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Abstract
Analyzing concentration of large random matrices is a common task in a wide variety of fields. Given

independent random variables, several tools are available to bound the norms of random matrices whose entries
are linear in the variables, such as the matrix-Bernstein inequality. However, for many recent applications, we
need to bound the norms of random matrices whose entries are polynomials in the variables. Such matrices
arise naturally in the analysis of spectral algorithms (e.g., Hopkins et al. [STOC 2016], Moitra and Wein [STOC
2019]), and in lower bounds for semidefinite programs based on the Sum-of-Squares (SoS) hierarchy (e.g. Barak
et al. [FOCS 2016], Jones et al. [FOCS 2021]).

In this work, we present a general framework to obtain such bounds, based on the beautiful matrix
Efron-Stein inequalities developed by Paulin, Mackey and Tropp [Annals of Probability 2016]. The Efron-
Stein inequality bounds the norm of a random matrix by the norm of another potentially simpler (but still
random) matrix. We view the latter matrix as arising by “differentiating” the starting matrix. By recursively
differentiating, our framework reduces the main task to bounding the norms of far simpler matrices. These
simpler matrices are in fact deterministic matrices in the case of Rademacher random variables and hence,
bounding their norm is a far easier task. In general for non-Rademacher random variables, the task reduces
to the much easier task of scalar concentration. Moreover, in the setting of polynomial matrices, our main result
also generalizes the work of Paulin, Mackey and Tropp.

As applications of our basic framework, we recover known bounds in the literature, especially for simple
“tensor networks” and “dense graph matrices”. As applications of our general framework, we derive bounds
for “sparse graph matrices”. The sparse graph matrix bounds were obtained only recently by Jones et al. [FOCS
2021] using a nontrivial application of the trace power method, and was a core component in their work.
We expect this framework will also be helpful for other applications involving concentration phenomena for
nonlinear random matrices.

1 Introduction

In optimization, statistics, and spectral algorithms, we often want to understand the concentration of various
random matrices. To do this, we can appeal to the powerful theory of matrix-deviation inequalities [Tro15]. For
example, the matrix-Bernstein inequality addresses random matrices of the form

M = x1 · C1 + · · ·+ xn · Cn

where x1, . . . , xn are independent scalar random variables, and C1, . . . , Cn are fixed matrices. A large selection
of such inequalities are available when the random matrix (say) M is a linear function of independent random
variables. However, several recent works require us to understand random matrices which are non-linear
functions, and in particular low-degree polynomial functions, of scalar random variables. This forms the focus
of our work.

As a motivating example, consider the random matrix M 2 R
[n]2⇥[n]2 obtained as

M = A1 ⌦ A1 + · · ·+ Am ⌦ Am ,

where A1, . . . , Am 2 R
[n]⇥[n] are independent random matrices, with i.i.d. entries uniformly distributed in

{�1, 1}. It is easy to see that the entries of the matrix M are degree-2 polynomial functions of the independent
random variables describing the entries of A1, . . . , Am. The concentration of such a matrix was analyzed by
Hopkins et al. [HSS15, Hop18], who use it to design spectral algorithms for a variant of the principal components
analysis (PCA). This matrix is a special case of a more general setting that we study in this work.
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Matrix-valued polynomial functions. In the example above, the entries of the matrices are low-degree
polynomials in independent (Rademacher) random variables. In this work, we consider a general setting where
we take an n-tuple Z = (Z1, . . . , Zn) of independent and identically distributed random variables1 distributed
in W. We consider random matrices given by a matrix-valued function F(Z) taking values in R

I⇥J for arbitrary
index sets I ,J , where each entry F[I, J](Z) is a polynomial in Z1, . . . , Zn. We develop a general framework to
analyze concentration of such matrices. Our matrix concentration results are simpler to state in the case when
Z1, . . . , Zn are independent Rademacher variables uniformly distributed in {�1, 1}, but apply for the general
case as well.

Special cases of such non-linear random matrices have been used in several applications in spectral
algorithms and lower bounds. We now briefly discuss a few examples below. Note that while the previous
methods used for these examples have been somewhat problem-specific, the goal of this work is to develop
a general method. While our techniques also apply for these examples (providing a proof of concept),
understanding these examples is not required to follow our results. A reader only interested in the techniques
for obtaining concentration, may also choose to skip ahead to the next section directly.

1. Tensor networks. Random matrices such as the above were viewed as a special case of “flattened tensor
networks” by Moitra and Wein [MW19], who also considered spectral algorithms obtained via somewhat
larger tensor networks. A tensor network is a graph with nodes corresponding to tensors (see the
figure below for an example). An edge between two nodes corresponds to shared indices for one of the
dimensions and the degree of each node is equal to the order of the corresponding tensor (the number of
dimensions). Such networks indicate how tensors of different orders can be multiplied to obtain larger
ones. For example, the first network in the figure below illustrates the network corresponding to simple
multiplication A · B of two matrices A 2 R

m⇥n and B 2 R
n⇥m, where the red and blue edges indicate

the row and column indices respectively. Similarly, the second network in the figure below illustrates the
network corresponding to the application by Hopkins et al. [HSSS16], where T 2 R

n⇥n⇥m is a random
tensor with i.i.d. entries in {�1, 1}. While the latter network yields an order-4 tensor, they obtain a matrix
in R

n2⇥n2 by “flattening” it, where the row is indicated by the indices in the red edges and the column is
indicated by the indices in the blue edges. In the figure, we also indicate the index sets corresponding to
each of the edges (though these are often supressed in the diagrams). Moitra and Wein [MW19] analyzed
a larger tensor network, with a graph consisting of 10 nodes, in their algorithm for the continuous multi-
reference alignment problem.

A B
[n][m] [m]

T T
[m]

[n]

[n]

[n]

[n]

Figure 1: Tensor networks for matrix multiplication and the algorithm in [HSSS16]

2. Graph matrices. Another setting of nonlinear concentration arises from the analysis of the so-called
“graph matrices” [MP16, AMP16]. Graph matrices play an important role in lower bounds for average-
case problems, against algorithms based on the powerful Sum-of-Squares (SoS) SDP hierarchy running in
polynomial time and even sub-exponential time [MPW15, DM15, HKP15, RS15, BHK+19, MRX20, GJJ+20,
JPR+21, Raj22a, PR22, Jon22].
Let X be the {±1}-adjacency matrix of a random graph in Gn,1/2 i.e., X[i, j] is uniform {�1, 1} when i 6= j
and 0 when i = j. Graph matrices are random matrices corresponding to the occurences of a small graph
pattern called a “shape”. A shape t is a small, fixed graph with two ordered subsets Ut , Vt of vertices. For
simplicity, let t be a shape of a fixed size, where the vertex set V(t) is partitioned into two ordered sets
V(t) = Ut t Vt . For such a shape t, the corresponding graph matrix Mt has rows and columns indexed

1Our framework also applies when the variables are not necessarily identically distributed, as long as they are independent.
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by [n]|Ut | and [n]|Vt | respectively, and we view the row and column indices I and J as defining a (unique
in this case) map j : Ut t Vt ! [n]. The corresponding entry is given by

Mt [I, J] = Mt [j(Ut), j(Vt)] =

8
<

:
’(u,v)2E(t) X[j(u), j[v]] if j is injective

0 otherwise

In the case of general graph matrices (defined formally in Section 4.2), Ut , Vt are arbitrary ordered subsets
of the vertex set of t, and we sum over all feasible injective maps j. As an example, consider the case
shown in Fig. 2, where t is a triangle on three vertices {u1, v1, v2} with Ut = (u1) and Vt = (v1, v2). Then,
the corresponding matrix is given by

Mt [i1, (i2, i3)] = X[i1, i2] · X[i2, i3] · X[i3, i1] ,

where X automatically enforces injectivity.
Graph matrices are closely related to tensor networks (ignoring the injectivity constraint on j). For
instance, the above matrix can be viewed as the flattened tensor network below, where the tensor I denotes
the “diagonal” tensor of order 3 with entries being 1 if all indices are equal and 0 otherwise.

u1

v1

v2

I

I

I

X

X

X

Figure 2: The graph t and corresponding flattened tensor network

Analyzing concentration Recall that our objective is to analyze the concentration of polynomial random
matrices. To motivate our approach, consider first the problem of obtaining concentration bounds on a scalar
polynomial f (Z) with mean zero. To obtain such bounds, because of Markov’s inequality, it suffices to compute
moment estimates

P [| f (Z)| � l] = P

h
( f (Z))2t � l2t

i
 l�2t · E

h
( f (Z))2t

i

While in some cases E[( f (Z))2t] can be computed by direct expansion, it often involves an intricate analysis of
the structure of terms with degrees growing with t, and therefore indirect methods may be more convenient.
One such method is based on hypercontractive inequalities. In particular for Rademacher variables, the
hypercontractive inequality [O’D08] gives that for a polynomial f of degree dp, we have

E

h
( f (Z))2t

i
 (2t � 1)dp ·t ·

⇣
E

h
( f (Z))2

i⌘t
.

Thus, for (scalar) polynomial functions, the hypercontractive inequality gives moment estimates using ( f (Z))2,
which is convenient because ( f (Z))2 is a polynomial of fixed degree and therefore is much easier to understand.
In fact, it can often be conveniently analyzed using the Fourier coefficients of f .

The matrix analog of the above argument involves the Schatten-2t norm k.k2t, which is defined for a matrix
M with non-zero singular values s1, . . . , sr as kMk2t

2t := Âj2[r] s2t
j . For a function F with E[F(Z)] = 0, we have

the following bound using Schatten norms.

P [s1(F) � l]  l�2t · E kFk2t
2t = l�2t · E tr

h
(F(Z)F(Z)|)t

i
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Known norm bounds for tensor networks [MW19] (which involves Gaussian variables) and graph matri-
ces [AMP16, JPR+21], start with the above inequality, and rely on direct expansion of the trace. They analyze
terms in the expansion as being formed by 2t copies of the network/shape, with possibly overlapping vertex
sets. To analyze such graphs, they both rely on intricate combinatorics, as well as arguments relying crucially on
the problem structure.

In terms of general techniques, while hypercontractive inequalities are also known for matrix-valued
functions of Rademacher variables [BARDW08], their form involves Schatten-p norms for p 2 [1, 2] and (to the
best of our knowledge) are not known to imply matrix concentration. To get around this, we consider another
indirect method based on Efron-Stein inequalities. In the scalar case, Efron-Stein inequalities give us a slight
weakening of the above scalar bound. Interestingly, it turns out that this can indeed be generalized to the matrix
case.

Efron-Stein inequalities. Efron-Stein inequalities bound the global variance of a function of independent
random variables, in terms of local variance estimates obtained by changing one variable at a time. For i 2 [n]
and tuple Z = (Z1, . . . , Zn), let Z(i) denote the tuple (Z1, . . . , Zi�1, eZi, Zi+1, . . . , Zn), where eZi is an independent
copy of Zi. For a scalar function f (Z), the Efron-Stein inequality states that

Var [ f (Z)] = E

h
( f (Z)� E f )2

i
 1

2
· Â

i2[n]
E

⇣
f (Z)� f

⇣
Z(i)

⌘⌘2
�

= E [V(Z)] ,

where V(Z) := Âi2[n] E

⇣
f (Z)� f

⇣
Z(i)

⌘⌘2
|Z
�

. For Rademacher variables, E[V(Z)] is equal to the total

influence from boolean Fourier analysis and indeed, the above inequality can also be observed via Fourier
analysis. In fact, when f is a polynomial of degree dp, the two sides are within a factor dp.

A moment version of the Efron-Stein inequality was developed by Boucheron et al. [BBLM05], who obtain
bounds in terms of V(Z) (in fact, in terms of more refined quantities V+(Z) and V�(Z)) which serves as a proxy
for the variance. Their results imply that for a function f ,

E

h
( f (Z)� E f )2t

i
 (C0 · t)t · E

h
(V(Z))t

i
.

A beautiful matrix generalization of the above inequality (Theorem 1.1 below) was obtained by Paulin, Mackey
and Tropp [PMT16], via the method of exchangeable pairs (see also [HT21a] for a different proof). Their
inequality is stated for Hermitian matrix valued functions H. But we can also use it for non-Hermitian functions

F, where we simply apply it to the Hermitian dilation H =


0 F

F| 0

�
instead.

THEOREM 1.1. ([PMT16]) Let H(Z) be a Hermitian matrix valued function of independent random variables Z =
(Z1, . . . , Zn) with E kHk < •. Then, for each natural number t � 1,

E tr
h
(H � EH)2t

i
 (4t � 2)t · E tr

⇥
Vt⇤ ,

where V(Z) is the variance proxy defined as

V(Z) :=
1
2
·

n

Â
i=1

E

⇣
H(Z)� H

⇣
Z(i)

⌘⌘2
| Z
�

.

A simple bound for Rademacher variables. The form of the variance proxy suggests a recursive approach
for polynomial functions (say of degree dp) of Rademacher variables. Consider the scalar case again, where we
assume without loss of generality that f is multi-linear. In particular, consider the Efron-Stein inequality by
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Boucheron et al. [BBLM05], where the variance proxy can be written as

V(Z) =
1
2
· Â

i2[n]
E

⇣
f (Z)� f

⇣
Z(i)

⌘⌘2
| Z
�

=
1
2
· Â

i2[n]
E

"
(Zi � eZi)

2 ·
✓

∂ f (Z)
∂Zi

◆2
| Z

#

= Â
i2[n]

✓
∂ f (Z)

∂Zi

◆2
= kf1(Z)k2

2 ,

where f1(Z) is a vector-valued function given by f1[i](Z) = ∂ f (Z)
∂Zi

. Thus, to estimate E ( f (Z))2t, we just need

to estimate E kf1(Z)k2t
2 , where f1(Z) is now a vector valued function. The key observation is that f1(Z) has

entries of degree at most dp � 1. This suggests that we can apply this inequality recursively until we end up with
constant polynomials, which we fully understand. We can do a similar computation for matrix-valued functions
F(Z) usingTheorem 1.1. This yields two matrices F0,1 and F1,0 of partial derivatives, where an extra index i is
added either to the row or column indices. Iterating this yields the following result, which we state in terms of
the partial derivative operators ra( f ) =

⇣
’i:ai=1

∂
∂Zi

⌘
( f ) for a 2 {0, 1}n (extended entry-wise to matrices).

THEOREM 1.2. (RADEMACHER RECURSION) Let F : {�1, 1}n ! R
I⇥J be a matrix valued polynomial function of

degree at most dp. Then, for each natural number t � 1,

E kF � EFk2t
2t  Â

1a+bdp

(16tdp)
(a+b)·t ·

��EFa,b
��2t

2t ,

where Fa,b is a matrix of partial derivatives indexed by the sets I ⇥ ([n]a ) and J ⇥ ([n]b ) with

Fa,b[(·, a), (·, b)] =

(
ra+b(F) if a · b = 0

0 otherwise

where a, b 2 {0, 1}n are indicator vectors of sets in ([n]a ) and ([n]b ) respectively.

REMARK 1.1. While we state our results in terms of polynomial moment bounds, it is also possible to obtain exponential
tails using these results. This can be done either using an appropriate (known) variant of Theorem 1.1, or by using a
sufficiently large value of t. These results can also recover (known) matrix Chernoff or Bernstein inequalities when the
function F is linear, but of course the much more interesting case is when F is a polynomial function.

We cover some applications of the above theorem in Section 4. Similar to the hypercontractive bound for the
scalar case, the bound above is in terms of a small number (O(d2

p)) of matrices that arise from polynomials of
fixed degree (not growing with t), but importantly, they are deterministic matrices. Because they are deterministic,
analyzing them is considerably easier. Note that bounds depending on norms of a fixed number of deterministic
matrices, arise even in the study of concentration for scalar polynomial functions [AW15], and thus it is not
surprising that they are needed to control the much more challenging case of matrix-valued functions.

