
Papers in Physics, vol. 15, art. 150001 (2023)

Received: 15 July 2022, Accepted: 25 January 2023
Edited by: K. Daniels, L. A. Pugnaloni, J. Zhao
Licence: Creative Commons Attribution 4.0
DOI: https://doi.org/10.4279/PIP.150001

www.papersinphysics.org

ISSN 1852-4249

When you can’t count, sample!
Computable entropies beyond equilibrium from basin volumes

Mathias Casiulis1,2∗, Stefano Martiniani1–3†

In statistical mechanics, measuring the number of available states and their probabilities,
and thus the system’s entropy, enables the prediction of the macroscopic properties of
a physical system at equilibrium. This predictive capacity hinges on the knowledge of
the a priori probabilities of observing the states of the system, given by the Boltzmann
distribution. Unfortunately, the successes of equilibrium statistical mechanics are hard
to replicate out of equilibrium, where the a priori probabilities of observing states are,
in general, not known, precluding the näıve application of common tools. In the last
decade, exciting developments have occurred that enable direct numerical estimation of
the entropy and density of states of athermal and non-equilibrium systems, thanks to
significant methodological advances in the computation of the volume of high-dimensional
basins of attraction. Here, we provide a detailed account of these methods, underscoring
the challenges present in such estimations, recent progress on the matter, and promising
directions for future work.

I Introduction

From steam engines to LCD displays and polymer
materials, the field of thermodynamics has played
a pivotal role in the development of modern tech-
nology. The key to this success has been the ef-
ficacy with which equilibrium statistical mechan-
ics predicts the macroscopic properties of physi-
cal systems from knowledge of microscopic inter-
actions alone. This predictive power hinges on the
knowledge of the underlying probability distribu-
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tion for the microscopic states of the system. As-
suming that the system being considered is in ther-
mal equilibrium, the probability of observing any of
its microscopic configurations is given by the Boltz-
mann distribution, pC = Z�1 exp(��EC), where
Z =

P
C exp(��EC) is the partition function, EC

is the energy of the configuration and � is an inverse
temperature imposed by a thermostat. Knowledge
of the partition function a↵ords us the ability to
compute the free energy, F = ���1 lnZ, which de-
termines the thermodynamic stability of the state
of the system, and allows us to derive all thermo-
dynamic observables from its derivatives.

An alternative, but completely equivalent [115],
approach is to compute the entropy of the system,

SG = �

X

C
pC log pC , (1)

and deduce thermodynamics from its maximisa-
tion. This definition of entropy was first introduced
by Gibbs [116] and, when the states of the system
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occur with equal probability (i.e., pC = 1/⌦ with
⌦ the volume of the region of accessible states),
it reduces to the well-known Boltzmann entropy,
SB = log⌦ + const. [117]. The entropy also allows
us to predict the direction of spontaneous thermo-
dynamic transformations, as the entropy of an iso-
lated system can only increase with time: put sim-
ply, heat flows from hot to cold [1, 118].
The state of a↵airs is not as simple far from equi-

librium. Let us consider an arbitrary system evolv-
ing according to some well-defined, but in general
non-equilibrium, dynamics. In such a system, there
is no guarantee that objects like temperature or
energy can be defined, and there is generally no
clear prescription for the probability distribution
of microscopic configurations. Is it still possible to
find analogies with equilibrium statistical mechan-
ics? To address this question, we must introduce
two theoretical notions.
First, entropy can be universally defined as the

average amount of surprise (or uncertainty) in-
herent to a random variable (rare observations
are more surprising, or informative, than common
ones) [120]. Mathematically, Shannon [2] showed
that this amounts exactly to a rewriting of the
Gibbs entropy (1), typically referred to as the Shan-
non entropy,

SS = �

⌦X

i=1

pi log pi, (2)

where pi is the probability of observing state i and
the sum is over all accessible states, this time for an
arbitrary statistical system with a generic (station-
ary) probability distribution. This information-
theoretic interpretation of entropy can be used to
define, measure, and interpret entropies in any
physical system, whatever its dynamics might be.
This is why there has been recent interest in direct
measurements of this quantity using various algo-
rithms, in no way restricted to the one we present
here: for instance, the Shannon entropy of physi-
cal systems can be estimated using ideas from data
compression [3–7].
Second, the states of interest of a system can

often be described by the stable structures of its
dynamics, be they extrema of a high-dimensional
function that can be reached by steepest descent
(e.g., energy minima of a potential energy land-
scape), or the fixed points and limit cycles of a

generic dynamical system. To each of these struc-
tures, we can associate a basin of attraction, i.e.,
the set of all initial conditions leading to the same
structure via the dynamics. See Fig. 1 for an illus-
tration.

In this perspective we show how we can make use
of these facts to arrive at a general protocol for es-
timating the entropy of systems out of equilibrium,
from granular to generic dynamical systems. The
key observation is that while Shannon’s entropy,
Eq. 2, provides a universal definition of entropy,
we do not know the a priori probabilities, pi, of
observing a given state of the system, suggesting
that its evaluation may not be possible. To the
contrary, we show that the problem of evaluating
these probabilities, pi, or alternatively the prob-
lem of enumerating the number of possible states,
⌦ (e.g., if one wishes to compute a Boltzmann-like
entropy, SB = log⌦ + const.), can be reduced to a
tractable sampling problem. Indeed, as discussed
at length in Sec. II, one can compute the a priori
probability of observing a given stable structure by
measuring the volume of its associated basin of at-
traction [119] – and it is therefore possible to esti-
mate the Shannon entropy for an arbitrary system.

In the following, we start by presenting the basin-
sampling approach for entropy measurements in
Sec. II. Then, in Sec. III, we highlight its recent
successes in the context of granular packings. Fi-
nally, in Sec. IV, we discuss exciting extensions of
this idea that we believe shall shape the future of
computational non-equilibrium physics.

II Entropy from basins

i Turning intractable counting into sam-
pling

While the probabilities of observing the states of
a nonequilibrium system are in general not known
a priori, it is a generic feature of dynamical sys-
tems that for a given initial condition they will
end up trapped in small regions of their state
space, be they actual basins of a high-dimensional
energy landscape, or more general dynamical at-
tractors. Assuming that there are ⌦ such basins,
one can readily compute a Boltzmann-like entropy,
SB = log⌦ + const. In a thermodynamic system,
it simply amounts to the entropy at zero temper-
ature. If we restrict ourselves to a set of typical
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Figure 1: Illustration of basins of attraction. Left: Ex-
ample of a of 2d energy landscape. High-energy points
are shown in blue, low-energy points in red. Right: In
the same landscape, trajectories of steepest descent and
ascent ẋ = ±rU(x) are spawned from random points,
and confined to an arbitrary region (blue circle). Tra-
jectories converging to the same minimum belong to the
same basin of attraction and are plotted in the same
color.

inherent structures observed at finite temperature
(viz., the configurations that the system relaxes to
by steepest descent from finite temperature sam-
ples), this quantity becomes the system’s configu-
rational entropy (distinct from the vibrational con-
tributions to the total entropy) [68]. By analogy, in
any dynamical system, one can always define such
an entropy, and compute it by counting basins of
attraction.

