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Abstract—Although the millimeter wave (mmWave) band has
great potential to address ever-increasing demands for wireless
bandwidth, its intrinsically unique propagation characteristics
call for different scheduling strategies in order to minimize
performance drops caused by blockages. A promising approach
to mitigate the blockage problem is proactive scheduling, which
uses blockage predictions to schedule users when they are
experiencing good channel conditions. In this paper, we formulate
an optimal scheduling problem with fairness constraints that
allows us to find a schedule with maximum aggregate rate that
achieves approximately the same fairness as the classic propor-
tional fair scheduler. The results show that, for the problem
settings studied, up to around 30% increase in aggregate rate
compared to classic proportional fair scheduling (PFS) is possible
with no decrease in fairness when blockages can be accurately
predicted 0.5 seconds in advance. Furthermore, aggregate rate
could be doubled compared to PFS if blockages can be accurately
predicted 5 seconds in advance. While these results demonstrate
the very promising potential of proactive scheduling, we also
discuss several future research directions that must be pursued
to effectively realize the approach.

Index Terms—mmWave, proactive scheduling, blockage

I. INTRODUCTION

The rapid increase in internet bandwidth demand has led to
standards such as 5G and IEEE 802.11ad/ay, where utilization
of the millimeter-wave (mmWave) spectrum is expected to
deliver multi-Gbps performance. However, bandwidth alone
does not guarantee performance for applications like Ultra
High Definition (UHD) video, virtual/augmented reality, and
cloud gaming. In fact, users’ experiences for these applications
can be severely impacted by any substantial drop in data
rate, which can cause noticeable delay for live UHD video
streaming or service failure for cloud gaming.

The distinct propagation characteristics of mmWave signals
bring new challenges to all layers of the network stack. One
of the most significant issues is that signal strength can be
severely attenuated when blockage occurs along the line-of-
sight path between access point (AP) and user equipment (UE)
[1]-[3], which can cause sudden and large decreases in link
data rates. This makes the timing of transmissions much more
critical than in sub 6 GHz networks that have more stable
link data rates, and therefore intelligent scheduling to avoid
transmissions during poor channel condition times is crucially
important for mmWave networks. A potentially promising
approach is to combine blockage prediction with proactive
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scheduling techniques in order to activate links when they are
experiencing the best channel conditions, thereby maintaining
the continuously high data rates necessary for applications like
UHD video and virtual/augmented reality.

In this work, we study the potential benefits that can be
provided by proactive scheduling that makes use of blockage
prediction. We first formulate an optimal proactive scheduling
problem with fairness constraints and show that it has the form
of a binary integer linear programming (BILP) problem. This
problem formulation allows us to use existing optimization
software to explore the maximum aggregate rates achievable
with proactive scheduling while maintaining proportional fair-
ness. The results show that, for the problem settings studied, up
to around 30% increase in aggregate rate compared to classic
proportional fair scheduling (PES) is possible with no decrease
in fairness when blockages can be accurately predicted 0.5
seconds in advance. Furthermore, aggregate rate could be
doubled compared to PFS if blockages can be accurately
predicted 5 seconds in advance. These findings motivate future
research on both efficient proactive scheduling techniques
and improved blockage prediction, for example by integrating
blockage prediction and mobility prediction.

The paper is organized as follows. Section II discusses
related work. The system model we employ for this study is
described in Section III. Section IV describes the methodology
we used to formulate the optimal scheduling problem as a
BILP problem. Section V presents numerical results along with
their analysis. Lastly, Section VI concludes the work with key
findings and a discussion of future work.

II. RELATED WORK

Proactive scheduling has been explored in non-mmWave
wireless communications by many prior works, e.g. [4]-[6].
This prior work mainly considers proactive schedulers that are
modifications of the popular proportional fair scheduler and
their results consistently show that future channel knowledge
has significant potential to improve throughput while main-
taining or improving fairness. These non-mmWave proactive
schedulers mainly focus on using channel state information
(CSI) prediction. However, in mmWave bands, CSI prediction
alone is not enough to maintain high performance due to the
susceptibility of mmWave signals to blockage.

Some prior work has explored the use of blockage pre-
diction for proactive resource allocation in mmWave net-
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works [7]-[9]. These works make use of different approaches
to the blockage prediction problem and have different network
goals. For example, [7] focuses on optimizing the handover
process though prediction of blockages and their duration
using peripherals and geometry. This allows elimination of
unnecessary handovers for short-term blockages and proactive
early handovers to avoid outages from longer-term blockages.
In [8], the use of camera images to predict blockages from
pedestrian mobility is proposed, while [9] employs a deep
neural network (DNN) approach to predict mmWave beams
and blockages.

