno-bad) ≥ (2n)−4Dk2γ/(β+−β−).

By a union bound, P(Svalid) ≥ 1− (T + 1)δ. Thus, P(Svalid ∩ Sno-bad) ≥ (2n)−4Dk2γ/(β+−β−) − (T + 1)δ.
We claim that on Svalid ∩ Sno-bad, the event Sconsec also occurs.

Suppose for sake of contradiction that Svalid ∩ Sno-bad holds and for some 1 ≤ t ≤ T , we have that
∆(x(t−1), x(t)) > β+−β−

2k . Because (Φ(t−1),Φ(t)) is not c-bad, we have∥∥∥f(Φ(t−1))− f(Φ(t))
∥∥∥2

2
≤ c E

Φ∼Φk(n,m)
‖f(Φ)‖22 ≤ cγn =

β+ − β−
k

n.

Let I = {i ∈ [n] : x
(t−1)
i 6= x

(t)
i }, so |I| > β+−β−

2k n. Let B(t−1) and B(t) be the sets of indices B where the

executions of A(x(t−1)) and A(x(t)) used the output of the assistance subroutine B (recall Definition 2.4).
Because Svalid holds, the executions of A(x(t−1)) and A(x(t)) succeeded, and thus |B(t−1)|, |B(t)| ≤ ηn =
β+−β−

8k n.

Let J = I \ (B(t−1) ∪ B(t)), so |J | > β+−β−
4k n. For all i ∈ J , one of fi(Φ

(t−1)) and fi(Φ
(t)) is at least 1

and the other is at most −1, and so |fi(Φ(t−1))− fi(Φ(t))| ≥ 2. So∥∥∥f(Φ(t−1))− f(Φ(t))
∥∥∥2

2
≥
∑
i∈J
|fi(Φ(t−1))− fi(Φ(t))|2 > β+ − β−

k
n.

This is a contradiction. Therefore Sconsec ⊇ Svalid ∩ Sno-bad, and so

P(Svalid ∩ Sconsec) ≥ P(Svalid ∩ Sno-bad) ≥ (2n)−4Dk2γ/(β+−β−) − (T + 1)δ.

7 Proof of Achievability

In this section we will prove Theorem 2.10, that η-assisted low degree polynomial algorithms can solve
random k-SAT at clause density (1− ε)2k log k/k. We will achieve this by simulating (the first phase of) the
algorithm Fix from [25] by a local algorithm on the factor graph, which we then simulate by a low degree
polynomial.

This section is structured as follows. In Section 7.1, we define the k-SAT factor graph, formalize the
notion of local algorithms, and state useful properties of these objects. The local algorithms we consider
extend the factors of i.i.d. model considered in [51, 45, 69]. In Section 7.2, we introduce Fix and prove that
it can be simulated by a local algorithm. In Section 7.3, we argue that any local algorithm can be simulated
by a low degree polynomial, proving Theorem 2.10. Finally, in Section 7.4, we prove a technical proposition
whose proof we deferred from Section 7.1.

7.1 Local Algorithms on the Factor Graph

We begin by introducing formalism for local algorithms on graphs. A (possibly infinite) graph G = (V,E)
is locally finite if every vertex v ∈ V has a finite number of neighbors. Throughout this section, we will
consider rooted decorated graphs, defined as follows.

26

Definition 7.1 (Rooted graph). A rooted graph is a pair (G, v), where G = (V,E) is a locally finite graph
and v ∈ V is a vertex of G.

As the definition suggests, we think of v as the root of G.

Definition 7.2 (Decorated graph). A decorated graph is a pair (G, σ), where G = (V,E) is locally finite
and the decoration map σ : E → {T, F} assigns a boolean label to each edge of G.

Definition 7.3 (Rooted decorated graph). A rooted decorated graph is a triple (G, v, σ), where (G, v) is a
rooted graph and (G, σ) is a decorated graph. Let Λ denote the set of rooted decorated graphs.

We say (G, v, σ), (G′, v′, σ′) ∈ Λ are isomorphic if there is a root and decoration preserving isomorphism
between them. We are now ready to define the two central graphs of our argument.

Definition 7.4 (k-SAT factor graph). Let G(n,m, k) denote the law of the factor graph of Φk(n,m), defined
as follows. A sample (G, σ) ∼ G(n,m, k) is a decorated bipartite graph with n left-vertices, representing
variables, and m right-vertices, representing clauses. The left and right vertex sets are denoted Va(G) and
Cl(G), respectively, and their union is denoted V (G). There are k edges emanating from each c ∈ Cl(G)
to i.i.d. uniformly random (possibly repeated) vertices in Cl(G). The edge set of G is denoted E(G). The
decoration map σ : E(G)→ {T, F} decorates the edges i.i.d. from unif({T, F}).

Each factor graph (G, σ) ∼ G(n,m, k) encodes a k-SAT instance Φ ∈ Ωk(n,m): the k left-vertices adjacent
to each right-vertex encode the k variables appearing in that clause, and the edge decorations σ encode the
polarities of the literals.

Definition 7.5 (Decorated Alternating Poisson-Constant Galton-Watson Tree). Let DAGW(d1, d2), with
parameters d1 > 0, d2 ∈ N, be the law of the following rooted decorated (possibly infinite) tree (T, o, σ).
First, we generate (T, o) by the following procedure.

• Start with a root vertex o in layer 0.

• For even `, each vertex in layer ` independently spawns Pois(d1) children in layer ` + 1. For odd `,
each vertex in layer ` spawns d2 children in layer `+ 1. Each non-root vertex is connected to its parent
by an edge.

Let V (T) and E(T) denote the sets of vertices and edges of T , and let Va(T) and Cl(T) denote the sets of
even and odd-depth vertices of T . Finally, σ : E(T)→ {T, F} decorates the edges i.i.d. from unif({T, F}).

The significance of this tree is that as n → ∞ for fixed α, k, local neighborhoods of a fixed left-vertex
of G(n, αn, k) converge to local neighborhoods of the root of DAGW(αk, k − 1), in a sense formalized by
Lemma 7.12 below. This is analogous to the fact that local neighborhoods of a fixed vertex of the sparse
Erdős-Rényi graph G(n, d/n) converge to local neighborhoods of the root of the Poisson Galton-Watson tree
PGW(d).

We will now build toward a definition of local algorithm. Informally, a local algorithm outputs a boolean
value for each variable v ∈ Va(G) of the k-SAT factor graph by looking at only a local neighborhood of v in
the factor graph. We first formalize the notions of local neighborhood and local function.

Definition 7.6 (r-neighborhood). For a locally finite graph G, a vertex v of G, and a positive integer r, the
r-neighborhood of v, denoted Nr(G, v), is the rooted graph with root v containing all vertices of G reachable
from v by a path of length at most r and all edges on these paths. We will denote the number of edges in
Nr(G, v) by |Nr(G, v)|.

Given a decoration map σ : E(G)→ {T, F}, we further define Nr(G, v, σ) as the rooted decorated graph
consisting of Nr(G, v) with the decorations provided by σ on the edges therein.

Definition 7.7 (r-local function). A function g with domain Λ is r-local if g(G, v, σ) depends only on the
isomorphism class of Nr(G, v, σ).

In other words, an r-local function decides its output by looking only at an r-neighborhood of the root,
in which the root is distinguished but the remaining vertices are not.

We will allow our local algorithm to generate i.i.d. labels attached to each vertex and edge to assist its
decision. So, let us formulate labeled variants of these definitions.

27

Definition 7.8. Let G = (V,E) be a locally finite graph, and let ϕ : V ∪ E → [0, 1]. We will refer to ϕ as
the label map.

• A rooted decorated labeled graph is a 4-tuple (G, v, σ, ϕ) where (G, v, σ) ∈ Λ. Let Λ̃ denote the set of
rooted decorated labeled graphs. Two graphs (G, v, σ, ϕ), (G′, v′, σ′, ϕ′) ∈ Λ̃ are isomorphic if there is
a root, decoration, and label preserving isomorphism between them.

• The labeled r-neighborhood Nr(G, v, σ, ϕ) is the rooted decorated labeled graph consisting of Nr(G, v)
with the decorations and labels provided by σ, ϕ on the vertices and edges therein.

• A function h with domain Λ̃ is r-local if h(G, v, σ, ϕ) depends only on the isomorphism class of
Nr(G, v, σ, ϕ).

We are now ready to define a local algorithm on the random k-SAT factor graph.

Definition 7.9 (Local Algorithm). Let (G, σ) ∼ G(n,m, k), and let h : Λ̃ → {T, F}. The local algorithm
based on h, which we denote Ah, runs as follows on input (G, σ).

• Generate labels ϕ : V (G) ∪ E(G)→ [0, 1], where each label is generated i.i.d. from unif([0, 1]).

• Output x ∈ {T, F}n, where for each v ∈ Va(G), xv = h(G, v, σ, ϕ).

We will abuse notation and identify (G, σ) with its corresponding k-SAT instance Φ ∈ Ωk(n,m). Thus we
may treat Φ as an input to Ah as well.

