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Line-of-sight (LOS) is a critical requirement for mmWave wireless communications. In this work, we 
explore the use of access point (AP) infrastructure mobility to optimize indoor mmWave WiFi network 
performance based on the discovery of LOS connectivity to stations (STAs). We consider a ceiling-
mounted mobile (CMM) AP as the infrastructure mobility framework. Within this framework, we propose 
two heuristic algorithms (basic and weighted) derived from Hamming distance computation and a 
machine learning (ML) solution fully exploiting available network state information to address the LOS 
discovery problem. Based on the ML solution, we then propose a systematic solution WiMove, which 
can decide if and where the AP should move to for optimizing network performance. Using both ns-3 
based simulation and experimental prototype implementation, we show that the throughput and fairness 
performance of WiMove is up to 119% and 15% better compared with single static AP and brute force 
search.

© 2021 Elsevier Inc. All rights reserved.
1. Introduction

WiFi is a ubiquitous and impactful wireless technology. Accord-
ing to the Cisco Visual Networking Index report [5], WiFi is pre-
dicted to generate 51% of total internet traffic in 2022. Due to the 
significant increase of internet traffic generated by WiFi, there is a 
pressing need to improve the WiFi network performance. mmWave 
is emerging as a key technology for next-generation WiFi networks 
among the latest WiFi related technologies. The mmWave WiFi 
standard (e.g., IEEE 802.11ad) operates in the 60 GHz unlicensed 
spectrum. It can deliver multi-gigabit (~7 Gbps) performance pri-
marily by virtue of using a large bandwidth (greater than 2 GHz). 
While the potential performance is quite promising, mmWave WiFi 
is vulnerable to non-line-of-sight (NLOS) conditions compared to 
WiFi operating in 2.4 GHz or 5 GHz spectrum. The performance 
of mmWave communications drops significantly when the wire-
less link has an obstacle such as a wall or cabinet in its way. Given 
the fickle nature of mmWave communications, it is expected to be 
predominantly used in a dual-band (or tri-band) configuration that 
works along with legacy WiFi.

* Corresponding author.
E-mail address: ctai32@gatech.edu (C.-L. Tai).

1 The first three authors contributed equally to this work.
https://doi.org/10.1016/j.jpdc.2021.10.008
0743-7315/© 2021 Elsevier Inc. All rights reserved.
In this context, it is likely that mmWave WiFi can deliver con-
siderably better performance, but that the performance cannot be 
guaranteed and will be dependent on the existence of LOS condi-
tions. LOS conditions are a function of the physical environment, 
but communication technologies hitherto have had no ability to 
improve the physical conditions when necessary. Historically, the 
design of algorithms and protocols for WiFi networks has been 
based on the assumption that the stations (STAs) are mobile, and 
the AP is static. STA mobility, furthermore, is driven by user needs 
and behavior, which can potentially lead to NLOS connectivity. 
With the recent and significant advancements in robotics and em-
bedded systems, infrastructure mobility can be meaningfully and 
practically devised to optimize WiFi network performance. Specif-
ically, a WiFi AP with the freedom of mobility can discover an 
optimal location for itself and move to that location to offer the 
best possible performance for the overall WiFi network. Given that 
mmWave WiFi has a critical requirement on LOS connectivity, in-
frastructure mobility becomes an especially attractive degree of 
freedom for mmWave WiFi, where the creation of LOS connectivity 
can have a profound impact on the overall network performance.

Related works have mainly explored a floor-based mobile AP 
that navigates its way around obstacles for WiFi networks oper-
ating in 2.4 GHz or 5 GHz spectrum due to the robotic frame-
work simplicity [8,13,12]. In this work, we explore a more effective 
framework for mmWave WiFi - a ceiling-mounted mobile (CMM) AP 
that moves on an actuator platform, where the CMM AP can po-
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tentially achieve higher LOS probability to STAs compared with 
floor-based AP mobility. Within this framework, we focus on the 
LOS discovery problem. Explicitly, we define the LOS discovery prob-
lem as how to figure out the LOS connectivity between all available 
AP locations and target STAs. An idealized solution to this problem 
is to calculate the optimal location based on a geometric problem 
formulation, assuming that the locations of the STAs and the loca-
tions, shapes, and even materials of the obstacles in the physical 
space are known. Then, it is trivial to identify the LOS connectivity 
between target STAs with all possible locations of AP on the actu-
ator platform. However, discovering the physical attributes of STAs 
and the physical attributes of obstacles (especially the material of 
obstacles) is either non-trivial or expensive.

In this context, we present two classes of approaches to solve 
the LOS discovery problem: algorithms based on heuristics and a 
machine learning (ML) based solution. While heuristic algorithms 
are more efficient in terms of the computational complexity, the 
ML solution provides a better performance. Given it is likely that 
multiple active WiFi devices exist in a WiFi network and there is 
rich network state information (e.g., LOS connectivity between the 
AP and STAs) available, we utilize the network state information as 
the input to the proposed ML model. The ML model trains itself to 
predict the desired LOS connectivity information. When network 
dynamics happen (e.g., when a new STA joins the network), the 
algorithm can identify whether the target STA (e.g., the new STA) 
is likely to have LOS connectivity to all possible AP positions. We 
evaluate the LOS connectivity prediction accuracy of the ML al-
gorithm in different network scenarios, and it achieves prediction 
accuracy by up to 91%. Then, we incorporate the LOS prediction 
algorithm in a systematic solution, WiMove, which is designed to 
maximize the number of LOS connectivity between AP and STAs 
given the LOS prediction results. WiMove can decide whether repo-
sitioning the AP is required and, if so, where to move to. Using 
both ns-3 based simulation and experimental prototype implemen-
tation, we show that the throughput and fairness performance of 
WiMove is up to 119% and 15% better compared with other ap-
proaches.

The following is a summary of our key contributions:

• We present algorithms based on heuristics and ML solution 
for a CMM AP to determine the LOS connectivity between 
all available AP locations on the actuator platform and tar-
get STAs. The proposed approaches use a novel methodology 
to recalculate the LOS connectivity when network condition 
changes by purely relying on network state information. The 
proposed heuristic algorithms, including a basic version and 
a weighted version, are based on the computation of Ham-
ming distances, which reflect the behavioral similarity be-
tween STAs. For the proposed ML solution, we construct a 
neural network architecture in order to fully exploit the avail-
able information.

• We then incorporate the ML LOS prediction algorithm into 
a systematic solution, WiMove. In order to optimize network 
throughput and fairness, WiMove is able to identify the opti-
mal AP location with a maximized number of LOS connectivity 
between AP and STAs. Then, we present the evaluation results 
for WiMove using both simulations and experimental proto-
types. We show that the throughput and Jain’s fairness index 
of WiMove performs up to 119% and 15% better compared with 
other approaches.

A preliminary conference version of this paper appears in [14]. 
Our initial conference paper provides only a simple version of 
the heuristic algorithm. In this manuscript, we include signifi-
cantly more contents about heuristic algorithms for an in-depth 
discussion, such as proposing a novel weighted heuristic algorithm, 
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elaborating on the concepts and details of heuristic algorithms, 
providing an analysis toward their computational complexity, and 
assessing heuristic algorithms through simulations. We believe that 
heuristic algorithms have the significant advantage of practicality 
in terms of computation complexity and hence focus on the ad-
vanced heuristic algorithm.