Counting the number of basins of attractions is
tantamount to enumerating all microstates in the
microcanonical ensemble of statistical mechanics:
while it is in principle a valid strategy, it is in
practice numerically intractable. Until recently,
this issue was believed to be impossible to over-
come [8–10]. The problem has since been solved
by the introduction of Monte Carlo methods capa-
ble of integrating the volume of individual basins
of attraction using ideas originally introduced for
the calculation of the free energy of solids in sta-
tistical mechanics [11]. Thanks to this new class
of methods, pioneered by Frenkel, Xu [12], Asenjo
[13], and Martiniani [14–17], alongside collabora-
tors, it is now possible to approach these problems
and measure quantities that could never have been
computed with previous techniques.

The gist of the method is as follows: since the
accessible volume, V, of configuration space is tiled
by ⌦ basins of attraction, by definition of the arith-

metic mean we have that

V =
⌦X

i=1

vi = ⌦hvi, (3)

where vi is the volume of basin i in configuration
space, and h·i is the mean taken over all basins.
As a result, one can write the number of basins
as ⌦ = V/hvi. This seemingly innocent equation
is in fact crucial, as it turns the intractable enu-
meration problem of counting ⌦ into a sampling
problem, namely the computation of the average
basin volume hvi, which can be performed over a
finite set of basins.

There are two main challenges in computing
this quantity in the context of many-body sys-
tems: on the one hand, high-dimensional geom-
etry makes volume estimations di�cult and, on
the other hand, mean volume estimations by di-
rect sampling are typically biased. We start by
considering the challenges of estimating volumes in
high dimensions, and how we can overcome them
by means of suitably-modified free energy calcula-
tions.

ii A starter in high-dimensional geometry:
there is plenty of room in the corners

The computation of high-dimensional basin vol-
umes is a di�cult task that cannot be accomplished
by simple quadrature [8]. To illustrate this di�-
culty, we take the example of a simple shape with
a volume that is known in any dimension: the hy-
percube. In the top line of Fig. 2, we present 2d
sketches of the aspect of hypercubes, r 2 [�a; a]d,
in dimensions d = 2, 3, 4, and 5. In each case,
following recommendations on drawings of high-
dimensional convex volumes [127], we represent
the d�dimensional hypercube with half-sidelength
a = 1 by linking each of the 2d summits, which
sit at a distance

p
da from the center, to 2 of its

neighbors using hyperbolas tangent to the largest
hypersphere contained by the hypercube – namely
the unit hypersphere. The reason for choosing hy-
perbolas is that if one splits the cube into two ra-
dial regions of equal volumes, Rin =

�
r : r < R1/2

 

and Rout =
�
r : r > R1/2

 
, where r is the distance

from the center and R1/2 a threshold distance, the
(d � 1)-dimensional cross-section of each diagonal
of the hypercube decays exponentially with r in
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Figure 2: High-dimensional volumes. Top: 2d sketches of hypercubes in d = 2, 3, 4, and 5. The outer black line
links vertices located at a distance

p
d from the center of the cube to midpoints located on the unit hypersphere

with hyperbolic lines. The inside of each shape is colored with a density plot of the relative contribution w(r)
of each radial shell inside the cube to the full volume, as obtained from Monte Carlo integration using 106

points uniformly drawn inside each cube. Bottom: Histograms of relative weights of radial shells w(r) for the
hypercube (orange) and for the hyperball (purple). The lines highlight how large the intersection of the cube
and a hyperspherical shell is at the distance that contains most of the cube’s volume. As reminded in the insets,
this intersection here represents 1, 1, 0.78, and 0.62 times the surface of the full hyperspherical shell, respectively.

Rout [127]. In other words, in large d, one corner
of a hypercube has a vanishing volume over surface
ratio, a property shared with hyperbolic objects,
like Gabriel’s horn (also called Torricelli’s trumpet)
in 3d [129].
This is an illustration of the fact that, in high

dimensions, even simple compact objects present
tendril-, or tentacle-like regions [10, 15, 16, 18, 119]
that extend very far but get very thin. Yet, some-
what counter-intuitively, most of the volume of
high-dimensional objects is contained in these ex-
tended objects! This is shown in Fig. 2 by the den-
sity plot inside each shape, that represents the ac-
tual weight of each hyperspherical shell within each
hypercube. While in d = 2, the shell that con-
tributes the most to the volume is the unit circle,
as the dimensionality increases, it shifts to larger
and larger radial distances, at Rmax ⇠

p
d/3 in

the limit of large d.1

1This can be shown by a simple statistical argument:
suppose that we uniformly draw a random vector within
a d�dimensional hypercube, with coordinates (x1, . . . , xd).

To complete this picture, in the second row of
Fig. 2, we plot in orange the distribution of mass
of hypercubes with a = 1 along the radial direc-
tion, w(r), and in purple the corresponding line for
the hyperball, which is simply the surface area Sd

of the (d � 1)-sphere with radius
p
da, normalised

like w(r), i.e. by the volume of the cube, (2a)d. As
the dimensionality of space increases, the volume
of the hypercube concentrates deeper and deeper
into disconnected tendril-like objects, at distances
such that the intersection between the hypercube
and the hypersphere becomes very small: in Fig. 2,
as highlighted by lines and inset texts, the ratio
between the value of the orange curve at its maxi-
mum and the value of the purple curve at the same
distance decreases with d. Furthermore, the con-
tribution of the unit ball to the total volume of