When we apply this theorem to the case F = Mt , the graph matrix of a shape t, we obtain bounds in
terms of combinatorial objects known as “vertex separators” of the shape t. This recovers the bounds by Ahn
et al. [AMP16] and perhaps surprisingly (to the authors), this gives an alternative and direct derivation of these
combinatorial structures such as vertex separators, compared to the ingenious observations made in Ahn et
al. [AMP16]. The important takeaway is that these norm bounds can be recovered by our more general technique
rather than relying on problem-specific methods.

Extending the framework to general product distributions. A key contribution of our work is to show
how the above framework can be extended to arbitrary product distributions (with bounded moments). A
motivating example of this is norm bounds for the so-called “sparse graph matrices”. In sparse graph matrices,

the variables Zi can be thought of as (normalized) edges of a Gn0 ,p graph, that is, Zi = �
q

1�p
p with probability

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited3618

D
ow

nl
oa

de
d 

02
/1

6/
23

 to
 1

17
.2

20
.1

11
.2

34
 . 

R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y



p and Zi =
q

p
1�p with probability 1 � p. These variables are standard in p-biased Fourier analysis [O’D14] and

are chosen to satisfy E Zi = 0 and E Z2
i = 1. Sparse graph matrices naturally arise when analyzing average case

problems on Gn,p graphs for p = o(1), as opposed to Gn,1/2 graphs.
Until recently, little was known about norm bounds for sparse graph matrices. The difficulty stems partly

from the fact that when p = o(1), it is important that sparse graph matrix norm bounds have the right
dependence on p and not just on n. Such norm bounds were obtained recently by Jones et al. [JPR+21], via
the trace power method which involved a delicate combinatorial counting argument. On the other hand, we
obtain similar norm bounds using our framework but in a more mechanical fashion. We can also readily apply
our framework in the even more general case of sub-Gaussian random variables and our bounds will depend
on the sub-Gaussian norm of the distributions.

To extend our framework to general product distributions, we could take inspiration from the Rademacher
case and could attempt to simply recursively apply the Efron-Stein inequality. Unfortunately, this idea will fail.
The issue can be observed by again considering the scalar case. Assume that Z1, . . . , Zn are i.i.d. with E Zi = 0
and E Z2

i = 1 for all i 2 [n]. Also assume for simplicity that f (Z) is a multi-linear polynomial of degree dp.
Analyzing the variance proxy as before, we get

V(Z) =
1
2
· Â

i2[n]
E

"
(Zi � eZi)

2 ·
✓

∂ f (Z)
∂Zi

◆2
| Z

#
=

1
2 Â

i2[n]
E

h
(Zi � eZi)

2|Z
i
·
✓

∂ f (Z)
∂Zi

◆2
.

In the Rademacher case, we had E[(Zi � eZi)
2|Z] = 2. This left us with the polynomials corresponding to partial

derivatives but which importantly had a strictly lower degree. However, for a general product distribution, we

instead have E[(Zi � eZi)
2|Z] = 1+Z2

i . This gives back a term
⇣

Zi · ∂ f
∂Zi

⌘2
where the polynomial inside the square

could have degree possibly still equal to dp. This means that in the next step of the recursion, we may again have
to consider a derivative with respect to Zi and may again end up with the same polynomial f . Therefore, the
recursion is stalled! A similar issue occurs for matrices, which is elaborated in Section 5. To get around this, we
generalize the work of [PMT16].

Generalizing [PMT16] via explicit inner kernels. To resolve the above issue, we modify the proof of
[PMT16] and our proof techniques may be of independent interest.

We first recall how the matrix Efron-Stein inequality,Theorem 1.1, was proved in [PMT16]. Their basic
strategy is to utilize the theory of exchangeable pairs [Ste72, Ste86, Cha05, Cha06], in particular kernel Stein pairs.
A kernel Stein pair is an exchangeable pair of random matrices that has a “kernel”, a bivariate function that
“reproduces” the matrices in the pair. More concretely, consider an exchangeable pair of random variables
(Z, Z0) (which means (Z0, Z) has the same distribution). For this exchangeable pair, a bivariate matrix-valued
function K(z, z0) is said to be a kernel for a matrix-valued function F if it satisfies

- Anti-symmetry: K(z0, z) = �K(z, z0) for all inputs (z, z0).

- Reproducing property: E[K(Z, Z0) | Z] = F(Z).

If such a kernel K exists, then the pair of random variables (F(Z), F(Z0)) is said to be a kernel Stein pair.
Building on ideas from [Ste86, Cha05], Paulin, Mackey and Tropp [PMT16] first show the existence of a

kernel, by exhibiting it as a limit of coupled Markov Chains. By studying the evolution of this kernel coupling,
they prove analytic properties of the kernel. Then, using this kernel, they employ the powerful method of
exchangeable pairs to evaluate moments of the random matrix, which in turn will imply concentration.

For a Hermitian random matrix X, they introduce two matrices - the conditional variance VX which measures
the squared fluctuations of X when resampling a coordinate of Z; and the kernel conditional variance VK which
measures the squared fluctation of the kernel when resampling a coordinate of Z. With these matrices in hand,
they bound the Schatten 2t-norm of X by the Schatten t-norm of sVX + s�1VK for any parameter s > 0. Finally,
they choose s appropriately to make these two quantities approximately equal, in which case it simplifies to the
variance proxy V, provingTheorem 1.1.
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In our setting, no such choice of s is feasible because for any choice of s, either the conditional variance term
sVX will dominate X2 or the kernel conditional variance term s�1VK will dominate X2. This will make the main
inequalityTheorem 1.1 trivial.

To get around this, we will exploit the structure of the matrix we have, i.e. F = DGD where D is a diagonal
matrix that encodes all variables that have already been differentiated on and G is a polynomial matrix of the
remaining variables. Since D is a simple diagonal matrix with low degrees, most of the deviations exhibited by
F are in fact likely to be exhibited by G. To capture this intuition, we consider a kernel for only the inner matrix
G instead of F as a whole. We call this an inner kernel.

This helps us avoid the root cause of the issue, i.e. differentiating on variables we have already encountered
(which correspond to entries in D). Therefore, the recursion will not stall!

However, in general, this is not realizable since D and the kernel of G can interact in unexpected ways. To
study this interaction, we construct explicit polynomial kernels (Theorem 7.1) (compared to [PMT16] who show
the existence of the kernel but for all functions).

We study how this explicit inner kernel interacts with D (see Lemma 7.3) and use it to obtain a generalization
of the inequalities by [PMT16] (generalized because setting D = I will give back their result) stated in Lemma
7.5.

A subtle issue is that the conditional variance of X may still have additional deviations due to the diagonal
matrices D (which still involve random variables). We control the additional deviations using Jensen’s operator
trace inequality (for non-commuting averages) [HP03] (stated in Lemma 2.1). Putting these ideas together lets
us obtain a version of the Efron-Stein inequality where the variance proxy only corresponds to the conditional
variance of the inner kernel. In the setting of polynomial functions, this inequality generalizes the work of
[PMT16].

With the modified Efron-Stein inequality from above, we cannot guarantee that the matrices F at interme-
diate steps are of lower degree, but on the other hand, the degree of the inner matrix G reduces at each step.
Therefore, we can recursively apply this inequality to obtain our final bounds. The final bounds are then stated
in terms of norm bounds for the simplified matrices of the form DGD where G are deterministic matrices and
D are diagonal matrices which are still functions of Z. While random, these matrices can be easily analyzed via
simple scalar concentration tools.

The main theorem is stated in Section 6, in particularTheorem 6.1, with the proof following in Section 7.
While our proof builds on the work by [PMT16], the argument here is self-contained.

Applications. Our framework is suitable for many nonlinear concentration results obtained in the literature
[BBH+12, GM15, HSS15, MP16, AMP16, HSSS16, SS17, Hop18, HSS19, MW19, KP20, PR20, JPR+21, BHKX22,
Raj22b, Jon22]. We show a few of these applications in Section 4 and Section 8. We expect similar future
applications to benefit from our framework because the task is mechanically reduced to analyzing considerably
simpler matrices.

In Section 4.2, we derive norm bounds on dense graph matrices. In earlier works, dense graph matrices have
been used extensively in analysis of semidefinite programming hierarchies, especially the Sum-of-Squares (SoS)
hierarchy [MPW15, DM15, HKP15, RS15, BHK+19, MRX20, GJJ+20, PR22, Raj22a]. For more applications and a
detailed treatment of graph matrices, see [AMP16, Jon22].

In Section 8, we derive norm bounds for sparse graph matrices. Sparse graph matrices have been relatively
less understood until recently, when [JPR+21] obtained norm bounds for such matrices via the trace power
method. They use these bounds to prove SoS lower bounds for the maximum independent set problem on
sparse graphs.

Other related work Nonlinear concentration for the case of scalar-valued functions has been the subject
of an extensive body of work. In addition to the results of Schudy and Sviridenko [SS11] which we
use, strong concentration results have also been obtained (for example) in the results of Latała [Lat06],
Adamczak and Wolff [AW15], and Bobkov, Götze, and Sambale [BGS19]. In addition to the above results,
hypercontractive inequalities can also be used to obtain concentration inequalities for low-degree (scalar)
polynomial functions [O’D08] with possible sub-optimal exponents.
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For the case of matrix-valued functions, while we rely here on the work of Paulin, Mackey, and
Tropp [PMT16] for product distributions, later works have also extended these results to distributions sat-
isfying weaker assumptions. In particular, Aoun, Banna, and Youssef [ABY20] obtained matrix concentra-
tion for distributions satisfying matrix Poincaré inequalities, building on earlier work of Cheng, Hsieh, and
Tomamichel [CHT17, CH19]. It was later proved by Garg, Kathuria, and Srivastava [GKS21] that the matrix
Poincaré inequalities are implied by scalar Poincaré inequalities. Independently, matrix concentration based
on scalar Poincaré inequalities was also proved by Huang and Tropp [HT21a]. Another work of Huang and
Tropp [HT21b] also extablishes matrix concentration inequalities via semigroup methods. While some hyper-
contractive inequalities are also known for matrix-valued functions [BARDW08, AD21], to the best of our knowl-
edge, they do not imply concentration bounds for matrices with low-degree polynomial entries.

Potential extensions In this work, we assumed that the input forms a product distribution. In other words,
the variables Z1, . . . , Zn are independent. A natural extension is the case when they are not independent. This
has important applications for many problems such as when the input is a uniform d-regular graph, or when
the input is sampled from a distribution with a global constraint, etc. In such cases, the input variables are not
independent but it may be possible to use similar ideas to analyze concentration.

More concretely, to study concentration in the non-independent setting, one can use the recent work of
Huang and Tropp [HT21a] on matrix concentration from Poincaré inequalities, together with our framework.
For this, we just need to exhibit a Markov process that converges to our desired distribution.

Organization of the paper and bibliographic note. We start with preliminaries in Section 2. In Section 3,
we state and prove the Rademacher recursion. We illustrate some applications of this framework in Section 4.
In Section 5, we explain why similar ideas may not be enough in the general case. We then propose our general
framework in Section 6 and prove it in Section 7. We end with an application of the general framework to sparse
graph matrices in Section 8. An earlier version of this paper also appeared in the dissertation of the first author
[Raj22b].

2 Preliminaries

Notation We use boldface letters such as I, M, X . . . , to denote matrices. Entries of a matrix X 2 R
I⇥J will

be denoted by X[I, J] for I 2 I , J 2 J . Let H
n denote the set of n ⇥ n real symmetric matrices. The trace of a

matrix X 2 H
n equals Âi2[n] X[i, i] and is denoted by tr X.

Multi-index notation For any pair of vectors a, b 2 N
n and scalar c 2 N, we define a + b, a · b, ca entrywise.

We also define the orderings a  b and a E b where we say a  b if for each i, ai  bi, and a E b if for each i, ai
is either 0 or bi. We denote by |a|0 the number of nonzero entries of a and by |a|1, the sum of entries of a. For a
boolean vector g 2 {0, 1}n, we define 1 � g the vector with all its bits flipped.

Derivatives For variables Z1, . . . , Zn and a 2 N
n, define the monomial Za := ’n

i=1 Zai
i . This forms a standard

basis for polynomials.
For a 2 N

n, we define the linear operator ra that acts on polynomials by defining its action on the elements
Zb as follows and then extend linearly to all polynomials.

ra(Zb) =

(
Zb�a if a E b

0 o.w.

Informally, for a polynomial f written as a linear combination of the standard basis polynomials Zb, ra( f )
isolates the terms that precisely contain the powers Zai

i for all i such that ai 6= 0 and then truncates these powers.
In other words, it’s the coefficient of Za in f . In particular, observe that ra( f ) does not depend on Zi for any i
such that ai 6= 0.

Supose f is multilinear, as we can assume in the Rademacher case when we are working with Zi 2 {�1, 1}.
For a 2 {0, 1}n with nonzero indices i1, . . . , ik 2 [n], we have ra( f ) = ∂

∂Zi1
. . . ∂

∂Zik
f . So this linear operator

generalizes the partial derivative operator. But note that in general, r is not simply the standard partial
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derivative operator.

Matrix Analysis Linear operators that act on polynomials can also be naturally defined to act on matrices by
acting on each entry.

We define Im to be the m ⇥ m identity matrix. We drop the subscript when it’s clear. For matrices F, G, define

F � G to be the matrix


0 F
G 0

�
. For a matrix F, define its Hermitian dilation F as F � FT . Denote by � the

Loewner order, that is, A � B for A, B 2 H
n if and only if B � A is positive semi-definite.

DEFINITION 2.1. For a matrix F and an integer t � 0, define the Schatten 2t-norm as

kFk2t
2t = tr[(FFT)t]

FACT 2.1. For real symmetric matrices X1, . . . , Xn, we have

(X1 + . . . + Xn)
2 � n(X2

1 + . . . + X2
n)

FACT 2.2. For positive semidefinite matrices X, X1, . . . , Xn such that X � X1 + . . . + Xn and for any integer t � 1,

tr[Xt]  nt�1(tr[Xt
1] + . . . + tr[Xt

n])

Proof. By Hölder’s inequality, nt�1(tr[Xt
1] + . . . + tr[Xt

n]) � (kX1kt + . . . + kXnkt)
t. By triangle inequality of

Schatten norms, this is at least kX1 + . . . + Xnkt
t. Finally, because X1 + . . . + Xn ⌫ X ⌫ 0, we can use the

monotonicity of trace functions (see [Pet94, Proposition 1]) where we use the increasing function f (x) = xt

on x 2 [0, •). This proves the result.

LEMMA 2.1. (JENSEN’S OPERATOR TRACE INEQUALITY) [HP03, Corollary 2.5] Let f be a convex, continuous func-
tion defined on an interval I and suppose that 0 2 I and f (0)  0. Then, for all integers m, n � 1, for every tuple
B1, . . . , Bn of real symmetric m ⇥ m matrices with spectra contained in I and every tuple A1, . . . , An of m ⇥ m matrices
with Ân

i=1 AT
i Ai � I, we have

tr[ f (
n

Â
i=1

AT
i BiAi)]  tr[

n

Â
i=1

AT
i f (Bi)Ai]

3 The basic framework for Rademacher random variables

Let Z = (Z1, . . . , Zn) be sampled uniformly from {�1, 1}n. We will consider matrix-valued functions F :
{�1, 1}n ! R

I⇥J , with rows and columns indexed by arbitrary sets I ,J respectively such that for all
I 2 I , J 2 J ,

F[I, J] = f I,J(Z)
where f I,J are polynomials of Z1, . . . , Zn. Since Zi 2 {�1, 1}, we can assume without loss of generality that
f I,J are multilinear. Let dp be the maximum degree of any f I,J in F. In this section, we will give a general
framework using which we can obtain bounds on E kF � EFk2t

2t for any integer t � 1. We restate the theorem for
convenience.

