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Abstract— Understanding neural function often requires mul-
tiple modalities of data, including electrophysiogical data,
imaging techniques, and demographic surveys. In this paper,
we introduce a novel neurophysiological model to tackle major
challenges in modeling multimodal data. First, we avoid non-
alignment issues between raw signals and extracted, frequency-
domain features by addressing the issue of variable sampling
rates. Second, we encode modalities through “cross-attention”
with other modalities. Lastly, we utilize properties of our parent
transformer architecture to model long-range dependencies
between segments across modalities and assess intermediary
weights to better understand how source signals affect predic-
tion. We apply our Multimodal Neurophysiological Transformer
(MNT) to predict valence and arousal in an existing open-
source dataset. Experiments on non-aligned multimodal time-
series show that our model performs similarly and, in some
cases, outperforms existing methods in classification tasks. In
addition, qualitative analysis suggests that MNT is able to model
neural influences on autonomic activity in predicting arousal.
Our architecture has the potential to be fine-tuned to a variety
of downstream tasks, including for BCI systems.

I. INTRODUCTION

Recent work in emotional state detection, helpful in pre-
diction of clinical outcomes [1], [2], has led to the notion
of a brain-body system with complex interactions between
different components [3], [4]. How the brain generates states
of psychological stress [5], [6], which may lead to physical
disease [7], [8] or increased disease vulnerability [9], [10],
is a question of growing interest. The real-time integration
of neuroimaging and autonomic methods with subjective
measurements of emotion, such as arousal or valence, is
providing new opportunities to expand our knowledge on the
brain-body system to design real-time monitoring systems
capable of analysis of large volumes of multimodal data.

Recent research in emotion recognition has utilized a
variety of sources. These include external behavioral signals
such as posture [11], facial expression [12], speech [13]
and environmental factors [14]. Internal neurophysiological
sources such as electroencephalography (EEG), galvanic
skin response (GSR), functional magnetic resonance imaging
(fMRI), and photoplethysmogram (PPG) have also been used
[15]–[17]. However, mostly driven by the rapid advance-
ments in computer vision and natural language processing,
multimodal research has mainly focused on the fusion of
visual and audio signals [18]. Only recently have neurophys-
iological researchers adapted state-of-the-art architectures to
understand brain function [19], [20].

EEG is the most commonly used non-invasive neural
measure, yielding not only accurate predictions of emotional
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state but in furthering our understanding of functional re-
lationships between brain regions associated with emotion
[21]. Most existing emotion recognition and brain computer
interface (BCI) studies utilizing EEG have dealt with the
density of data through extracting features channel-wise from
different brain regions and using these extracted features
to classify emotion. While this method is apt to deal with
noise and provides a level of interpretability to the results,
extensive pre-processing and feature extraction removes po-
tentially useful information from raw signals [22], [23].
Furthermore, critical information, such as decreased signal
complexity in patients with emotional processing challenges,
are unable to be captured with common pre-processing and
modeling approaches [24]. A similar finding has been shown
in cardiac signal processing, where end-to-end, raw electro-
cardiogram (ECG) feature extraction, in comparison with
template-based feature matching, yields higher sensitivity
in the detection of ectopic beats useful for emotional state
recognition [25]. However, few studies have have made use
of raw signal data in conjunction with extracted features
for emotion recognition. Only recently have deep learning
architectures allowed the efficient processing of multivariate
and multimodal neurophysiological data [26], [27].

Advancements in multimodal sequence modeling have
come from the area of computer vision and language pro-
cessing. Specifically, transformer networks introduced by
Vaswani et al [28] leveraging self-attention have not only
successfully been applied for improving accuracy in lan-
guage translation, video captioning, and learning sentence
representations, but have found success in multimodal set-
tings. Attention is a critical component of transformers,
where multiple, independent “heads” gather relevant infor-
mation from the input vectors. In self-attention, for each
query representation q (xi) of input vector xi at timepoint
i, we compute an output vector yi ∈ Rd using a sequence
of input vectors X = {x1, . . . ,xn} ⊆ Rd as:

yi =
n∑

j=1

αi,jv (xj) (1)

αi,j := softmaxxi,xj∈X

(
q (xi)k (xj)

⊤
√
d′

)
∈ R (2)

After key, k, lookups of xj , attention gathers value vec-
tors v (xj) using weights αi,j prior to applying additional
transformations on yi.

Past work related to interpreting transformers has primar-
ily focused on qualitative interpretation of attention weights
αi,j . A major critique of this approach is that analysis of
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weights relies on researchers selecting inputs and layers,
making interpretation results hard to replicate. In our work,
we study differences in intermediary network activations αi,j

with underlying emotional state to understand the relation-
ship between the autonomic and neural systems.