Before we continue, we state four lemmas pertaining to local properties of graphs. Lemmas 7.10 and 7.11
control the growth rate of local neighborhoods of DAGW(d1, d2) and G(n,m, k). Lemma 7.12 makes precise
the sense in which local neighborhoods of left-vertices of G(n, αn, k) converge to local neighborhoods of the
root of DAGW(αk, k − 1). Lemma 7.13 gives that the sum of a local function concentrates. These lemmas
are analogous to [12, Lemma 11.1, Lemma 11.2, Lemma 12.4 and Proposition 12.3], which give the analogous
claims with G(n,m, k) and DAGW(mk/n, k− 1) replaced by G(n, d/n) and PGW(d) (and for Lemmas 7.12
and 7.13, without the labels ϕ,ϕ′; including these labels does not affect the results).

Lemma 7.10. Let (T, o, σ) ∼ DAGW(d1, d2) with d1, d2 ≥ 2. There are two universal constants c0, c1 > 0
such that for every positive λ, we have

P [|N2r(T, o)| ≤ λ(d1d2)r for all positive integers r] ≥ 1− c1e−c0λ.

Lemma 7.11. Let (G, σ) ∼ G(n,m, k) with α = m/n and αk, k − 1 ≥ 2. Let v ∈ Va(G) be a fixed vertex.
There are two universal constants c0, c1 > 0 such that for every positive λ, we have

P [|N2r(G, v)| ≤ λ(αk(k − 1))r for all positive integers r] ≥ 1− c1e−c0λ.

Lemma 7.12. Let (G, σ) ∼ G(n, αn, k) and let (T, o, σ′) ∼ DAGW(αk, k− 1). Let ϕ : V (G)∪E(G)→ [0, 1]
and ϕ′ : V (T)∪E(T)→ [0, 1] be labelings, where each label is drawn i.i.d. from unif([0, 1]). Let g : Λ̃→ [−1, 1]
be a 2r-local function. There is a universal constant c > 0 such that for all sufficiently large n (depending
on α, k, r) and any fixed v ∈ Va(G),

|E[g(G, v, σ, ϕ)]− E[g(T, o, σ′, ϕ′)]| ≤ cn−0.49.

Lemma 7.13. Let (G, σ) ∼ G(n, αn, k) with αk, k − 1 ≥ 2. Let ϕ : V (G) ∪ E(G) → [0, 1] be a labeling,
where each label is drawn i.i.d. from unif([0, 1]). Let g : Λ̃ → [−1, 1] be a 2r-local function. There exists a
universal constant c > 0 such that for all p ≥ 2,

E

∣∣∣∣∣ ∑
v∈Va(G)

g(G, v, σ, ϕ)− E
∑

v∈Va(G)

g(G, v, σ, ϕ)

∣∣∣∣∣
p
 ≤ (cn1/2p3/2(αk(k − 1))r

)p
.

28

The proofs of these lemmas can be easily adapted from the corresponding proofs of [12]. For the sake
of brevity we only sketch the main ideas. Lemma 7.10 is proved by repeated conditioning, where we use a
Chernoff bound to control the number of vertices at each odd depth conditioned on the number of vertices at
the preceding even depth. Lemma 7.11 is proved by stochastic domination by DAGW(αk, k−1), followed by
Lemma 7.10. Lemma 7.12 is proved by showing that dTV (N2r(G, v, σ, ϕ), N2r(T, o, σ

′, ϕ′)) ≤ cn−0.98, where
dTV denotes total variation distance, and then applying Cauchy-Schwarz. This total variation bound is in
turn proved by a coupling of breadth-first search explorations of N2r(G, v, σ, ϕ) and N2r(T, o, σ

′, ϕ′). where
the key point is the estimate dTV(Bin(n, λ/n),Pois(λ)) ≤ λ/n. Lemma 7.13 is proved by [13, Theorem 15.5],
where Z =

∑
v∈Va(G) g(G, v, σ, ϕ) and the Z ′i are Z where we resample the k edges (and their decorations

and labels) emanating from one clause c ∈ Cl(G).
From Lemma 7.13, we can derive the following tail bound for sums of local functions.

Corollary 7.14. Let (G, σ) ∼ G(n, αn, k) with αk, k − 1 ≥ 1. Let ϕ : V (G) ∪ E(G) → [0, 1] be a labeling,
where each label is drawn i.i.d. from unif([0, 1]). Let g : Λ̃ → [−1, 1] be a 2r-local function. There exists a
universal constant c > 0 such that for all t ≥ (2e)3/2cn1/2(αk(k − 1))r,

P

∣∣∣∣∣∣
∑

v∈Va(G)

g(G, v, σ, ϕ)− E
∑

v∈Va(G)

g(G, v, σ, ϕ)

∣∣∣∣∣∣ ≥ t
 ≤ exp

(
− 3t2/3

2ec2/3n1/3(αk(k − 1))2r/3

)

Proof. Let c be the constant from Lemma 7.13. Set p = e−1
(
cn1/2(αk(k − 1))r/t

)−2/3 ≥ 2, so

P

∣∣∣∣∣∣
∑

v∈Va(G)

g(G, v, σ, ϕ)− E
∑

v∈Va(G)

g(G, v, σ, ϕ)

∣∣∣∣∣∣ ≥ t


≤ t−p E

∣∣∣∣∣∣
∑

v∈Va(G)

g(G, v, σ, ϕ)− E
∑

v∈Va(G)

g(G, v, σ, ϕ)

∣∣∣∣∣∣
p

≤ exp

(
− 3t2/3

2ec2/3n1/3(αk(k − 1))2r/3

)
.

Remark 7.15. Because we can choose g : Λ̃ → [−1, 1] in Lemmas 7.12 and 7.13 and Corollary 7.14 that
ignore the labels ϕ,ϕ′, these results also hold without the labels ϕ,ϕ′ and with g : Λ → [−1, 1]. We will
sometimes apply these results in this form.

The following technical proposition will be useful to our analysis because it bounds the size of the largest
(odd-depth) 2r-neighborhood in N2t(T, o) by a quantity that scales sublinearly in the depth t.

Proposition 7.16. Let d1, d2 ≥ 2 and r ∈ N. For any η ∈ (0, 1), there exist constants C, t∗ > 0, depending
on d1, d2, r, η, such that for all integers t ≥ t∗ the following holds. If (T, o, σ) ∼ DAGW(d1, d2), then with
probability at least 1− η, for all odd-depth vertices c ∈ Cl(T) ∩N2t(T, o), we have

|N2r(T, c)| ≤
Ct

log(r) t
,

where log(r) denotes the rth iterate of log.

We defer the proof of this proposition to Section 7.4.

7.2 Simulating Fix with a Local Algorithm

At a high level, the algorithm Fix from [25] runs in three phases. In the first phase, the algorithm produces
an almost-satisfying assignment. In the second phase, it modifies this assignment by changing a small number
of variables to “don’t know.” This is done in a way such that the remaining problem of assigning truth values

29

to the “don’t know” variables is equivalent to a very subcritical 3-SAT instance. The third phase solves the
remaining problem with a maxflow algorithm.

We will only simulate the first phase of Fix, which we will denote Fix1, by a local algorithm. This is
enough to simulate Fix with slightly larger error because the second phase of Fix sets at most a k−12 fraction
of bits to “don’t know” with high probability. Thus, a local algorithm that simulates Fix1 with error η′

simulates Fix with error η = k−12 + η′. Let us first formally record the guarantees on Fix1 proved in [25].

Theorem 7.17 (Implicit in [25, Section 3]). Let ε > 0. Let α = (1 − ε)2k log k/k and m = bαnc. Let
Φ ∼ Φk(n,m) and x = Fix1(Φ), where Fix1 is defined below in Algorithm 7.18. With probability 1 − o(1),
there exists a satisfying assignment y of Φ such that ∆(x, y) ≤ k−12.

Let us now define Fix1. To simplify notation, we name the variables 1, 2, . . . , n. This phase starts from
the all-true assignment and selects some variables Z ⊆ [n] to set false so that most clauses are satisifed. To
do this, it scans through the clauses of the input formula Φ. When it encounters an all-negative clause that
does not contain any variable from Z, it tries to add a variable from this clause to Z in a way that does not
create any more unsatisfied clauses. Formalizing this idea, we say a variable v ∈ [n]\Z is Z-safe if, when we
set all variables in [n] \ Z to true and all variables in Z to false, v is not the sole true literal in any clause.

Algorithm 7.18 (Fix, Phase 1). [25] Fix1 takes as input Φ ∈ Ωk(n,m), and runs as follows.

• Set Z = ∅.

• Relabel the clauses Φ1, . . . ,Φm in a uniformly random order. Also, for each Φi, relabel the literals
Φi,1, . . . ,Φi,k in a uniformly random order.

• For each i = 1, . . . ,m,

– If Φi is all-negative and contains no variable from Z:

∗ If there is 1 ≤ j < dk/2e such that the underlying variable of Φi,j is Z-safe, pick the smallest
such j and add the underlying variable of Φi,j to Z.

∗ Otherwise, add the underlying variable of Φi,dk/2e to Z.