THEOREM 3.1. (RADEMACHER RECURSION) Let F : {�1, 1}n ! R
I⇥J be a matrix valued polynomial function of

degree at most dp. Then, for each natural number t � 1,

E kF � EFk2t
2t  Â

1a+bdp

(16tdp)
(a+b)·t ·

��EFa,b
��2t

2t ,

where Fa,b is a matrix of partial derivatives indexed by the sets I ⇥ ([n]a ) and J ⇥ ([n]b ) with

Fa,b[(·, a), (·, b)] =

(
ra+b(F) if a · b = 0

0 otherwise

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited3622

D
ow

nl
oa

de
d 

02
/1

6/
23

 to
 1

17
.2

20
.1

11
.2

34
 . 

R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y



where a, b 2 {0, 1}n are indicator vectors of sets in ([n]a ) and ([n]b ) respectively.

REMARK 3.1. To obtain high probability norm bounds from moment estimates, we can set t = polylog(n) and invoke
Markov’s inequality. Since we do not attempt to optimize the dependence on the logarithmic factors, we do not attempt to
optimize the exponent of t in the main theorem.

To prove this, we will prove Lemma 3.1 and then recursively apply it. For each i  n, define the random
vector

Z(i) := (Z1, . . . , Zi�1, eZi, Zi+1, . . . , Zn)

where eZi is an independent copy of Zi, that is, is independently resampled from {�1, 1}.

Let X := F � EF. When the input is Z, we denote the matrices as F, X, etc and when the input is Z(i), denote
the corresponding matrices as F(i), X(i), etc. That is, for I 2 I , J 2 J , we have F(i)[I, J] = f I,J(Z(i)). Define
Xa,b = Fa,b � EFa,b.

LEMMA 3.1. For integers a, b � 0, we have

E
��Xa,b

��2t
2t  (16tdp)

t(E
��Xa,b+1

��2t
2t + E

��Xa+1,b
��2t

2t +
��EFa,b+1

��2t
2t +

��EFa+1,b
��2t

2t)

Using this lemma, we can complete the proof of the main theorem.

Proof. [Proof of Theorem 1.2] Observing that X is a principal submatrix of X0,0 with all other entries being 0, we
can apply Lemma 3.1 repeatedly until Xa,b = 0, which will be the case if a + b > dp.

In the rest of this section, we will prove Lemma 3.1. We start with a basic fact. Let ei 2 {0, 1}n be the vector
with a unique nonzero entry (ei)i = 1.

PROPOSITION 3.1. For a multilinear polynomial f (Z) = f (Z1, . . . , Zn), we have

f (Z)� f (Z(i)) = (Zi � eZi) ·rei f (Z)

Proof. [Proof of Lemma 3.1] Consider the Hermitian dilation Fa,b = Fa,b � FT
a,b. Define Xa,b = Fa,b � EFa,b =

Xa,b � XT
a,b. ByTheorem 1.1 applied to Xa,b, E tr

h
X2t

a,b

i
 (2(2t � 1))t

E tr
h
Vt

a,b

i
where Va,b is the variance proxy

Va,b = 1
2

n

Â
i=1

E[(Xa,b � X(i)
a,b)

2|Z]. By a simple computation, E tr
h
X2t

a,b

i
= E tr

h
(Xa,bX|

a,b)
t
i
+ E tr

h
(X|

a,bXa,b)
t
i
=

2E
��Xa,b

��2t
2t, therefore

Va,b =
1
2

n

Â
i=1

E

 "
(Xa,b � X(i)

a,b)(Xa,b � X(i)
a,b)

| 0

0 (Xa,b � X(i)
a,b)

|(Xa,b � X(i)
a,b)

#
|Z
�

=
1
2

"
Ân

i=1 E[(Fa,b � F(i)
a,b)(Fa,b � F(i)

a,b)
||Z] 0

0 Ân
i=1 E[(Fa,b � F(i)

a,b)
|(Fa,b � F(i)

a,b)|Z]

#

We will use the following claim that we will prove later.

CLAIM 3.1. We have the following relations.

n

Â
i=1

E[(Fa,b � F(i)
a,b)(Fa,b � F(i)

a,b)
||Z] = 2(b + 1)Fa,b+1F|

a,b+1

n

Â
i=1

E[(Fa,b � F(i)
a,b)

|(Fa,b � F(i)
a,b)|Z] = 2(a + 1)F|

a+1,bFa+1,b
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This gives E tr
h
Vt

a,b

i
= (b + 1)t

E
��Fa,b+1

��2t
2t + (a + 1)t

E
��Fa+1,b

��2t
2t. Therefore, we get

2E
��Xa,b

��2t
2t = E tr

h
X2t

a,b

i

 (2(2t � 1))t
E tr

h
Vt

a,b

i

= (2(2t � 1))t((b + 1)t
E
��Fa,b+1

��2t
2t + (a + 1)t

E
��Fa+1,b

��2t
2t)

= (2(2t � 1))t((b + 1)t
E
��Xa,b+1 + EFa,b+1

��2t
2t + (a + 1)t

E
��Xa+1,b + EFa+1,b

��2t
2t)

 (16t)t((b + 1)t(E
��Xa,b+1

��2t
2t +

��EFa,b+1
��2t

2t) + (a + 1)t(E
��Xa+1,b

��2t
2t +

��EFa+1,b
��2t

2t)

 (16tdp)
t(E

��Xa,b+1
��2t

2t +
��EFa,b+1

��2t
2t + E

��Xa+1,b
��2t

2t +
��EFa+1,b

��2t
2t)

It remains to prove the claim.

Proof. [Proof of Claim 3.1] We will prove the first equality. The second one is analogous. For I 2 I , J 2 J , a, b 2
{0, 1}n, we have

(Fa,b � F(i)
a,b)[(I, a), (J, b)] =

(
ra+b( f I,J(Z)� f I,J(Z(i))) if |a|0 = a, |b|0 = b, a · b = 0

0 o.w.

By Proposition 3.1, the first expression simplifies to (Zi � eZi)reira+b f I,J(Z). Define the matrix Fa,b,i to be the
matrix with the same set of rows and columns as Fa,b and whose only nonzero entries are given by

Fa,b,i[(I, a), (J, b + ei)] = reira+b f I,J(Z) if |a|0 = a, |b|0 = b, b · ei = 0, a · (b + ei) = 0

Then, it’s easy to see that Ân
i=1 Fa,b,iF

|
a,b,i = (b + 1)Fa,b+1FT

a,b+1 and (Fa,b � F(i)
a,b)(Fa,b � F(i)

a,b)
| = (Z �

eZi)
2Fa,b,iF

|
a,b,i. The latter equality implies

E[(Fa,b � F(i)
a,b)(Fa,b � F(i)

a,b)
||Z] = E[(Zi � eZi)

2Fa,b,iF
|
a,b,i|Z] = 2Fa,b,iF

|
a,b,i

Therefore,
n

Â
i=1

E[(Fa,b � F(i)
a,b)(Fa,b � F(i)

a,b)
||Z] = 2

n

Â
i=1

Fa,b,iF
|
a,b,i = 2(b + 1)Fa,b+1F|

a,b+1

4 Applications

To illustrate our framework, we apply it to obtain concentration bounds for nonlinear random matrices that
have been considered in the literature before. The first application is a simple tensor network that arose in the
analysis of spectral algorithms for a variant of principal components analysis (PCA) [HSS15, Hop18]. The second
application is to obtain norm bounds on dense graph matrices [MP16, AMP16]. In the second application, the
norm bounds are governed by a combinatorial structure called the minimum vertex separator of a shape. We will
show how this notion arises naturally under our framework, whereas prior works that derived such bounds
used the trace power method and required nontrivial combinatorial insights.

4.1 A simple tensor network We consider the following result from [HSS15, Hop18]. We remark that this
result could also be obtained via other standard techniques, but we showcase it as it serves as a simple warm-up
to familiarize the reader with our method.
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LEMMA 4.1. ([HOP18], THEOREM 6.7.1) Let c 2 {1, 2} and let d � 1 be an integer. Let A1, . . . , Anc be i.i.d. random
matrices uniformly sampled from {�1, 1}nd⇥nd . Then, with probability 1 � O(n�100),

����� Â
knc

Ak ⌦ Ak � E Â
knc

Ak ⌦ Ak

�����  C
p

dn(2d+c)/2(log n)1/2

for an absolute constant C > 0.

Using our framework, we will prove a slightly relaxed version of the inequality where
p

d(log n)1/2 is
replaced by log n, while not losing on the dominating term n(2d+c)/2. We remark that we have not attempted
to optimize these extra factors in front of the dominating term n(2d+c)/2, so it’s plausible that a more careful
analysis can obtain a slightly better bound.

Proof. [Proof of the relaxed bound] Let the i, j-th entry of Ak be ak,i,j. Let F = Âinc Ak ⌦ Ak � E Âinc Ak ⌦ Ak
be a random matrix on the variables ak,i,j for k  nc, i, j  nd. So EF = 0 and we are looking for bounds on kFk.
The entries are given by

F[(i1, i2), (j1, j2)] =

8
<

:
Â

knc
ak,i1,j1 ak,i2,j2 if (i1, j1) 6= (i2, j2)

0 if (i1, j1) = (i2, j2)

The nonzero entries are homogeneous polynomials of degree 2. UsingTheorem 1.2,

E kFk2t
2t  (32t)2t(kEF2,0k2t

2t + kEF1,1k2t
2t + kEF0,2k2t

2t)

We will consider each of these terms. In the following arguments, we restrict attention to indices i1, i2, j1, j2
such that (i1, j1) 6= (i2, j2).

1. EF2,0 has nonzero entries in row ((i1, i2), {(k, i1, j1), (k, i2, j2)}) and column (j1, j2) and all these entries are
1. The Schatten norm does not change when we permute the rows and columns. So, we can group the
rows on k, i1, i2 and within each group, we can sort j1, j2 in both rows and columns. We get a matrix having
n2d+c identity matrices, each of dimensions n2d ⇥ n2d, stacked on top of each other. Using the definition,
the Schatten-2t norm of this matrix is easily computed to be kEF2,0k2t

2t = nc+4dnt(2d+c).

2. EF1,1 has nonzero entries in either row ((i1, i2), {(k, i1, j1)}) and column ((j1, j2), {(k, i2, j2)}); or row
((i1, i2), {(k, i2, j2)}) and column ((j1, j2), {(k, i1, j1)}) and all these entries are 1. So we can write EF1,1 =
A + B corresponding to the 2 sets of entries. Arguing just as in the previous case, we can obtain
kAk2t

2t = nc+4dnt(2d+c) where we group the rows on k, i2, j1 and kBk2t
2t = nc+4dnt(2d+c) where we group

the rows on k, i1, j2. Therefore, kEF1,1k2t
2t  22t(kAk2t

2t + kBk2t
2t) = 22t+1nc+4dnt(2d+c).

3. The case EF0,2 is identical to EF2,0.

Putting them together, E kFk2t
2t  (C0t)2tnc+4dnt(2d+c) for an absolute constant C0 > 0. Now, we apply

Markov’s inequality to get

Pr[kF � EFk � q]  Pr[kF � EFk2t
2t � q2t]  q�2t

E kF � EFk2t
2t  q�2t(C0t)2tnc+4dnt(2d+c)

We now set q = #�1/(2t)(C0t)n(c+4d)/tn(2d+c)/2 to make this expression at most #. Plug in # = n�100 and set
t = log n to obtain that kF � EFk  Cn(2d+c)/2 log n holds with probability 1 � n�100, where C > 0 is an
absolute constant.
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4.2 Graph matrices In this section, we first define graph matrices and then show how to obtain norm bounds
for dense graph matrices, i.e. the case when G ⇠ Gn,1/2, using our framework. Handling sparse graph matrices,
i.e. the case when G ⇠ Gn,p for p = o(1), may not work well with our basic framework as we will explain in
Section 5. Instead, our general framework in Section 6 will handle this case well and we obtain sparse graph
matrix norm bounds in Section 8.

4.2.1 Definitions Define by Gn,p the Erdős-Rényi random graph on the vertex set [n] with n vertices, where
each edge is present independently with probability p. Let the graph be encoded by variables Gi,j 2 W =

{�
q

1�p
p ,
q

p
1�p} where �

q
1�p

p indicates the presence of the edge {i, j} and
q

p
1�p indicates absence, for all

1  i, j  n.

So, each Gi,j for i < j is sampled from W where Gi,j takes the value �
q

1�p
p with probability p and takes

the value
q

p
1�p otherwise. Here, W has been normalized so that Ex⇠W[x] = 0, Ex⇠W[x2] = 1. as is standard in

p-biased Fourier analysis.
When p = 1/2, we are in the setting of dense graph matrices. Then, Gn,1/2 can be thought of as a sampling of the

Gi,j, i < j independently and uniformly from W = {�1, 1}. For a set of edges E ✓ ([n]2 ), define GE := ’e2E Ge.
When p = 1/2, the GE correspond to the Fourier basis for functions of the graph.

Define I to be the set of sub-tuples of [n], including the empty tuple. Graph matrices will have rows and
columns indexed by I . Each graph matrix has a succinct representation as a graph with some extra information,
that is called a shape.

DEFINITION 4.1. (SHAPE) A shape is a tuple t = (V(t), E(t), Ut , Vt) where (V(t), E(t)) is a graph and Ut , Vt are
ordered subsets of the vertices.

DEFINITION 4.2. (REALIZATION) Given a shape t, a realization of t is an injective map j : V(t) ! [n].

DEFINITION 4.3. (GRAPH MATRICES) Let t be a shape. The graph matrix Mt : {±1}(n
2) ! R

I⇥I is defined to be the
matrix-valued function with I, J-th entry defined as follows.

Mt [I, J] := Â
Realization j

j(Ut)=I,j(Vt)=J

Gj(E(t)) = Â
Realization j

j(Ut)=I,j(Vt)=J

’
(u,v)2E(t)

Gj(u),j(v)

In other words, we sum over all realizations of t that map Ut , Vt to I, J respectively and for each such realization, we have
a term corresponding to the Fourier character that the realization gives.

The following examples illustrate some simple graph matrices.

EXAMPLE 4.1. (ADJACENCY MATRIX) Let t be the shape on the left in Fig. 3, with two vertices V(t) = {u, v} and a
single edge E(t) = {{u, v}}. Ut , Vt are (u), (v) respectively where we use tuples to indicate ordering. Then Mt has
nonzero entries Mt [(i), (j)](G) = Gi,j for all i 6= j. If G 2 {±1}(n

2) is thought of as a graph, then Mt has as principal
submatrix the ±1 adjacency matrix of G with zeros on the diagonal, and the other entries are 0.

EXAMPLE 4.2. In Fig. 3, consider the shape t on the right. We have Ut = (u1, u2), Vt = (v1), V(t) = {u1, u2, v1, w1}
and E(t) = {{u1, w1}, {u2, w1}, {w1, v1}}. Mt is a matrix with rows and columns indexed by sub-tuples of [n]. Its
nonzero entries are in rows I and columns J with |I| = |Ut | = 2 and |J| = |Vt | = 1 respectively. Specifically, for all
distinct a1, a2, b1, the entry corresponding to row (a1, a2) and column (b1) is Âc12[n]\{a1,a2,b1} Ga1,c1 Ga2,c1 Gc1,b1 . Here,
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Example shape ߬ Shape ߬ for adjacency matrix 

Figure 3: Left: Shape corresponding to adjacency matrix, Right: Example of a more complicated shape

each term is obtained via the realization j that maps u1, u2, w1, v1 to a1, a2, c1, b1 respectively. Succinctly,

Mt =

column (b1)
#0

B@

1

CA

...
row (a1, a2) ! . . . . . . . Âc12[n]\{a1,a2,b1} Ga1,c1 Ga2,c1 Gc1,b1

. . . . . . . . .
...