While the original transformer architecture has been used
for unidirectional translation from source to target texts, Tsai
et al [29] were the first to show how human multimodal
language time-series can also be well-represented using
similar architectures through their MulT architecture. These
data sources, similar to physiological data, have sequences
of each modality with different frequencies. For a given
list of modalities, M = {α1, ..., αn}, consider the input
sequences of data from αp as Mαp ∈ RTαp×dαp , where
Tαp denotes the sequence length and dαp denotes the feature
dimension for modality αp. The sequence undergoes a one-
dimensional convolution and is projected onto a common,
predefined dimension. In this way, dimensionality across all
modalities can be standardized, prior to attention modeling.
Following this, a positional embedding is augmented to
allow the sequences to capture temporal feature information.
The sequences then enter a crossmodal transformer which
consists of crossmodal attention blocks µM . A crossmodal
attention block is a simple re-structuring of attention spec-
ified in Equation 2, where xi and xj are derived from
different modalities:

µp→r
i,j := softmaxxr

i ,x
p
j∈M̂

(
qr (xr

i )k
p
(
xp
j

)⊤
√
d′

)
∈ R (3)

where the adaptation from modality αp to αr at re-
spective timepoints j and i requires the transformation of
vector xr

i using a r-specific query function qr(xi) and p-
specific key function kp(xj). In this way, yr

i represents the
latent, adapted vector resulting from crossmodal attention
of modality-specific sequences i and j. The output of the
crossmodal transformer is concatenated if it shares the same
target modality and passes through a self-attention model
prior to classification, such as for binary classification of
valence or arousal emotional states.

In this work, we investigate corollary information in multi-
modal neurophysiological data and evaluate the performance
of a transformer architecture for emotion recognition in a
public dataset. We propose a multimodal neurophysiological
transformer adapted for sequential modeling of EEG, PPG
and GSR - for both pre-processed time series and extracted
features. Our framework is advantageous in that sequences
are processed in one-go rather than in-order. We demonstrate
competitive performance for multimodal emotion recogni-
tion, while taking into account information from all modali-
ties. We present a novel interpretation method for attention-
based models, through assessing state-driven activations,
and demonstrate how latent, cardiac and autonomic data is
transformed by neural data prior to classification.

II. METHODS

Our transformer model (MNT, Figure 1) is adapted from
the MulT architecture to allow modality-specific convolu-
tions and class-specific activations.

A. Adaptable convolutions

We distinguish not only between modalities (e.g. EEG,
PPG) but also modality types (i.e. time series, extracted
features). This abstraction allows our model to consider each
modality type differently in the initial convolution using:

M̂ (αp,M) = Conv1D (Mαp , kM, sM) ∈ RTM×d (4)

where M̂ is the convolved or down-sampled input se-
quence used in the transformer. M̂ is a function of the modal-
ity αp and modality type M. M ∈ {time series, features} is
used to determine the convolution hyperparameters. In this
way, we control the amount of data loss to be minimal for
extracted features (which may not be sequentially ordered)
and possibly high for time series data with large sample rate
(such as from an EEG device) which faces computational
memory limits during training. While multimodal computer
vision or language processing sequence lengths are typically
determined by the number of words or video frames sam-
pled in short clips, finding meaningful neurophysiological
signatures requires analysis of data at higher sample rates
and effective use of features extracted from time series data,
which our parametric M̂ allows.

B. Assessing interactions (SAAD)

The increasing interest in using transformers for prediction
is partly driven by qualitative interpretations of attention
weights. Figure 1f shows example attention weights or
activations from a single, training sample at one crossmodal
block. Convolved data from the first EEG window (j) is
used as the query and is looked up against keys from PPG
windows (i) for scoring. The intensity of the attention map
(f) represents the attention that the EEG window pays to the
PPG window at (i = 4, j = 1). In most analyses, researchers
have used individual examples to highlight how the network
attends to words, images or video similarly to humans.
We take a novel approach to assessing interactions between
neural and autonomic data, through (1) computing class-level
differences in activations, sample-by-sample. Specifically, we
compute the latent contribution of modality p to r using:

ϕp→r
i,j :=

1

H

H∑
h=1

µp→r
i,j ∀s ∈ S (5)