• Output x ∈ {T, F}n where xi = F if i ∈ Z and otherwise xi = T.

The presentation of Fix1 in [25] does not rerandomize the clause and literal orders, but of course this
makes no difference. For technical reasons having to do with the analysis in [25], Fix1 only considers flipping
variables Φi,j where j ≤ dk/2e. The main result of this subsection is the following proposition, which shows
that Fix1 can be simulated by a local algorithm.

Proposition 7.19 (Simulating Fix1 with local algorithm). Let α, k, n,m be as in Theorem 7.17, with
αk, k − 1 ≥ 2. For any η > 0, there exists a positive integer R (depending on η) and an R-local function
h : Λ̃ → {T, F}, such that, for some coupling of the internal randomnesses of Fix1 and Ah, and for Φ ∼
Φk(n,m), we have

P [∆ (Fix1(Φ),Ah(Φ)) ≥ η] ≤ exp(−Ω(n1/3)).

We first sketch informally why such simulation should be possible. While Fix1 is not a local algorithm,
it is “sequentially local,” in the following sense.3 Like a local algorithm, Fix1 makes decisions that depend
only on information available in a local neighborhood. Namely, the logic inside the for loop depends only
on a 3-neighborhood of the clause Φi on the factor graph. But unlike a true local algorithm, which makes
all of its decisions in parallel, Fix1 makes its decisions in series, and each decision may leave information
on the vertices it accessed which future decisions can see. In a sense that will be made precise later,
sequentiality cannot induce long dependence chains. So, we can simulate Fix by simulating it on a (larger)
local neighborhood of each variable.

To prove Proposition 7.19, we will define the class of sequentially local recording algorithms and show the
stronger claim that any such algorithm in this class can be simulated by a local algorithm.

3Fix1 is “sequentially local” in a slightly different sense than the sequential local algorithms considered in [46], because it
sequentially makes local decisions on neighborhoods of each clause, while the sequentially local algorithms in [46] sequentially
make local decisions on neighborhoods of each variable. Nonetheless, by a nearly identical argument we can show that the
latter algorithms can also be simulated by local algorithms. The proof idea remains the same: sequentiality cannot induce long
dependence chains.

30

Definition 7.20 (Sequentially local recording algorithm). Let (G, σ) ∼ G(n,m, k), and let r be a positive
integer. A sequentially r-local recording algorithm receives input (G, σ) and runs as follows.

• Initialize the memory map µ : Va(G)→ N as the all-0 map.

• Generate labels ψ : E(G)→ [0, 1] i.i.d. from unif([0, 1]).

• For clauses c ∈ Cl(G), in a uniformly random order from the m! possible permutations of Cl(G):

– Run a procedure h1(G, σ, µ, ψ), which depends only on Nr(G, c) and the memory µ and labels
ψ associated with variables (left-vertices) and edges in this neighborhood. This procedure may
overwrite the values of µ(v) for any v ∈ Va(G) ∩Nr(G, c).

• Output x ∈ {T, F}n, where for each variable v ∈ Va(G), we set xv = h2(σ(v)) for a deterministic
procedure σ.

As in Definition 7.9, we will abuse notation and treat Φ ∈ Ωk(n,m), which we identify with its factor graph
(G, σ), as an input to a sequentially local recording algorithm.

Informally, these algorithms have access to a memory map µ : V (G) → N, which we think of as an
unlimited notepad on each variable, and internally generated randomness ψ for each edge. It processes
clauses c ∈ Cl(G) in a uniformly random order; in each step, the subroutine h1 accesses the r-neighborhood
of c and can overwrite the data written on any variable in that neighborhood. In the end, each variable
decides to be true or false depending on the final value written on its notepad.

Let us see that Fix1 is in this class.

Fact 7.21. There exists a sequentially 3-local recording algorithm B such that the internal randomnesses of
B and Fix1 can be coupled so that for all Φ ∈ Ωk(n,m), B(Φ) = Fix1(Φ) almost surely.

Proof. We couple the clause orderings of Fix1 and B so that their for loops run over the clauses in the same
order. For each clause c ∈ Cl(G), we couple the rerandomization of the literal order within c in Fix1 with
the edge labels {ψ(e) : e incident to c} so that Fix1 orders these literals in increasing order of the labels on
their edges to c.

We will simulate Z with µ: over the coupled executions of Fix1 and B, we will keep the invariant that
for each v ∈ Va(G), µ(v) = 1 if v ∈ Z, and µ(v) = 0 otherwise. We can easily verify that the logic inside the
for loop only depends on a 3-neighborhood of Φi.

We now define the local algorithm that will simulate an r-local recording algorithm and state our simu-
lation result, Proposition 7.23. Intuitively, the R-local simulation A of B runs B restricted to NR(G, v), and
because sequentiality cannot induce long-rance dependencies this will often give the correct output.

Definition 7.22 (R-local simulation). Suppose B is a sequentially r-local recording algorithm. For a positive
integer R, the R-local simulation of B is the R-local algorithm A = Ah, whose internal randomness is coupled
with that of B as follows.

• The labels {ϕ(e) : e ∈ E(G)} generated by A equal the labels {ψ(e) : e ∈ E(G)} generated by B.

• The clause ordering of B is coupled with the labels {ϕ(c) : c ∈ Cl(G)} generated by A, so that the for
loop of B runs through the clauses in increasing order of ϕ(c).

• The labels {ϕ(v) : v ∈ Va(G)} are independent of the internal randomness of B (and unused by A).

The R-local function h : Λ̃→ [0, 1] associated with A is as follows. On input (G, v, σ, ϕ), h treats NR(G, v, σ)
as a factor graph, where the even-depth vertices represent variables and the odd-depth vertices represent
clauses.4 h runs B on this factor graph, where the labels ψ are those of {ϕ(e) : e ∈ E(G) ∩NR(G, v)} and
the for loop runs through the clauses in increasing order of ϕ(c) for c ∈ Cl(G) ∩NR(G, v).

4Even and odd depth are well defined because G is bipartite.

31

Proposition 7.23 (Local algorithms simulate sequentially local recording algorithms). Suppose αk, k−1 ≥
2. Let B be a sequentially r-local recording algorithm. For any η > 0, there exists a positive integer R
(depending on η) such that the R-local simulation A of B satisfies

P [∆(A(Φ),B(Φ)) ≥ η] ≤ exp(−Ω(n1/3)).

From these results, Proposition 7.19 is immediate.

Proof of Proposition 7.19. This follows from Fact 7.21 and Proposition 7.23.

It remains to prove Proposition 7.23. The main idea of the proof is that if, in the execution of B, the
output on v is influenced by a chain of t consecutive decisions, the following structure must exist in its local
simulations.

Definition 7.24 ((r, t)-dependence chain). Let r, t be a positive integers. Let (G, v) be a bipartite rooted
graph with vertices V (G), edges E(G), and odd-depth vertices Cl(G). Let ϕ : V (G) ∪ E(G) → [0, 1] be a
labeling. An (r, t)-dependence chain of (G, v, ϕ) is a sequence (c1, . . . , ct) ∈ Cl(G) such that c1 ∈ Nr(v),
ci+1 ∈ N2r(ci) for i = 1, . . . , t− 1, and the labels ϕ(c1), . . . , ϕ(ct) form a decreasing sequence.

We will first bound the probability that this structure arises in DAGW(d1, d2). We will then translate
this to a bound on the number of times this structure arises in the k-SAT factor graph, via the machinery
in Lemma 7.12 and Corollary 7.14.

Proposition 7.25. Let d1, d2 ≥ 2, r ∈ N, and η ∈ (0, 1). Let (T, o, σ) ∼ DAGW(d1, d2), and let ϕ :
V (T)∪E(T)→ [0, 1] be labels generated i.i.d. from unif([0, 1]). There exists t∗ > 0, depending on d1, d2, r, η,
such that for all integers t ≥ t∗, (T, o, ϕ) does not have an (r, t)-dependence chain with probability at least
1− η.

Proof. By Lemma 7.10, we can set λ > 0 such that with probability 1 − η/3, |N2r(T, o)| ≤ λ(d1d2)r. By
applying Proposition 7.16 with η/3 in place of η and R = rt in place of t, we get that (for sufficiently large
t) with probability 1− η/3, for all c ∈ Cl(T)∩N2rt(T, o), we have |N2r(T, c)| ≤ Ct

log(r) t
, for another constant

C. By a union bound, both events occur with probability 1− 2η/3.
On the intersection of these events, the number of sequences (c1, . . . , ct) ∈ Cl(G) such that c1 ∈ Nr(v),

ci+1 ∈ N2r(v) for i = 1, . . . , t− 1, is at most

λ(d1d2)r
(

Ct

log(r) t

)t−1

.

This is because there are at most λ(d1d2)r choices for c1, and at most Ct
log(r) t

choices of ci+1 given ci. In

each of these sequences, the labels ϕ(c1), . . . , ϕ(ct) form a decreasing sequence with probability 1
t! , so the

expected number of (r, t) dependence chains is at most

λ(d1d2)r
(

Ct

log(r) t

)t−1

· 1

t!
.