Intuitively, graph matrices are symmetrizations of the Fourier basis, where the symmetry is incorporated
by summing over all realizations of “free” vertices V(t) \ Ut \ Vt of the shape t. For more examples of graph
matrices and why they can be a useful tool to work with, see [AMP16].

4.2.2 Norm bounds for dense graph matrices In this section, we study the concentration of the so-called
“dense graph matrices” which is a term that refers to graph matrices Mt in the setting p = 1/2. Since the
edges of a random graph sampled from Gn,1/2 can be viewed as independent Rademacher random variables, we
can apply our framework in this setting.

In particular, we will obtain bounds on E kMt � EMtk2t
2t. The Gi,j 2 {�1, 1} correspond to the Zis in

Section 3 and for a fixed shape t, Mt will be the matrix F we are interested in analyzing. For I, J 2 I , Mt [I, J] is
a nonzero polynomial only when there exists at least one realization of t that maps Ut , Vt to I, J respectively. In
particular, we must have |I| = |Ut | and |J| = |Vt |. In this case, Mt [I, J] is a homogenous polynomial of degree
|E(t)|. ByTheorem 1.2, we have

E kMt � EMtk2t
2t  Â

a+b�1
a,b�0

(16t|E(t)|)(a+b)t ��EMt,a,b
��2t

2t

where for integers a, b � 0, Mt,a,b is defined to be the matrix with rows and columns each indexed by I ⇥ {0, 1}(n
2)

such that for all I, J 2 I , we have

Mt,a,b[(I, a), (J, b)] =

(
ra+bMt [I, J] if |a|0 = a, |b|0 = b, a · b = 0

0 o.w.

For any multilinear homogenous polynomial f of degree d, since E[Gi,j] = 0 for all i, j, we have ra f = 0
whenever |a|0 < d. Therefore, EMt,a,b = 0 for all a + b < |E(t)|. Moreover, EMt,a,b = 0 whenever
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a + b 6= |E(G)| otherwise EMt,a,b = Mt,a,b. So, we can further simplify the above expression to

E kMt � EMtk2t
2t  Â

a+b=|E(t)|
a,b�0

(16t|E(t)|)|E(t)|t
��Mt,a,b

��2t
2t

It remains to analyze
��Mt,a,b

��2t
2t for a+ b = |E(t)|. We will see that analyzing these matrices is much simpler

since they are deterministic matrices and simple computations using the Frobenius norm bound will work well.
To state our final bounds, we need to define the notion of vertex separators of shapes.

REMARK 4.1. As we will see, when analyzing the Frobenius norms for these deterministic matrices, the notion of the
minimum vertex separator arises naturally. In prior trace method calculations (e.g. [MP16], [AMP16]), this required
ingenious combinatorial observations.

DEFINITION 4.4. (VERTEX SEPARATOR) For a shape t, define a vertex separator to be a subset of vertices S ✓ V(t)
such that there is no path from Ut to Vt in t \ S, which is the shape obtained by deleting all the vertices of S (including all
edges they’re incident on).

For a shape t, denote by St a vertex separator of the smallest size. Also, let It be the set of isolated vertices
(vertices with degree 0) in V(t) \Ut \Vt , so the presence of these vertices essentially scale the matrix by a scalar
factor.

THEOREM 4.1. For a shape t and any integer t � 1,

E kMt � EMtk2t
2t 

✓
Ct|E(t)|n|V(t)|tt|E(t)||E(t)|2t|E(t)|

◆
nt(|V(t)|�|St |+|It |)

for an absolute constant C > 0.

Up to lower order terms, the same result has been shown before in [MP16, AMP16]. To interpret this bound,
assume that t has a constant number of vertices. By setting t ⇡ polylog(n), we get

kMtk = eO
⇣p

n|V(t)|�|St |+|It |
⌘

with high probability, where eO hides logarithmic factors. This is obtained by applying Markov’s inequality on
the bound on E kMtk2t

2t. If t has at least one edge, then EMt = 0 andTheorem 4.1 yields such bounds. If t has no
edges, then it’s quite simple to obtain such a bound and we include it in Lemma 4.2 for the sake of completeness.

Corollary 4.1 makes precise the high probability bound above. Therefore, this power of n is essentially what
controls the norm bound and this is utilized heavily in applications (e.g. [BHK+19, GJJ+20, PR20]).

Proof. [Proof of Theorem 4.1] We first argue that we can assume It = ∆. This is because of the following reason.
Each distinct vertex in t of degree 0 essentially scales the matrix by a factor of at most n. And in the right hand
side of the inequality, each vertex in It contributes a factor of n2t accordingly, from nt|V(t)| and from nt|It |, and
the other changes only weaken the inequality.

Now, fix a, b � 0 such that a + b = |E(t)| and consider Mt,a,b. For I, J 2 I , a, b 2 {0, 1}(n
2) such that

|a|0 = a, |b|0 = b, a · b = 0, by definition,

Mt,a,b[(I, a), (J, b)] = ra+b

0

@ Â
j:j(Ut)=I,j(Vt)=J

’
u,v2E(t)

Gj(u),j(v)

1

A

= |{j | j(Ut) = I, j(Vt) = J, j(E(t)) = Supp(a + b)}|
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where Supp(.) denotes the support. We will now obtain norm bounds on these deterministic matrices by
reinterpreting them as graph matrices for different shapes. Let P = (E1, E2) denote the partition of E(t) =
E1 t E2 into two ordered sets E1, E2, where t denotes disjoint union. Let the set of ordered partitions P be P .
Then, we can write Mt,a,b = ÂP2P Mt,a,b,P where

Mt,a,b,P[(I, a), (J, b)] = |{j | j(Ut) = I, j(Vt) = J, j(E1) = Supp(a), j(E2) = Supp(b)}|

Also, |P|  (4|E(t)|)|E(t)| and so, by Fact 2.2,
��Mt,a,b

��2t
2t  (4|E(t)|)t|E(t)| Â

P2P

��Mt,a,b,P
��2t

2t

Each Mt,a,b,P can be interpreted as a graph matrix for a different shape tP, with the same vertex set and no
edges. Let V(tP) = V(t), E(tP) = ∆ and set UtP = Ut [V(E1), V(tP) = Vt [V(E2) using a canonical ordering.
Then, Mt,a,b is equal to MtP up to renaming of the rows and columns. For an illustration, see Fig. 4.
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Figure 4: An example illustrating how tP is defined. In this example, P constraints the blue and red edges to go to a and b
respectively. UtP , VtP have an ordering on the vertices (not shown here).

This graph matrix has a block diagonal structure indexed by the realizations of the set of common vertices
S = UtP \ VtP . Indeed, for K 2 [n]S, let MtP ,K be the block of MtP with j(S) = K. Then, MtP ,KM|

tP ,K0 =

M|
tP ,KMtP ,K0 = 0 for K 6= K0 and so,

E
��Mt,a,b

��2t
2t  (4|E(t)|)t|E(t)| Â

P2P
kMtPk

2t
2t = (4|E(t)|)t|E(t)| Â

P2P
Â

T2[n]S

��MtP ,T
��2t

2t

 (4|E(t)|)t|E(t)| Â
P2P

Â
T2[n]S

⇣��MtP ,T
��2

2

⌘t

where we bounded the Schatten norm by the appropriate power of the Frobenius norm. For any fixed K 2 [n]S,
the entries of MtP ,K take values in {0, 1} and the number of nonzero entries is at most n|V(t)|�|S| because
the realizations of vertices in S are fixed and the other vertices have at most n choices each. Therefore,��MtP ,K

��2
2  n|V(t)|�|S|.

Finally, we bound |S| to estimate how large this term can be over all possibilities of P. We argue that S blocks
all paths from Ut to Vt . To see this, consider any path from Ut to Vt , it must contain an edge (u, v) 2 E(t) such
that u 2 UtP , v 2 VtP . We must either have (u, v) 2 E1, in which case u, v 2 UtP and v 2 S, or (u, v) 2 E2, in
which case u, v 2 VtP and u 2 S. In either case, S must contain either u or v. This argument implies S must be a
vertex separator of t, giving |S| � |St |. For a proof by picture, see Fig. 5.

We also have the trivial upper bound |S|  |V(t)|. Ultimately, this gives
��Mt,a,b

��2t
2t  (4|E(t)|)t|E(t)| Â

P2P
Â

T2[n]S
nt(|V(t)|�|St |)  (4|E(t)|)t|E(t)|(4|E(t)|)|E(t)|n|V(t)|nt(|V(t)|�|St |)
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I ∪ V(α) 
 

 

J ∪ V(β) 
 

 

Figure 5: Proof by picture that |S| � |St |. Green edges can occur in t, orange edges cannot, so S blocks all paths from Ut to
Vt .

Along with our prior discussion, we get

E kMt � EMtk2t
2t  Â

a+b=|E(t)|
(16t|E(t)|)|E(t)|t

��Mt,a,b
��2t

2t

 Â
a+b=|E(t)|

(16t|E(t)|)|E(t)|t(4|E(t)|)t|E(t)|(4|E(t)|)|E(t)|n|V(t)|nt(|V(t)|�|St |)


✓

Ct|E(t)|n|V(t)|tt|E(t)||E(t)|2t|E(t)|
◆

nt(|V(t)|�|St |)

for an absolute constant C > 0.

REMARK 4.2. Note that while the proof of the norm bound above still requires some combinatorial analysis, this arises
mostly from a mechanical application of the general result Theorem 1.2. Also, one only needs the simpler combinatorics of
the fixed-size shapes obtained from the given shape t, rather than increasingly large shapes formed by combining copies of
t, as in the application of trace method [AMP16].

In the proof above, our analysis of the shape tP which has no edges, applies in general to any shape t with
no edges. For the sake of completeness, we state it explicity in the following lemma.

LEMMA 4.2. For a shape t with no edges and any integer t � 1, E kMtk2t
2t  n|Ut\Vt |nt(V(t)�|Ut\Vt |+|It |).

Note that this has the same form as Theorem 4.1 because for a shape t with no edges, the minimum vertex
separator St is just Ut \ Vt . The following corollary obtains high probability norm bounds for norms of graph
matrices via Markov’s inequality.

COROLLARY 4.1. For a shape t, for any constant # > 0, with probability 1 � #,

kMtk  (C|E(t)| log(n|V(t)|/#))|E(t)| ·
p

n|V(t)|�|St |+|It |

for an absolute constant C > 0.

Proof. If E(t) = ∆, we invoke Lemma 4.2. Otherwise, EMt = 0 and we invoke Theorem 4.1. By an application
of Markov’s inequality,

Pr[kMtk � q]  Pr[kMtk2t
2t � q2t]  q�2t

E kMtk2t
2t

 q�2t
✓
(C0)t|E(t)|n|V(t)|tt|E(t)||E(t)|2t|E(t)|

◆
nt(|V(t)|�|St |+|It |)
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for an absolute constant C0 > 0. To make this expression at most #, we simply set q =✓
#�1/(2t)(C00)|E(t)|n|V(t)|/(2t)t|E(t)|/2|E(t)||E(t)|

◆p
n|V(t)|�|St |+|It | for an absolute constant C00 > 0. Finally, set

t = 1
2 log(n|V(t)|/#) to complete the proof.

5 Why a naïve application of [PMT16] may fail for general product distributions

In this section, we elaborate on the difficulties that arise when working with random variables that are not
necessarily Rademacher. In this case, note that we cannot assume that the polynomial entries are multilinear as
well.

To recall the setting, we are given a random matrix F whose entries are low degree polynomials in random
variables Z1, . . . , Zn which are independently sampled from arbitrary distributions. And we wish to obtain
concentration bounds on how much F can deviate from its mean, by way of controlling E kF � EFk2t

2t.
Building on the ideas from Section 3, we could attempt to use matrix Efron-Stein,Theorem 1.1 and hope to

obtain a similar recursion framework. We now discuss what happens if we do this. Assume E[Zi] = 0, E[Z2
i ] = 1.

We can proceed similar to the proof of Theorem 1.2. So, we consider X as a principal submatrix of X0,0 and follow
through Lemma 3.1. The main change will happen in Claim 3.1. In particular, the equation E[(Zi � eZi)

2|Z] = 2
is no longer true. Instead, we will have E[(Zi � eZi)

2|Z] = 1 + Z2
i . So, we get the expression

n

Â
i=1

(1 + Z2
i )Fa,b,iF

|
a,b,i =

n

Â
i=1

Fa,b,iF
|
a,b,i +

n

Â
i=1

Z2
i Fa,b,iF

|
a,b,i

The first term can been handled just as in the basic framework. Unfortunately, the second term will be a
source of difficulty. To get around this difficulty, we could attempt to apply the matrix Efron-Stein inequality
again on an appropriately constructed matrix. To do this, we can interpret the second term as having been
obtained after differentiating with respect to the variable Zi and then putting the variable back. In contrast, we
didn’t need to put it back when working with Rademacher random variables. But after we do this, when we
recurse on these extra matrices, the new second term will contain the left hand side as a sub-term, thereby giving
a trivial inequality and stalling the recursion.

To see this more clearly, consider the simplest case a = b = 0. Then, the first term Ân
i=1 Fa,b,iF

|
a,b,i will be

equal to F0,1F|
0,1 as we saw earlier. To evaluate the second term Ân

i=1 Z2
i Fa,b,iF

|
a,b,i in a similar manner, we define

the matrix H to be the same as F0,1 except that each entry is now multiplied by Zi where i is the differentiated
variable in the column. That is, H[I, (J, ei)] = ZiF0,1[I, (J, ei)]. Observe that in the definition of H, Zi has been
put back after differentiating with respect to it. Then, the second term will be HH| and we can hope to use
Efron-Stein again on this matrix H recursively.

We could do that and proceed similarly to the proof of Lemma 3.1 with appropriate modifications as above.
But since bi = 1 already, differentiating with respect to Zi and putting it back, will return the same matrix H! So,
we end up with an inequality of the form

E kHk2t
2t  O(t)t(E kHk2t

2t + other nonnegative terms)

Indeed, this is a tautology and will not be useful to us.
For a quick and dirty bound, suppose we had a parameter L such that 1 + Z2

i  L for our distributions,
then we will be able to obtain a similar framework while incurring a loss of

p
L at each step of the recursion.

But unfortunately, this bound will be lossy. For example, if we do this computation for the centered normalized

adjacency matrix of G ⇠ Gn,p, we will obtain a norm bound of eO(
p

n(1�p)pp ) where eO hides logarithmic factors..

This bound is tight for constant or even inverse polylogarithmic p. But for p = n�q for some constant 0 < q < 1,
this is not tight because in this regime, the true norm bound is known to be eO(

p
n) (see the early works of

[FK81, Vu05] and for tighter bounds, see [BGBK20] and references therein).
If we dig into the details of what happened, this example illustrates that the matrix Efron-Stein in-

equalityTheorem 1.1 becomes a tautology for certain kinds of matrices, that yield V = O(1)XX| +

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited3631

D
ow

nl
oa

de
d 

02
/1

6/
23

 to
 1

17
.2

20
.1

11
.2

34
 . 

R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y



other positive semidefinite matrices.
But in our framework in general, the aforementioned bad matrices occur when we differentiate with respect

to variables that have already been differentiated on. In other words, the current definition of the variance proxy
V doesn’t take into account whether we have already differentiated with respect to some variable Zi. So, for
the general recursion, we dive into the proof due to [PMT16] and modify it using structural properties of the
intermediate matrices we obtain in our framework.