δp→r
i,j =

1

L

L∑
l=1

∣∣∣∣∣∣ 1

S+

S+∑
s=1

ϕp→r
i,j

∣∣∣∣∣∣−
∣∣∣∣∣ 1S·

S·∑
s=1

ϕp→r
i,j

∣∣∣∣∣ ∀p,r ∈ M

(6)
where, given a trained model, we average attention weights

across heads H to compute the sample-specific, within-layer
attention weight ϕp→r

i,j . The sum of absolute activation dif-
ferences (SAAD) metric is then computed for each modality
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Fig. 1: (a) Multimodal Neurophysiological Transformer (MNT) architecture. (b) Attention weights or activations (c) from a
single, training sample at the crossmodal block PPG → EEG. Each sample uses data from 2 seconds of EEG (b) and PPG
(d), with the convolution parameters determining the size of the activation map. The adaptable convolution (c, e) standardizes
the dimensionality of both modalities, and the score-lookup (f) is a standard implementation of softmax-attention.

pair p → r using the average differences in activations δ
between the positive and negative classes, across all layers
L, sequence indices i, j and normalized for all {p, r} ∈ M .

C. Dataset

The DEAP dataset was first introduced in 2018 [13].
EEG signals and peripheral physiological signals of 32
participants were recorded as they watched music videos
selected to induce emotional response. We used 32-channel
EEG signals capturing neural response and single-channel
PPG and GSR signals capturing autonomic response. Each
participant (n=32) completed 40 trials with each trial (i.e.
music video) spanning 63 seconds. Subjects were asked
to self-assess intensity of five different emotional states -
valence, arousal, dominance, liking, and familiarity - using
a range from 1 to 9.

In order to best compare the performance of our proposed
method with previous results, we only used valence and
arousal states in our analyses and split each trial into win-
dows of overlapping samples prior to analysis. We divided
the samples into two different classes using a threshold of
5 to allow binary classification of high or low valence, and
binary classification of high or low arousal. 70% samples
were used as training data, 15% as validation data and the
rest were used as test data.

In addition to pre-processed time-series, we were inter-
ested in using global EEG features characterizing signal vari-
ance, complexity and frequency components. We computed
a total of 24 features for each of the 32 channels: θ-, α-, β-,
γ- band powers, band-specific Hjorth activity, mobility and
complexity, band-specific HFD, and band-specific sample
entropy - markers previously shown to improve classification
of arousal and valence [30].

Method Valence (%) Arousal (%) Sample Windows

Xing et al [31] 81.1 74.38 60
Rozgic et al [32] 76.9 69.1 60
Li et al [33] 58.4 64.3 60
Features MNT 77.4 76.2 60
Features MNT 70.5 71.8 27
EEG MNT 67.3 68.9 27
MNT 58.0 69.4 27

TABLE I: Model performances (binary classification accu-
racy) with ablation. MNT achieves similar accuracy with
fewer samples. MNT accuracy is assessed using similar data
augmentation (sample windows) as other methods.

III. RESULTS

A. Emotional state classification

While several studies have evaluated the DEAP dataset, we
note that many windowed samples into shorter intervals (e.g.
0.5-second windows or 1-second windows with 0.5 second
overlap) or used features extracted from more modalities
than our study, such as respiration and eye movement. We
compare MNT to studies using EEG data and find that binary
classification accuracy matches or exceeds existing results
(Table I).

Our results show that using features extracted from EEG
yielded the greatest accuracy. For subsequent analysis of
emotion-dependant activations, we use MNT with 27 win-
dows (referred to generally as MNT) since it allows the
greatest amount of study in crossmodal adaptations of latent
representations and the number of training samples fit within
reasonable memory limitations (128 GB RAM, K80 GPU,
10 epochs early stopping criteria) for subsequent analyses.
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Fig. 2: Most discriminative interactions, as assessed through
activation differences (SAAD) in the trained arousal (top)
and valence (bottom) models. Early refers to the first third
of the sample duration (2 seconds), mid and late refer to the
second and last third respectively. For example, EEGearly

→ PPGearly indicates the aggregated, differences (between
high and low arousal samples) in crossmodal attention by
pre-processed PPG at the start of the sample (query) to
pre-processed EEG at the start of a sample (key, value).
A larger surface area for a measure captures the relatively
greater contribution of the interaction towards discriminating
between high and low arousal or valence.

B. Class-level activation differences

Our primary aim was to use attention in MNT to study
interactions between neural and autonomic signals. Although
researchers have previously qualitatively reported attention
weights across a multi-layer transformers [34]–[36], our ap-
proach formalized in Equation 6 aggregates meaningful dif-
ferences in class-level activations (e.g. high vs. low arousal)
across the entire training dataset to understand whether EEG
latently adapts PPG and GSR signals. Through assessing
class-level differences in activations δp→r

i,j , we found several
interactions with non-zero differences.