Because t! ∼
√

2πt
(
t
e

)t
, for a large enough constant t this number is at most η/3. By Markov’s inequality,

for this t, the probability of there being an (r, t)-dependence chain is at most η/3.
By a final union bound, the result follows.

Finally, we can prove Proposition 7.23.

Proof of Proposition 7.23. We set t large enough that Proposition 7.25 holds with kα, k − 1, r, η/3 in place
of d1, d2, r, η. Let (T, o, σ) ∼ DAGW(kα, k− 1) and ϕ′ : V (T)∪E(T)→ [0, 1] be labels generated i.i.d. from
unif([0, 1]). Thus with probability 1− η/3, (T, o, ϕ′) does not have an (r, t)-dependence chain.

Let (G, σ) be the factor graph of Φ. We set R = 2rt. Let A be the R-local simulation of B and
ϕ : V (G) ∪ E(G) → [0, 1] be the internal randomness of A. For v ∈ Va(G), if (G, v, ϕ) does not have a
(t, r)-dependence chain, then A and B output the same bit in the v position. Moreover, the event that

32

(G, v, ϕ) has a (t, r)-dependence chain is an R-local function of (G, v, σ, ϕ). Thus, applying Corollary 7.14
with t = η

3n and Lemma 7.12, we have that

∆(A(Φ),B(Φ)) ≤ 1

n

∑
v∈Va(G)

1 {(G, v, ϕ) has a (t, r)-dependence chain}

≤ η

3
+ E1 {(G, v, ϕ) has a (t, r)-dependence chain}

≤ η

3
+ cn−0.49 + E1 {(T, o, ϕ′) has a (t, r)-dependence chain}

≤ 2η

3
+ cn−0.49 < η,

where the second inequality occurs with probability 1 − exp(−Ω(n1/3)) and the remaining steps are deter-
ministic.

7.3 Simulating a Local Algorithm by a Low Degree Polynomial

So far, we have showed that Fix1 can be simulated by a local algorithm. In this section, we will show that any
local algorithm can be simulated by a low degree polynomial, thereby completing the proof of Theorem 2.10.

To formalize parsing the output of a polynomial as a boolean assignment, we introduce the symbol ? and
define the function boolify : R→ {T, F, ?} by

boolify(x) =


T x = 1,

F x = −1,

? otherwise.

When applied to a vector, boolify is applied coordinate-wise. Note that this is a more demanding parsing
scheme than the one in Definition 2.4. We will show in Proposition 7.26 that we can in fact simulate a local
algorithm with a low degree polynomial, parsed by this stronger rule.

Let N = m ·k ·2n, and recall that each Φ ∈ Ωk(n,m) can be identified as a vector in {0, 1}N , as described
in Section 2.

Proposition 7.26. Let A = Ah be an r-local algorithm, where h : Λ̃ → {T, F} is an r-local function.
For any η > 0, there exist constants D, γ > 0 (depending on r, η) and a (random) degree-D polynomial
f : RN × Ω → Rn, whose randomness ω ∼ Ω is coupled to the internal randomness of A, such that the
following properties hold.

• P [∆(Ah(Φ),boolify(f(Φ))) ≥ η] ≤ exp(−Ω(n1/3)).

• Eω,Φ ‖f(Φ)‖22 ≤ γn.

The proof of this proposition closely resembles the proof of [71, Theorem 1.4].

Proof. Let (G, σ) be the factor graph corresponding to Φ ∼ Φk(n,m); we identify the set Va(G) with [n]. The
internal randomness of f samples the same ϕ : V (G) ∪ E(G)→ [0, 1] as A. Let s be a constant (depending
on r, η) to be chosen later. We will construct f with the following property:

For all v ∈ Va(G), if Nr(G, v) is a tree and |Nr(G, v)| ≤ s, then fv(Φ, ϕ) = boolify−1(h(G, v, σ, ϕ)).
(7.1)

We construct f recursively, as follows. Recall that the vectorization of Φ consists of indicators Φi,j,` of the
events that the jth literal of the ith clause of Φ is the `th literal of L. We can naturally associate the triple
(i, j, `) with an edge of the factor graph, where ` determines the edge’s endpoint on Va(G) and i determines
the endpoint of the edge in Cl(G); denote this edge e(i, j, `). For a set S ⊆ [m] × [k] × [2n], define e(S) as
the (multi-)graph on vertex set V (G) with edges e(i, j, `) for each (i, j, `) ∈ S. Let Gv,r,` be the collection of
sets S ⊆ [m]× [k]× [2n], such that

33

(a) e(S) is a simple graph, and a tree in which every non-isolated vertex has a path to v of length at most
r.

(b) |S| ≤ s.

Equivalently, Gv,r,s is the set of collections of (i, j, `) corresponding to all possible r-neighborhoods of v of
size at most s. We will set

fv(Φ, ϕ) =
∑

S∈Gv,r,s

α(e(S), v, σ, ϕ)
∏

(i,j,`)∈S

Φ(i,j,`). (7.2)

where the coefficients α(e(S), v, σ, ϕ) are chosen so the above property is satisfied. That is, α(e(S), v, σ, ϕ)
is defined recursively by

α(e(S), v, σ, ϕ) = boolify−1(h(e(S), v, σ, ϕ))−
∑
S′(S

α(e(S′), v, σ, ϕ). (7.3)

It is clear that this f satisfies (7.1). To show the first conclusion, we will show that with probability at least
1− exp(−Ω(n1/3)), the number of v ∈ Va(G) where Nr(G, v) is a tree and |Nr(G, v)| ≤ s is at least (1−η)n.

Let T be the set of rooted trees containing one representative from each isomorphism class of rooted
trees of depth at most r. Let Ts be the subset of T containing the trees with at most s edges. For T ∈ T ,
let nT be the number of vertices v ∈ Va(G) with r-neighborhood T , i.e.

nT = # (v ∈ Va(G) : Nr(G, v) ∼= T) .

Similarly, let pT be the probability T occurs as the r-neighborhood of the root in DAGW(kα, k − 1), i.e.

pT = P
(U,o,σ)∼DAGW(kα,k−1)

[Nr(U, o) = T]

Choose s large enough that
∑
T∈Ts pT ≥ 1−η/3. Because the function (G, v) 7→ 1 {Nr(G, v) ∼= T} is r-local,

Lemma 7.12 gives that for each T ∈ Ts,

|E[nT]− pTn| ≤ cn0.51.

Corollary 7.14, with t = ηn
3|Ts| , gives that with probability 1− exp(−Ω(n1/3)),

|nT − E[nT]| ≤ ηn

3|Ts|
.

Suppose this event occurs. Then,∑
T∈Ts

nT ≥
∑
T∈Ts

(
E[nT]− ηn

3|Ts|

)
≥
∑
T∈Ts

(
pTn− cn0.51 − ηn

3|Ts|

)
= n

∑
T∈Ts

pT −
ηn

3
− c|Ts|n0.51

≥
(

1− 2η

3

)
n− c|Ts|n0.51 ≥ (1− η)n.

This proves the first conclusion.
To prove the second conclusion, we will show that EΦ,ϕ[fv(Φ, ϕ)2] = O(1) uniformly over v ∈ Va(G).

Define the random variable M = |Nr(G, v)|. In the expansion (7.2), the monomial indexed by S ∈ Gv,r,s is
only nonzero if e(S) is a subgraph of Nr(G, v). So, the number of nonzero monomials is at most

ks
s∑
i=0

(
M

s

)
≤ ks(M + 1)s.

Moreover, from (7.3) we see that each of the coefficients α(e(S), v, σ, ϕ) is upper bounded by a constant a
dependent on r, s. So,

fv(Φ, ϕ)2 ≤ a2k2s(M + 1)2s.

Lemma 7.11 gives that P [M ≥ x] ≤ C0 exp(−C1x) for some constants C0, C1; by integration by tails, we get
E[(M + 1)2s] = O(1). So, E[fv(Φ, ϕ)2] = O(1), as desired.

34

The proof of Theorem 2.10 follows readily from this proposition and the previous results.

Proof of Theorem 2.10. Set η′ = η−k−12

2 . By Proposition 7.19, there exists a positive integer R and R-local

function h : Λ̃→ {T, F} such that for some coupling of the internal randomness of Fix1 and Ah,

P [∆(Fix1(Φ),Ah(Φ)) ≥ η′] ≤ exp(−Ω(n1/3)).

Let f be the random degree-D polynomial given by Proposition 7.26. For some coupling of the internal
randomness of Ah and f ,

P [∆(Ah(Φ),boolify(f(Φ))) ≥ η′] ≤ exp(−Ω(n1/3)).

Combined with Theorem 7.17, we have that except with probability δ = o(1) + exp(−Ω(n1/3)) = o(1),
boolify(f(Φ)) outputs an assignment within normalized Hamming distance k−12 + 2η′ = η of a satisfying

assignment of Φ. Proposition 7.26 also gives that Eω,Φ ‖f(Φ)‖22 ≤ γn.
Thus f is a random degree-D polynomial that (δ, γ, η)-solves Φk(n,m). Finally, by Lemma 4.1, we can

make f deterministic in exchange for a constant factor in δ, γ.