Two prior works focus specifically on blockage-aware
scheduling for mmWave networks [10], [11]. The work in [10]
tries to alleviate the severe service degradation experienced by
UEs during a blockage by allocating time-slots to them early
in the scheduling period before the blockage occurs. As with
the earlier proactive schedulers, [10] is a modified version
of the proportional fair scheduler. There is also work that
combines blockage awareness with proactive scheduling in a
more integrated fashion. For example, [11] proposes a DNN
scheduler that combines blockage prediction with scheduling
and beamforming. The goal of that work is maximizing UE
achievable rate but fairness is not considered.

III. SYSTEM MODEL

As noted above, [10] is a closely related work in that it
considers the same problem domain, namely blockage-aware
proactive scheduling for mmWave networks. Thus, we adopt
a system model that is based on the one from that prior work.
In this model, there are ny UEs located in a room where
one mmWave access point (AP) is mounted on the ceiling.
The AP employs the orthogonal frequency-division multiple
access (OFDMA) scheme to transmit downlink data from an
infinitely backlogged queue for a total duration of 7" ms and
in time slots of length At. We divide the total duration into a
number of scheduling sessions, each containing n;s time slots.
We refer to ny, as the scheduling session length. We assume
that the scheduler assigns all sub-carriers of a time-slot to the
same UE, with an aggregate bandwidth b.

We also adopt the blockage model used in [10], [12]. In
this model, UEs move between four states: LOS, DECAY,
NLOS, and RISE. The NLOS and LOS states, respectively,
indicate when the link between the AP and a UE is or is
not obstructed by a blockage. The received power in the
NLOS state is assumed to be a small fraction of the received
power in the LOS state. The DECAY and RISE states describe
the transitioning phases between the LOS and NLOS states.
During the transition, the received power is assumed to vary
linearly (on a dB scale) in between the LOS and NLOS
received powers. We denote the decay factor (transition rate)
from the LOS state to the NLOS state by pp and the rise
factor (transition rate) from the NLOS state to the LOS state
by pr. The possible state transitions are shown in Figure 1.

For each UE, we assume that blockage events occur fol-
lowing a Poisson distribution and the NLOS state duration is
exponentially distributed. The blocker arrival rate is denoted

LOS —— DECAY ——{ NLOS —— RISE

Fig. 1. Blockage model state transition diagram
by Ap, and the mean blockage duration is denoted by 75.
The distance between AP and UE is denoted by d,,. For our
simulation results presented in Section V, the model above is
used to determine the rates of each user in each slot as shown
in the following equations. The UE received power p,, is
given by the following formula:

Ptz * Gtz * Gra * lO : d;U
re — ) 1
P 1 ey

where A is an attenuation factor that is equal to 1 in the LOS
state, reaches a maximum value A,,,,, in the NLOS state, and
varies as noted above during the transition states. We then use
Shannon’s capacity to estimate the user data rate:

r=b-log <1+p”) . )

n

This rate is then used by the scheduling algorithms.

IV. METHODOLOGY

In order to explore the upper performance limits of what
can be achieved with proactive fair scheduling, we define an
optimal scheduling problem over a single scheduling session.
We assume that the blockage condition of each node is
accurately predicted within the scheduling session and the
goal is to maximize aggregate data rate subject to fairness
constraints. As we will show in the remainder of this section,
this problem can be formulated as a Binary Integer Linear Pro-
gramming (BILP) problem. The BILP problem can be solved
with state-of-the-art optimization software to determine the
maximum possible aggregate data rate under the given fairness
constraints. In Section IV-A, we describe the optimization
problem using a simple example for illustration purposes and
in Section IV-B, we give the full problem formulation.

A. Basic Scheduling Problem Example

We first depict the scheduling problem in an assignment
table to lay the foundation for understanding our formulation
of the BILP problem. In Table I, we show a sample assignment
schedule for a system with 2 users and 4 time-slots. Each value
of 1 in the table indicates that the corresponding time-slot has
been assigned to a particular user. In this example, time-slots
1, 3, and 4 are assigned to user 1 and time-slot 2 is assigned
to user 2. A value of zero means that the user is not active in
the corresponding time-slot.

TABLE I
EXAMPLE ASSIGNMENT TABLE FOR A 2 USER 4 TIME-SLOT SYSTEM
TS1 | TS2 | TS3 | TS 4
User 1 1 0 1 1
User 2 0 1 0 0
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In parallel, we have Table II with the same structure but
showing the achievable rate for each user in each time-slot
based on the predicted channel conditions. Multiplying these
two tables element-wise and taking the average over all time-
slots yields the predicted average data rate during this period,
which for the example shown is 1.5 Gbps.