The squared distance of this point from the center, r2 =P
x2
i is a sum of independent, identically drawn uniform

random variables so that, per the central limit theorem,
its distribution tends to a Gaussian with mean value µ =
dhx2i = d/3, which asymptotically yields E[

p
r2] ⇠

p
d/3.
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the hypercube vanishes as the dimension increases.
These last two properties make practical volume
estimations extremely complicated: a näıve Monte
Carlo integration using uniformly sampled points in
a hyperball is bound to fail since the vast majority
of points will fall outside of the shape of interest,
while an integration within a ball close to the center
will yield only a tiny fraction of the overall volume,
an example of the so-called curse of dimensional-
ity [10, 16,18].
To more concretely illustrate how näıve random

sampling methods fail at estimating volumes in
high dimensions, let us consider the volume estima-
tion problem for a simple hypercube, using Monte
Carlo integration. We sample Ns points uniformly
drawn in a hyperball, B(R), with radius R cen-
tered at the same point as the hypercube, measure
the fraction fMC of points that fall within the hy-
percube, and compute the corresponding volume,
V̂ (R) = fMCVB(R). In general, one does not nec-
essarily know the largest linear size of the object
of interest, so R should, in principle, be varied.
We use this strategy to estimate the volume of hy-
percubes with a = 1 by varying the ball radius,
R, between 0 and the length of the longest diago-
nal of the cube,

p
d. In Fig. 3, we plot the mea-

sured volume divided by the true volume of the
hypercube, V = 2d, against R/

p
d, for d between

2 (mauve) and 64 (red), for Ns = 105. At low di-
mensions of space, this method converges smoothly
to VMC = V as R !

p
d. As d increases, the vol-

ume concentrates more and more around the mode
of the distribution of mass of the cube,

p
d/3, and

as a result the curves become step-like. However,
as d increases, the measurement also becomes less
reliable upon approaching R !

p
d: it first dis-

plays increasingly large fluctuations (d  16) then
violently falls to 0 (d � 32). The reason is that
most points in the ball are actually sampled at radii
such that the hypercube is already made of narrow
spikes, as illustrated in Fig. 2. Indeed, the ratio
of the volume of the hypercube to that of the hy-
perball with radius

p
d decays exponentially with

dimension, V/VB(
p
d) ⇠

p
d exp(�d).

If we did not know that we were measuring a sim-
ple cube, and ball-picked from spheres of increas-
ing radius to produce the same kind of curve as in
Fig. 3, in high dimension our estimate would be far
o↵ as the mode of the mass distribution of the cube
moves further and further into the corners. In the
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Figure 3: Näıve random sampling shortcomings. Direct
Monte Carlo evaluation V̂ (R) of the volume of a hy-
percube with actual volume V , using Ns = 105 points
uniformly drawn from a hyperball with radius R, for di-
mensions going from 2 to 64. Here the half-sidelength
of the hypercube is a = 1. The dashed line indicates
the asymptotic mode of the mass distribution of the
cube,

p
d/3.

simple example here, in d = 64, the best estimate
with our choice of Ns would be roughly 50% o↵!
This shows that simple Monte Carlo integration,
while e�cient in small dimensions, fails at captur-
ing volumes in high dimensions. Note that the case
illustrated here is actually fairly ideal: we know
the location of the center of the hypercube, which
makes the measurement easier, and the hypercube
is a rather regular object. In real-world situations,
a Monte Carlo integration of high-dimensional vol-
umes is likely to be far worse.

iii Free energy methods for volume compu-
tations

It has been shown that volume estimations and enu-
meration problems can be treated in a way that
amounts to a free energy calculation in the spirit
of the Frenkel-Ladd method [11]. The idea is that
the volume v of a domain � can be rewritten as

v =

Z

Rd

drO�(r) =

Z

Rd

dre��U�(r), (4)
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Figure 4: Probing basin volumes with random walks. Di↵erent random walkers are linked by springs with di↵erent
rigidities to the configuration at the minimum. The first three panels represent the probability density of the
trajectories of such walkers, with rigidities growing from left to right. At very small (possibly negative) rigidities,
the walker explores the outer rim of the basins, following tentacle-like structures, while at large rigidities the
random walk typically explores a hypersphere around the minimum. Putting together and properly reweighing
the information sampled by these walkers, one can faithfully recover the full volume as if it had been uniformly
sampled (last panel).

where O� is the characteristic function of the do-
main to integrate over, or “oracle”, which can be
exponentiated to yield the potential U� which is 0
inside the domain and 1 outside it. Written in this
form, the volume can be interpreted as the parti-
tion function of a free Brownian walker exploring
the domain �, with a hard wall at the boundary, at
an inverse temperature �.

The most popular and earliest class of meth-
ods for the computation of partition functions is
based on thermodynamic integration (TI) [21, 22,
121], which consists of parameterizing the system’s
Hamiltonian in such a way that we can “morph”
an unknown partition function into one that we
know how to compute analytically. In practice, this
amounts to replacing a high-dimensional integral
over phase space volume with a low-dimensional
integral over one or more Hamiltonian parame-
ters (each point in the integrand is obtained from
an equilibrium simulation with a given choice of
Hamiltonian parameters), or to estimating ratios
of partition functions from equilibrium samples ob-
tained from simulations with di↵erent Hamiltonian
parameters [23, 24], as we show presently.

In the context of volume estimations, the poten-
tial U� that encodes the oracle is athermal, so that
we can take � = 1 without loss of generality. Then,
in the spirit of umbrella sampling [25, 121], we can
introduce simple biasing potentials that depend on

a control parameter that allows us to go continu-
ously from an integral of unknown volume to one
of known volume. For instance, one can tether ran-
dom walkers to a reference point, r0, inside the
basin of attraction (e.g., the minimum energy con-
figuration) using harmonic springs of varying sti↵-
ness k, see Fig. 4. For a random walk constrained
to remain within the domain of interest �, one can
compute a volume vk weighted by the Boltzmann
factor (viz., the corresponding partition function)
as

vk =

Z

�
dre�

1
2k|r�r0|2 (5)

and define the dimensionless basin free energy as
the negative log-volume fk = � log vk. When k =
0, the walker is completely free to explore the basin
volume, while for k ! 1 the walk is reduced to a
small region surrounding r0 that fits entirely within
the basin. Computing the basin volume amounts to
measuring the dimensionless free energy di↵erence
between the walkers with k = 0 and k ! 1 so that

fk=0 = fk!1 + (f̂k=0 � f̂k!1) (6)

where we added the analytical reference free en-
ergy fk!1 to the numerical estimate (denoted by
a “hat”) of the free energy di↵erence between k = 0
and k ! 1. This is necessary because free ener-
gies can only be computed numerically up to an
additive constant equal for all k’s. The analytical
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reference can be computed by a Gaussian integral
at the largest sti↵ness value, kmax, provided that
kmax is large enough that the corresponding ran-
dom walk is essentially una↵ected by the boundary
of the domain.
Intuitively, this importance sampling method

should outperform brute-force Monte Carlo sam-
pling because the steps of the walks are chosen to
remain close to one another, so that even within
the high-dimensional tentacles, the rejection rate of
the steps will be much smaller than what we would
get by ball-picking within a sphere that contains
the shape of interest. In other words, this method
samples points compactly within the volume being
estimated, rather than throwing darts at random
in a huge volume around it.
Nevertheless, running independent biased ran-