6 The general recursion framework

We now assume Z1, . . . , Zn are i.i.d. random variables sampled from a distribution W with finite moments. We
assume that they are identically distributed for simplicity but our technique easily extends even when they are
not identically distributed, as long as they are independent. For each i  n, define eZi to be an independent copy
of Zi and define the vector Z(i) := (Z1, . . . , Zi�1, eZi, Zi+1, . . . , Zn). Define Z0 to be the random vector defined by
sampling i from [n] uniformly at random and then setting Z0 = Z(i).

Let F 2 R[Z]I⇥J be a matrix with rows and columns indexed by arbitrary sets I ,J respectively such that
for all I 2 I , J 2 J , F[I, J] are polynomials of Z1, . . . , Zn. Let dp be the maximum degree of F[I, J] over all entries
I, J and let d be the maximum degree of Zi over all entries F[I, J] and i  n.

Similar to the Rademacher case, let X := F � EF. When the input is Z, we denote the matrices as F, X, etc
and when the input is Z(i), denote the corresponding matrices as F(i), X(i), etc. In this section, we will give a
general framework using which we can obtain bounds on E kF � EFk2t

2t for any integer t � 1. We set up a few
preliminaries in order to state the main theorem.

DEFINITION 6.1. (SPACE S ) Let S be the space of mean-zero polynomials in Z1, . . . , Zn of degree at most dp.

For a 6= 0, we also define the centered monomials ca(Z) = ’ai>0(Zai
i � E[Zai

i ]). By definition, ca 2 S for
all a 6= 0, |a|1  dp. The following proposition is straightforward.

PROPOSITION 6.1. The set {ca(Z)|1  |a|1  dp} forms a basis for S .

For the general framework, we work over this basis because as we will see in Section 7, the “inner kernel
matrix” is convenient to state in this basis. The r operator also works nicely with our polynomials cb. Indeed,

observe that ra(cb) =

(
cb�a if a E b

0 o.w.
.

For a polynomial f (Z) in S , denote by bf (a) the coefficient of ca(Z) in the expansion of f , that is,
f (Z) = Â

0 6=a2Nn

bf (a)ca(Z). We can naturally extend this notation to matrices that have mean 0. So, we can

write X = Âa 6=0 bX(a)ca(Z) where bX(a) are deterministic matrices. In order to apply our recursion framework,
we group this sum into terms based on |a|0. For k � 1, define Xk = Â|a|0=k bX(a)ca(Z). Then, X = Âk�1 Xk. Note
that when k > dp, Xk = 0.

DEFINITION 6.2. (INDEXING SET K) We define K ✓ N
n ⇥ {0, 1}n to be the set of pairs (a, g) such that |a|1  dp, a 2

N
n and g  a with g 2 {0, 1}n.

REMARK 6.1. If we assume that the maximum degree of our polynomials dp is constant, then the size of K is polynomially
large, not exponentially large. Hence, the matrices we will consider below will also be of polynomial size when dp is
constant.

Define the diagonal matrices D1 2 R[Z]I⇥K ⇥ R[Z]I⇥K and D2 2 R[Z]J⇥K ⇥ R[Z]J⇥K with nonzero
entries

D1[(I, a, g), (I, a, g)] =
q

E[Z2a·(1�g)]Za·g, D2[(J, a, g), (J, a, g)] =
q

E[Z2a·(1�g)]Za·g
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DEFINITION 6.3. (MATRICES Gk,a,b, Fk,a,b) For integers k, a, b such that k � 1, a, b � 0, define the matrix Gk,a,b to have
rows and columns indexed by I ⇥K and J ⇥K respectively such that for all (I, a1, g1) 2 I ⇥K, (J, a2, g2) 2 J ⇥K,

Gk,a,b[(I, a1, g1), (J, a2, g2)] =

(
ra1+a2 Xk[I, J] if |a1|0 = a, |a2|0 = b, a1 · a2 = 0
0 o.w.

Also, define Fk,a,b := D1Gk,a,bD2.

Note that when k > dp, Fk,a,b = 0.

PROPOSITION 6.2. For integers k, a, b such that k � 1, a, b � 0, suppose a + b < k. Then each nonzero entry f of Gk,a,b
has the property that bf (a) is nonzero only when |a|0 = k � a � b

Proof. The nonzero entries of Xk only has terms containing exactly k variables and ra1+a2 either zeroes out the
term, or it truncates exactly |a1 + a2|0 = |a1|0 + |a2|0 = a + b variables.

This also immediately implies that E[Gk,a,b] = 0 whenever a + b < k. Finally, when k = a + b, we have that
Gk,a,b is a deterministic matrix independent of the Zi. These give rise to the matrices Fa+b,a,b that appears in our
main theorem. We are now ready to state the main theorem.

THEOREM 6.1. (GENERAL RECURSION) Let the tuple of random variables Z and the function F be as above. Then, for
all integers t � 1,

E kF � EFk2t
2t  Â

a,b�0,a+b�1
(Ct2dd4

p)
(a+b)t

E
��Fa+b,a,b

��2t
2t

for an absolute constant C > 0.

Note that Fa+b,a,b = D1Ga+b,a,bD2 where D1, D2 are diagonal matrices and Ga+b,a,b is a deterministic matrix
that’s independent of Z. To analyze the expected Schatten norm of such matrices, we can resort to far simpler
techniques. For instance, we can obtain a simple bound using an appropriate power of the Frobenius norm, and
apply standard scalar concentration tools. We will see an example of this in Section 8.

REMARK 6.1. We have made no attempts to optimize the factors in front of the expectation inTheorem 6.1, which we
suspect can be improved.

We prove the main theorem by repeatedly applying the following technical lemma, the proof of which we
defer to the next section.

LEMMA 6.1. For all integers t � 1, integers k � 1, a, b � 0 such that a + b < k,

E
��Fk,a,b

��2t
2t  (Ct2dd2

p)
t(E

��Fk,a,b+1
��2t

2t + E
��Fk,a+1,b

��2t
2t)

for an absolute constant C > 0.

Using this lemma, we can complete the proof of the main theorem.

Proof. [Proof of Theorem 6.1] Using Fact 2.2, we have E kXk2t
2t  d2t

p Â
dp
k=1 E kXkk2t

2t. Note that for any k � 1,

the matrix Xk is a principal submatrix of Fk,0,0 with all other entries being 0, so E kXkk2t
2t = E

��Fk,0,0
��2t

2t =

1
2 E
��Fk,0,0

��2t
2t. Therefore, E kXk2t

2t  1
2 d2t

p

dp

Â
k=1

E
��Fk,0,0

��2t
2t. We now apply Lemma 6.1 repeatedly to all our terms

until k = a + b, ultimately giving

E kXk2t
2t 

1
2

d2t
p (Ct2dd2

p)
(a+b)t Â

a,b�0,a+b�1
E
��Fa+b,a,b

��2t
2t

Observing that E
��Fa+b,a,b

��2t
2t = 2E

��Fa+b,a,b
��2t

2t completes the proof.
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7 A generalization of [PMT16] and proof of Lemma 6.1

In this section, we will prove Lemma 6.1 using the high level strategy described in Section 1. This requires
generalizing the results in [PMT16], and the proof techniques may be of independent interest.

7.1 Generalizing [PMT16] via explicit inner kernels In our setting, observe that (Z, Z0) has the same
distribution as (Z0, Z). This is what is known as an exchangeable pair of variables, that will be extremely useful
for our analysis. In particular, Z, Z0 have the same distribution and E f (Z, Z0) = E f (Z0, Z) for every integrable
function f .

DEFINITION 7.1. (LAPLACIAN OPERATOR L) Define the operator L on the space S as L( f )(Z) = E[ f (Z)� f (Z0)|Z]
for all polynomials f 2 S .

Note that this operator is well-defined since for any f 2 S , E[L( f )] = E[E[ f (Z)� f (Z0)|Z]] = E[ f (Z)�
f (Z0)] = 0 and hence, L( f ) 2 S .

LEMMA 7.1. For all a 2 N
n, ca is an eigenvector of L with eigenvalue |a|0

n .

Proof. Recall that Z0 is obtained by choosing i 2 [n] uniformly at random and then setting Z0 = Z(i). Therefore,
L(ca)(Z) = E[ca(Z)�ca(Z0)|Z] = 1

n Â
in

E[ca(Z)�ca(Z(i))|Z] When ai = 0, ca(Z)�ca(Z(i)) = 0. Otherwise,

E[ca(Z)� ca(Z(i))|Z] = ca(Z). Therefore, the above expression simplifies to |a|0
n ca(Z).

THEOREM 7.1. (EXPLICIT KERNEL) For any mean-centered polynomial f 2 S , there exists a polynomial K f on 2n
variables z1, . . . , zn, z01, . . . , z0n, denoted collectively as (z, z0), with the following properties

1. K f (z0, z) = �K f (z, z0)

2. E[K f (Z, Z0)|Z] = f (Z) where (Z, Z0) is the exchangeable pair we consider above.

Proof. Using Proposition 6.1 and Lemma 7.1, under the basis of polynomials ca, the operator L is a diagonal
matrix with nonzero diagonal entries and therefore, L�1 exists and is explicitly given by L�1( f )(Z) =

Â
a

n
|a|0

bf (a)ca(Z). We then take K f (z, z0) = L�1( f )(z) � L�1( f )(z0). The first condition is obvious and for

the second condition, we have

E[K f (Z, Z0)|Z] = E[L�1( f )(Z)� L�1( f )(Z0)|Z] = L(L�1( f )) = f

As seen in the proof of Theorem 7.1, L has a well-defined inverse L�1. We now define the matrix Kk,a,b that
we call the inner kernel.

DEFINITION 7.2. (THE INNER KERNEL MATRIX Kk,a,b) For integers k � 1, a, b � 0 such that a + b < k, define the
matrix Kk,a,b 2 R[Z]I⇥K ⇥ R[Z]J⇥K taking 2n variables (z, z0) = (z1, . . . , zn, z01, . . . , z0n) as input as Kk,a,b(z, z0) =
L�1(Gk,a,b)(z)� L�1(Gk,a,b)(z0).

In the rest of this section except where explicitly stated, fix integers k � 1, a, b � 0 such that a + b < k. Then,
the inner kernel Kk,a,b is well-defined.

LEMMA 7.2. Kk,a,b(Z, Z0) = n
k�a�b (Gk,a,b(Z)� Gk,a,b(Z0))
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Proof.

Kk,a,b(Z, Z0) = L�1(Gk,a,b)(Z)� L�1(Gk,a,b)(Z0)

= Â
|a|0=k�a�b

[Gk,a,b(a)(L�1(ca)(Z)� L�1(ca)(Z0))

=
n

k � a � b Â
|a|0=k�a�b

[Gk,a,b(a)(ca(Z)� ca(Z0))

=
n

k � a � b
(Gk,a,b(Z)� Gk,a,b(Z0))

The following lemma postulates important properties of the the inner kernel, including how it interacts with
D1 and D2.

LEMMA 7.3. Kk,a,b satisfies the following properties

1. Kk,a,b(z0, z) = �Kk,a,b(z, z0)

2. E[Kk,a,b(Z, Z0)|Z] = Gk,a,b(Z)

3. (D1(Z)� D1(Z0))Kk,a,b(Z, Z0) = Kk,a,b(Z, Z0)(D2(Z)� D2(Z0)) = 0.

Proof. The first equality is obvious from the definition. For the second equality, note that E[Gk,a,b] = 0 and Kk,a,b
is defined by replacing each entry f of Gk,a,b by the kernel polynomial K f as exhibited in Theorem 7.1. Now, we
prove the third equality.

Consider the matrix (D1(Z)� D1(Z0))Kk,a,b(Z, Z0) whose [(I, a1, g1), (J, a2, g2)] entry is given by

n
k � a � b

q
E[Z2a1·(1�g1)](Za1·g1 � (Z0)a1·g1)(ra1+a2 Xk[I, J](Z)�ra1+a2 Xk[I, J](Z0))

where we have used Lemma 7.2. We will argue that this term is identically 0. We must have Z0 = Z(i) for some
i  n. If (a1 · g1)i = 0, then Za1·g1 = (Z0)a1·g1 and the above term is 0. Otherwise, (a1 + a2)i 6= 0 and so
ra1+a2 on any polynomial f will only contain the terms independent of Zi, in which case ra1+a2 Xk[I, J](Z) =
ra1+a2 Xk[I, J](Z0). In this case was well, the above term is 0. The proof of the other equality is analogous.

The reason we call Kk,a,b the inner kernel is because, as seen above, it serves as a kernel for the inner
matrix G in the decomposition F = DGD. Since we will need to work with Hermitian dilations, we define

D =


D1 0
0 D2

�
. We will use the following basic fact extensively in our manipulations.

FACT 7.1. For any matrix A 2 R[Z]I⇥K ⇥ R[Z]J⇥K, DAD = D1AD2.

Proof. We have

DAD =


D1 0
0 D2

� 
0 A

A| 0

� 
D1 0
0 D2

�
=


0 D1A

D2A| 0

� 
D1 0
0 D2

�

=


0 D1AD2

D2A|D1 0

�

= D1AD2
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We start with a generalized version of a result from [PMT16].

LEMMA 7.4. Let K = Kk,a,b. For any symmetric matrix valued function R on the variables Z of the same dimensions as
K, such that E kK(Z, Z0)R(Z)k < •, we have

E[Fk,a,b(Z)R(Z)] =
1
2

E[D(Z)K(Z, Z0)D(Z)(R(Z)� R(Z0))]

Proof. By Lemma 7.3, we have

E[Fk,a,b(Z)R(Z)] = E[D(Z)Gk,a,b(Z)D(Z)R(Z)]
= E[D(Z)E[K(Z, Z0)|Z]D(Z)R(Z)]
= E[D(Z)K(Z, Z0)D(Z)R(Z)]

where the first equality follow from condition 2 of Lemma 7.3 and the second follows from the pull-through
property of expectations. Continuing,

E[Fk,a,b(Z)R(Z)] = E[D(Z)K(Z, Z0)D(Z)R(Z)]
= E[D(Z0)K(Z0, Z)D(Z0)R(Z0)]

= �E[D(Z0)K(Z, Z0)D(Z0)R(Z0)]

= �E[D(Z)K(Z, Z0)D(Z0)R(Z0)]

= �E[D(Z)K(Z, Z0)D(Z)R(Z0)]

Here, the second equality follows from the fact that (Z, Z0) has the same distribution as (Z0, Z), so we can
exchange them. The third, fourth and fifth equalities follow from conditions 1, 3, 3 of Lemma 7.3 respectively.
Adding the two displays, we get the result.

DEFINITION 7.3. (MATRICES Uk,a,b, Vk,a,b) We define the following matrices

Uk,a,b = E[(Fk,a,b(Z)� Fk,a,b(Z0))2|Z]

Vk,a,b = E[(D(Z)Kk,a,b(Z, Z0)D(Z))2|Z]

The definition of Uk,a,b is essentially unchanged from [PMT16], where it is called the conditional variance. The
definition of Vk,a,b is slightly different in our setting. This lets us exploit the specific product structure exhibited
by Fk,a,b and the special properties of the inner kernel from Lemma 7.3. We will now prove a lemma which is
similar to a lemma shown in [PMT16].

LEMMA 7.5. For any s > 0 and for any integer t � 1,

E
��Fk,a,b

��2t
2t 

✓
2t � 1

4

◆t
E

���sUk,a,b + s�1Vk,a,b

���
t

t

To prove this, we will use the following inequality.

LEMMA 7.6. (POLYNOMIAL MEAN VALUE TRACE INEQUALITY, [PMT16]) For all matrices A, B, C 2 H
d, all inte-

gers q � 1 and all s > 0,

tr[C(Aq � Bq)]|  q
4

tr[(s(A � B)2 + s�1C2)(Aq�1 + Bq�1)]

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited3636

D
ow

nl
oa

de
d 

02
/1

6/
23

 to
 1

17
.2

20
.1

11
.2

34
 . 