TABLE 11
EXAMPLE PREDICTED RATES FOR A 2 USER 4 TIME-SLOT SYSTEM
(GBPS)
TS1 | TS2 | TS3 | TS 4

User 1 1.2 0.8 1.2 2.1
User 2 0.4 1.5 1.2 0.8

It can be seen from Table I that in order for the schedule
to be valid, there are two conditions that need to be met.
First, the sum of each row indicates how many time-slots are
assigned to this particular user, and these row sums need to
add up to the number of total time-slots, which is 4 in this
case. In our implementation, in order to guarantee comparable
fairness with other scheduling algorithms as well as to prevent
the algorithm from overly prioritizing UEs with favorable
channel conditions, we take this requirement a step further
and constrain each user to have a particular number of slots.
As will be shown later, this approach allows our algorithm to
achieve a certain fairness condition. Second, for each time-slot
(column) there must be exactly one user to whom the time-
slot is assigned. In other words, each column must sum to 1.
It is also true that, if a table meets these two conditions, then
it is a valid schedule, i.e. these conditions are necessary and
sufficient for a schedule to be valid.

B. BILP Problem Formulation

In this part, we present how this scheduling problem is for-
mulated into a BILP problem, with the goal being to maximize
the sum rate over a single scheduling session with a given
fairness constraint. The main constraints in our scheduling
problem are:

1) there is exactly one user assigned in each time slot, and
2) a user u; is assigned to exactly b; time slots in the
scheduling session under consideration.

The second constraint is what allows us to meet certain fair-
ness criteria. To be specific, since we will compare the optimal
scheduler to variations of the proportional fair scheduler, we
will allocate to each user the same number of time slots it
is allocated in the corresponding proportional fair scheduler.
Thus, each user will get the same amount of time in the
wireless channel as it gets in the corresponding proportional
fair scheduler, which we consider to be achieving the same
approximate fairness.’

We begin the problem formulation by defining a column
vector X of size ny * nys which contains binary numbers

Note that the relative rates of different users will not be exactly the same
for the optimal and proportional fair schedulers since the rates each user gets
in its different time slots might differ across the two schedules. However, we
will show in Section V that the fairness values of the optimal scheduler and
a corresponding proportional fair scheduler are in fact very close in practice.

denoting whether a particular time-slot is assigned to a specific
user (0 for not assigned and 1 for assigned). This assignment
vector can be considered as an unwinding of Table I going in
ascending time order and row by row. For example, the sample
schedule in Table I would be represented by the vector [1 O
1 1010 0]. Each of the values in the vector represents if
the time-slot is assigned to the corresponding user, and it is
interpreted that the first n;; elements represents the assignment
for user 1, and the second n;s elements for user 2, etc. An
assignment vector of this type is the output of our optimized
scheduler.

Next, we construct a matrix A of size ny +nss by ny * nys.
The first ny rows denote the constraint that each user is only
allowed a fixed number of time-slots. The last n;, rows denote
the constraint that only one user can be assigned in each time-
slot. The exact construction of A is as follows: let k be the
row number, then for the first n;; rows, for each value of k,
agg = 1 for (k—1)*ny < ¢ < kxny, and axy = 0 otherwise.
For the last n;s rows, for each value of k, ay, = 1 for every
ngsth element starting from the (kK — ny)th element in row,
and ay, = O otherwise. Matrix A is only dependent on ng
and 7.

Finally, we define a column vector B of length ny + ns
that includes the b; constraints. The first ny rows equal the
number of total time-slots to be allocated to each user and the
last n;s rows are all equal to 1.

To illustrate the matrix setup, if we have 2 users, 4 time-
slots, and each user is allocated 2 time-slots, then the equation
AX =B is:

x1
1 1.1 1.0 0 0 0f |z 2
00 0 0 1 1 1 1§ |z3 2
1 0 001 0 0 0| [zg _ 1 3)
01 0 0 0 1 0 0] |xs 1
0 01 0 0 0 1 0f |z 1
00 01 0 0 0 1] |ar 1
_xS_

This equation ensures that any solution X satisfies the afore-
mentioned constraints and is therefore a valid schedule.