7.4 Proof of Proposition 7.16

In this subsection, we will prove the technical Proposition 7.16. We introduce the following inverted version
of DAGW(d1, d2), which will be useful because the neighborhoods of odd-depth vertices of DAGW(d1, d2)
resemble IDAGW(d1, d2), in a way formalized by Fact 7.28 below.

Definition 7.27 (Inverted Decorated Alternating Galton-Watson Tree). Let IDAGW(d1, d2), with param-
eters d1 > 0, d2 ∈ N be the law of the following rooted decorated (possibly infinite) tree (T, o, σ). The root o
has d2 + 1 children each connected to o by an edge, and σ decorates each of these edges independently from
unif({T, F}). The descendant subtrees of each of these children are i.i.d. copies of DAGW(d1, d2).

Fact 7.28. Let (T, o, σ) ∼ DAGW(d1, d2) and (T ′, o′, σ′) ∼ IDAGW(d1, d2), and let v be an odd-depth vertex
of T . Then, for any r, |Nr(T, v)| is stochastically dominated by |Nr(T ′, o′)|.

Proof. When we re-root (T, o) at v, we get a sample from IDAGW(d1, d2), except that the original root o
has one fewer child.

Next, we prove a variant of Lemma 7.10 for IDAGW and finite r, where we achieve a better error
probability far in the tail.

Lemma 7.29. Let d1, d2 ≥ 2 and r ∈ N. Let (T, o, σ) ∼ IDAGW(d1, d2). Then, for all sufficiently large s
(depending on d1, d2, r) we have that

P
[
|N2r(T, o)| >

2s

log(r) s
(d1d2)r

]
≤ e−s.

Proof. For 1 ≤ ` ≤ 2r, let S` denote the number of vertices in IDAGW(d1, d2) at depth `. Then, S1 = d2 +1.
For odd ` ≥ 1, S`+1 is the sum of S` i.i.d. copies of Pois(d1), and for even ` ≥ 1, S`+1 = d2S`.

For u = 1, 2, . . . , r, define the events

Eu =

{
S2u−1 ≤

s

log(u−1) s
(d2 + 1)(d1d2)u−1

}
and E′u =

{
S2u ≤

s

log(u) s
d1(d2 + 1)(d1d2)u−1

}
.

On
⋂r
u=1(Eu ∩ E′u), we have

|N2r(T, o)| ≤
2r∑
`=1

S` ≤
s

log(r) s
· (d1 + 1)(d2 + 1)(d1d2)r−1

1− (d1d2)−1
≤ 2s

log(r) s
(d1d2)r.

35

So, it remains to show that P [
⋂r
u=1(Eu ∩ E′u)] ≥ 1 − e−s. Note that E1 holds by definition, while E′u is

equivalent to Eu+1. We will upper bound P((E′u)c|Eu). Let N = s
log(u−1) s

(d2 + 1)(d1d2)u−1. Conditioned

on Eu, S2u is stochastically dominated by
∑N
i=1 xi, where the xi are i.i.d. samples from Pois(d1). So,

P [(E′u)c|Eu] ≤ P

[
N∑
i=1

xi >
log(u−1) s

log(u) s
d1N

]
≤

 inf
s>0

E exp(sx1)

exp
(

log(u−1) s
log(u) s

d1

)
N

= exp

(
−Nd1γ

(
log(u−1) s

log(u) s

))

= exp

(
− s

log(u−1) s
d1(d2 + 1)(d1d2)u−1γ

(
log(u−1) s

log(u) s

))
.

where γ(x) = x log x− x+ 1. We can take s large enough that for all u = 1, . . . , r, we have

γ

(
log(u−1) s

log(u) s

)
≥ 1

2
log(u−1) s,

while the bounds d1, d2 ≥ 2 give d1(d2 + 1)(d1d2)u−1 ≥ 2(u+ 1). Thus,

P [(E′u)c|Eu] ≤ exp(−(u+ 1)s),

and so

P

[
r⋂

u=1

(Eu ∩ E′u)

]
≥ 1−

r∑
u=1

P [(E′u)c|Eu] ≥ 1−
∞∑
u=1

e−(u+1)s ≥ 1− e−s

for sufficiently large s.

We can now complete the proof of Proposition 7.16.

Proof of Proposition 7.16. Set constant λ > 0 such that the conclusion of Lemma 7.10 holds with probability
1− η/2. On this event, |N2t(T, o)| ≤ λ(d1d2)t for all t. Set s so that λ(d1d2)te−s = η/2; note that s = Θ(t).
For all sufficiently large t, s is large enough that Lemma 7.29 applies. Then, by Fact 7.28, Lemma 7.29, and
a union bound, |N2r(T, c)| ≤ 2s

log(r) s
(d1d2)r for all c ∈ Cl(T) ∩ N2t(T, o) with probability 1 − η/2. Because

s = O(t), we have 2s
log(r) s

(d1d2)r ≤ Ct
log(r) t

for some C. By a union bound, the conclusion occurs with

probability 1− η.

References

[1] Dimitris Achlioptas. Random Satisfiability. Handbook of Satisfiability, 185:245-270, 2009.

[2] Dimitris Achlioptas, Paul Beame, and Michael Molloy. Exponential bounds for DPLL below the satisfi-
ability threshold. Proceedings of 15th SODA, 139-140, 2004.

[3] Dimitris Achlioptas and Amin Coja-Oghlan. Algorithmic barriers from phase transitions. Proceedings of
49th FOCS, 793-802, 2008.

[4] Dimitris Achlioptas and Gregory B. Sorkin. Optimal myopic algorithms for random 3-SAT. Proceedings
of 41st FOCS, 590–600, 2000.

[5] Miklós Ajtai. Σ1
1-formulae on finite structures. Annals of Pure and Applied Logic, 24(1):1–48, 1983.

[6] Gérard B. Arous, Alexander S. Wein, and Ilias Zadik. Free energy wells and overlap gap property in
sparse PCA. Proceedings of 33rd COLT, 479-482, 2020.

[7] Afonso S. Bandeira, Dmitriy Kunisky, and Alexander S. Wein. Computational hardness of certifying
bounds on constrained PCA problems. Proceedings of 11th ITCS, 2020.

36

[8] Afonso S. Bandeira, Jess Banks, Dmitriy Kunisky, Cristopher Moore, and Alexander S. Wein. Spectral
planting and the hardness of refuting cuts, colorability, and communities in random graphs. Conference
on Learning Theory (COLT), 2021.

[9] Boaz Barak, Samuel B. Hopkins, Jonathan Kelner, Pravesh K. Kothari, Ankur Moitra, and Aaron
Potechin. A nearly tight sum-of-squares lower bound for the planted clique problem. SIAM Journal on
Computing, 48(2):687-735, 2019.

[10] Mohsen Bayati, David Gamarnik, and Prasad Tetali. Combinatorial approach to the interpolation
method and scaling limits in sparse random graphs. Proceedings of 42nd STOC, 105-114, 2010.

[11] Mohsen Bayati and Andrea Montanari. The dynamics of message passing on dense graphs, with appli-
cations to compressed sensing. IEEE Transactions on Information Theory, 57(2):764-785, 2011.

[12] Charles Bordenave, Simon Coste, and Raj Rao Nadakuditi. Detection thresholds in very sparse matrix
completion. arXiv:2005.06062, preprint 2020.

[13] Stéphane Boucheron, Gábor Lugosi, and Pascal Massart. Concentration inequalities. Oxford University
Press, 2013.

[14] Alfredo Braunstein, Marc Mézard, and Riccardo Zecchina. Survey propagation: an algorithm for satis-
fiability. Random Structures & Algorithms, 27(2):201-226, 2005.

[15] Matthew Brennan and Guy Bresler. Reducibility and statistical-computational gaps from secret leakage.
Proceedings of 33rd COLT, 648-847, 2020.

[16] Matthew Brennan, Guy Bresler, Samuel B. Hopkins, Jerry Li, and Tselil Schramm. Statistical query
algorithms and low-degree tests are almost equivalent. Conference on Learning Theory (COLT), 2021.

[17] Michael Celentano and Andrea Montanari. Fundamental barriers to high-dimensional regression with
convex penalties. arXiv:1903.10603, preprint 2019.

[18] Ming-Te Chao and John Franco. Probabilistic analysis of a generalization of the unit-clause literal
selection heuristic for the k-satisfiability problem. Information Sciences, 51:289-314, 1990.

[19] Moses Charikar, Konstantin Makarychev, and Yury Makarychev. Integrality Gaps for Sherali-Adams
Relaxations. Proceedings of 41st STOC, 283-292, 2009.

[20] Ruiwen Chen, Rahul Santhanam, and Srikanth Srinivasan. Average-case lower bounds and satisfiability
algorithms for small threshold circuits. Theory of Computing, 14(9):1-55, 2018.

[21] Wei-Kuo Chen, David Gamarnik, Dmitry Panchenko, and Mustazee Rahman. Suboptimality of local
algorithms for a class of max-cut problems. Annals of Probability, 47(3):1587-1618, 2019.