R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y



Proof. [Proof of Lemma 7.5] We start by invoking Lemma 7.4 by setting R(Z) = F2t�1
k,a,b (Z) to get

E
��Fk,a,b

��2t
2t = E tr[Fk,a,b · F2t�1

k,a,b ] =
1
2

E[D(Z)Kk,a,b(Z, Z0)D(Z)(F2t�1
k,a,b (Z)� F2t�1

k,a,b (Z0))]

Applying Lemma 7.6,

E
��Fk,a,b

��2t
2t

 (
2t � 1

8
)E tr[(s(Fk,a,b(Z)� Fk,a,b(Z0))2 + s�1(D(Z)Kk,a,b(Z, Z0)D(Z))2)(F2t�2

k,a,b (Z) + F2t�2
k,a,b (Z0))]

= (
2t � 1

4
)E tr[(s(Fk,a,b(Z)� Fk,a,b(Z0))2 + s�1(D(Z)Kk,a,b(Z, Z0)D(Z))2)F2t�2

k,a,b (Z)]

where the last line used the fact that (Z, Z0) has the same distribution as (Z0, Z) and applied condition 3 of
Lemma 7.3. Using the definitions of Uk,a,b and Vk,a,b, we get

E
��Fk,a,b

��2t
2t 

2t � 1
4

E tr[(sUk,a,b + s�1Vk,a,b)F
2t�2
k,a,b ]

 2t � 1
4

✓
E

���sUk,a,b + s�1Vk,a,b

���
t

t

◆1/t
(E
��Fk,a,b

��2t
2t)

(t�1)/t

where we used Hölder’s inequality for the trace and Hölder’s inequality for the expectation. Rearranging gives
the result.

7.2 Proof of Lemma 6.1 Lemma 7.5 suggests that in order to bound E
��Fk,a,b

��2t
2t, it suffices to bound E

��Uk,a,b
��t

t
and E

��Vk,a,b
��t

t. Indeed, this will be our strategy. To bound E
��Uk,a,b

��t
t, we will bound it via the matrices that we

define below.

DEFINITION 7.4. (MATRICES Dk,a,b
1 , Dk,a,b

2 , Dk,a,b
3 ) Define the matrices

Dk,a,b
1 = E[((D(Z)� D(Z0))Gk,a,b(Z)D(Z))2|Z]

Dk,a,b
2 = E[(D(Z)(Gk,a,b(Z)� Gk,a,b(Z0))D(Z))2|Z]

Dk,a,b
3 = E[(D(Z)Gk,a,b(Z)(D(Z)� D(Z0)))2|Z]

LEMMA 7.7. Uk,a,b � 3(Dk,a,b
1 + Dk,a,b

2 + Dk,a,b
3 ).

To prove this lemma, we will use the following lemma.

LEMMA 7.8. We have the relations

(D(Z)� D(Z0))(Gk,a,b(Z)D(Z)� Gk,a,b(Z0)D(Z0)) = 0

(Gk,a,b(Z)� Gk,a,b(Z0))(D(Z)� D(Z0)) = 0

Proof. [Proof sketch] The proof is similar to the proof of third equality in Lemma 7.3. When Z0 is set to
Z(i) for some i  n, when a diagonal entry of D(Z) � D(Z0) is nonzero, then the corresponding row of
Gk,a,b(Z)D(Z)� Gk,a,b(Z0)D(Z0) will be 0. The second equality is analogous.
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Proof. [Proof of Lemma 7.7] We have
(Fk,a,b(Z)� Fk,a,b(Z0))2

= (D(Z)Gk,a,b(Z)D(Z)� D(Z0)Gk,a,b(Z0)D(Z0))2

=

✓
D(Z)Gk,a,b(Z)(D(Z)� D(Z0)) + D(Z)(Gk,a,b(Z)� Gk,a,b(Z0))D(Z0) + (D(Z)� D(Z0))Gk,a,b(Z0)D(Z0)

◆2

=

✓
D(Z)Gk,a,b(Z)(D(Z)� D(Z0)) + D(Z)(Gk,a,b(Z)� Gk,a,b(Z0))D(Z) + (D(Z)� D(Z0))Gk,a,b(Z)D(Z)

◆2

where the last equality follows from Lemma 7.8. Taking expectations conditioned on Z and applying Fact 2.1,
we immediately get Uk,a,b � 3(Dk,a,b

1 + Dk,a,b
2 + Dk,a,b

3 ).

In subsequent sections, we will prove the following technical bounds on the matrices we have considered so
far.

LEMMA 7.9. For all integers t � 1, E

���Dk,a,b
2

���
t

t
 (2dp)t

nt (E
��Fk,a,b+1

��2t
2t + E

��Fk,a+1,b
��2t

2t).

LEMMA 7.10. For all integers t � 1, E
��Vk,a,b

��t
t  (2dp)tnt(E

��Fk,a,b+1
��2t

2t + E
��Fk,a+1,b

��2t
2t).

LEMMA 7.11. For all integers t � 1, E

���Dk,a,b
1

���
t

t
 (8ddp)t

nt E
��Fk,a,b

��2t
2t.

LEMMA 7.12. For all integers t � 1, E

���Dk,a,b
3

���
t

t
 (4dp)t

nt E
��Fk,a,b

��2t
2t.

Assuming the above lemmas, we can complete the proof of Lemma 6.1, which we restate for convenience.

LEMMA 6.1. For all integers t � 1, integers k � 1, a, b � 0 such that a + b < k,

E
��Fk,a,b

��2t
2t  (Ct2dd2

p)
t(E

��Fk,a,b+1
��2t

2t + E
��Fk,a+1,b

��2t
2t)

for an absolute constant C > 0.

Proof. [Proof of Lemma 6.1] Using Lemma 7.5, Lemma 7.7, we get that for any s > 0,

E
��Fk,a,b

��2t
2t  (

2t � 1
4

)t
E

���sUk,a,b + s�1Vk,a,b

���
t

t

 tt(st
E
��Uk,a,b

��t
t + s�t

E
��Vk,a,b

��t
t)

 (9st)t(E
���Dk,a,b

1

���
t

t
+ E

���Dk,a,b
2

���
t

t
+ E

���Dk,a,b
3

���
t

t
) + tts�t

E
��Vk,a,b

��t
t

Let r = s/n. Since the inequality is true for any choice of s > 0, it is true for any choice of r > 0. Now, using
Lemma 7.11, Lemma 7.12,

(9st)t(E
���Dk,a,b

1

���
t

t
+ E

���Dk,a,b
3

���
t

t
)  (9st)t

✓
(8ddp)t

nt +
(4dp)t

nt

◆
E
��Fk,a,b

��2t
2t

= rt(C1tddp)
t
E
��Fk,a,b

��2t
2t

for an absolute constant C1 > 0. Using Lemma 7.9, Lemma 7.10,

(9st)t
E

���Dk,a,b
2

���
t

t
+ tts�t

E
��Vk,a,b

��t
t 

✓
(9st)t (2dp)t

nt + tts�t(2dp)
tnt
◆
(E
��Fk,a,b+1

��2t
2t + E

��Fk,a+1,b
��2t

2t)

 (rtCt
2 + r�tCt

3)(tdp)
t(E

��Fk,a,b+1
��2t

2t + E
��Fk,a+1,b

��2t
2t)
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for absolute constants C2, C3 > 0. Therefore,

E
��Fk,a,b

��2t
2t  rt(C1tddp)

t
E
��Fk,a,b

��2t
2t + (rtCt

2 + r�tCt
3)(tdp)

t(E
��Fk,a,b+1

��2t
2t + E

��Fk,a+1,b
��2t

2t)

We choose r > 0 so that rt(C1tddp)t = 1
2 to get

E
��Fk,a,b

��2t
2t 

1
2

E
��Fk,a,b

��2t
2t +

1
2
(Ct2dd2

p)
t(E

��Fk,a,b+1
��2t

2t + E
��Fk,a+1,b

��2t
2t)

for an absolute constant C > 0. Rearranging yields the result.

7.3 Bounding Dk,a,b
2 and Vk,a,b The next lemma relates Vk,a,b to Dk,a,b

2 upto a factor of n2 which will be enough
for us. We can then focus on bounding Dk,a,b

2 .

LEMMA 7.13. Vk,a,b � n2Dk,a,b
2

Proof. Using Lemma 7.2,

Vk,a,b = E[(D(Z)Kk,a,b(Z, Z0)D(Z))2|Z]

= E[(D(Z)
✓

n
k � a � b

(Gk,a,b(Z)� Gk,a,b(Z0))

◆
D(Z))2|Z]

� n2
E[(D(Z)(Gk,a,b(Z)� Gk,a,b(Z0))D(Z))2|Z]

= n2Dk,a,b
2

For 1  i  n and 1  l  d, let ei,l 2 N
n denote the vector a with ai = l and aj = 0 for j 6= i. We note the

following simple proposition.

PROPOSITION 7.1. For any polynomial f such that the degree of Zi is at most d, f (Z) � f (Z(i)) = Â
1ld

(Zl
i �

eZi
l
)rei,l ( f )

We now restate and prove Lemma 7.9.

LEMMA 7.9. For all integers t � 1, E

���Dk,a,b
2

���
t

t
 (2dp)t

nt (E
��Fk,a,b+1

��2t
2t + E

��Fk,a+1,b
��2t

2t).

Proof. Consider

Dk,a,b
2 = E[(D(Z)(Gk,a,b(Z)� Gk,a,b(Z0))D(Z))2|Z]

= E

 
MM| 0

0 M|M

�
|Z
�

=


E[MM||Z] 0

0 E[M|M|Z]

�

where M = D1(Z)(Gk,a,b(Z)� Gk,a,b(Z0))D2(Z). Using Proposition 7.1,

E[MMT |Z] = E[D1(Z)(Gk,a,b(Z)� Gk,a,b(Z0))D2(Z) · D2(Z)(Gk,a,b(Z)� Gk,a,b(Z0))|D1(Z)|Z]

=
1
n

n

Â
i=1

E[D1(Z)(Gk,a,b(Z)� Gk,a,b(Z(i)))D2(Z) · D2(Z)(Gk,a,b(Z)� Gk,a,b(Z(i)))|D1(Z)|Z]

=
1
n

n

Â
i=1

d

Â
l=1

E[(Zl
i � eZi

l
)2|Z] · D1(Z)(rei,l Gk,a,b)(Z)D2(Z) · D2(Z)(rei,l Gk,a,b)(Z)|D1(Z)

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited3639

D
ow

nl
oa

de
d 

02
/1

6/
23

 to
 1

17
.2

20
.1

11
.2

34
 . 

R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y



Define Ni,l(Z) := D1(Z)(rei,l Gk,a,b)(Z)D2(Z). Then,

E[MMT |Z] = 1
n

n

Â
i=1

d

Â
l=1

E[(Zl
i � eZi

l
)2|Z] · Ni,l(Z)Ni,l(Z)| � 2

n

n

Â
i=1

d

Â
l=1

(Z2l
i + E[Z2l

i ]) · Ni,l(Z)Ni,l(Z)|

Similarly, E[M|M|Z] � 2
n

n

Â
i=1

d

Â
l=1

(Z2l
i + E[Z2l

i ]) · Ni,l(Z)|Ni,l(Z)

CLAIM 7.1. We have the relations

n

Â
i=1

d

Â
l=1

(Z2l
i + E[Z2l

i ]) · Ni,l(Z)Ni,l(Z)| = (b + 1)Fk,a,b+1F|
k,a,b+1

n

Â
i=1

d

Â
l=1

(Z2l
i + E[Z2l

i ]) · Ni,l(Z)|Ni,l(Z) = (a + 1)F|
k,a+1,bFk,a+1,b

Using this claim, we have

E[MMT |Z] � 2(b + 1)
n

Fk,a,b+1F|
k,a,b+1 �

2dp

n
Fk,a,b+1F|

k,a,b+1

E[M|M|Z] � 2(a + 1)
n

F|
k,a+1,bFk,a+1,b �

2dp

n
F|

k,a+1,bFk,a+1,b

Therefore,

E

���Dk,a,b
2

���
t

t
= E kE[MM||Z]kt

t + E kE[M|M|Z]kt
t 

(2dp)t

nt (E
��Fk,a,b+1

��2t
2t + E

��Fk,a+1,b
��2t

2t)


(2dp)t

nt (E
��Fk,a,b+1

��2t
2t + E

��Fk,a+1,b
��2t

2t)

It remains to prove the claim.

Proof. [Proof of Claim 7.1] We will prove the first relation, the second is analogous. For a fixed i  n, l  d,
consider any nonzero entry [(I1, a1, g1), (I2, a2, g2)] of Ân

i=1 Âd
l=1(Z2l

i + E[Z2l
i ])Ni,l(Z)Ni,l(Z)|, where I1, I2 2

I , (a1, g1), (a2, g2) 2 K. We must have |a1|0 = |a2|0 = a, in which case the entry is equal to

Â
(J,a3,g3)2J⇥K

|a3|=b
a1a3=a2a3=0

(Z2l
i + E[Z2l

i ]) · (
q

E[Z2a1·(1�g1)+2a3·(1�g3)]Za1·g1+a3·g3rei,lra1+a3 Xk[I1, J])

· (
q

E[Z2a2·(1�g2)+2a3·(1�g3)]Za2·g2+a3·g3rei,lra2+a3 Xk[I2, J])

Note that the term inside the summation is nonzero only when ei,l · (a1 + a3) = ei,l · (a2 + a3) = 0. Hence, this
sum can be written as

Â
(J,a3,g3)2J⇥K

|a3|=b+1
ei,lEa3,a1a3=a2a3=0

(
q

E[Z2a1·(1�g1)+2a3·(1�g3)]Za1·g1+a3·g3ra1+a3 Xk[I1, J])

· (
q

E[Z2a2·(1�g2)+2a3·(1�g3)]Za2·g2+a3·g3ra2+a3 Xk[I2, J])
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When we add this entry over all i  n, l  d, this simplifies to

(b + 1) · Â
(J,a3,g3)2J⇥K

|a3|=b+1
a1a3=a2a3=0

(
q

E[Z2a1·(1�g1)+2a3·(1�g3)]Za1·g1+a3·g3ra1+a3 Xk[I1, J])

· (
q

E[Z2a2·(1�g2)+2a3·(1�g3)]Za2·g2+a3·g3ra2+a3 Xk[I2, J])

The factor of (b + 1) came because the index i could have been chosen from among all the active indices in a3.
But this is precisely the [(I1, a1, g1), (I2, a2, g2)] entry of (b + 1)Fk,a,b+1F|

k,a,b+1, proving the claim.

We restate and prove Lemma 7.10.

LEMMA 7.10. For all integers t � 1, E
��Vk,a,b

��t
t  (2dp)tnt(E

��Fk,a,b+1
��2t

2t + E
��Fk,a+1,b

��2t
2t).

Proof. Using Lemma 7.13 and Lemma 7.9, we get

E
��Vk,a,b

��t
t  n2t

E

���Dk,a,b
2

���
t

t
 (2dp)

tnt(E
��Fk,a,b+1

��2t
2t + E

��Fk,a+1,b
��2t

2t)

7.4 Bounding Dk,a,b
1 and Dk,a,b

3 Define t to be the disjoint union of sets. For 1  i  n and 1  l  d, define the
diagonal matrices Pi,l , P0

i,l , Pi, P0
i 2 R

(I⇥K)t(J⇥K) ⇥ R
(I⇥K)t(J⇥K) (the same dimensions as D) as

Pi,l [(I, a, b), (I, a, b)] =

(
1 if (a · g)i 6= 0 and ai = l
0 o.w.

Pi[(I, a, b), (I, a, b)] =

(
1 if (a · g)i 6= 0
0 o.w.