The remainder of this paper is organized as follows. In Sec. 2, 
we provide a brief background overview on several key concepts 
that are related to the paper. The LOS discovery problem is formu-
lated in Sec. 3. We elaborate on the proposed heuristic algorithms 
(basic and weighted) in Sec. 4 and the proposed ML solution in 
Sec. 5. The simulation results of the proposed approaches toward 
the LOS discovery problem are presented in Sec. 6. In Sec. 7, we 
introduce the proposed systematic solution WiMove. The related 
works are discussed in Sec. 8. Finally, Sec. 9 concludes this paper.2

2. Background overview

In this section, we provide a brief background overview about 
several key concepts that are related to this paper, including 
mmWave WiFi, LOS in mmWave networks, and LOS and infrastruc-
ture mobility.

2.1. mmWave WiFi

The essential advantage of the mmWave WiFi as compared to 
legacy WiFi operating in 2.4 GHz or 5 GHz is the availability of 
a large amount of unlicensed spectrum. Taking advantage of the 
large spectrum available, the bandwidth supported by mmWave 
WiFi standard 802.11ad is 12.5x larger than the bandwidth sup-
ported by the latest non-mmWave WiFi standard 802.11ax. How-
ever, achieving the multi-gigabit performance in mmWave WiFi 
networks is not a trivial problem, since the mmWave signal prop-
agation characteristics significantly differ from those of the legacy 
spectrum. The major difference is that mmWave communication 
has extremely high signal attenuation [31] generally caused by: 1) 
high propagation loss: there is an additional signal attenuation of 
22 dB at 60 GHz compared to that of 5 GHz based on the free 
space path loss model and the properties of the propagation media 
can also significantly increase the signal attenuation (e.g., oxygen 
absorption or rain attenuation); 2) high penetration loss: the atten-
uation impact is amplified when there is shadow fading or NLOS 
between the transmitter and receiver pair; and 3) sparse multi-
path diversity: multipath components propagating through objects 
tend to have low signal power due to longer propagation paths 
and additional reflection loss. Due to these features of mmWave 
communication, NLOS can have a severe impact on mmWave WiFi 
performance. Note that a consequent advantage of mmWave com-
munication compared with the legacy frequency is that the high 
signal attenuation naturally lowers the probability of interference.

2.2. LOS in mmWave networks

Based on the harsh mmWave signal propagation characteristics, 
it is likely that robust receiver signal quality is hard to achieve. 
While beamforming can be utilized to combat the severe propa-
gation loss in mmWave communication, the additional loss caused 
by NLOS can lead to severe performance degradation. Related work 
shows that SNR of NLOS path is on average 16 dB lower than LOS 
path [1]. Note that for 802.11ad [10], a 2 dB additional loss could 
cause a 1 Gbps performance drop when the modulation and cod-
ing schemes drop from 23 to 22. Thus, providing high and robust 

2 The source code and data are publicly available at: https://github .com /
vincent001217 /Algorithms -for-Addressing -Line -of -Sight -Issues -in -mmWave -WiFi -
Networks -using -Access -Point -Mobility.
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Fig. 1. Infrastructure mobility providing LOS.

receiver signal quality is an essential problem for mmWave WiFi. 
In this context, in order to achieve multi-gigabit performance, LOS 
connectivity is highly critical in mmWave networks. In a simple 
experiment to observe the impact of NLOS in mmWave WiFi, we 
build an mmWave link using a TP-Link Talon AD7200 AP and an 
Acer Travelmate P648 laptop. We observe that obstacles such as a 
wall, a metal cabinet, and a cardboard box can degrade the per-
formance of an ideal link with LOS connectivity from 1 Gbps to 0 
Gbps, 0 Gbps, and 0.52 Gbps, respectively. Even though LOS con-
nectivity provides critical benefits for mmWave communication, 
achieving LOS connectivity is not trivial. Consider typical indoor 
scenarios consisting of randomly located obstacles with various di-
mensions and materials that could potentially block the mmWave 
link. Also, both mmWave STAs and the obstacles can be dynamic, 
which prevents the possibility of predetermining the ideal AP lo-
cation with optimized LOS connectivity to STAs.

2.3. LOS and infrastructure mobility

To optimize LOS connectivity in an mmWave network adap-
tively, we consider infrastructure mobility as a promising candidate 
solution, as infrastructure mobility allows for changing the location 
of the AP adaptively. Fig. 1 shows a scenario with a CMM AP and 
randomly distributed obstacles, where the obstacle density and di-
mension follows distribution based on real-world measurements. 
The gray cuboids, white cuboids, and black solid circle represent 
the CMM AP with its platform, obstacles, and the STA, respectively. 
Based on the performance analysis of various platform shapes [15], 
the 1D linear actuator platform is considered in this work. In Fig. 1, 
the CMM AP initially located at the center of a linear actuator plat-
form cannot provide LOS connection to the STA. Given the degree 
of freedom of AP mobility, the AP can move to a location on the 
side of the platform where LOS connectivity can be provided. On a 
more generalized note, using simulation-based statistical analysis, 
we identify that a CMM AP operating on a 3 m long linear actua-
tor provides a 70% increase in LOS probability coverage compared 
with a static ceiling-mounted AP. With a larger movement range 
provided by the actuator platform, higher LOS connectivity proba-
bility can be achieved, but the cost also becomes more expensive. 
It should be noted that this work investigates the application of 
infrastructure mobility in the context of mmWave WiFi due to the 
critical impact of LOS connectivity for mmWave communication. 
This approach is also generally applicable to other types of wireless 
networks (e.g., wireless sensor networks, legacy WiFi, and robotic 
wireless networks), since wireless link performance generally ben-
efits from LOS connectivity.
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3. The LOS discovery problem

The network scenario considered in this work is a single room 
with a single CMM AP serving multiple single-hop STAs, where 
the CMM AP platform is mounted on the center of the ceiling. 
For simplicity, we use LOS connectivity as network state informa-
tion. For both the AP and STAs, it is assumed that both 5 GHz 
and 60 GHz WiFi radios are available. The STAs communicate with 
the AP, which records the time stamp of each received message, 
the LOS connectivity information and their intention to connect 
to the AP through the 5 GHz band. The AP can move to P dis-
crete available positions on the platform.3 There are M STAs in 
this network scenario at a specific time instance t . Suppose the 
LOS connectivity among the M existing STAs and LOS connectivity 
between the AP and each of the M existing STAs are known to the 
AP. At a subsequent time instance (e.g., t′), there is an (M + 1)th

STA intending to connect to the AP through mmWave and sending 
a short broadcast mmWave “LOS testing” message to the M ex-
isting STAs. The STAs receiving the broadcast message report their 
LOS connectivity to the (M + 1)th STA as “LOS” to the AP over the 
5 GHz band. Upon receiving the first LOS report, the AP waits for 
subsequent LOS reports for a time duration tdur , which is equal to 
the time difference between the first and last LOS reports resulting 
from the previous joining STA (if not applicable, select a reason-
able predetermined time duration) plus a predetermined constant 
time duration (to ensure the complete collection of LOS reports). 
Then, the AP declares “LOS report collection completed” (i.e., all 
STAs receiving the broadcast message should have reported), and 
labels the LOS connectivity between the STAs not reporting and 
the (M + 1)th STA as “NLOS”. If any LOS report arrives later than 
tdur , then the corresponding LOS connectivity information will be 
updated after the current process finishes. This is a source of LOS 
connectivity information inaccuracies, which have been taken into 
account in the evaluation in Secs. 6 and 7. Suppose the result-
ing overhead is negligible. Then at time t′ , we can assume that 
the STA-STA LOS connectivity matrix between M + 1 STAs and AP-
STA LOS connectivity matrix between AP and M existing STAs are 
known to and stored in the AP (the data collection methods are 
described in Sec. 7). The LOS connectivity of the new STA with all 
available AP locations is unknown.