[22] Yeshwanth Cherapanamjeri, Samuel B. Hopkins, Tarun Kathuria, Prasad Raghavendra, and Nilesh
Tripuraneni. Algorithms for heavy-tailed statistics: Regression, covariance estimation, and beyond. Pro-
ceedings of 52nd STOC, 601-609, 2020.

[23] Václav Chvátal and Bruce Reed. Mick gets some (the odds are on his side). Proceedings of 33th FOCS,
620-627, 1992.

[24] Václav Chvátal and Endre Szemerédi. Many hard examples for resolution. Journal of the ACM,
35(4):759–768, 1988.

[25] Amin Coja-Oghlan. A better algorithm for random k-SAT. SIAM Journal on Computing, 39:2823-2864,
2010.

[26] Amin Coja-Oghlan and Charilaos Efthymiou. On independent sets in random graphs. Random Struc-
tures & Algorithms, 47(3):436-486, 2015.

37

[27] Amin Coja-Oghlan, Uriel Feige, Alan Frieze, Michael Krivelevich, and Dan Vilenchik. On smoothed
k-CNF formulas and the Walksat algorithm. Proceedings of 20th SODA, 451-460, 2009.

[28] Amin Coja-Oghlan, Amir Haqshenas, and Samuel Hetterich. Walksat stalls well below the satisfiability
threshold. SIAM Journal on Discrete Mathematics, 31:160-1173, 2017.

[29] Amin Coja-Oghlan and Konstantinos Panagiotou. The asymptotic k-SAT threshold. Advances in Math-
ematics, 288:985-1068, 2016.

[30] Stephen Cook. The complexity of theorem proving procedures. Proceedings of 3rd STOC, 151-158, 1971.

[31] Martin Davis, George Logemann, and Donald Loveland. A machine program for theorem proving.
Communications of the ACM, 5(7):394-397, 1961.

[32] Martin Davis and Hilary Putnam. A computing procedure for quantification theory. Journal of the
ACM, 7(3):201-205, 1960.

[33] Jian Ding, Allan Sly, and Nike Sun. Proof of the satisfiability conjecture for large k. Proceedings of 47th
STOC, 59-68, 2015.

[34] Yunzi Ding, Dmitriy Kunisky, Alexander S Wein, and Afonso S. Bandeira. Subexponential-time algo-
rithms for sparse PCA. arXiv:1907.11635, preprint 2019.

[35] David L. Donoho, Arian Maleki, and Andrea Montanari. Message-passing algorithms for compressed
sensing. Proceedings of the National Academy of Sciences, 106(45):18914-18919, 2009.

[36] Ahmed El Alaoui, Andrea Montanari, and Mark Sellke. Optimization of mean-field spin glasses.
arXiv:2001.00904, preprint 2020.

[37] John Franco and Marvin Paull. Probabilistic analysis of the Davis–Putnam procedure for solving the
satisfiability problem. Discrete Applied Mathematics, 5(1):77–87, 1983.

[38] Alan Frieze. On the independence number of random graphs. Discrete Mathematics, 81(2):171-175,
1990.

[39] Alan Frieze and Stephen Suen. Analysis of two simple heuristics on a random instance of k-SAT. Journal
of Algorithms, 20:312-355, 1996.

[40] Merrick L. Furst, James B. Saxe, and Michael Sipser. Parity, circuits, and the polynomial-time hierarchy.
Mathematical Systems Theory, 17(1):13-27, 1984.

[41] David Gamarnik and Aukosh Jagannath. The overlap gap property and approximate message passing
algorithms for p-spin models. Annals of Probability, 2021.

[42] David Gamarnik, Aukosh Jagannath, and Subhabrata Sen. The overlap gap property in principal sub-
matrix recovery. arXiv:1908.09959, preprint 2019.

[43] David Gamarnik, Aukosh Jagannath, and Alexander S. Wein. Low-degree hardness of random opti-
mization problems. Proceedings of 61st FOCS, 2020.

[44] David Gamarnik and Eren C. Kızıldağ. Algorithmic obstructions in the random number partitioning
problem. arXiv:2103.01369, preprint 2021.

[45] David Gamarnik and Madhu Sudan. Limits of local algorithms over sparse random graphs. The Annals
of Probability, 45(4):2353-2376, 2017.

[46] David Gamarnik and Madhu Sudan. Performance of sequential local algorithms for the random NAE-
k-SAT problem. SIAM Journal on Computing, 46(2):590-619, 2017.

[47] David Gamarnik and Ilias Zadik. The landscape of the planted clique problem: dense subgraphs and
the overlap gap property. arXiv:1904.07174, preprint 2019.

38

[48] Allen T. Goldberg, Paul W. Purdom, and Cynthia Brown. Average time analysis of simplified Davis-
Putnam procedures. Information Processing Letters, 15:72–75, 1982.

[49] Dima Grigoriev. Linear lower bound on degrees of Positivstellensatz calculus proofs for the parity.
Theoretical Computer Science, 259(1-2):613-622, 2001.

[50] Johan H̊astad. Almost optimal lower bounds for small depth circuits. Proceedings of 18th STOC, 6-20,
1986.

[51] Hamed Hatami, László Lovász, and Balázs Szegedy. Limits of local-global convergent graph sequences.
arXiv:1205.4356, preprint 2012.

[52] Samuel Hetterich. Analysing survey propagation guided decimation on random formulas. Proceedings of
43rd ICALP, #65, 2016

[53] Samuel B. Hopkins. Statistical Inference and the Sum of Squares Method. PhD thesis, Cornell University,
2018.

[54] Samuel B. Hopkins, Pravesh K. Kothari, Aaron Potechin, Prasad Raghavendra, Tselil Schramm, and
David Steurer. The power of sum-of-squares for detecting hidden structures. Proceedings of 58th FOCS,
720-731, 2017.

[55] Samuel B. Hopkins and David Steurer. Efficient bayesian estimation from few samples: community
detection and related problems. Proceedings of 58th FOCS, 379-390, 2017.

[56] Adel Javanmard and Andrea Montanari. State evolution for general approximate message passing algo-
rithms, with applications to spatial coupling. Information and Inference: A Journal of the IMA, 2(2):115-
144, 2013.

[57] Richard M. Karp. The probabilistic analysis of some combinatorial search algorithms, in Algorithms
and Complexity: New Directions and Recent Results, J. F. Traub, ed., Academic Press, New York, pp.
1-19, 1976.

[58] Lefteris M. Kirousis, Evangelos Kranakis, Danny Krizanc, Yannis C. Stamatiou. Approximating the
unsatisfiability threshold of random formulas. Random Structures & Algorithms, 12(3):253–269, 1998.

[59] Pravesh K. Kothari, Ryuhei Mori, Ryan O’Donnell, and David Witmer. Sum of squares lower bounds
for refuting any CSP. Proceedings of 49th STOC, 132-145, 2017.

[60] Florent Krzakala, Andrea Montanari, Federico Ricci-Tersenghi, Guilhem Semerjian, and Lenka Zde-
borová. Gibbs states and the set of solutions of random constraint satisfaction problems. Proceedings of
the National Academy of Sciences, 104:10318-10323, 2007.

[61] Dmitriy Kunisky, Alexander S. Wein, and Afonso S. Bandeira. Notes on computational hardness of
hypothesis testing: predictions using the low-degree likelihood ratio. arXiv:1907.11636, preprint 2019.

[62] Michael G. Luby, Michael Mitzenmacher, and M. Amin Shokrollahi. Analysis of random processes via
and-or tree evaluation. Proceedings of 9th SODA, 364-373, 1998.

[63] Yuetian Luo and Anru R. Zhang. Tensor clustering with planted structures: statistical optimality and
computational limits. arXiv:2005.10743, 2020.

[64] Andrea Montanari. Optimization of the Sherrington-Kirkpatrick hamiltonian. Proceedings of 60th
FOCS, 1417-1433, 2019.

[65] Andrea Montanari, Federico Ricci-Tersenghi, and Guilhem Semerjian. Solving constraint satisfaction
problems through belief propagation-guided decimation. Proceedings of 45th Allerton, 352-359, 2007.

[66] Danny Nam, Allan Sly, and Youngtak Sohn. One-step replica symmetry breaking of random regular
NAE-k-SAT. arXiv:2011.14270, preprint 2020.

39

[67] Ryan O’Donnell. Analysis of Boolean functions. Cambridge University Press, 2014.

[68] Christos H. Papadimitriou. On selecting a satisfying truth assignment. Proceedings of 32 FOCS, 163-169,
1991.

[69] Mustazee Rahman and Bálint Virág. Local algorithms for independent sets are half-optimal. The Annals
of Probability, 45(3):1543-1577, 2017.

[70] Tselil Schramm and Alexander S. Wein. Computational barriers to estimation from low-degree polyno-
mials. arXiv:2008.02269, preprint 2020.

[71] Alexander S. Wein. Optimal low-degree hardness of maximum independent set. arXiv:2010.06563,
preprint 2020.