Our results suggest that the largest contributor to model
performance is the relationship between features extracted
from EEG and PPG signal. In other words, MNT leverages
both neural and autonomic signals, through latent adapta-
tion of the autonomic signal, to classify emotional state.

The directionality of this adaptation suggests that global,
extracted, features are more easily able to adapt time series
modalities that may face a relatively greater number of
deviations due to noise or movement. While we expected
to see the largest interaction between neural and autonomic
systems, we were surprised to see the generally large reliance
on features extracted from EEG rather than the source signal
itself. We expected that modeling EEG time series through
a transformer network would extract some characteristics
of signal variance, entropy and possibly frequency-domain
qualities. However, our finding agrees with recent results
showcasing weaknesses of transformers in capturing global,
frequency-domain characteristics of source signals without
additional processing [37].

While we did not find existing literature on the interaction
between EEG and PPG over time, we were able to verify that
MNT, through class-level activation differences in the self-
attention of EEG features, affirms commonly reported rela-
tionships between EEG activity, autonomic activity, arousal
and valence. For example, increase in alpha and beta EEG
activity were accompanied by increases in muscle artifacts,
and heart rate acceleration [38]. We show normalized class-
level activation differences through SAAD in Figure 2. The
classification power for beta power for prediction of con-
tinuous valence and arousal measures have been previously
reported [30] and found in our results. We found more
consistent literature on the effect of images and video on
the modulation of gamma power for valence measures than
arousal, which our findings validate [39], [40].

C. Limitations

A major limitation of our approach in using activation
differences at the attention heads and across layers is the lack
of spatial resolution for EEG analysis. Because our initial
convolution block reduces the channels of EEG, along with
other input signals, we are unable to investigate commonly-
reported measures of EEG activity modulated by image and
video stimuli such as hemispheric asymmetry after the initial
convolution step. However, future work can use the invertible
nature of the convolution step to explore reconstruction of
input signals, which may allow class-specific reconstruction
of EEG activity to allow spatial understanding. While our
normalized measures are a step towards understanding the
total contribution of a feature towards classification power,
the relative importance is more difficult to judge without
extensive analysis on the interaction between features.

IV. CONCLUSION

We proposed a multimodal neurophysiological transformer
adapted for sequential modeling of EEG, PPG and GSR -
for both raw time series and extracted features. We demon-
strate competitive, interpretable performance for multimodal
emotion recognition, while taking into account information
from all modalities and demonstrate how latent, cardiac
and autonomic data is transformed by neural data prior to
classification.

3566

Authorized licensed use limited to: Paul Sajda. Downloaded on February 17,2023 at 15:56:45 UTC from IEEE Xplore.  Restrictions apply. 



ACKNOWLEDGEMENT

This work was supported by grants from the National Sci-
ence Foundation (OIA-1934968), the Army Research Labo-
ratory (W911NF-21-2-0125) and a Vannevar Bush Faculty
Fellowship from the US Department of Defense (N00014-
20-1-2027).

REFERENCES

[1] T. Tattan and N. Tarrier, “The expressed emotion of case managers
of the seriously mentally ill: The influence of expressed emotion on
clinical outcomes,” Psychological medicine, vol. 30, no. 1, pp. 195–
204, 2000.

[2] A. Oldershaw, T. Lavender, and U. Schmidt, “Are socio-emotional
and neurocognitive functioning predictors of therapeutic outcomes for
adults with anorexia nervosa?” European Eating Disorders Review,
vol. 26, no. 4, pp. 346–359, 2018.

[3] A. Babayan, M. Erbey, D. Kumral, J. D. Reinelt, A. M. Reiter,
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[15] J. A. Domı́nguez-Jiménez, K. C. Campo-Landines, J. C. Martı́nez-
Santos, E. J. Delahoz, and S. H. Contreras-Ortiz, “A machine
learning model for emotion recognition from physiological signals,”
Biomedical Signal Processing and Control, vol. 55, p. 101646, 2020.
[Online]. Available: https://doi.org/10.1016/j.bspc.2019.101646

[16] D. P.-o. Bos and D. O. Bos, “EEG-based emotion recognition.”
[17] P. Das, A. Khasnobish, and D. N. Tibarewala, “Emotion recognition

employing ECG and GSR signals as markers of ANS,” Conference on
Advances in Signal Processing, CASP 2016, pp. 37–42, 2016.

[18] J. Ngiam, A. Khosla, M. Kim, J. Nam, H. Lee, and A. Y. Ng,
“Multimodal deep learning,” Proceedings of the 28th International
Conference on Machine Learning, ICML 2011, pp. 689–696, 2011.