P0
i,l [(I, a, b), (I, a, b)] =

(
1 if ai 6= 0 and ai = l
0 o.w.

P0
i[(I, a, b), (I, a, b)] =

(
1 if ai 6= 0
0 o.w.

for all I 2 I t J . Note that for all i  n, Pi = Âd
l=1 Pi,l .

Also, for all 1  i  n, we define the permutation matrices Si 2 R
(I⇥K)t(J⇥K) ⇥ R

(I⇥K)t(J⇥K) as follows.
Consider the permutation s1 on I ⇥ K that transposes (I, a, g) and (I, a, g + ei) for all (I, a, g) 2 I ⇥ K such
that ai 6= 0. Here, ei 2 {0, 1}n has exactly one nonzero entry, which is in the ith position, and g + ei is the
usual addition over F2. s1 leaves other positions fixed. Let S

(1)
i be the permutation matrix for s. Similarly, let

S
(2)
i be the permutation matrix of the permutation s2 on J ⇥K that transposes (J, a, g) and (J, a, g + ei) for all

(J, a, g) 2 J ⇥K such that ai 6= 0, and leaves all other positions fixed. Then, we define Si =

"
S
(1)
i 0
0 S

(2)
i

#
. The

following fact is easy to verify.

FACT 7.2. P0
i,lSi = SiP

0
i,l and P0

iSi = SiP
0
i .

We are now ready to prove Lemma 7.11 which we restate for convenience.

LEMMA 7.11. For all integers t � 1, E

���Dk,a,b
1

���
t

t
 (8ddp)t

nt E
��Fk,a,b

��2t
2t.

Proof. Firstly,

Dk,a,b
1 = E[((D(Z)� D(Z0))Gk,a,b(Z)D(Z))2|Z]

= E[(D(Z)� D(Z0))Gk,a,b(Z)D(Z) · D(Z)Gk,a,b(Z)(D(Z)� D(Z0))|Z]
= E[(D(Z)� D(Z0))M(Z)(D(Z)� D(Z0))|Z]
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where we define M(Z) = Gk,a,b(Z)D(Z) · D(Z)Gk,a,b(Z). Recall that Z0 = Z(i) for some i randomly chosen from
[n] uniformly. Observing that D(Z)� D(Z(i)) = Pi(D(Z)� D(Z(i))) for all i, we get

Dk,a,b
1 = E[Ei2[n][(D(Z)� D(Z(i)))M(Z)(D(Z)� D(Z(i)))]|Z]

= E[Ei2[n][Pi(D(Z)� D(Z(i)))M(Z)(D(Z)� D(Z(i)))Pi]|Z]

� 2
✓

E[Ei2[n][PiD(Z)M(Z)D(Z)Pi]|Z] + E[Ei2[n][PiD(Z(i))M(Z)D(Z(i))Pi]|Z]
◆

� 2
✓

Ei2[n][PiF
2
k,a,bPi] + E[Ei2[n][PiD(Z(i))M(Z)D(Z(i))Pi]|Z]

◆

� 2(D10 + D11)

where we define

D10 = Ei2[n][PiF
2
k,a,bPi], D11 = E[Ei2[n][PiD(Z(i))M(Z)D(Z(i))Pi]|Z]

Invoking Lemma 2.1 over the interval [0, •) with the convex continuous function f (x) = xt, Bi = F2
k,a,b, Ai =

1p
dp

Pi where we observe that Ân
i=1 AiAT

i = 1
dp

Ân
i=1 P2

i � I, we get

E kD10kt
t = E tr[Dt

10] = E tr[
✓

Ei2[n][PiF
2
k,a,bPi]

◆t
] =

1
nt E tr[

✓ n

Â
i=1

PiF
2
k,a,bPi

◆t
]


dt�1

p

nt E tr[
✓ n

Â
i=1

PiF
2t
k,a,bPi

◆
]


dt�1

p

nt E tr[
✓ n

Â
i=1

P2
i

◆
F2t

k,a,b]


dt

p

nt E tr[F2t
k,a,b]

=
dt

p

nt E
��Fk,a,b

��2t
2t

Now, consider

D11 = E[Ei2[n][PiD(Z(i))M(Z)D(Z(i))Pi]|Z]

= E[Ei2[n][(
d

Â
l=1

Pi,l)D(Z(i))M(Z)D(Z(i))(
d

Â
l=1

Pi,l)]|Z]

� d · E[Ei2[n][
d

Â
l=1

Pi,lD(Z(i))M(Z)D(Z(i))Pi,l ]|Z]

= d · Ei2[n][
d

Â
l=1

E[Z2l
i ]

Z2l
i

Pi,lD(Z)M(Z)D(Z)Pi,l ]

=
d
n

n

Â
i=1

d

Â
l=1

E[Z2l
i ]

Z2l
i

Pi,lD(Z)M(Z)D(Z)Pi,l

=
d
n

n

Â
i=1

d

Â
l=1

Pi,lSiD(Z)M(Z)D(Z)S|
i Pi,l

=
d
n

n

Â
i=1

d

Â
l=1

Pi,lSiF
2
k,a,bS|

i Pi,l
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We now invoke Lemma 2.1 on ddp terms with Bi,l = F2
k,a,b and Ai,l =

1p
dp

Pi,lSi where we observe that

n

Â
i=1

d

Â
l=1

Ai,lAT
i,l =

1
dp

n

Â
i=1

d

Â
l=1

Pi,lSiS
|
i P|

i,l =
1
dp

n

Â
i=1

d

Â
l=1

P2
i,l � I

to get

E kD11kt
t = E tr[Dt

11] 
dt

nt E tr[(
n

Â
i=1

d

Â
l=1

Pi,lSiF
2
k,a,bS|

i Pi,l)
t]


(ddp)t

nt E tr[
✓

1
dp

n

Â
i=1

d

Â
l=1

Pi,lSiF
2t
k,a,bS|

i Pi,l

◆
]

=
(ddp)t

nt E tr[
✓

1
dp

n

Â
i=1

d

Â
l=1

S|
i Pi,lPi,lSiF

2t
k,a,b

◆
]

To simplify this, we use Fact 7.2 to get

n

Â
i=1

d

Â
l=1

S|
i (Pi,l)

2Si �
n

Â
i=1

d

Â
l=1

S|
i (P

0
i,l)

2Si =
n

Â
i=1

d

Â
l=1

P0
i,lS

|
i SiP

0
i,l =

n

Â
i=1

d

Â
l=1

P0
i,lP

0
i,l � dpI

Therefore, E kD11kt
t 

(ddp)t

nt E tr[F2t
k,a,b] =

(ddp)t

nt E
��Fk,a,b

��2t
2t. Putting them together and using Fact 2.2,

E

���Dk,a,b
1

���
t

t
 4t(E kD10kt

t + E kD11kt
t) 

(8ddp)t

nt E
��Fk,a,b

��2t
2t

We now restate and prove Lemma 7.12.

LEMMA 7.12. For all integers t � 1, E

���Dk,a,b
3

���
t

t
 (4dp)t

nt E
��Fk,a,b

��2t
2t.

Proof. Recall that Z0 = Z(i) for i sampled uniformly from [n]. Then,

Dk,a,b
3 = E[(D(Z)Gk,a,b(Z)(D(Z)� D(Z0)))2|Z]

= E[Ei2[n][(D(Z)Gk,a,b(Z)(D(Z)� D(Z(i))))2]|Z]

= E[Ei2[n][(D(Z)Gk,a,b(Z)Pi(D(Z)� D(Z(i))))2]|Z]

where we use the fact that D(Z)� D(Z(i)) = Pi(D(Z)� D(Z(i))) for all i. Define M(Z) = D(Z)Gk,a,b to get

Dk,a,b
3 = E[Ei2[n][M(Z)Pi(D(Z)� D(Z(i)))2PiM(Z)|]|Z]

� 2(E[Ei2[n][M(Z)PiD(Z)2PiM(Z)|]|Z] + E[Ei2[n][M(Z)PiD(Z(i))2PiM(Z)|]|Z])

= 2(Ei2[n][M(Z)PiD(Z)2PiM(Z)|] + E[Ei2[n][M(Z)PiD(Z(i))2PiM(Z)|]|Z])
= 2(D30 + D31)

where we define

D30 = Ei2[n][M(Z)PiD(Z)2PiM(Z)|], D31 = E[Ei2[n][M(Z)PiD(Z(i))2PiM(Z)|]|Z]
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We have

D30 = Ei2[n][M(Z)PiD(Z)2PiM(Z)|] = Ei2[n][M(Z)D(Z)PiPiD(Z)M(Z)|]

= M(Z)D(Z)(
1
n

n

Â
i=1

P2
i )D(Z)M(Z)|

�
dp

n
M(Z)D(Z)D(Z)M(Z)|

=
dp

n
F2

k,a,b

For the other term, using Fact 7.2,

D31 = E[Ei2[n][M(Z)PiD(Z(i))2PiM(Z)|]|Z] = Ei2[n][M(Z)PiSiD(Z)2SiPiM(Z)|]

� Ei2[n][M(Z)P0
iSiD(Z)2SiP

0
iM(Z)|]

= Ei2[n][M(Z)SiP
0
iD(Z)2P0

iSiM(Z)|]

= Ei2[n][D(Z)Gk,a,bSiP
0
iD(Z)2P0

iSiGk,a,bD(Z)]

Observe that Gk,a,bSi = Gk,a,b because the entries of G only depend on a and not on g, so permuting the gs will
not have any effect on the matrix. Therefore,

D31 � Ei2[n][D(Z)Gk,a,bP0
iD(Z)2P0

iGk,a,bD(Z)]

� Ei2[n][D(Z)Gk,a,bD(Z)P0
iP

0
iD(Z)Gk,a,bD(Z)]

= Ei2[n]Fk,a,bP0
iP

0
iFk,a,b

=
1
n

n

Â
i=1

Fk,a,bP0
iP

0
iFk,a,b

�
dp

n
F2

k,a,b

where we used the fact that Ân
i=1 P0

iP
0
i � dpI. Putting them together,

E

���Dk,a,b
3

���
t

t
 2t(E kD30kt

t + E kD31kt
t)  2t · 2

dt
p

nt E
��Fk,a,b

��2t
2t 

(4dp)t

nt E
��Fk,a,b

��2t
2t

8 Application: Sparse graph matrices

We now consider sparse graph matrices, i.e., the setting G ⇠ Gn,p for p  1
2 . The main difference from dense

graph matrices is the contribution of the edge factors. Naïvely bounding the contribution of each edge by it’s

absolute value, as explained in Section 5, each edge in the shape contributes a factor of
q

1�p
p . But in many

cases, these bounds are not tight. In fact, they are not tight even in the basic case of the adjacency matrix. In this
section, we obtain tighter bounds using our general recursion. As we will see, the improved bound will contain
the edge factors only for edges within the vertex separator.

Let Mt be the graph matrix corresponding to shape t where we use p-biased Fourier characters Gi,j. In this
section, we obtain bounds on E kMt � EMtk2t

2t and use it to obtain high probability bounds on kMtk. Since
many of the details are similar to Section 4.2.2 and the proof of Theorem 4.1, we will pass lightly over some
details. We recommend the reader to read that section first.

The Gi,j correspond to the Zis in Section 6 and F corresponds to Mt . Let I denote the set of sub-tuples of
[n]. Each nonzero entry of Mt is a homogenous polynomial of degree |E(t)|. If E(t) = ∆, then, Mt � EMt = 0
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so we can focus on the case when t has at least one edge. Moreover, since degree-0 vertices in V(t) \ Ut \ Vt

simply scale the matrix by a factor of at most n, we can handle them separately and for our main analysis, we
assume there are no such vertices in t.

We will use Theorem 6.1 but the matrices and the statement can be drastically simplified in our application.
Instate the notation of Section 6. Since we are dealing with multilinear polynomials, in the definition of K,
we can restrict our attention to a 2 {0, 1}(n

2) because for any other a 2 N
n, the corresponding row or column

of Ga+b,a,b and hence Fa+b,a,b, will be 0. So, we can accordingly redefine K to only contain these (a, g), hence
K ✓ {0, 1}n ⇥ {0, 1}n.

Next, the diagonal matrices D1, D2 will both be equal to the diagonal matrix D 2 R[Z]I⇥K ⇥ R[Z]I⇥K with
nonzero entries

D[(I, a, g), (I, a, g)] =

s
E[’

i,j
G

2aij(1�g)ij
ij ]’

i,j
G

aijgij
i = ’

i,j
G

aijgij
i

where we used the fact that for any i, j, E[G2
ij] = 1.

For integers a, b � 0 such that a + b = |E(t)|, define the matrix Mt,a,b to be the matrix Ga+b,a,b. We use this
notation in order to be streamlined with Section 4.2.2. That is, Mt,a,b has rows and columns indexed by I ⇥K
such that for all (I, a1, g1), (J, a2, g2) 2 I ⇥K,

Mt,a,b[(I, a1, g1), (J, a2, g2)] =

(
ra1+a2 Mt [I, J] if |a1|0 = a, |a2|0 = b, a1 · a2 = 0
0 o.w.

This is almost identical to the Mt,a,b matrix defined in Section 4.2.2, with the difference being that the
row and column indices now have g in them. Therefore, for I, J 2 I , (a1, g1), (a2, g2) 2 K such that
|a1|0 = a, |a2|0 = b, a1 · a2 = 0, the entry in row (I, a1, g1) and column (J, a2, g2) is the number of realizations j
of t such that

- Ut , Vt map to I, J respectively under j, and

- Under j, the edges of t map to the edges in a1 and a2 viewed as a set.

By Theorem 6.1, for integers t � 1,

E kMt � EMtk2t
2t  Â

a,b�0,a+b�1
(Ct2dd4

p)
(a+b)t

E
��Fa+b,a,b

��2t
2t

= Â
a,b�0,a+b=|E(t)|

(Ct2|E(t)|4)t|E(t)|
E
��DMt,a,bD

��2t
2t

for an absolute constant C > 0.
Now, we would like to analyze E

��DMt,a,bD
��2t

2t. Just as in the proof of Theorem 4.1, let P specify which
edges of E(t) go to a1, a2 respectively and in what order. Moreover, we now store extra information in P that
indicates which entries of g1, g2 (relative to a1, a2) are set to 1. Let the set of such information P be denoted P ,
then |P|  (4|E(t)|)t|E(t)|2|E(t)|. Thus,

E
��DMt,a,bD

��2t
2t  (8|E(t)|)t|E(t)| Â

P2P
E
��DMt,a,b,PD

��2t
2t

where we define Mt,a,b,P similar to Mt,a,b with the extra condition that j, a1, a2, g1, g2 must respect P.
At this point, in contrast to the proof of Theorem 4.1, note that the matrices Mt,a,b,P here have rows and

columns indexed by I ⇥ K. We will again define the shape tP that is equal to the nonzero block of the matrix
DMt,a,b,PD, up to renaming of the rows and columns. V(tP), UtP , VtP are defined the same way as in Section 4.2.2
but to incorporate the action of D on these entries, we simply keep the edges that are active in g1 or g2, as
prescribed by P. For an illustration, see Fig. 6.
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Figure 6: An example illustrating how tP is defined. In this example, P constraints the blue and red edges to go to a1 and a2
respectively. Moreover, P indicates that some edges are active in g1, g2 (indicated by a solid edge) and some are not active
(indicated by a dashed edge) in g1, g2. We keep the solid edges in tP. UtP , VtP also have an ordering on the vertices (not
shown here).