To implement the objective function, we construct a row
vector R whose elements have a 1-to-1 correspondence to
vector X, similar to how Table II is to Table I. The element
values of R are the achievable link rates as calculated in (2)
for users in each time-slot. The product of RX and At is the
total amount of data that is transmitted in the total duration
of n;s *x At scheduled time (one scheduling session). Putting
everything together, the optimization problem to maximize the
aggregate rate across ny UEs and ny, time-slots with fairness
constraints is given by the following BILP problem:

max RX
st. AX =B 4)

whereby the solution vector X is an optimal schedule.
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V. NUMERICAL RESULTS

In this section, a series of simulations are run in order
to study the performance limits of proactive fair scheduling
for mmWave networks with blockage prediction. We evaluate
aggregate rates and fairness values of the classic proportional
fair (PF) scheduler, the blockage-aware proportional fair (BA-
PF) scheduler from [10], and the optimal scheduler produced
by solving Problem (4). As mentioned earlier, in order to
compare the aggregate rates while keeping approximately the
same fairness values, we provide the time-slot allocations of
the proportional fair schedulers as constraints to the optimal
(denoted by BILP) scheduler. Note that, although PF and BA-
PF are selected here for comparison, the time slot allocation
can be any arbitrary division among users, e.g. another possi-
bility would be to equally divide slots among users to achieve
perfect time-based fairness. Our setup creates four scheduling
results, denoted by: PF, BA-PF, BILPpg, and BILPga pF.

A. Simulation Setting

For experiments in Sections V-B through V-D, we simulate
a total of 9 seconds of transmission time. In these results, this
total time is divided into a number of scheduling sessions,
where the scheduling session length, n:s, is a parameter.
Recall that we assume accurate prediction over one scheduling
session so this allows us to evaluate how performance varies
with prediction capability, i.e. how far ahead predictions can
be made with good accuracy. In Sections V-B through V-D, we
consider relatively short session lengths of 0.1 to 0.5 seconds,
which is in the range of blockage prediction capability based
solely on signal processing techniques. In Section V-E, we
consider session lengths of 1 to 5 seconds. This can be
considered as a “what if” experiment, where we investigate
potential performance gains that could be achieved if accurate
blockage predictions can be achieved farther ahead of time.

Lastly, in order to model possible prediction error, we insert
a random variable £ ~ N(0, 02) where o = 0.1 into (2)
to get the effective rate 7, and use 7 in all algorithms being
compared.
pra + B

n

F=b-loga(1 + ) ®)
The fixed parameters used in this experiment are consistent
with [10] and are listed in Table III. The AP is located at 2
meters height above all 8 UEs, and the UEs are uniformly dis-
tributed within a circular area of 15 meters radius horizontally
from the AP. The optimizer applied to solve the BILP in this
experimental study is the IBM ILOG CPLEX optimizer.

B. User Rate ECDF Comparison

In this set of experiments, mean blockage duration 7p is
set to be 1000 ms, the blocker arrival rate ranges from 0.25
to 1 blockers/sec. in step sizes of 0.25, and n.s is set to be
8000, making each scheduling session 0.5 seconds long. The
empirical cumulative distribution functions (EDCFs) of the
four schedulers for different arrival rates are shown in Fig. 2.

For each of the subplots in Fig. 2, it can be observed
that BILPpg, and BILPga pr schedulers produce higher user

TABLE III
FIXED SIMULATION PARAMETERS
Bandwidth b 2GHz
Noise power Pn -71.99dBm
Scheduling time slot length At 62.5us
Decay factor D 0.2 dB/ms
Rise factor PR 6.7 dB/ms
Transmit power Dtz 20dBm
Transmitter gain Gtz 3.16dBi
Receiver gain Gra 0dBi
Path loss reference lo 63.4dB
Attenuation exponent v 1.72
Maximum attenuation Amaz 40dB

data rates as compared to the corresponding PF and BA-PF
schedulers. In Fig. 2a, the BILP performance improvements
are fairly uniform over different user data rates. As more
blockages occur, which can be observed in Fig. 2b to Fig. 2d,
the horizontal distance between non-BILP and BILP curves
increases as the y-coordinate increases. This indicates that,
even though the BILP scheduler improves UE data rate across
all UEs, UEs in better channel conditions experience a larger
absolute improvement than UEs in worse conditions. For
example, in Fig. 2d, for the 10th percentile UE, the data rate
difference between BILPpr and PF is 0.1 Gbps and at the
90th percentile, the difference is 0.26 Gbps. The BILP and
non-BILP curves are roughly parallel between the 20th and
80th percentile, indicating the improvement is fairly uniform
for UEs with more typical channel conditions.