dom walks remains a poor strategy in high dimen-
sions. Take for instance the example of the hyper-
cube: Due to the rd�1 scaling for the surface of a
hypersphere, most points of the walk will be con-
centrated far away from the center of the cube, and
instead will live close to the heaviest shell of the
mass distribution at

p
d/3. In high dimensions,

this maximum lies far into the corners, so that a
single random walk would typically spend very long
times in one of the 2d corners. As a result, attempt-
ing a direct estimation of v with independent free
random walks would typically require either expo-
nentially many (2d) realizations, or exponentially
long equilibration times so that the walk can es-
cape a given corner, reach the (typically tiny) con-
vex core, and explore another corner, 2d times.
To overcome this problem, one can take inspi-

ration in the large body of work on free energy
estimations at low temperature in rugged energy
landscapes (see for instance [121, 122]). A typical
strategy is to use parallel tempering [15, 23, 24],
which amounts to running a collection of simula-
tions with di↵erent control parameters (typically
di↵erent temperatures), each called a “replica”,
and allowing for configuration exchanges between
high and low temperature replicas so that the low
temperature replicas do not become trapped in a lo-
cal region of the energy landscape, all while respect-
ing the detailed balance condition. In the context of
basin volume calculations, we exchange coordinates
between random walks with di↵erent sti↵ness, k, so
that walkers at low sti↵ness can escape the tenta-
cles by swapping coordinates with walkers at high

values of k that are constrained to “live” closer to
the hyperspherical core, as illustrated in Fig. 4.

The dimensionless free energy di↵erence in Eq. 6
can be computed by a simple thermodynamic in-
tegration over k [121] or using more sophisticated
estimators like the Multi-Bennet Acceptance Ra-
tio Method (MBAR) [19], which should yield more
statistically accurate results. The MBAR estima-
tor hinges on the idea that one can always relate the
free energy at one value of k with the free energy
at every other value of k, via

f̂k = � ln

2

64
KX

m=1

NmX

a=1

exp[��Uk(ra)]P
k0

Nk0 exp[f̂k0 � �Uk0(ra)]

3

75 ,

(7)
where Uk(r) = �k|r�r0|2/2 is the biasing potential
with spring sti↵ness k (but can in principle assume
any shape), K is the total number of biased ran-
dom walks, and Nm is the number of uncorrelated
equilibrium samples obtained from the m-th ran-
dom walk. This system of implicit equations can be
solved numerically, typically using a self-consistent
Newton-Raphson scheme [19]. Ideally, for the qual-
ity of the MBAR solution to be as good as possible,
one should measure a similar amount of equilibrium
samples in every region of the volume being mea-
sured. This problem boils down to the choice of Uk

and we discuss it briefly in the next subsection.
Finally, MBAR yields the optimal reweighing of

the set of histograms hk(r), where r ⌘ |r � r0|,
allowing for the reconstruction of the full density
of states, which, in the context of volume mea-
surements, amounts to the mass distribution, h(r),
within the object of interest, that verifies

lnh(r) =
X

k

wk(r)
h
lnhk(r) + �Uk(r)� (f̂k � f̂0)

i
,

(8)
with wk(r) = hk(r)/

P
k0 h0

k(r) being a set of nor-
malised weights.

iv Measuring hypercubes

To illustrate how e↵ective this technique is com-
pared to brute-force Monte Carlo, we now apply
it to the measurement of high-dimensional hyper-
cubes, r 2 [�a; a]d. For each dimensionality, d, we
run a collection of Kd random walks – that we re-
fer to as replicas – associated to spring constants
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(k1 = 0, k2, . . . , kKd), for Ns = 5 ⇥ 105 steps, at-
tempting a parallel tempering coordinate exchange
between replicas with neighboring values of k every
10 steps. The number of replicas at a given dimen-
sionality, Kd, is set so that the histogram of sam-
pled distances from the center, hki(r), overlaps sig-
nificantly with the histogram of replicas with neigh-
boring values of k, namely h(r)ki±1 .
The scaling of the number of required replicas

with dimensionality, d, can be estimated from the
mean and variance of the radial distribution for a d-
dimensional Gaussian, hk(r) ⇠ rd�1 exp (�kr2/2).
We start by noting that for parallel tempering to
be e�cient, and for the MBAR estimation to be
reliable, these distributions must display signifi-
cant overlap. Choosing the replicas so that their
modes are separated by the standard deviation of
the narrowest walk, one can show that the required
number of replicas, Kd, scales linearly with d (see
App. A). Recall, for context, that näıve Monte
Carlo sampling typically requires a number of sam-
ples that grows exponentially with d.
We show the output histograms, hk(r), for a

practical implementation of these random walks in
a d = 100-dimensional hypercube in Fig. 5. In this
example, we used K = 64 replicas with k’s chosen
so that the modes of the distributions are linearly
spaced in r. Of these 64 k values, 48 were posi-
tive, leading to k = 0, and 16 were negative (the
most negative being k = �4.5), so that the bias-
ing potential pushes these walkers further into the
corners of the cube. As expected, high values of k
(red histograms) yield narrower distributions closer
to the origin, while lower ones (towards purple) are
broader and distant from the origin.
We chose kmax (the left-most curve in Fig. 5)

so that its mode would coincide with that of the
largest ball inscribed in the cube. Note how this
leaves a significant gap in the histograms in the
regions nearest to the origin due to the power-
law rd�1 in hk (yet another manifestation of the
curse of dimensionality). In order to improve the
MBAR free energy estimation, and the density of
states reconstruction, we chose to sample indepen-
dent points from hin(r) / r1�de�kinr

2/2 , also con-
strained to the inside of the cube, to accumulate
samples near the origin (gray line in Fig. 5). The
corresponding biasing potential is Uin = �(d �

1) ln r + kinr2/2, where we choose kin = 4 so that
the distribution has width � ⇠ 1/

p
kin = 0.5.

Finally, to get absolute free energy values, we use
the negative log-volume of the largest ball inscribed
in the hypercube as the known reference in Eq. 6,
instead of the free energy for a tight harmonic trap,
so that the free energy becomes

fk=0 = fB(a) + (f̂k=0 � f̂B(a)) (9)

where f̂B(a) is the estimated free energy for a set of
points sampled directly from the largest inscribed
ball, B(a), whose volume is known analytically.
The black line overlayed onto the histograms in
Fig. 5 is the reconstructed mass distribution, or
density of states, of the cube obtained using MBAR
according to Eq. 8. Notice that, as expected, the
region of large r leading to

p
da = 5 contains very

little volume.