A Small Hamming Distance Implies Small Conditional Overlap
Entropy

In this section, we present the deferred proof of Lemma 4.8, which shows that a small change in x ∈ {T, F}n
causes only a small change in H(π(x|y(0), . . . , y(`−1))).

Lemma 4.8. Let ` ∈ N be arbitrary and let x, x′, y(0), . . . , y(`−1) ∈ {T, F}n. If ∆(x, x′) ≤ 1
2 , then∣∣∣H (π(x|y(0), . . . , y(`−1))

)
−H

(
π(x′|y(0), . . . , y(`−1))

)∣∣∣ ≤ H (∆(x, x′)) .

The H(·) on the right denotes the binary entropy function.

Proof. For each partition {S, T} ∈ P2(`), let

IS,T =
{
i ∈ [n] : all {y(t)

i : t ∈ S} equal one value and all {y(t)
i : t ∈ T} equal the other value

}
.

Note that |IS,T | = πS,Tn. If πS,T 6= 0, define

λS,T =
1

|IS,T |
(i ∈ IS,T : xi = T) and λ′S,T =

1

|IS,T |
(i ∈ IS,T : x′i = T) .

(If πS,T = 0, we can set these values arbitrarily in [0, 1].) Thus,

1

2
≥ ∆(x, x′) ≥

∑
{S,T}∈P2(`)

πS,T |λS,T − λ′S,T |.

Let
∑
{S,T}∈P2(`) πS,T |λS,T −λ′S,T | = µ. Thus µ ≤ ∆(x, x′) ≤ 1

2 . Moreover, from the definition of conditional
overlap entropy,

H
(
π(x|y(0), . . . , y(`−1))

)
=

∑
{S,T}∈P2(`)

πS,TH(λS,T),

and analogously for x′. Note that H(·) is concave, so H ′(·) is decreasing. Thus, for all [a, b] ∈ [0, 1] with
a ≥ b,

H(a)−H(b) =

∫ b

a

H ′(x) dx ≤
∫ a−b

0

H ′(x) dx = H(a− b).

Similarly H(1− b)−H(1− a) ≤ H(a− b), whence |H(a)−H(b)| ≤ H(a− b). Thus,∣∣∣H (π(x|y(0), . . . , y(`−1))
)
−H

(
π(x′|y(0), . . . , y(`−1))

)∣∣∣ ≤ ∑
{S,T}∈P2(`)

πS,T
∣∣H(λS,T)−H(λ′S,T)

∣∣
≤

∑
{S,T}∈P2(`)

πS,TH
(
|λS,T − λ′S,T |

)
.

40

By concavity of H(·), this last quantity has maximum value H(µ), attained when all the |λS,T − λ′S,T | are

equal to µ. Because H(·) is increasing on [0, 1
2] and µ ≤ ∆(x, x′) ≤ 1

2 , we conclude that∣∣∣H (π(x|y(0), . . . , y(`−1))
)
−H

(
π(x′|y(0), . . . , y(`−1))

)∣∣∣ ≤ H(µ) ≤ H (∆(x, x′)) .

B On Improving the Constant κ∗

In this section, we discuss how the constant κ∗ in Theorem 2.6 can be improved. We define a constant κ∗∗

as the solution to a maximin problem. We will show that κ∗∗ ≤ κ∗ and sketch how our proof of Theorem 2.6
can be lightly modified to improve the constant κ∗ to κ∗∗. We then heuristically argue that κ∗∗ < κ∗, so
that this modification is an improvement. We also prove that κ∗∗ is bounded below by a constant larger
than 1, approximately 1.716, and thus further ideas are needed to fully close the constant-factor gap between
Theorems 2.6 and 2.10. Because κ∗∗ remains bounded away from 1, and we believe 1 is the optimal constant,
we did not attempt to rigorously evaluate κ∗∗. The full arguments given for κ∗ in the body of the paper are
also more intuitive than those for κ∗∗.

B.1 A Maximin Problem

Let (Ξ, Pξ) be an arbitrary probability space. LetQ be the space of functions q : Ξ→ [0, 1], equipped with the
metric d(q, q′) = Eξ |q(ξ)− q′(ξ)|. For q ∈ Q, let D(q) be the law of u sampled by the following experiment:
sample ξ ∼ (Ξ, Pξ); then, with probability q(ξ), set u = − log q(ξ) and otherwise set u = − log(1 − q(ξ)).
Clearly Eu∼D(q) u = EξH(q(ξ)). Define

F (q) =
1

log k
· log 2 + kEξH(q(ξ))

P(u1,...,uk)∼D(q)⊗k

[∑k
i=1 ui ≥ log k + log log k

] .
Let P be the set of functions p : Ξ × [0, 1] → [0, 1], such that p(ξ, 0) ∈ {0, 1} and p(ξ, 1) = 1

2 for all ξ ∈ Ξ,
and p(·, s) (which, for fixed s ∈ [0, 1], is an element of Q) is continuous in s with respect to the topology of
Q. Consider the maximin problem

κ∗∗ = lim sup
k→∞

max
p∈P

min
s∈[0,1]

F (p(·, s)). (B.1)

This has the following geometric interpretation: κ∗∗ is the smallest constant such that the sub-level set
{q ∈ Q : F (q) ≤ κ∗∗} topologically disconnects the functions q ≡ 0 and q ≡ 1

2 in Q. (Note that Q is
symmetric under replacing q(ξ) with 1 − q(ξ) for any subset of the ξ ∈ Ξ, and F (q) = F (q′) for any q, q′

related by such a symmetry. Thus, equivalently κ∗∗ is the smallest constant such that this sub-level set
disconnects the function q ≡ 1

2 from any q ∈ Q with q(ξ) ∈ {0, 1} for all ξ ∈ Ξ.)
First, we show that κ∗ is an upper bound on the solution to this maximin problem.

Proposition B.1. We have that κ∗ ≥ κ∗∗.

Proof. Fix some p ∈ P. By continuity of p(·, s) in s, we can set s ∈ [0, 1] such that EξH(p(ξ, s)) = β∗ log k
k .

As in the proof of Proposition 5.7, we apply a Chernoff bound on the random variables min(ui,log k)
log k to show

that, for any β > 1 and q : Ω→ [0, 1] with EξH(q(ξ)) = β log k
k , we have

P
(u1,...,uk)∼D(q)⊗k

[
k∑
i=1

ui < log k + log log k

]
≤ βe−(β−1) + ok(1). (B.2)

In particular, for the s we chose,

F (p(·, s)) ≤
2

log k + β∗

1− β∗e−(β∗−1) − ok(1)
→ ι(β∗) = κ∗.

41

Next, we sketch how the proof of Theorem 2.6 can be improved to replace κ∗ with κ∗∗.

Proposition B.2. Theorem 2.6 holds for all κ > κ∗∗.

Proof Sketch. Like in the original proof of Theorem 2.6, we let x(t) = A(Φ(t)) for 0 ≤ t ≤ T . On the event
Svalid and analogues of Sconsec, Sindep, Sogp, we will pick k + 1 indices 0 ≤ t0 ≤ t1 ≤ · · · ≤ tk ≤ T and
assignments y(`) = x(t`) violating the analogue of Sogp, yielding a contradiction.

We set t0 = 0. For 1 ≤ ` ≤ k we set t` to be the smallest t > t`−1 obeying a stopping rule in terms of
x(t), y(0), . . . , y(`−1), which we show occurs at or before time t = t`−1 + km. We will describe the stopping
rule explicitly for y(0) = Tn. In general, the stopping rule holds for x(t), y(0), y(1), . . . , y(`−1) if it holds for
x(t) ⊕ y(0), Tn, y(1) ⊕ y(0), . . . , y(`−1) ⊕ y(0), where ⊕ denotes bitwise XOR.

We now fix some y(0), . . . , y(`−1), with y(0) = Tn. The probability space Ξ abstracts the sample space

of y
(≤`−1)
i , where i ∈ unif([n]). For t`−1 ≤ t ≤ t`−1 + km, let φ`,t(y

(≤`−1)
i) denote φ`(T|y(≤`−1)

i) if we set
y(`) = x(t). We construct p ∈ P as follows. For s ∈ [0, 1

2], we let p(·, s) interpolate continuously through
the functions φ`,t from t = t`−1 (at s = 0) to t = t`−1 + km (at s = 1

2). Using the analogue of Sindep, we

have that EξH(p(ξ, 1
2)) ≥ (κ− ε) log k

k for a constant ε > 0, small enough that κ− ε > κ∗. For s ∈ [1
2 , 1], we

let p(·, s) evolve continuously to p(·, 1) ≡ 1
2 , such that for all s ∈ [1

2 , 1] we have EξH(p(ξ, s)) ≥ (κ− ε) log k
k .