C. Average User Rate and Fairness Comparison

For the same setting as in Section V-B, Figure 3 shows the
average data rate for the four schedulers. The figure shows that,
as the blocker arrival rate increases, the difference between
BILP and non-BILP schedulers increases. For example, as
the blocker arrival rate increases from 0.25 blockers/sec. to
1 blocker/sec., the average user data rate percentage gain of
BILPpr over PF increases from 7.98% to 31.84%.2 This shows
that proactive scheduling based on blockage prediction has
strong potential to improve overall performance, particularly
in high blockage scenarios.

To verify that the performance improvement of BILP does
not come at the expense of fairness, we also evaluated the
sum of log rates of the different schedulers. It has been
shown that achieving proportional fairness is equivalent to
maximizing this metric [13]. This metric is plotted in Figure 4
for the four schedulers. Note the scale on the y-axis, which
indicates that all four schedulers are actually very close to
each other in terms of sum of log rates and, therefore,
they all achieve approximately the same proportional fairness.
Somewhat counterintuitively, however, the BILP schedulers
actually do slightly better on this metric than the PF scheduler.
This is explained by the fact that, in our model, the channel
state distribution is non-stationary and it is well known that
the PF algorithm does not perfectly maximize the sum of log
rates in that scenario [5].

2There is an even larger difference between BILPga_pr and BA-PF, because
BA-PF’s main goal is improving the performance of UEs at the lowest data
rates, rather than overall performance.
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D. Impact of Scheduling Session Length

In this section, we evaluate the average user data rate as
scheduling session length is varied. The parameter values are
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the same as in Sections V-B and V-C, except that session
length is a variable and blocker arrival rate is fixed at 0.75/sec.
Figure 5 shows the average user data rate for the four sched-
ulers as the scheduling session length is varied from 0.1 to 0.5
seconds. It is clear that the longer the scheduling session is,
the more improvement there is for the optimal scheme. This
is, as expected, due to having a larger pool of time-slots over
which the schedule is optimized.
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Fig. 5. Arrival rate 0.75 blockers/s,

E. Estimated Impact of Longer Scheduling Sessions

In this section, we extend the experiment of Section V-D
to even longer scheduling sessions. Due to the limits of
optimization software, however, we were not able to solve
the BILP exactly for these session lengths. Instead, we used
an approximate approach where we solved a modified BILP
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with time slot aggregation. To be specific, each group of 10
time slots was considered as one virtual time slot in the BILP
specification. Thus, the resulting “optimal” schedule has the
same user scheduled for 10 consecutive real time slots.

In this experiment, we simulate a total of 90 seconds of
transmission time and consider scheduling session lengths of
1 to 5 seconds. All other parameters are the same as in
Section V-D. The results are shown in Figure 6. It is clear
that even larger potential performance gains can be achieved
with longer scheduling sessions (compare to Figure 5). For
example, with a 5 second scheduling session, the modified
BILPpr achieves almost double the average data rate of the PF
scheduler. Thus, if accurate blockage predictions can be done
further in advance, there is enormous potential for performance
improvement with blockage-aware scheduling.

As a side note, as the session length increases, BA-PF has
better performance than PF, which differs from the results
with shorter session lengths. This is likely due to BA-PF
having greater temporal freedom to schedule users ahead
of blockage occurrence, which is one of its main goals.
Thus, increasing the time frame of blockage prediction also
significantly benefits the BA-PF algorithm.
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Fig. 6. Arrival rate 0.75 blockers/s, aggregated

VI. CONCLUSIONS

In this work, we formulated and solved an optimal schedul-
ing problem in order to investigate the potential performance
improvements of proactive schedulers that make use of block-
age prediction. Results showed that, for the evaluated sce-
narios, up to about 30% higher aggregate rate over classic
proportional fair scheduling can potentially be achieved with
no degradation in fairness if blockage predictions are accurate
0.5 seconds in advance. Furthermore, extending blockage
prediction lead times to 5 seconds can potentially double
aggregate rate with no fairness loss.

We believe that these results motivate several interesting
research directions. First, while the ILP solver approach yields
upper limits on performance, it is clearly not practical. Thus,
it is important to develop fast schedulers that approximate
the ILP solution if the potential of proactive scheduling is
to be realized. The BA-PF scheduler of [10] can be considered
as a first attempt at this. However, results show that its benefits
are somewhat limited with blockage prediction lead times of

0.5 seconds or less while it shows moderate performance gains
with longer prediction lead times. Thus, more research is still
needed on this topic. Second, if blockages can be predicted
further in advance, the potential performance improvements of
proactive scheduling increase dramatically. Thus, developing
longer-time-scale blockage prediction techniques is criti-
cally important. With maps of static obstacles combined with
mobility prediction of moving obstacles (primarily humans),
we believe that this is a solvable problem, particularly in
WLAN settings where the number of users in the same area
is often not very large.
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