LOS connectivity is defined as a binary variable with 1 repre-
senting LOS and 0 representing NLOS. We define losi, j representing 
the LOS connectivity between device i and device j. For example, 
for AP at location p (with p ∈ [1, P ]) on the actuator platform, 
losp,m represents LOS connectivity status between the AP at lo-
cation p and STA m (with m ∈ [1, M + 1] at t′). Specifically, we 
consider the LOS connectivity matrices with two pieces of infor-
mation: 1) LO S(ss,t′): it represents the LOS connectivity status be-
tween all STAs at time instance t′:

LO S(ss,t′) =

⎡
⎢⎢⎢⎣

los1,1 los1,2 . . . los1,M+1
los2,1 los2,2 . . . los2,M+1

...
...

. . .
...

losM+1,1 losM+1,2 . . . losM+1,M+1

⎤
⎥⎥⎥⎦ ,

and 2) LO S(as,t′): it represents the LOS connectivity status between 
all available AP locations with all STAs at a time instance t′:

LO S(as,t′) =

⎡
⎢⎢⎢⎣
losp1,1 losp1,2 . . . losp1,M
losp2,1 losp2,2 . . . losp2,M

...
...

. . .
...

lospP ,1 lospP ,2 . . . lospP ,M

⎤
⎥⎥⎥⎦ ,

3 We assume the power and the Ethernet cords of the AP are delivered through 
the actuator platform.
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where lospi, j represents the LOS connectivity between AP at loca-
tion i and STA j. Within this scope, as network dynamics happens 
(e.g., a new (M + 1)th STA joins the network), the objective is to 
identify AP-STA LOS connectivity vector �as(M+1,p,t′) between AP 
and (M + 1)th STA at time instance t′:

�as(M+1,p,t′) = [losp1,M+1, losp2,M+1, ..., lospP ,M+1]. (1)

Given the AP-STA LOS connectivity vector �as(M+1,p,t′) , the AP 
can then optimize the LOS connectivity to the targeted STA. With 
this network problem definition, we restrict the scope of this work 
to the following: (i) We only consider a single WiFi network where 
a CMM AP serving multiple single-hop STAs in a single room; (ii) 
This work aims to optimize mmWave WiFi network performance. 
For STA to have an NLOS connection with the AP, we assume 5 GHz 
is utilized to provide WiFi connectivity.

4. Heuristic algorithms

In this section, we present the proposed heuristic algorithms, 
including a basic version and a weighted version, which leverage 
the available LOS connectivity information LO S(ss,t′) and LO S(as,t′)
to solve the LOS discovery problem.

4.1. Motivation

To address the LOS discovery problem, an intuitive way is to 
adopt a deterministic solution which requires the AP to directly 
communicate with the target (M + 1)th STA in each of P dis-
crete available positions to obtain necessary information. However, 
the deterministic solution is infeasible since the aggregate latency, 
which results from the AP moving to each of P discrete available 
positions and (at least) P communications between the AP and 
the target (M + 1)th STA, poses a prohibitively high overhead to 
the processing time.

Therefore, we intend to solve the LOS discovery problem using 
heuristic methods from a probabilistic perspective. At a single time 
instance, the obstacle map (location and dimension of obstacles) is 
fixed but unknown. The set of network state information (e.g., LOS 
connectivity information of LO S(ss,t′) and LO S(as,t′)) can reveal the 
information about unknown obstacle map to some extent. Assum-
ing that LO S(ss,t′) and LO S(as,t′) are given, we intend to identify 
the LOS connectivity between the target (M + 1)th STA with the 
all available AP locations at time instance t′ . Similar to AP-STA LOS 
connectivity vector �as(M+1,p,t′) , we define the STA-STA LOS con-
nectivity vector of (M + 1)th STA to all STAs as �ss(M+1,m,t′) at time 
instance t′:

�ss(M+1,m,t′) = [losM+1,1, losM+1,2, ..., losM+1,M+1]. (2)

Specifically, the connectivity vector �ss(M+1,m,t′) can be collected 
from the connectivity matrix LO S(ss,t′) . Intuitively, if the (M + 1)th

STA has an LOS connectivity vector �ss(M+1,m,t′) similar to that of 
another m′ th STA (m′ ∈ [1, M]), the location of these two STAs 
is likely to be closed to each other. Given the location similar-
ity between these two STAs, the AP-STA LOS connectivity matrix 
LO S(as,t′) is also likely to be similar to each other.

In order to measure the behavioral discrepancy between the 
(M + 1)th STA and the mth STA, we compute the Hamming dis-
tance between �ss(M+1,m,t′) and �ss(m,m,t′) , expressed as

d(M + 1,m) = Hamming( �ss(M+1,m,t′), �ss(m,m,t′)). (3)

Note that a smaller Hamming distance d(M + 1, m) implies that 
the (M + 1)th STA behaves more similarly to the mth STA.
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Algorithm 1: Basic heuristic algorithm.
Data: LO S(ss,t′) and LO S(as,t′) at time instance t′
Result: �as(M+1,p,t′) for the (M + 1)th STA
Step 1: Hamming distance computation
for m = 1 : M
d(M + 1, m) = Hamming( �ss(M+1,m,t′), �ss(m,m,t′))

end
Step 2: Proxy selection
V = {m|d(M + 1, m) = min

m′ d(M + 1, m′)}
Step 3: Prediction Generation
s̄ = 1

|V |
∑

m∈V �as(m,p,t′)
�as(M+1,p,t′) = Comparator(s̄, 0.5)

4.2. Basic heuristic algorithm

In this subsection, we present the first heuristic algorithm, 
called basic heuristic algorithm. The basic heuristic algorithm selects 
the existing STAs with the minimum Hamming distance (obtained 
through (3)) as proxies, which are expected to behave most sim-
ilarly to the (M + 1)th STA in terms of the LOS connectivity to 
the AP (in a statistical sense), and generates the prediction for 
�as(M+1,p,t′) by computing the average LOS connectivity to the AP 
of the proxies.

In the following, we elaborate on the details of the basic heuris-
tic algorithm, which is illustrated in Algorithm 1.

For the basic heuristic algorithm, the input data are the LOS 
connectivity matrices LO S(ss,t′) and LO S(as,t′) at time instance t′ , 
while the output is the predicted binary vector �as(M+1,p,t′) .

Specifically, the basic heuristic algorithm consists of three main 
steps:
1) Hamming distance computation: We start by computing the 
Hamming distance in (3) for m ∈ [1, M], i.e., measure the behav-
ioral discrepancy between the (M + 1)th STA and the mth STA for 
m ∈ [1, M].
2) Proxy selection: Following the previous step, we obtain M Ham-
ming distance measurements. Next, we identify the set of the ex-
isting STAs which correspond to the minimum of the M Hamming 
distance measurements, V . Note that the existing STAs in the set 
V are referred to as the proxies, which are expected to have the 
most similar behavior to the (M + 1)th STA.
3) Prediction generation: We derive the average LOS connectivity 
of the proxies in V to the AP by computing

s̄ = 1

|V |
∑
m∈V

�as(m,p,t′), (4)

where |V | is the cardinality of the set V .
Finally, s̄ is fed into the comparator (with the threshold of 0.5), 

which outputs the prediction �as(M+1,p,t′) whose ith entry can be 
expressed as

[ �as(M+1,p,t′)]i =
{
0, 0 ≤ [s̄]i < 0.5
1, 0.5 ≤ [s̄]i ≤ 1

, i ∈ [1, P ], (5)

where [s̄]i is the ith entry of s̄.
While the basic heuristic algorithm is simple, it employs only 

the LOS connectivity information between the AP and a subset of 
existing STAs (proxies) during prediction generation, and therefore 
its prediction does not fully take advantage of the available data. 
In order to better utilize the LOS connectivity information offered 
by all existing STAs, we are motivated to propose the weighted 
heuristic algorithm introduced in the next subsection.