1 2 3 4 5
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4

6
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10

r

h
(r
)

d=100

Figure 5: Biased walks in a hypercube. Each colored
line is a histogram hk(r) of distances to the center for
a random walk constrained to remain in a 100d hyper-
cube with unit sidelength, a = 0.5, and subjected to
a biasing potential Uk(r) = kr2/2. Color encodes the
value of the rigidity k, from large (red) to small (pur-
ple). Here, the K = 64 spring constants are chosen so
that the modes of the distribution are equally spaced
in r, from r = a = 0.5 (red) to r ⇡ 3.1 >

p
d/3a (pur-

ple). A 1d gaussian is sampled to obtain points near the
center (gray line) to improve the MBAR solution. The
reconstructed density of states of the cube is shown in
black. Note that the 16 histograms to the right of the
black line correspond to negative values of k.
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We use the same procedure when varying the di-
mensionality of the cube. The result for the ra-
tio V̂ /V between the measured volume and the
real volume of the cube, obtained using the fastM-
BAR [20] implementations of MBAR, is shown in
Fig. 6 as a function of the dimensionality (red
squares). The results are compared with a brute-
force Monte Carlo method using the same order of
magnitude of total number of samples, Ns = 108

(gray disks). Notice that the x axis is in log scale.
In spite of the finite number of samples, and

of the rather crude choice of Kd, the error of the
MBAR measurement grows roughly linearly with d
and remains below 10% even as d reaches 500, while
the Monte Carlo estimate essentially measures zero
volume when dimensionality reaches d = 30, the
point at which the ratio of the volume of the cube
to that of the smallest circumscribed ball is roughly
1/Ns. Notice that in d = 500, that ratio is of the
order of 10�156, meaning that näıve Monte Carlo
would be absolutely unfeasible. Here, using our ap-
proach instead of näıve MC sampling, with compa-
rable numbers of samples, increases the maximum
dimension for which a volume can be measured,
albeit with some statistical error, from 30 to thou-
sands of dimensions. Since the number of samples
used per walk in this example is still rather modest
(5 ⇥ 105), the statistical error can be reduced by
making the random walks longer.
Our approach also yields the mass distribution,

as reconstructed by unbiasing the histograms of
individual random walks, according to Eq. 8. In
Fig. 7a we show the hypercube mass distribution,
h(r), for a few dimensionalities up to d = 1000. As
expected, as d increases, h(r) tends to a sharp peak
centered at

p
d/3a, indicated by a red dashed line

for d = 1000.
To illustrate the di�culty of measuring not just

the volume, but also the mass distribution of the
cube in such high dimensionality, in Fig. 7b we plot
h(r)/rd�1 for d = 1000, which amounts to the prob-
ability of landing inside the cube when sampling
uniformly on the surface of the hypersphere with
radius r. Because the intersection between the cube
and a sphere becomes very small, we plot the base-
10 log of that ratio. A value of particular interest
is that obtained for the mode of h(r), as it gives
an estimate of how many trials would be needed
to find a single point inside the cube if we were
performing brute-force Monte Carlo, restricted to

Figure 6: Volume estimates. Ratio of measured volume
V̂ to expected volume V of the unit cube against the
dimensionality d, using brute-force Monte Carlo with
Ns = 108 points in the smallest ball containing the
cube (gray disks) and MBAR (red squares) with K =
max(64, d/5) random walks linearly spaced in r, each
with Ns = 5⇥ 105 proposed steps. Error bars are 95%
confidence intervals for the mean, using statistics across
10 runs.

the shell of the cube that contributes most to its
mass. In d = 1000, we find that this number is
of the order of 1076. Even if one could somehow
guess the radius of the shell that contributes most
to a high-dimensional volume, direct Monte Carlo
sampling of that shell alone is in general impossi-
ble. In fact, we manage to reconstruct the density
of states reliably up to points that would require
10120 Monte Carlo shots on a sphere, using only
108 points across all walks.

Altogether, we have shown for a simple exam-
ple that using importance sampling and a free en-
ergy estimation method (here, MBAR) enables us
to measure high-dimensional volumes much more
e�ciently than brute-force Monte Carlo by virtue
of the correlations between successive positions of
the random walkers, and by avoiding getting stuck
in singular features of the domain thanks to parallel
tempering.

Going beyond the simple example given here, the
contrast in e�ciency can be made even starker by
refining the precise design of the algorithm we pre-
sented. First, one could choose a di↵erent set of
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Figure 7: Mass distribution estimate. (a) Mass dis-
tribution of the unit-sidelength hypercube, a = 0.5,
as estimated from MBAR, using the same runs as in
Fig. 6, in d = 2, 10, 50, 100, 200, 500, 1000 dimensions.
(b) Decimal log of the ratio between the mass distribu-
tion and that of the smallest ball containing the whole
cube for d = 1000. The dashed red lines indicates the
location

p
d/3a of the maximum for d = 1000, and the

value of the ratio it corresponds to in (b). We indicate
the probability pMC of landing a single point inside the
cube when drawing points uniformly from that specific
hyperspherical shell.

biasing potentials than the one used above, which
reproduces the strategy of Ref. [14]. For instance,
the scaling we used for the number of replicas is

likely to be a worst-case scenario, as it assumes
equally-spaced distributions in r that are all as
narrow as the narrowest one, hkmax . One can in-
stead use an iterative choice for the values of k’s
such that the mode of hkn+1 , r

⇤
n+1, lies at r

⇤
n + �n

with �n the standard deviation of hkn . Assum-
ing perfect Gaussian distributions for each random
walk, and requiring that the values go up to the
mode of the mass distribution of the cube minus
the standard deviation,

p
d/3� 1/15�

p
4/(45d),

some simple algebra leads to the asymptotic scaling
Kd ⇠ d1/2. Since MBAR does not require the bias-
ing potentials to be harmonic, it is likely that this
scaling could be brought down even further with
an altogether di↵erent choice of biasing potentials,
e.g. by choosing a series of potentials of the form
Ui(r) = r1�d exp[�k(r� ri)2], where r = |r� r0|, k
is a fixed width, and ri is a tunable scalar distance
from r0.

Second, one could accelerate the di↵usion of the
random walks by “cloud sampling”, which amounts
to biasing the Monte Carlo sampling on the average
weight of a larger number of trial points at each
step [119]. Alternatively, one could introduce some
deterministic drift in the random walks, so as to
make them closer to recently-proposed piecewise-
deterministic processes [26], or so-called Galilean
Monte Carlo [27,28] methods, where particles travel
following straight lines and bounce on walls instead
of di↵using around.