Then, by similar renaming of the rows and columns of DMt,a,b,PD and dropping the gs, we obtain MtP . We
therefore obtain the bound

E
��DMt,a,bD

��2t
2t  (8|E(t)|)t|E(t)| Â

P2P
E kMtPk

2t
2t

We would like to analyze norm bounds on the matrices MtP . Observe that tP are shapes with the properties

- there are no vertices in V(tP) \ UtP \ VtP

- each edge is either entirely contained in UtP or entirely contained in VtP

Call such shapes simple.
In the following lemma, whose proof is deferred to the next section, we prove norm bounds on simple

shapes. Recall that in Lemma 4.2, we analyzed the norm bounds of simple shapes with no edges (because in this
case, the graph distribution doesn’t matter). The analysis for simple shapes is very similar but this time, we use
scalar concentration tools to bound the Frobenius norm.

For a set S of vertices, denote by E(S) the set of edges with both endpoints in S.

LEMMA 8.1. For all even integers t � 2, if t is a simple shape,

E kMtk2t
2t 

✓
n|V(t)|(Ct)t|E(t)||V(t)|t|V(t)|

◆
max

Ut\Vt✓S✓V(t)

✓
1 � p

p

◆t|E(S)|
nt(|V(t)|�|S|)

for an absolute constant C > 0.

For simple shapes, the main difference from norm bounds on corresponding dense graph matrices is that

each edge within S contributes a factor of
q

1�p
p . Edge contributions are unavoidable when handling sparse

graph matrices, but we have identified that we need not consider all edges in the shape but only a subset of
it. Using this lemma, we can obtain norm bounds on general graph matrices. We first recall the definition of a
vertex separator.

DEFINITION 4.4. (VERTEX SEPARATOR) For a shape t, define a vertex separator to be a subset of vertices S ✓ V(t)
such that there is no path from Ut to Vt in t \ S, which is the shape obtained by deleting all the vertices of S (including all
edges they’re incident on).

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited3646

D
ow

nl
oa

de
d 

02
/1

6/
23

 to
 1

17
.2

20
.1

11
.2

34
 . 

R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y



Let It be the set of isolated vertices (vertices of degree 0) in V(t) \Ut \Vt , so they essentially scale the matrix
by a scalar factor. We now state the main theorem of this section.

THEOREM 8.1. For all even integers t � 2, for any shape t,

E kMt � EMtk2t
2t 

✓
n|V(t)||V(t)|t|V(t)|(Ct3|E(t)|5)t|E(t)|

◆
max

vertex separator S

✓
1 � p

p

◆t|E(S)|
nt(|V(t)|�|S|+|It |)

where the maximum is over all vertex separators S.

To interpret this bound, if we assume that there are a constant number of vertices in t, then by choosing
t ⇡ polylog(n), we get

kMtk = eO
✓

max
vertex separator S

 s
1 � p

p

!|E(S)|
p

n|V(t)�|S|+|It |
◆

with high probability, where eO hides logarithmic factors. This result follows from Theorem 8.1 if t has at least
one edge, but also applies if t has no edges, in which case we can directly use the far simpler Lemma 4.2. A
precise form of the above characterization is given in Corollary 8.1.

Theorem 8.1 gives us the right dependence on p, n for norm bounds in the case of sparse graph matrices. The
same bound, up to lower order terms, was also obtained in [JPR+21] via the trace power method, where they
use these bounds to prove semidefinite-programming lower bounds for the maximum independent set problem
on sparse graphs.

Proof. [Proof of Theorem 8.1] If E(t) = ∆, then Mt = EMt and we are done. So, assume E(t) 6= ∆. Since
vertices in It only scale the matrix by a factor of at most n, we can handle them separately and our bound
has the appropriate power of n coming from these. Therefore, we can assume It = ∆. Continuing our prior
discussions, for an absolute constant C1 > 0,

E kMt � EMtk2t
2t  Â

a,b�0,a+b=|E(t)|
(C1t2|E(t)|4)t|E(t)|

E
��DMt,a,bD

��2t
2t

 Â
a,b�0,a+b=|E(t)|

(C1t2|E(t)|4)t|E(t)|(8|E(t)|)t|E(t)| Â
y2Ga,b

E
��My

��2t
2t

where Ga,b are the set of simple shapes we obtain for DMt,a,bD, as per our discussion above. Using Lemma 8.1,
for an absolute constant C2 > 0, we have

E kMt � EMtk2t
2t


✓

n|V(t)||V(t)|t|V(t)|(C2t3|E(t)|5)t|E(t)|
◆

Â
a,b�0,a+b=|E(t)|

Â
y2Ga,b

max
Uy\Vy✓S✓V(y)

✓
1 � p

p

◆t|E(S)|
nt(|V(y)|�|S|)

For any a, b, consider any simple shape y 2 Ga,b that can be obtained. As observed in the proof of Theorem 4.1
(see in particular Fig. 5), Uy \ Vy must be a vertex separator of t. Therefore, any S ◆ Uy \ Vy must be a vertex
separator of t. It’s easy to see that as S ranges over all sets such that Uy \ Vy ✓ S ✓ V(y), it ranges over all
vertex separators of t.

Also, the number of different y is at most 4|E(t)| since each edge can go either to Uy or Vy and for each such
choice, it can either be active in g or not. Therefore,

E kMt � EMtk2t
2t


✓

n|V(t)||V(t)|t|V(t)|(C2t3|E(t)|5)t|E(t)|
◆

4|E(t)| max
vertex separator S

✓
1 � p

p

◆t|E(S)|
nt(|V(t)|�|S|)


✓

n|V(t)||V(t)|t|V(t)|(Ct3|E(t)|5)t|E(t)|
◆

max
vertex separator S

✓
1 � p

p

◆t|E(S)|
nt(|V(t)|�|S|)

for an absolute constant C > 0.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited3647

D
ow

nl
oa

de
d 

02
/1

6/
23

 to
 1

17
.2

20
.1

11
.2

34
 . 

R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y



The following corollary obtains high probability norm bounds for norms of graph matrices via Markov’s
inequality. We assume the graph has at least one edge, otherwise it is deterministic and its norm bound was
already analyzed in Lemma 4.2, Corollary 4.1, where we observe that the distinction between sparse and dense
graph matrices does not matter if the random matrix is deterministic.

COROLLARY 8.1. For a shape t with at least one edge, for any constant # > 0, with probability 1 � #,

kMtk 
✓
|V(t)||V(t)|/2(C|E(t)|5 log3(n|V(t)|/#))|E(t)|/2

◆
· max

vertex separator S

 s
1 � p

p

!|E(S)|
p

n|V(t)�|S|+|It |

for an absolute constant C > 0.

Proof. Since |E(t)| � 1, EMt = 0. By an application of Markov’s inequality,

Pr[kMtk � q]  Pr[kMtk2t
2t � q2t]

 q�2t
E kMtk2t

2t

 q�2t
✓

n|V(t)||V(t)|t|V(t)|(C0t3|E(t)|5)t|E(t)|
◆

max
vertex separator S

✓
1 � p

p

◆t|E(S)|
nt(|V(t)|�|S|+|It |)

for an absolute constant C0 > 0. We now set

q =

✓
#�1/(2t)(C00)|E(t)|n|V(t)|/(2t)|V(t)||V(t)|/2t3|E(t)|/2|E(t)|5|E(t)|/2

◆

· max
vertex separator S

 s
1 � p

p

!|E(S)|
p

n|V(t)�|S|+|It |

for an absolute constant C00 > 0, to make this expression at most #. Set t = 1
2 log(n|V(t)|/#) to complete the proof.

8.1 Norm bounds on simple graph matrices In this section, we will prove Lemma 8.1. First, we recall the
following scalar concentration result from [SS11].

8.1.1 Schudy-Sviridenko moment bound The definitions and main bound in this section are from [SS11].

DEFINITION 8.1. A random variable Z is central moment bounded with real parameter L > 0 if for any integer i � 1,

E[|Z � E[Z]|i]  i · L · E[|Z � E[Z]|i�1]

PROPOSITION 8.1. The p-biased Bernoulli random variable Z is central moment bounded with real parameter L =q
1�p

p .

Proof. We have E[Z] = 0 and for p  1
2 , |Z| 

q
1�p

p , therefore,

E[|Z � E[Z]|i] = p
r

p
1 � p

i
+ (1 � p)

s
1 � p

p

i


s

1 � p
p

✓
p
r

p
1 � p

i�1
+ (1 � p)

s
1 � p

p

i�1◆

=

s
1 � p

p
E[|Z � E[Z]|i�1]

therefore, we can take L =
q

1�p
p .
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For a given multilinear polynomial f (x) on variables x1, . . . , xn, we can naturally associate with it a
hypergraph H on vertices [n] and weighted hyperedges E(H) where each h 2 E(H) corresponds to a distinct
term of f (x). Each hyperedge h is a subset V(h) of vertices and has a real valued weight wh which is the
coefficient of that monomial in f . Therefore,

f (x) = Â
h2E(H)

wh ’
v2V(h)

xv

Assume f has degree dp, then each hyperedge of H has at most dp vertices. Now, for a given collection of
independent random variables Y1, . . . , Yn, a multilinear poynomial f with associated hypergraph H and weights
w, and an integer r � 0, define

µr( f , Y) = max
S✓[n],|S|=r

✓
Â

h2E(H),S✓V(h)
|wh| ’

v2V(h)\S
E[|Yv|]

◆

LEMMA 8.2. ([SS11], LEMMA 5.1) Given n independent central moment bounded random variables Y1, . . . , Yn with the
same parameter L > 0 and a degree dp multilinear polynomial f (x). Let t � 2 be an even integer, then

E[| f (Y)� E[ f (Y)]|t]  max
⇢✓q

tRdp
4 Var[ f (Y)]

◆t
, max

r2[dp ]
(trRdp

4 Lrµr( f , Y))t
�

where R4 � 1 is some absolute constant.

In our setting, we can also bound the variance in terms of the µr as was shown in [SS11], which will simplify
our calculations.

LEMMA 8.3. ([SS11], LEMMA 1.5) For the same setting as in Lemma 8.2,

Var[ f (Y)]  2dp4dp max
r2[dp ]

(µ0( f , Y)µr( f , Y)4rLr)

8.1.2 Proof of Lemma 8.1 We are ready to prove Lemma 8.1 which we restate for convenience.

LEMMA 8.1. For all even integers t � 2, if t is a simple shape,

E kMtk2t
2t 

✓
n|V(t)|(Ct)t|E(t)||V(t)|t|V(t)|

◆
max

Ut\Vt✓S✓V(t)

✓
1 � p

p

◆t|E(S)|
nt(|V(t)|�|S|)

for an absolute constant C > 0.

We will prove it the same way as Lemma 4.2, by bounding the schatten norm of each diagonal block by an
appropriate power of its Frobenius norm. In this case, to bound the expected power of the Frobenius norm, we
use the scalar concentration inequality from the previous section.

Proof. [Proof of Lemma 8.1] First, we note that Mt has a block diagonal structure indexed by the realizations of
the set of common vertices S0 = UtP \ VtP . For T 2 [n]S0 , let Mt,T be the block of Mt with j(S0) = T. Then,
Mt,TM|

t,T0 = M|
t,TMt,T0 = 0 for T 6= T0 and so,

E kMtk2t
2t = Â

T2[n]S0

E kMt,Tk2t
2t  Â

T2[n]S0

E(kMt,Tk2
2)

t

where we bounded the Schatten norm by a power of the Frobenius norm.
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Fix T 2 [n]S0 and consider E kMt,Tk2
2. Let R be the set of realizations j of t such that j(S0) = T. Then, for

j 2 R and e 2 E(S0), the value of j(e) is fixed. Using this,

kMt,Tk2
2 = Â

j2R
’

e2E(t)
G2

j(e) = ’
e2E(S0)

G2
j(e) Â

j2R
’

e2E(t)\E(S0)

G2
j(e)

 L|E(S0)| Â
j2R

’
e2E(t)\E(S0)

G2
j(e)

where L = 1�p
p is an upper bound on G2

ij for p  1
2 . For convenience, we define the quantity A =

maxS0✓S✓V(t) L|E(S)|n|V(t)|�|S|.

CLAIM 8.1. E(kMt,Tk2)
t  (Ct)t|E(t)||V(t)|t|V(t)|At for an absolute constant C > 0.

Using this claim, we have

E kMtk2t
2t  Â

T2[n]S0

E(kMt,Tk2)
t

 n|S0|(Ct)t|E(t)||V(t)|t|V(t)|At

= n|V(t)|(Ct)t|E(t)||V(t)|t|V(t)| max
Ut\Vt✓S✓V(t)

✓
1 � p

p

◆t|E(S)|
nt(|V(t)|�|S|)

as required.

It remains to prove the claim.

Proof. [Proof of Claim 8.1] For 1  i, j  n, define the variables Yij = G2
ij with E[|Yij|] = 1. Let f (Y) be the

polynomial L|E(S0)| Âj2R ’e2E(t)\E(S0) Yj(e). It suffices to prove that E[ f (Y)t]  (Ct)t|E1|At. We will first prove
that E[( f (Y)� E[ f (Y)])t]  (C0t)t|E(t)||V(t)|t|V(t)|At for a sufficiently large constant C0 > 0.

f is a homogeneous multilinear polynomial of degree |E(t) \ E(S0)|. If we had E(t) \ E(S0) = ∆, then f is a
constant and so, the inequality is obvious because f (Y) = E[ f (Y)]. Now, assume E(t) \ E(S0) 6= ∆. We invoke
Lemma 8.2. Let f have associated hypergraph H and weights w. Then,

E[| f (Y)� E[ f (Y)]|t]  max
⇢✓q

tR|E(t)\E(S0)|
4 Var[ f (Y)]

◆t
, max

r2[|E(t)\E(S0)|]
(trR|E(t)\E(S0)|

4 Lrµr( f , Y))t
�

For all r � 0, we will prove that Lrµr( f , Y)  |V(t)||V(t)|A. By definition,

µr( f , Y) = max
F✓([n]2 ),|F|=r

Â
h2E(H),F✓V(h)

|wh|

Consider any set of edge labels F ✓ ([n]2 ), |F| = r. Then, Âh2E(H),F✓V(h) |wh| is at most L|E(S0)|c where c is
the number of realizations j 2 R such that j(E(t)) contains F. Suppose F contains v new labels apart from
j(S0) = T. Then c  |V(t)|vn|V(t)|�|S0|�v because we can first choose and label the set of vertices that get these
v labels and then label the remaining vertices freely, each of which has at most n choices.

Observe that L|E(S0)|Lrn|V(t)|�|S0|�v  A because in the definition of S, we can set S to be the union of S and
any valid choice of these v vertices. Putting this together, we get

Lrµr( f , Y)  Lr max
F✓([n]2 ),|F|=r

Â
h2E(H),F✓V(h)

|wh|  |V(t)||V(t)|A
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which implies
max

r2[|E(t)\E(S0)|]
(trR|E(t)\E(S0)|

4 Lrµr( f , Y))t  |V(t)|t|V(t)|(R4t)t|E(t)|At

and using Lemma 8.3,

Var[ f (Y)]  2|E(t)|4|E(t)| max
r2[|E(t)\E(S0)|]

(µ0( f , Y)µr( f , Y)4rLr)

 2|E(t)|16|E(t)||V(t)|2|V(t)|A2

Putting them together, we get

E[( f (Y)� E[ f (Y)])t]  max
⇢✓q

2tR|E(t)|
4 |E(t)|16|E(t)||V(t)|2|V(t)|A2

◆t
, |V(t)|t|V(t)|(R4t)t|E(t)|At

�

 (C0t)t|E(t)||V(t)|t|V(t)|At

for an absolute constant C0 > 0. Finally, E[ f (Y)]  L|E(S0)||R|  L|E(S0)|n|V(t)\S0|  A which gives

E[ f (Y)t]  2t(E[( f (Y)� E[ f (Y)])t] + E[ f (Y)]t)  2t((C0t)t|E(t)||V(t)|t|V(t)|At + At)

 (Ct)t|E(t)||V(t)|t|V(t)|At

for an absolute constant C > 0.
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