4.3. Weighted heuristic algorithm

In this subsection, we present the second heuristic algorithm, 
called weighted heuristic algorithm. The weighted heuristic algo-
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Algorithm 2: Weighted heuristic algorithm.
Data: LO S(ss,t′) and LO S(as,t′) at time instance t′ , predetermined value 

dpre > 0
Result: �as(M+1,p,t′) for the (M + 1)th STA
Step 1: Hamming distance computation
for m = 1 : M
d(M + 1, m) = Hamming( �ss(M+1,m,t′), �ss(m,m,t′))

end
Step 2: Weight Assignment
for m = 1 : M
if d(M + 1, m) �= 0 then

wm = 1/d(M + 1, m)

else if d(M + 1, m) == 0 then
wm = 1/dpre

end
Step 3: Prediction Generation
w̃ = ∑M

m=1 wm �as(m,p,t′)
w̄ = w̃/ ∑M

m=1 wm
�as(M+1,p,t′) = Comparator(w̄, 0.5)

rithm is extended from the basic heuristic algorithm presented 
in the previous subsection, accommodating the full LOS connec-
tivity information between the AP and all existing STAs, i.e., the 
whole LO S(as,t′) matrix, where each column is assigned a weight 
based on the Hamming distance measured in (3), and predicting 
�as(M+1,p,t′) with the weighted sum of all columns in LO S(as,t′) .

Taking advantage of only a subset of columns in LO S(as,t′) , the 
basic heuristic algorithm does not fully exploit the information in 
LO S(as,t′) during prediction generation. While the basic heuristic 
algorithm is applicable to the scenarios where there are only a 
small number of STAs whose pattern can be captured by several 
proxies, it is not suitable for a large-scale network where plenty of 
STAs demonstrate a complicated pattern (see Sec. 6 for simulation 
results).

Therefore, we are motivated to propose the weighted heuris-
tic algorithm where the information of LO S(as,t′) is fully exploited 
while the importance of each column is reflected by its assigned 
weight based on the Hamming distance measured in (3).

In the following, we elaborate on the details of the weighted 
heuristic algorithm, which is illustrated in Algorithm 2.

For the weighted heuristic algorithm, the input data are the LOS 
connectivity matrices LO S(ss,t′) and LO S(as,t′) at time instance t′ , 
and the predetermined value dpre > 0 (which is to be elaborated 
later), while the output is the predicted binary vector �as(M+1,p,t′) .

Particularly, the weighted heuristic algorithm consists of three 
main steps:
1) Hamming distance computation: Same as the starting step in 
the basic heuristic algorithm, we compute the Hamming distance 
d(M + 1, m) for m ∈ [1, M] using (3).

Note that the Hamming distance d(M + 1, m) reflects the im-
portance of the information provided by the mth existing STA to 
the LOS connectivity prediction for the (M +1)th STA in an inverse 
manner. Namely, a larger Hamming distance d(M + 1, m) implies 
that the information offered by the mth existing STA is less valued 
toward the prediction generation for the (M + 1)th STA. This in-
terpretation is a key essence of the next step, which assigns the 
weights to the columns of LO S(as,t′) based on the Hamming dis-
tances obtained in this step.
2) Weight assignment: During the previous step, we obtain the 
measured Hamming distances, which are used to determine the 
weights for the columns in LO S(as,t′) .

In order to predict the LOS connectivity between the AP and the 
(M +1)th STA, the columns in LO S(as,t′) are to be employed. Given 
that the Hamming distance implies the importance of the provided 
information in an inverse manner for an existing STA, the weight 
of a specific column in LO S(as,t′) is chosen as the reciprocal of the 
corresponding Hamming distance. Note that when the Hamming 
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distance is equal to zero, it is replaced with a predetermined value 
dpre , which is a positive real number, to avoid division by zero.

Consequently, for the mth existing STA, the initial weight of the 
mth column in LO S(as,t′) , �as(m,p,t′) , is obtained as

wm =
{

1
d(M+1,m)

, d(M + 1,m) �= 0
1

dpre
, d(M + 1,m) = 0

,m ∈ [1,M] (6)

which will be used to compute the weighted sum in the next step.
3) Prediction generation: Following the previous step, we obtain 
the weights for the columns in LO S(as,t′) . Note that the prediction 
�as(M+1,p,t′) is derived from the weighted sum of all columns in 
LO S(as,t′) . Based on the weights obtained in the previous step, the 
weighted sum can be derived as

w̃ =
M∑

m=1

wm �as(m,p,t′). (7)

For the convenience of further processing, we would like to 
scale the entries in w̃ such that the scaled entries are within the 
interval [0, 1]. Given that LO S(as,t′) is a matrix with only binary 
entries, the entries in w̃ will be scaled to lie within the interval 
[0, 1] if we normalize w̃ such that the normalized w̃ is a convex 
combination of all columns in LO S(as,t′) . Note that for a convex 
combination, the coefficients should be non-negative and the sum 
of coefficients should be equal to 1.

This can be achieved by dividing the weighted sum by the sum 
of weights and obtaining the normalized weighted sum, which can 
be expressed as

w̄ = w̃∑M
m=1 wm

=
∑M

m=1 wm �as(m,p,t′)∑M
m=1 wm

=
M∑

m=1

wm∑M
m=1 wm

�as(m,p,t′) =
M∑

m=1

w̄m �as(m,p,t′), (8)

where w̄m > 0 and 
∑M

m=1 w̄m = 1, which proves that w̄ is a convex 
combination of all columns in LO S(as,t′) . Thus, the entries in w̄ are 
within the interval [0, 1].

From (8), it can be observed that the information contained in 
LO S(as,t′) is fully exploited. For the mth existing STA, the portion 
of contribution of its corresponding column �as(m,p,t′) toward the 
prediction is reflected by the value of w̄m .

Finally, same as in the basic heuristic algorithm, w̄ is passed 
through the binary comparator (with the threshold of 0.5), which 
generates the LOS connectivity prediction �as(M+1,p,t′) , whose ith 
entry can be expressed as

[ �as(M+1,p,t′)]i =
{
0, 0 ≤ [w̄]i < 0.5
1, 0.5 ≤ [w̄]i ≤ 1

, i ∈ [1, P ]. (9)

4.4. Computational complexity

For the two heuristic algorithms (basic and weighted) proposed 
for the LOS discovery problem, we present their computational com-
plexities in terms of the number of multiplication/division opera-
tions involved. Note that the big-O complexity of a multiplication 
operation is the same as that of a division operation.

The Hamming distance computation, which is shared by both 
heuristic algorithms, can be done with only XOR and addition op-
erations (since the LOS connectivity is represented by either 0 or 
1), and does not require any multiplication/division operation.

Consider the subsequent steps in the basic heuristic algorithm. 
After obtaining the set of proxies V (which involves only compar-
isons), the columns corresponding to V in LO S(as,t′) are summed 
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up (which involves only addition operations). Then, the sum is di-
vided by the cardinality of the set V , i.e., |V |, which involves a 
single division operation. (Note that the final comparator involves 
only comparisons.) Therefore, the total computational complexity 
of the basic heuristic algorithm is O(1).