The higher exploration e�ciency a↵orded to us
by this method is far from being free in general
basin volume computations: in order for the ran-
dom walk to remain within the basin, we need to
query an “oracle” at every step to determine if
we are inside or outside the shape of interest [17].
While this oracle is a simple geometric condition in
the case of the hypercube, for basins of attraction
in a many-body energy landscape we must solve for
the path of steepest descent at every step of the ran-
dom walk [123], meaning that a single Monte Carlo
step typically requires hundreds of energy (func-
tion) evaluations. In liquids, for instance, the cost
of one such energy evaluation scales at best like the
number of particles, N , which needs to be large
for thermodynamic properties to be measured ac-
curately. While costly, we will show in Sec. III that
this cost is manageable in a practical example.
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v Unbiasing sampled volumes

Recall that our original aim was to estimate the
mean basin volume, hvi, in Eq. 3. So, after having
measured the volume of a large number of basins of
attraction, we must deal with the issue that a näıve
average over the basin volumes of randomly sam-
pled energy minima is, in general, biased. Indeed, if
one samples configuration space uniformly and tags
each point with its basin of attraction, each basin is
sampled with probability pi = vi/V, that is to say,
proportionally to its volume. Thus, to compute a
Boltzmann entropy SB = log⌦ + const., we need
to perform a fit of the observed basin volume dis-
tribution using a putative functional form to undo
the bias and obtain the true mean, hvi. Concretely,
if the measured (biased) distribution of volumes is
called B(v), and the unbiased (true) distribution
U(v), one can write

B(v) = NU(v)v, (10)

where v is the bias proportional to volumes, and N

is a normalisation factor. By integration, one finds
that the unbiased mean is given by

N
�1 = hvi =

2

4
VZ

0

dv

v
B(v)

3

5
�1

, (11)

where one typically needs to fit B(v) to some func-
tional form, for instance a parametric generalized
Gaussian distribution, or a nonparametric kernel
density estimate.
The Shannon entropy, SS = �

P⌦
i=1 pi log vi +

const., is, instead, by definition the biased average
of the negative log-volumes of basins, and it can be
obtained directly with no assumptions.
All in all, given a proper algorithmic basis, basin-

volume measurements provide a generic way of
computing the Gibbs-Shannon entropy of any dy-
namical system whose properties are controlled by
the ensemble of its steady-state structures. In the
following, we shall first show how this idea was ap-
plied to the special case of granular packings, and
then how it could answer open questions in funda-
mental physics.

III The case of granular entropy

The first application of basin-volume calculations
to measure entropy was performed in the context of

Figure 8: Energy landscape of hard-WCA particles.

Left: Snapshot of jammed packing of polydisperse disks
with hard cores (dark shaded) plus soft repulsive coro-
nas (light shaded). Right: Illustration of configura-
tional space for jammed packings. The hatched re-
gions are inaccessible due to hard-core overlaps. Single-
colored regions with contour lines represent the basins
of attraction of distinct minima. Blue region with solid
dots indicates the coexisting unjammed fluid region
(observed only for finite size systems) and hypotheti-
cal marginally stable packings. Figures adapted from
Ref. [14].

granular packings in two dimensions [12–15]. Due
to their athermal nature, granular systems can-
not be described by Gibbsian statistical mechan-
ics [116]. Nevertheless, in the late 1980s, Edwards
and Oakeshott [29] proposed that the collection of
stable packings of a fixed number of particles in
a fixed volume could play the role of an ensemble,
and that one could arrive at a statistical mechanical
formalism by making the assumption that all stable
packings are equally probable once the system has
settled in a jammed state. In other words, in the
Edwards’ ensemble, jammed states occur with uni-
form probability measure (also known as Edwards’
measure [30]). The existence of a Boltzmann-like
distribution in volume and stress in granular me-
dia has been supported by a number of experi-
ments [31–38], lending credence to Edwards’ the-
ory. However, theoretical checks of Edwards’ key
hypothesis on the equiprobability of packings was
largely considered as being not directly testable in
simulations, as it seemingly required an explicit
enumeration of all possible packings.

This problem can be rephrased as a basin volume
measurement: consider a system of polydisperse
disks with a hard core and a soft corona, modelled
as a shifted Weeks-Chandler-Anderson (WCA) [39]
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Figure 9: Checking Edwards’ hypothesis. (a) Gibbs-Shannon entropy SG (blue) and Boltzmann entropy SB

(orange) as a function of �, as obtained from a parameter-free kernel-density estimate (KDE) fit of the distribution
of basin volumes. The dashed curves are second-order polynomial fits. As � approaches the unjamming density
for N = 64 particles �J = 0.82 (dashed gray line), SG tends to SB , implying equiprobability of all states precisely
at unjamming. (b) Scatter plot of the log of the probability of landing in a given basin, pi (proportional to the
volume vi) against the log of the pressure P measured in that basin. Power-law scaling relations (solid lines) are
found for several densities indicated in the inset. (c) Exponents found for the power laws of (b), plotted against
�. The dashed black line is a linear fit, and the dashed gray line indicates �J . The raw data from Ref. [14] was
used here and re-analyzed independently.

soft potential (see Fig. 8). Consider N such parti-
cles, put them into a periodic box with sidelength
L at a packing fraction �. The system is endowed
with a many-body energy landscape that, at high
enough densities, contains many di↵erent basins.
At the bottom of each basin lies a single local mini-
mum, that can be interpreted as a zero-temperature
configuration of the system. At the characteristic
unjamming density �J (the point at which the sys-
tem goes from a liquid to a disordered solid), each
minimum corresponds to a packing of non-frictional
hard particles. Among these minima, there is a
subset of mechanically stable configurations. De-
pending on the system of interest, it is common
to define mechanical stability through a non-zero
bulk modulus, which is equivalent to saying that
the number of contacts verifies Nc � d(Nnr � 1),
where Nnr is the number of particles that are not
rattlers (mobile particles) [40], thus defining the en-

semble of collectively jammed states [41]. A smaller
subset of minima is that of states stable not only
against compression, but also shear: the condi-
tion of non-zero shear modulus this time imposes
Nc � d(Nnr � 1)+1, which defines the ensemble of
strictly jammed states [41]. In practice, we restrict
ourselves to the latter case [14], which is a more
broadly accepted definition of jamming. There-
fore, by implementing the machinery of Sec. II to
the energy landscape of hard-WCA particles, and
restricting the set of relevant basins to mechani-
cally stable configurations, one can estimate the
Boltzmann and Gibbs-Shannon entropy of granu-
lar packings.