Thus we have F (p(·, s)) ≥ κ − ε for all s ∈ [1
2 , 1]. Because F (p(·, s)) ≤ κ∗∗ for some s for every p ∈ P, the

minimum of F (p(·, s)) occurs on s ∈ [0, 1
2]. Using the analogue of Sconsec, we have that one of the functions

φ`,t occurs near this minimum, in the sense that F (φ`,t) ≤ κ− ε. The stopping rule chooses t` to be this t.
The analogue of Sogp is the event that no 0 ≤ t0 ≤ t1 ≤ · · · ≤ tk ≤ T and y(0), . . . , y(k) ∈ {T, F}n exist

where y(`) satisfies Φ(t`) for all 0 ≤ ` ≤ k and y(0), . . . , y(k) have the overlap profile implicitly described
above. We can show P(Scogp) ≤ exp(−Ω(n)) by techniques analogous to Section 5. The key point is that the
arguments in that section require precisely that F (q) is bounded below κ for each q = φ`(T|·). This yields
the desired contradiction.

B.2 Suboptimality of κ∗

We believe that κ∗ > κ∗∗ due to the following heuristic argument. The Chernoff bound (B.2) is tighest when

most of the mass of the random variables min(ui,log k)
log k is near 0 or 1. When this occurs, most of the the mass

of ui is near 0 or log k. Then, the event that
∑k
i=1 ui ≥ log k + log log k is the event that one or two of

the ui attains a value near log k. This is a tail probability in a non-asymptotic regime – approximately, the
probability that a Poisson random variable is larger than 1 or 2 – so the Chernoff bound will not get exactly
the correct probability.

B.3 κ∗∗ is Bounded Away from 1

In this section, we will show that κ∗∗ is bounded below by a constant, approximately 1.716, larger than 1.
Thus, a generic application of our methods cannot fully close the constant-factor gap between Theorems 2.6
and 2.10.

We will first show a weaker lower bound on κ∗∗. Define ψ1 : (0,+∞)→ R by

ψ1(λ) =
λ/2

1− (1 + λ)e−λ
,

and let ψ∗1 = minλ>0 ψ1(λ) ≈ 1.675.

Proposition B.3. We have κ∗∗ ≥ ψ∗1 .

Proof. We will prove this proposition by constructing a suitable function family p ∈ P.
Let Ξ = [0, 1] equipped with the uniform measure. Let p : Ξ× [0, 1]→ [0, 1] be defined by

p(ξ, s) =

{
min(s, 1

2) ξ ≤ s,
0 ξ ≥ s.

42

Thus, for fixed s ∈ [0, 1], p(ξ, s) = min(s, 1
2) with probability s, and otherwise p(ξ, s) = 0. We will show that

for this p,
lim sup
k→∞

min
s∈[0,1]

F (p(·, s)) ≥ ψ∗1 ,

from which the proposition follows.
Note that if s = ωk(k−1/2), then EξH(p(ξ, s)) = ωk(log k/k), and so F (p(·, s)) = ωk(1). Therefore it

suffices to consider s = Ok(k−1/2). Then,

E
ξ
H(p(ξ, s)) = (1 + ok(1))s2 log

1

s
.

We now analyze the behavior of the denominator of F (p(·, s)). Note that a sample u ∼ D(p(·, s)) equals log 1
s

with probability s2, log 1
1−s ≤

s
1−s with probability s(1− s), and 0 with probability 1− s. For i = 1, . . . , k,

define

vi = log
1

s
1

{
ui = log

1

s

}
, and wi =

s

1− s
1

{
ui = log

1

1− s

}
.

So, ui ≤ vi + wi. For u1, . . . , uk ∼ D(p(·, s))⊗k, we have

P

[
k∑
i=1

ui ≥ log k + log log k

]
≤ P

[
k∑
i=1

vi ≥ log k

]
+ P

[
k∑
i=1

wi ≥ log log k

]
.

Let 1 + δ = log log k
k Ew1

= log log k
ks2 . Because s = Ok(k−1/2), we have δ2

2+δ ≥
1
2 (1 + δ). By a Chernoff bound,

P

[
k∑
i=1

wi ≥ log log k

]
≤ P

[
k∑
i=1

1− s
s

wi ≥
1− s
s

log log k

]
≤ exp

(
− δ2

2 + δ
· ks(1− s)

)
≤ exp

(
−1

2
(1 + δ)ks(1− s)

)
≤ exp

(
− (1− s) log log k

2s

)
≤ exp

(
−Ωk(k−1/2)

)
.

To analyze the other probability, we consider cases s > 1
k and s ≤ 1

k . We first consider s > 1
k . In order to

have
∑k
i=1 vi ≥ log k, at least two vi must be nonzero. This occurs with probability

1− (1− s2)k − s2k(1− s2)k−1 ≤ 1− (1 + s2k)(1− s2)k.

Thus,

F (p(·, s)) ≥ 1

log k
·

log 2 + (1 + ok(1))s2k log 1
s

1− (1 + s2k)(1− s2)k + exp(−Ωk(k−1/2))
.

If s2k = ok(1), then 1 − (1 + s2k)(1 − s2)k = Ok(s4k2), and the right-hand side is ωk(1). So, this bound is
minimized at s = λk−1/2 for constant λ, in which case

1

log k
·

log 2 + (1 + ok(1))s2k log 1
s

1− (1 + s2k)(1− s2)k + exp(−Ωk(k−1/2))
→ λ/2

1− (1 + λ) exp(−λ)
= ψ1(λ) ≥ ψ∗1 .

We now consider s ≤ 1
k . In order to have

∑k
i=1 vi ≥ log k, at least one vi must be nonzero. This occurs

with probability
1− (1− s2)k = (1 + ok(1))s2k,

and so

F (p(·, s)) ≥ 1

log k
·

log 2 + (1 + ok(1))s2k log 1
s

(1 + ok(1))s2k + exp(−Ωk(k−1/2))
.

The right-hand side is ωk(1) because s ≤ 1
k .

43

For any nonnegative integer N , we may further define

ψN (λ) =
λ/(N + 1)(∑N
i=0

λk

k!

)
exp(−λ)

and ψ∗N = infλ>0 ψN (λ). Over positive integers N , the largest ψ∗N is ψ∗2 ≈ 1.716. The following corollary
gives the lower bound on κ∗∗ alluded to above.

Corollary B.4. We have that κ∗∗ ≥ ψ∗2 .

Proof. We will construct a suitable function family p. For any nonnegative integer N , we can define

pN (ξ, s) =

{
min(s, 1

2) ξ ≤ sN ,
0 ξ ≥ s.

(B.3)

By a similar analysis to Proposition B.3, we can show for this p that

lim sup
k→∞

min
s∈[0,1]

F (pN (·, s)) ≥ ψ∗N .

Taking N = 2 yields the result.

Due to Corollary B.4, a proof along the lines of the proof of Theorem 2.6 that improves the constant κ∗

below ψ∗2 must pick the sequence y(0), . . . , y(`) in a more sophisticated way. One such improvement may be
to pick the sequence y(0), . . . , y(k) all at once and after seeing the entire sequence x(0), . . . , x(T), rather than
by revealing the x(t) one by one and picking the y(`) by a stopping rule. Another such improvement may be
to extract further properties of the sequence x(0), . . . , x(T); we currently only use that this sequence is stable
in the sense of Sconsec.

We conjecture that Corollary B.4 is in fact sharp.

Conjecture B.5. We have that κ∗∗ = ψ∗2 . In particular, Theorem 2.6 holds for all κ > ψ∗2 .

The following evidence supports this conjecture. In the maximin problem (B.1), if we restrict the maxi-
mum over p to “two-layer” p – that is, p such that for every s, p(ξ, s) attains at most one nonzero value – then
we can show by explicit computation that the maximin problem has value κ∗∗. The key idea of this proof is
that for each two-layer p, at the s minimizing F (p(·, s)), p(·, s) behaves like pN (·, s′) for some s′ and some
(possibly fractional) N . We can show that taking N to be fractional does not maximize mins∈[0,1] F (pN (·, s)).
Thus the candidate maxima are pN for integer N , and of these p2 is maximal, attaining value ψ∗2 . We believe
that the maximum of (B.1) over p ∈ P is attained by a two-layer p.

44

	Introduction
	Notation

	Results
	The Overlap Gap Program and Sketch of Main Ideas
	OGP for Maximum Independent Set
	OGP for Random k-SAT and Our Contributions

	Forbidden Structures from Overlap Gap Property
	Reduction to Deterministic Low Degree Polynomial
	The Interpolation Path
	Overlap Profiles
	Outline of Proof of Impossibility
	Constructing the Forbidden Structure from Low Degree Polynomial Outputs
	Solutions to Independent Instances Contribute Large Overlap Entropy

	Proof of Presence of Ensemble Multi-OGP
	Proof Outline
	Bounding the Exponential Rate by a Free Energy
	Lower Bounding the Energy Term

	Stability of Low Degree Polynomials
	An Upper Bound on the Rate of Bad Steps
	Bounding the Probability of no Bad Step
	Completing the Proof of Stability

	Proof of Achievability
	Local Algorithms on the Factor Graph
	Simulating Fix with a Local Algorithm
	Simulating a Local Algorithm by a Low Degree Polynomial
	Proof of Proposition 7.16

	Small Hamming Distance Implies Small Conditional Overlap Entropy
	On Improving the Constant *
	A Maximin Problem
	Suboptimality of *
	** is Bounded Away from 1