Next, consider the subsequent steps in the weighted heuristic 
algorithm. The weight computation involves (at most) M division 
operations (due to the M Hamming distances), while the weighted 
sum can be done with only addition operations (since the LOS 
connectivity is represented by either 0 or 1). Then, the weighted 
sum is divided by the sum of weights (where the sum can be 
done with only addition operations), which involves a single di-
vision operation. (Note that the final comparator involves only 
comparisons.) Therefore, the total computational complexity of the 
weighted heuristic algorithm is O(M).

Based on the above, the two heuristic algorithms (basic and 
weighted) proposed for the LOS discovery problem are efficient in 
terms of their low computational complexities.

5. ML framework

In this section, we present the ML solution, which employs a 
neural network architecture to fully exploit available information, 
to the LOS discovery problem.

5.1. Motivation

Despite their efficiency in terms of the computational complex-
ity, the proposed heuristic algorithms (both basic and weighted) 
can provide only a limited accuracy toward the LOS discovery prob-
lem (see the simulation results displayed in Sec. 6).

In order to further improve LOS prediction accuracy, we iden-
tify two limitations in the proposed heuristic algorithms that can 
be addressed. 1) Given there is a rich set of network state informa-
tion other than LOS, it is not trivial for the heuristic algorithms to 
jointly consider multiple types of input data (e.g., LOS connectivity, 
RSS, and location of STAs); 2) When data samples are limited, the 
data set may not provide enough information for the algorithm to 
achieve reasonable prediction accuracy.

Therefore, to further improve the prediction accuracy, we con-
sider an ML approach to address the aforementioned limitations. 
The proposed ML approach can take into account multiple net-
work state information as input, and the time complexity will be 
constant for an offline trained model. The problem to predict the 
LOS connectivity of the (M + 1)th STA with the AP is represented 
and solved in a supervised fashion. Thus, keeping the fact in mind 
that the underlying relationship between input and output is actu-
ally a skewed representation of the fixed obstacle map, we utilize 
parametric function approximation approaches to learn this latent 
structure. While we are aware that it might not be possible to 
learn the full obstacle map, we aim to extract as much possible 
information in an attempt to maximize the prediction accuracy. 
In our ML LOS connectivity prediction framework, we use artifi-
cial neural networks (ANNs) as a recipe for parametric function 
approximation.

5.2. Input features and the output

We consider two representative input features: 1) the LOS con-
nectivity information, which can be collected using the LOS esti-
mation technique [30], which explores space and antenna diversity 
to identify LOS connectivity; 2) localization information of STAs, 
that can be obtained with reasonable accuracy based on [34], 
which utilizes RSSI-based location-clustering techniques. The in-
put data are present in the format of 1) LOS connectivity matrix 
between STAs, LO S(ss,t) , and LOS connectivity matrix between AP 
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and STAs, LO S(as,t) , and 2) the localization matrix of STAs in the 
form of three-dimensional cartesian coordinates. The input data 
are generated in accordance with practical estimation techniques 
for both LOS and localization prediction and hence account for 
the uncertainty involved. The labels (ground truth) for training are 
present in the format of �as(M+1,p,t) i.e., the LOS connectivity ma-
trix of (M + 1)th STA with the P possible locations of the AP.

Given the network has M + 1 STAs, the LO S(ss,t) matrix has 
total (M + 1) ∗ (M + 1) features and the LO S(as,t) matrix has 
M ∗ P features. The localization matrix for (M +1) STAs consists of 
3(M + 1) features. The input feature vector X is obtained by con-
catenating these three feature vectors into a single vector of size 
(M2 + (5 + P )M + 4). The network outputs Ŷ ∈ [0, 1]P , a P sized 
probability vector representing the probability of LOS connectivity 
of (M + 1)th STA with P locations. 

5.3. Network

We use a multi-layer perceptron network [9] with the number 
of hidden layers and neurons configured to work across different 
network scenarios. The flattened input feature vector of size (M2 +
(5 + P )M + 4) is fed into a fully connected network as shown in 
Fig. 2 with 3 hidden layers. The lth hidden layer has a total of nHl

neurons. The kth neuron in the (l − 1)th layer is connected to the 
jth neuron in the lth layer with a weight of wl

jk . b
l
j represents the 

bias of the jth neuron in the lth layer. The activation of the jth

neuron in the lth layer, i.e. alj , is calculated through the forward 
propagation rule as

alj = σ(
∑
k

wl
jka

l−1
k + blj), (10)

where σ applies non-linearity to the model with the ReLU activa-
tion function,

σ(h) =max(0,h). (11)

Finally, we use the softmax layer [16] before the output layer to 
transform the output logits to the probability vectors. The model 
is trained through the backpropagation rule, using weighted cross-
entropy loss defined as

Hy(p) =
P∑
i

−(yi log(pi) ∗ w + (1− yi) log(1− pi)). (12)

Here, pi represents the softmax probability of output logits, and 
w is calculated as the ratio of NLOS to LOS connectivity using 
training data, i.e., the ratio of the number of 0’s to the number 
of 1’s among the (M + 1)2 entries of LO S(ss,t) . As the ratio of 
NLOS to LOS connectivity in the data samples may be imbalanced, 
the weighted cross-entropy loss with weight w balances the loss 
function to avoid any local minima. Using the available training 
data bank, DB = {(X1, Y1), (X2, Y2), . . . (XN , YN )}, of N samples, 
the loss function is minimized using stochastic gradient descent 
(SGD) with momentum optimizer [22]. In SGD, a batch of B train-
ing samples is randomly selected out of N training samples, and 
the weights and biases are updated through the backpropagation 
rule. A fraction of the gradient in the previous iteration is retained 
with the “coefficient of momentum”. At each learning iteration, 
the learning rate is decreased over time to optimize performance 
and to increase the convergence rate [11] of the algorithm. While 
training, we also augment the training set by a random permu-
tation over the sequence order of the STAs in the input features. 
This not only increases the training set size but also improves the 
convergence of gradient descent by avoiding any STA-order based 
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Fig. 2. Neural network architecture.
local minima. The random permutations prevent the ML architec-
ture from extracting features based on the STA ordering.

Based on the proposed ML framework, we identify the follow-
ing two potential trade-offs: 1) as the number of data sample in-
creases, the prediction accuracy also increases, and 2) as potential 
locations of STAs decreases, the prediction accuracy also increases 
due to fewer input possibilities.

6. LOS prediction evaluation

In this section, we evaluate the performance of both heuris-
tic algorithms and ML solution toward the LOS discovery problem
through simulations. We utilize the customized ns-3 simulator [15]
to generate network scenarios to collect the required data sam-
ples. By tuning network scenarios, we are able to generate a large 
number of data samples and measure corresponding network per-
formance.

6.1. Simulation platform

To incorporate the features of indoor configurations and 802.11
ad, we make the following modifications to the default ns-3 simu-
lator.

Simulation of Indoor Scenarios: Due to the lack of an indoor sce-
nario model in ns-3, we used the following indoor model. A room 
is simulated as a specific three-dimensional space with a given ob-
stacle distribution model. To simplify the simulations, we assume 
that the obstacles are modeled as cuboids. To simulate practi-
cal scenarios, we consider that the placement of the STA follows 
the following distribution: an obstacle is uniformly selected as the 
base location for the STA, and the STA is uniformly distributed on 
top or sides of the selected obstacles.

To accurately simulate indoor obstacles, the implemented ob-
stacle model has the following features:

• The center of the obstacle follows a Poisson point process. It 
defines the probability for obstacles to be uniformly placed in 
an indoor scenario.

• The x, y, and z dimension of obstacles follow a truncated nor-
mal distribution to constrain the maximum and minimum of 
obstacle dimension.