The main result, originally obtained in Ref. [14]
for N = 64 hard-WCA disks, is reproduced in
Fig. 9a. This plot shows that the Gibbs-Shannon
entropy, SG = �

P⌦
i=1 pi log pi + const., and the

Boltzmann entropy SB = log⌦+ const., both eval-
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uated using basin volume measurements, converge
precisely at �J ⇡ 0.82, implying that only at this
density is Edwards’ hypothesis, pi = 1/⌦, verified.
It can be checked through finite-size analysis [14]
that this packing fraction is consistent with the
lower range of values for which the system unjams
at N = 64 following the same preparation protocol,
so that the two entropies coincide only at unjam-
ming. Note that, while the value of the unjam-
ming density observed in compression experiments
depends on the precise preparation protocol, what
we report is a property of the energy landscape of
jammed packings, which is a generic feature of the
system independent of preparation recipes.
Furthermore, as shown in Fig. 9b, the authors

also found that above jamming, there exists a ro-
bust power law relationship, pi ⇠ P�N�(�), be-
tween the probability of observing a packing and
its pressure. This power law suggests a hierar-
chical structure of the energy landscape of hard-
WCA particles, where low-energy minima have
large basin volumes and high-energy minima have
small volumes, see Fig. 10 for an illustration of this
property.
Finally, as shown in Fig. 9c, the exponent � de-

creases roughly linearly as the packing fraction ap-
proaches jamming from above, and reaches 0 at �J .
In other words, at jamming, the volume of basins
becomes a flat distribution that does not depend on
the pressure in the system, adding to the evidence
that all basins are equiprobable at �J . As shown
in App. B, this argument on � can be made more
formal, and the di↵erence between the Boltzmann
and Gibbs entropies can be written as

lim
N!1

1

N
[SB(V )� SG(V )] = O(�2). (12)

In other words, in order for the two entropies to
agree at a given density in the thermodynamic
limit, the exponent � must go to 0 as observed.
All in all, a first application to granular packings

has shown the potential of the method proposed
in Sec. II. By replacing an intractable enumera-
tion problem with a simpler sampling problem, the
basin-volume method allowed us to test a hypoth-
esis that had been left unchecked for 30 years. It
also yielded insight into new physics at the jamming
transition, by revealing a hierarchical structure of
the basins of attraction above jamming.

IV The road ahead: from packings
to generic dynamical systems

In the rest of the paper, we propose perspectives for
the basin-volume method, ranging from extensions
of the problem of granular packings to completely
unrelated problems.

i Future work on granular packings

As discussed in Sec. III, the basin-volume method
led to a direct observation that Edwards’ hypothe-
sis is only valid strictly at jamming in d = 2. There
are however still several aspects of this problem
that remain unchecked, and could be addressed by
the very same method.

First, these results were obtained within the iso-
choric ensemble, approaching unjamming where the
measured pressure vanishes, P ! 0+. It has been
argued that the equiprobability of packings could
break down when switching to the isobaric ensem-
ble [42], viz., when allowing volume fraction fluctu-
ations through particle inflation and deflation to
maintain constant hydrostatic pressure, or more
generally in the isostress ensemble that also con-
strains the shear stresses.

The isobaric and isostress ensembles can be ex-
plored within a basin volume framework. To do so,
in the spirit of Parrinello-Rahman barostats [43–
45], the trick is to allow for deformations of the
simulation box (both isotropic compressions and
constant-volume deformations), and to replace the
energy landscape, E, by an enthalpy-like landscape,
H [40], where

H = E � � : "V0 (13)

explicitly contains the dependence on the full stress
and strain tensors � and " through their Frobenius

inner product A : B =
P

i,j AijBij , as well as a
reference volume V0 of the simulation box. Note
that a subcase of this strategy is that in which only

isotropic compression is allowed, " = V/V0I, with

I the identity tensor. In that case, only the trace
Tr[�] ⌘ �P participates in the box deformation
term, leading to the usual definition of enthalpy
with respect to the hydrostatic pressure P , namely
H = E + PV . Basins are then defined through
steepest descent paths that lead to the same en-
thalpy minimum, in a configuration space compris-
ing not only particle positions, but also d(d+ 1)/2
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parameters describing simulation box deformations
[40]. In practice, one would impose a finite but
small pressure, and look at the asymptotic results
as P ! 0+. Indeed, a technical di�culty in this
approach is that, at exactly zero pressure, fluid so-
lutions with arbitrarily large volumes trivially min-
imize the enthalpy. One would then need to con-
strain the maximal volume of the system to avoid
converging exclusively to fluid states.
Finally, to perform basin volume calculations

in the enthalpy landscape, a modification of the
Monte Carlo algorithm used for the volume esti-
mate is required. In the isochoric case presented
above, the volumes of basins are computed by sam-
pling configurations with constant N and V , using
an oracle defined through a minimum of the energy,
and umbrella sampling on the particles’ positional
degrees of freedom. In the isobaric case, this time,
one needs to sample configurations with constant
N and P , with an oracle defined through a mini-
mum of the enthalpy, and using umbrella sampling
not only on the particles’ positions, but also on the
degrees of freedom of the box shape. This requires
the inclusion of independent shearing and stretch-
ing (viz., box deformations) moves in our Monte
Carlo sampling [46–49] as the building block of the
random walks. Each of these moves is accepted or
rejected according to a Monte Carlo criterion set
by a combination of the oracle, which checks that
the new point still falls to the same minimum of
the enthalpy, Eq. 13, and the umbrella sampling
biasing potentials that contain box deformations.
Implementing this algorithm as part of a basin vol-
ume calculation, while numerically costlier than the
usual isochoric strategy, would constitute an impor-
tant check on the validity of the Edwards hypoth-
esis.
Second, one may reasonably wonder whether the

results are still observed in higher dimensions of
space, notably in d = 3, where many open ques-
tions remain to be answered to fully understand
the ensemble of jammed states, thus constituting a
topic of current research [50].
Finally, we observe that, in the isochoric en-

semble and above jamming, the basin volumes are
linked to the pressure of the packings via a power-
law suggesting that configuration space is tiled by
a hierarchy of basins (see Fig. 10(a)), which has
neither been fully appreciated, nor explored. We
check that such a hierarchical dependence exists in

Figure 10: Hierarchical energy landscape of soft sphere

packings. (a) Sketch: the power law between basin vol-
ume, vi, and pressure suggests that a minimum lying
at Ei > 0 has a basin with volume vi / E��

i with �
a positive exponent. We verify this scaling relationship
in (b), using the same data as in Fig. 9. Panel (c) shows
a smooth dependence of P as a function of E, with an
asymptote P /

p
E at unjamming.