[19] N. Sebe, I. Cohen, T. Gevers, and T. S. Huang, “Emotion recognition
based on joint visual and audio cues,” Proceedings - International
Conference on Pattern Recognition, vol. 1, pp. 1136–1139, 2006.

[20] S. Zhang, S. Zhang, T. Huang, W. Gao, and Q. Tian, “Learning
Affective Features with a Hybrid Deep Model for Audio-Visual
Emotion Recognition,” IEEE Transactions on Circuits and Systems
for Video Technology, vol. 28, no. 10, pp. 3030–3043, 2018.

[21] A. Goshvarpour, A. Abbasi, and A. Goshvarpour, “An accurate
emotion recognition system using ECG and GSR signals and matching
pursuit method,” Biomedical Journal, vol. 40, no. 6, pp. 355–368,
2017. [Online]. Available: https://doi.org/10.1016/j.bj.2017.11.001

[22] R. Salazar-Varas and R. A. Vazquez, “Evaluating the effect of
the cutoff frequencies during the pre-processing stage of motor
imagery EEG signals classification,” Biomedical Signal Processing
and Control, vol. 54, p. 101592, 2019. [Online]. Available:
https://doi.org/10.1016/j.bspc.2019.101592

[23] N. Bigdely-Shamlo, T. Mullen, C. Kothe, K. M. Su, and K. A.
Robbins, “The PREP pipeline: Standardized preprocessing for large-
scale EEG analysis,” Frontiers in Neuroinformatics, vol. 9, no. JUNE,
pp. 1–19, 2015.

[24] J. Dauwels, F. Vialatte, and A. Cichocki, “Diagnosis of Alzheimers
Disease from EEG Signals: Where Are We Standing?” Current
Alzheimer Research, vol. 7, no. 6, pp. 487–505, 2010.

[25] S. S. Xu, M. W. Mak, and C. C. Cheung, “Towards End-to-End ECG
Classification with Raw Signal Extraction and Deep Neural Networks,”
IEEE Journal of Biomedical and Health Informatics, vol. 23, no. 4,
pp. 1574–1584, 2019.

[26] S. Chambon, M. N. Galtier, P. J. Arnal, G. Wainrib, and A. Gramfort,
“A Deep Learning Architecture for Temporal Sleep Stage Classifica-
tion Using Multivariate and Multimodal Time Series,” IEEE Trans-
actions on Neural Systems and Rehabilitation Engineering, vol. 26,
no. 4, pp. 758–769, 2018.
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[32] V. Rozgić, S. Vitaladevuni, and R. Prasad, “Robust EEG emotion
classification using segment level decision fusion,” IEEE International
Conference on Acoustics, Speech and Signal Processing, pp. 1286–
1290, 2013.

[33] M. Li and B.-l. Lu, “Emotion Classification Based on Gamma-band
EEG,” 31st Annual International Conference of the IEEE EMBS, pp.
1323–1326, 2009.

[34] Y. Tay, D. Bahri, D. Metzler, Z. Zhao, and C. Zheng, “Rethinking
Self-Attention for Transformer Models,” Icml, pp. 1–13, 2021.

[35] J. Vig, “A multiscale visualization of attention in the transformer
model,” ACL 2019 - 57th Annual Meeting of the Association for
Computational Linguistics, Proceedings of System Demonstrations, pp.
37–42, 2019.

[36] S. Abnar and W. Zuidema, “Quantifying Attention Flow in Transform-
ers,” pp. 4190–4197, 2020.

[37] B. Yu, W. Li, X. Li, J. Lu, and J. Zhou, “Frequency-Aware Spatiotem-
poral Transformers for Video Inpainting Detection,” pp. 8188–8197.

[38] E. Sforza, C. Jouny, and V. Ibanez, “Cardiac activation during arousal
in humans: Further evidence for hierarchy in the arousal response,”
Clinical Neurophysiology, vol. 111, no. 9, pp. 1611–1619, 2000.

[39] M. M. Müller, A. Keil, T. Gruber, and T. Elbert, “Processing of
affective pictures modulates right-hemispheric gamma band EEG
activity,” Clinical Neurophysiology, vol. 110, no. 11, pp. 1913–1920,
1999.

[40] S. Guzel Aydin, T. Kaya, and H. Guler, “Wavelet-based study of
valence–arousal model of emotions on EEG signals with LabVIEW,”
Brain Informatics, vol. 3, no. 2, pp. 109–117, 2016.

3567

Authorized licensed use limited to: Paul Sajda. Downloaded on February 17,2023 at 15:56:45 UTC from IEEE Xplore.  Restrictions apply. 