• The material of the obstacle is uniformly chosen from [2] to 
represent materials with various penetration losses.
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Table 1
Default parameters.

Settings

Size of room (m) (9, 4, 3)
(μx,μy,μz) (m) (1.08, 0.28, 0.61)
(σx, σy , σz) (m) (0.46, 0.08, 0.21)
Platform location Center of the ceiling
Platform orientation Parallel to shorter edge
Platform length (m) 3
P 30
npl 2
σm 2.24
T 10,000

We show the default parameters used in the simulation in Ta-
ble 1. The parameters are derived by using a real-life physical 
space (a lab environment) as a guiding example. To build a cuboid-
based obstacle model, the x, y, and z dimensions are collected 
based on the largest dimension of a measured obstacle. We then 
collect the number of obstacles in the lab space as n. To calcu-
late the x, y, and z dimension distribution parameters, we use the 
distribution fitter in MATLAB to calculate the best fit normal distri-
bution with mean μx , μy , and μz , and standard deviation σx , σy , 
and σz . The maximum and minimum of x, y, and z dimensions 
of obstacles are utilized as the range limitation in the truncated 
normal distribution.

Simulation of 802.11ad: We use the 802.11ad model based on 
[4]. The simulator provides all techniques that are essential for 
802.11ad, such as beamforming training and steering, hence pro-
viding an accurate simulation environment for 802.11ad. The 
mmWave channel is another essential component of simulating the 
performance of 802.11ad. To incorporate shadow fading based on 
information of mmWave WiFi devices and obstacles, we consider 
the impact of shadow fading and multipath separately. Based on 
experimental evaluation [23], we consider the log-distance based 
path loss model as follows: 

L(d) = L(d0) + 10 ∗ npl ∗ log10(
d

d0
) + Xs + Xσm , (13)

where L(d0) is the path loss at a reference distance d0, npl is the 
path loss exponent, d is the distance between two communica-
tion devices, Xs represents shadow fading where the penetration 
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Fig. 3. LOS prediction accuracy with different numbers of STAs.
loss is calculated based on the obstacles’ location, dimension and 
material between mmWave WiFi devices, and Xσm represents the 
normally distributed multipath fading with σm as the standard de-
viation. Particularly, Xs is 0 when the communication link is in 
LOS connectivity. We collected the average of 5 sets of experimen-
tal estimations of the log-distance based path loss model to collect 
npl and σm based on [23], which are presented in Table 1.

Data Samples Generation: To generate data samples using the 
above ns-3 model, we initialize the network scenario by generating 
a random network scenario like Fig. 1. Then, we deploy M STAs fol-
lowing the STA distributions mentioned above. At each time step, 
network dynamics (e.g., STAs join or leave the network) happen 
based on the Poisson distribution with an expected rate of one unit 
per time step. We then collect network state information (i.e., STA-
STA LOS connectivity matrix, AP-STA LOS connectivity matrix, and 
STA location matrix) for each time instance t . Specifically, we in-
corporate the error model of LOS estimation and localization based 
on the prediction cumulative distribution function (CDF) presented 
in [30] and in [34], respectively. The default parameters of the 
number of STAs M , the number of data samples T , and the num-
ber of available AP locations P are described in Table 1.

6.2. System settings

We set the value of dpre as 0.8 for the weighted heuristic algo-
rithm. We use Tensorflow to implement and run the ML models. 
We use three hidden layers in the model with 1024, 512, and 256 
neurons, respectively. A default batch size of 256 is considered ex-
cept for the cases where the total training sample size is smaller 
than 256. The learning rate is initialized as 0.15 and decreased 
with a factor of 0.9 every 5000 steps. We split the available data 
into two sets: 1) the training set comprises of 70% of the data and 
is used to learn the network weights, and 2) the remaining 30% 
set is used for testing. Additionally, we also randomly permute the 
labels of test sets to validate that the ML model is learning mean-
ingful latent structure in terms of the relationship between inputs 
features and output labels.

For the LOS connectivity prediction of all AP locations, the per-
formance metrics are found very similar with insignificant vari-
ance. Hence, in subsequent analysis, we only present the aver-
age performance over all the AP locations. We use three different 
metrics to evaluate the performance of the proposed approaches, 
namely overall accuracy, precision, and recall for LOS connectivity. 
Precision for LOS connectivity is defined as the fraction of actual 
LOS connections out of total predicted LOS connections. Recall in-
forms how accurately the model can predict LOS connections out 
of actual LOS connections. It is to be noted that this is a binary 
classification problem (predicting the presence of LOS connection) 
and hence, a random classifier will have an accuracy of 50%. As LOS 
connectivity and NLOS connectivity are not equally distributed, an 
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evaluation based only on accuracy will represent biased results. 
Hence, we provide precision and recall along with accuracy.

6.3. Impact of number of STAs

We evaluate the LOS prediction performance of the proposed 
approaches with different numbers of STAs, where M + 1 = 11, 21, 
under a fixed obstacle map. From the simulation results shown in 
Fig. 3, it can be observed that the ML solution significantly outper-
forms the heuristic algorithms in terms of the LOS prediction accu-
racy, at the expense of larger computational resource consumption. 
Between the two heuristic algorithms, the weighted version out-
performs the basic version in terms of the LOS prediction accuracy. 
As the number of STAs increases, the performance of the ML so-
lution remains stably high, while the performance of the heuristic 
algorithms improves slightly. It is noteworthy that the weighted 
heuristic algorithm outperforms the basic heuristic algorithm more 
significantly with more STAs, implying that the weighted heuristic 
algorithm exploits the available information better than the basic 
heuristic algorithm within a larger network.

6.4. Impact of obstacle maps

Next, we investigate the LOS prediction performance of the pro-
posed approaches over two different obstacle maps with a fixed 
number of STAs, where M + 1 = 21. The simulation results are 
shown in Fig. 4, in which it can be found that the LOS prediction 
accuracy of the proposed approaches remains stable over differ-
ent obstacle maps, exhibiting the robustness of the proposed ap-
proaches. Note that Fig. 4 demonstrates a similar trend to Fig. 3b, 
where the ML solution still significantly outperforms the heuristic 
algorithms in terms of the LOS prediction accuracy.

6.5. Comparison between ML solution and heuristic algorithms

From Figs. 3 and 4, we identify that ML performs signifi-
cantly better than the heuristic algorithms. These results validate 
that ML can take advantage of multiple input features and gain 
more insightful information from jointly considering LOS and loca-
tion input features. Specifically, LOS connectivity matrices provide 
network-level relative information of each STA and location ma-
trices provide the physical information of each STA. Even with 
prediction error, the ML model is able to jointly learn the location 
of each STA and identify the corresponding LOS connectivity with 
all available AP locations. Ideally, increasing the number of input 
features can further improve ML prediction accuracy. In the case 
of the heuristic algorithms, the introduction of estimation error 
in data in accordance with error models reduces the performance 
since it only tries to identify the AP-STA LOS connectivity vector 
based on fixed matching metrics. In the following section, we will 
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Fig. 4. LOS prediction accuracy with different obstacle maps.
mainly evaluate ML performance due to its high prediction accu-
racy.

6.6. Dynamic environments

The ML framework presented above requires the environment 
to be static (e.g., fixed obstacle map). That is, the trained ML 
model works when there is no change in the obstacle map. We 
first classify dynamic scenarios and evaluate ML in different dy-
namic scenario settings. Specifically, we classify network dynamics 
into two types: 1) STA dynamics: an active STA changes its loca-
tion (i.e., an STA which is a mobile client), or a static STA joins the 
network or leaves the network, and 2) obstacle dynamics: an ob-
stacle in target scenario moves to another location. These dynamics 
can be identified based on network state information available. STA 
dynamics can be identified by the change of STA location and LOS 
connectivity to other static connected STAs. Obstacle dynamics can 
be identified by the change of STA-STA LOS connectivity matrix, 
i.e., the effect of obstacle movement on LOS connectivity is re-
flected on the change in the entries of STA-STA LOS connectivity 
matrix. STA dynamics do not skew ML model prediction accuracy 
as the underlying obstacle map is unaffected. However, obstacle 
dynamics change the obstacle map, which can lead to decreased 
performance of the ML model. Thus, we will target obstacle dy-
namics in the rest of this section. Considering the case in which 
the ML model is retrained after an obstacle movement is detected, 
the performance is now limited by the frequency of obstacle move-
ments. Consequently, the proposed ML solution is more suitable for 
scenarios with slow-varying obstacle dynamics (a more general ML 
solution suitable for scenarios with fast-varying obstacle dynamics 
is to be studied in future works).

On average, if there is only one obstacle movement event 
within k time steps, then the achievable performance of the ML 
model after training from data of k time steps is of interest. The 
methodology to study the continuous obstacle dynamics scenarios 
is to train using the data set collected at each k time steps. Specif-
ically, we change the number of data samples collected k from 100 
through 10000.

Fig. 5 shows the prediction accuracy when the number of sam-
ples increases from 100 to 10000. Clearly, we can observe that 
there is a tendency that the prediction accuracy increases as the 
number of data sample increases. Specifically, the prediction ac-
curacy increases from 84% to 90% as the number of data samples 
increases from 100 to 10000, respectively. Similarly, the recall rate 
also increases with the number of time steps. However, increasing 
the time steps does not have a significant impact on the precision 
metric. The precision varies in the range of 93% to 95%. We also 
observe that the prediction accuracy for a data set from as low as 
100 time steps is reasonably accurate.
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Fig. 5. LOS prediction accuracy of ML in dynamic scenarios.

7. WiMove: a systematic solution

In this section, a systematic solution of WiMove is first dis-
cussed. In this solution, we intend to optimize the mmWave WiFi 
network performance in the perspective of throughput and fair-
ness. We assume STAs with NLOS with AP can be served using the 
5 GHz band (the joint 5 GHz and 60 GHz network optimization is 
to be considered in future works). With the assumption of equal 
transmission probability of each WiFi device, network fairness is 
maximized when the number of LOS connectivity links between 
AP and STAs is maximized. Therefore, the objective function for AP 
to identify the optimal location is to maximize the number of LOS 
connectivity links between AP and STAs. Given this objective function, 
we will then evaluate WiMove using both simulations and experi-
ments.

7.1. Trivial solutions

Before we introduce the solution of WiMove for the CMM AP in 
mmWave WiFi, we will first briefly discuss two trivial approaches 
to provide mmWave service to STAs and the corresponding trade-
offs:

• Single static AP: The static AP is mounted at the center of the 
ceiling to maximize the overall LOS probability with randomly 
deployed STAs. This approach has the simplest strategy and 
minimum cost, but the non-adaptive solution can only achieve 
limited performance.

• Brute-force: Another trivial but adaptive approach is a brute-
force solution which enables the AP periodically traversing the 
entire platform in order to collect network status information. 
At each available AP location, the AP utilizes LOS estimation 
or localization techniques to collect network status informa-
tion. Based on the collected global knowledge, the location 
with the maximum number of LOS STAs can be identified 
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and then the AP moves to the ideal location. This approach is 
straightforward, but it introduces a significant amount of time 
complexity. Thus, the large convergence time to achieve the 
ideal location leads to a degradation of network performance.

7.2. WiMove overview

Given the ML solution presented in Sec. 5, we intend to em-
ploy it in a practical system to evaluate the overall system perfor-
mance. To perform such an ML algorithm, we assume that there 
is a cloud server which connects to AP with Ethernet. The cloud 
server can collect network status information from the AP, train 
the ML model, and inform the AP about AP-STA LOS connectivity 
vector with a target STA (e.g., through the technique in [20]). In 
this context, to achieve the objective of maximizing the number 
of LOS connectivity between AP and STAs, the overall systematic 
solution of WiMove is presented as follows:

• Initialization brute-force: The AP uses the brute-force discovery 
to collect the location information of the M + 1 STAs and ob-
tains the LOS connectivity information among the M + 1 STAs 
from the STAs (which employ short broadcast mmWave “LOS 
testing” messages) through the 5 GHz band. Upon receiving 
the information, the AP samples it into data samples. The AP 
then informs the cloud server with the data samples at the 
current time instance, which are then fed into the ML model 
for training. If network dynamics happen, the algorithm goes 
into the phase of Network dynamics.

• Network dynamics: As discussed in Sec. 6.6, there are two types 
of network dynamics: STA dynamics and obstacle dynamics. 
The system deals with each dynamic scenario in the follow-
ing manner: 1) STA dynamics: the AP collects the network 
state information in the current time step and sends the in-
formation to the cloud server, and then the AP collects LOS 
prediction results from the cloud server, identifies the clos-
est optimal location, and goes into the AP Movement phase; 2) 
obstacle dynamics: re-initialization of the ML algorithm is re-
quired, and it goes into the Initialization brute-force phase to 
retrain the ML model.

• AP movement: After identifying the target location (among the 
P discrete available positions) through the ML solution, AP 
moves to the identified target location and goes into the Reach 
Target phase. Note that, the AP will collect ground truth net-
work status information with the target STA during move-
ment.4 If the current location satisfies the objective function 
due to false negative prediction, the AP will stop at the cur-
rent location.

• Reach Target: If the AP reaches the target location with a cor-
rect prediction, WiMove goes into idle mode. If the prediction 
is wrong, WiMove goes into the AP movement phase with a 
newly identified nearest optimal location.

Accordingly, at a specific time instance t′ , the WiMove protocol 
undergoes the above four steps and proceeds toward next time 
instance t′ + 1.

7.3. Evaluation methodology

Consider a room with the CMM AP platform mounted at the 
default location on the ceiling with parameters following the con-
figurations in Table 1. There are M STAs in the scenario at a 
specific time instance. We consider instant STA dynamics in the 

4 When the percentage of ground truth data is smaller then a threshold of 90%, 
the WiMove goes into the Initialization brute-force phase.
74
Fig. 6. Experimental platform.

evaluation. STAs join or leave the network based on a Poisson dis-
tribution with an expected rate of one unit per minute. The overall 
evaluation time is 5 minutes. Similar to LOS prediction evaluation, 
we incorporate LOS estimation and localization error in the net-
work status collection phase.

We evaluate three different approaches for providing 802.11ad 
service in the network: 1) static AP, 2) brute-force, and 3) WiMove. 
For WiMove and brute-force, the goal is to identify the nearest 
location on the platform that maximizes the number of STA LOS 
connections. The metrics to be studied are 1) number of LOS STAs, 
2) aggregate throughput performance, and 3) Jain’s fairness index. 
Specifically, Jain’s fairness index ranges from 1/M (single STA has 
aggregate network throughput) to 1 (each STA has equal through-
put).

The three metrics are measured simultaneously once per sec-
ond for each approach during evaluation, with larger measured 
metric values signifying better performance. For each metric, we 
define the CDF at a metric value q as the ratio of the number of 
measured metric values being less than or equal to q to the to-
tal number of measured metric values. At any metric value q, a 
lower CDF, which implies a higher probability of achieving metric 
values being greater than q, is desirable. Note that the CDF at the 
maximal possible metric value is 1.
Simulation configurations: We evaluate the performance of the 
aforementioned three approaches through ns-3 simulations. The 
WiMove approach decides whether to adapt the AP location at 
every time instance when the network dynamics happen. We con-
sider the number of STAs to be 10 at the first time step. The ML 
prediction accuracy achieves 91% given 7000 time steps of input 
data samples.

Experimental configurations: In order to evaluate the perfor-
mance of WiMove, brute-force, and single static AP experimentally, 
we mounted a 1 m long Progressive Linear Actuator PA-18 [27] on 
the optimal location of the ceiling in a lab environment utilizing 
cable zips. This unit is controlled by a central controller through 
Arduino UNO [3] and Mega Moto Plus [19]. The AP mounted on 
the actuator is Tp-link Talon ad7200 [26]. The experimental plat-
form is shown in Fig. 6. We use three Acer Travelmate P648 laptops 
[28] as STAs. To collect training data for ML, the LOS and distance 
matrices of all possible locations are hard-coded. For WiMove, the 
controller controls the location of the AP in the discrete dynamic 
scenario based on the ML feedback. The ML prediction accuracy 
achieves 90% with 100 time steps of input data samples.

7.4. Simulation evaluation

Initially, 10 STAs are active. Based on the Poisson distribution of 
STA events, the STA number changes at each minute as {-1, -2, +1/-
1, +1}, where +1 means a new STA joins the network, -1 means an 
active STA drops off, and +1/-1 means a new STA joins the network 
and an active STA drops off simultaneously.
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Fig. 7. Number of LOS STAs.

Fig. 8. Throughput.
Figs. 7a, 8a, and 9a show the graphs of number of LOS STAs, 
normalized throughput, and Jain’s fairness index, respectively, ver-
sus CDF for the three approaches in the simulation. It can be 
observed that for any metric value in each metric, the correspond-
ing CDF achieved by WiMove is less than or equal to that achieved 
by single static AP and brute-force, demonstrating the superiority 
of WiMove. Particularly, brute-force suffers from the large conver-
gence time, while single static AP lacks flexibility as the network 
changes. Overall, the throughput performance of WiMove is 110% 
and 30% better compared with single static AP and brute-force, re-
spectively, and Jain’s fairness index 14% and 7% better compared 
with single static AP and brute-force, respectively.

7.5. Experimental evaluation

For the environment setup for experimental evaluation, initially, 
there are 2 STAs in the network and the STA numbers change at 
each minute as {+1, -2, +1/-1, +1}.

Figs. 7b, 8b, and 9b show the graphs of number of LOS STAs, 
normalized throughput, and Jain’s fairness index, respectively, ver-
sus CDF for the three approaches in the experiment. Similar to 
the simulation results, the experiment results also demonstrate 
that WiMove outperforms single static AP and brute-force in terms 
of CDF. From Fig. 7b, the limitation of single static AP is clearly 
reflected on its low number of LOS STAs throughout the experi-
ment. Moreover, it can be observed that WiMove is more capable 
of maintaining high throughput and high fairness than brute-force 
and single static AP from Figs. 8b and 9b. For instance, WiMove
maintains normalized throughput which is greater than 0.7 for 
95% of the total time and Jain’s fairness index which is greater 
than 0.9 for 95% of the total time, brute-force maintains such high 
throughput and high fairness for 60% and 75% of the total time, 
respectively, and single static AP maintains such high throughput 
and high fairness for only 20% and 60% of the total time, respec-
75
tively. Overall, the throughput performance of WiMove is 119% and 
29% better compared with single static AP and brute-force, re-
spectively, and Jain’s fairness index 15% and 8% better compared 
with single static AP and brute-force, respectively. In sum, we ob-
serve that WiMove dynamically adapts to network conditions and 
achieves significantly better performance than single static AP and 
brute-force.

8. Related work

As LOS connectivity becomes a critical bottleneck for mmWave 
communication, there are many research works that can be em-
ployed to compensate for the challenging issue. We categorize 
related works that have addressed the challenges related to LOS 
connectivity into three types: 1) multi-band, 2) improving channel 
quality, and 3) establishing indirect LOS connectivity.

For multi-band approaches, the methodology is that mmWave 
is only utilized for good (e.g., LOS) connections, and the legacy 
2.4 GHz and 5 GHz frequency bands are utilized when the 
mmWave connections experience poor propagation (e.g., NLOS) 
conditions. [24] utilizes localization of tracking angle change to 
steer the beam to a new location for mobile STAs, re-directing 
ongoing user traffic to the robust interface (e.g., from 60 GHz to 
5 GHz). [21] presents a dual connectivity protocol that enables mo-
bile user equipment devices to maintain physical layer connections 
to 4G and 5G cells simultaneously. These studies work on smooth 
handover and switching between two frequency bands with the 
use of session transfer techniques.

To provide good signal reception between AP and STAs, some 
possible approaches are: 1) infrastructure mobility, 2) multiple 
APs, and 3) relays. For conventional WiFi, some works have stud-
ied mobility-based wireless systems to boost WiFi network per-
formance [8,13,12,29,6]. In [7], robotic APs make adjustments to 
their positions to converge to an optimal position. These works 
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Fig. 9. Jain’s fairness index.
study and evaluate the effectiveness of ground-based mobile AP by 
adopting statistical methods for gain analysis. Another approach is 
to deploy more than one AP to increase the probability of LOS be-
tween AP and STAs. For the multi-AP based approach [18,17,25], 
[25] presents an infrastructure side predictive AP switching solu-
tion which can identify a proper AP for a specific STA to connect. 
These studies formulate the placement of multiple APs into an 
optimization problem and solve it with various optimization tech-
niques. The third approach is to utilize relays to improve signal 
quality at the receiver end. [32,33] present an optimal and effi-
cient algorithm for choosing the relay-assisted path with maxi-
mum throughput. These works transform the path selection prob-
lem into a graph one and propose graph-based solution.

The third type of methods is to utilize the indirect LOS con-
nectivity between AP and STA, which typically has a higher re-
quirement in terms of propagation environment and usually needs 
active environment change (which causes additional costs), such 
as the installment of a mirror which can reflect signals [1]. For ex-
ample, [35] presents a solution where 60 GHz signals can bounce 
off data center ceilings, thus establishing indirect LOS between any 
two racks. These methods often suffer from a lack of robustness 
against environment changes.

Distinct from the above works, the main novelty of this paper 
includes the use of the CMM AP and LOS connectivity matrices, 
which have not been explored in previous literature of this field. 
Focusing on AP mobility, we propose novel heuristic algorithms 
and ML solution for the LOS discovery problem in mmWave WiFi 
networks.

9. Conclusions

In this work, we propose two heuristic algorithms (basic and 
weighted) and an ML solution for the LOS discovery problem, and 
present WiMove that uses the proposed ML solution to predict LOS 
status between an AP and STAs. Upon network dynamics happen, 
WiMove predicts the location that maximizes the number of STA 
LOS connections. Using a simulation and prototype evaluation, we 
show that WiMove can perform up to 119% and 15% better than 
a static AP and brute force search. The following are the essential 
future directions to be considered: 1) AP mobility cost analysis, 2) 
joint optimization of mmWave and conventional WiFi, 3) ML solu-
tion for scenarios with fast-varying obstacle dynamics, and 4) in-
stead of predicting the LOS connectivity, consider a multi-classifier 
ML model to predict the modulation coding scheme (MCS) be-
tween AP and STAs, which can be utilized to optimize the network 
performance in a more fine-grained fashion.
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