Fig. 10(b), using the same data as in Fig. 9, and
report a density-dependent power-law between the
volume vi of a basin and the energy at the corre-
sponding minimum. This power law results from P
being a smooth function of the energy, as shown in
Fig. 10(c), where we emphasize that unjamming is
accompanied by an asymptote P /

p
E. This be-

haviour is expected near unjamming, where over-
laps are small so that the pair potential is well
captured by a harmonic approximation, U(r) ⇠

(r � r0)2 [119], and the pressure contribution from
one interacting pair, as obtained from a virial ex-
pression, reads p ⇠ r0(r�r0) ⇠

p
U which, summed

over, can be shown to yield P ⇠
p
E as E ! 0.

ii Beyond granular jams: glassy systems

Based on our discussion thus far, a reader may
think that basin volume calculations can only be
used to measure granular entropies. In fact, these
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methods could be used to measure a number of in-
dicators for the shapes of the basins, in addition
to the radial mass distribution, as well as their
neighborhoods. Such measurements could have
deep fundamental implications, if one does not con-
sider a granular (or zero-temperature) system, but
a jammed liquid at a finite temperature. Indeed,
in a finite-temperature glassy system, the shape
of basins controls transition rates and relaxation
times [51–54], which has prompted a large body of
recent work on the enumeration and characteriza-
tion of minima of rough landscapes [52, 55–58].
Achieving a clear picture of the basins of at-

traction in the configuration space of a dense liq-
uid in physical dimensions would therefore be very
exciting, as it would open avenues for fundamen-
tal checks regarding glassy dynamics. In an ex-
act mean-field treatment of hard sphere glasses,
a Kauzmann transition known as random first-
order transition (RFOT) is attained [62–64]. In
this framework the configurational entropy Sconf =
log⌦F is defined in terms of the number of free en-
ergy minima ⌦F , so that the notion and number of
“glassy states” is well defined and the ideal glass
transition results from the population of glassy
states becoming subextensive in system size. In
finite dimensions, free energy minima are not in-
finitely long-lived and the precise definition of a
“glassy state” remains debated [65]. A popular take
on the problem was proposed by Stillinger and We-
ber [60,67,124], who suggested that the supercooled
glassy states would reside close to the minima of the
potential energy surface, known as inherent struc-
tures (IS) of the liquid. For each IS there is an
associated basin of attraction, that is, the set of all
initial conditions leading to the i-th IS by steepest
descent. The partition function can then be ex-
pressed classically as a sum over the individual IS,
Q =

P⌦
i=1 qi, where, for � = 1/kBT ,

qi =

Z

�i

e��U(r)dr, (14)

and U(r) is the interaction potential. Until re-
cently, qi could not be computed, and the ac-
cepted operational definition for the configura-
tional entropy was Sconf = Sliq � Sharm, where
Sliq is the total entropy computed by thermody-
namic integration, and Sharm is the vibrational
entropy computed from the harmonic approxima-

tion (with or without anharmonic corrections), av-
eraged over many IS [68]. Using this and an-
other approach based on a Frenkel-Ladd-like com-
putation, Berthier and coworkers recently produced
compelling results suggesting that the change in
Sconf for supercooled liquids in d = 3 is consis-
tent with the existence of an ideal glass transition
at TK > 0 [65,69–71].

Through basin volume calculations, it is possible
to compute qi directly, and thereby obtain a general
approach to estimating the configurational entropy
of supercooled liquids, without resorting to any ap-
proximations. In particular, this method does not
need to assume large system sizes, and could al-
low to precisely study finite-size e↵ects in complex
free energy landscapes, a problem that is nontrivial
even in simple theories in 1d [66].

Finally, in the context of glassy systems, free en-
ergy methods could in principle be used to obtain
not just the (Boltzmann weighted) volume of the
basins of attraction of inherent structures, but also
more complicated information about their geome-
try, topology, and connectivity (e.g., what is the
chromatic number for the tiling of basins in the en-
ergy landscape? [130]). Understanding the proper-
ties of the most probable paths between minima of
the energy landscape is of particular interest to un-
derstand the dynamics of relaxation in glasses, and
could help bridge the gap between microscopic dy-
namics and mesoscopic models that recently shed
new light on the interpretation of the relaxation
spectrum of glassy materials [72, 73].

iii Generic dynamical systems: ecosys-
tems, neural networks, and more.

In the remainder of this paper, we discuss what we
believe to be some of the most exciting opportu-
nities for basin-volume methods, namely their ap-
plications to generic dynamical systems. Indeed,
going back to the method presented in Sec. II, we
never explicitly relied on the existence of an un-
derlying energy function. In principle, one can de-
fine any dynamics of their choice, let them evolve,
and classify initial conditions according to which
steady-state or dynamical attractor they eventu-
ally fall into, as sketched in Fig. 11. One can then
always define the Shannon entropy associated with
the volumes of these attractors, and use it as a
generic descriptor of the system for a given set of

150001-15



Papers in Physics, vol. 15, art. 150001 (2023) / M Casiulis & S Martiniani

Figure 11: Generalised basins for dynamical systems.

In a generic dynamical system, basin of attractions can
be associated not only to fixed points, but also limit
cycles, or any kind of stable attractor of the dynamics.
Black arrows represent example trajectories, that fall
into steady-state structures (white). These structures
can be fixed points (yellow basin), simple limit cycles
(green basins) or any complicated high-dimensional at-
tractor (red basin).

parameters. This approach is completely general
and can be applied to any system with dynamics
that are regular enough to admit attractors. We
propose a few promising leads for such approaches.

There are many examples of dynamical systems
where such an approach would be relevant. For in-
stance, mapping basins of attraction is an ubiqui-
tous problem in control theory, where approximate
methods for measuring basins have been proposed
to determine the stability of the flight control-law
of the F/A-18 Hornet aircraft with respect to large
perturbations [74]. Enumerating the number of sta-
tionary points, and their distribution, for certain
classes of random functions, is a classical problem
in mathematics and statistics [75–88, 125]. In par-
ticular, in combinatorial optimization, the size and
connectedness of the space of solutions that satisfy
a large number of constraints controls how easy
it is to find a solution, which has implications in
a variety of real-life problems ranging from com-
puter science to optimal transport [89–92]. Under-

standing the structure of high-dimensional basins
of attraction is also of great theoretical interest,
as the problem of mapping high-dimensional basin
volumes has been described as uncharted mathe-
matical territory [10]. It is also a current challenge
in cosmology, where characterising the number and
volume of basins of attraction in axion landscapes
constitutes a promising lead for elucidating the cos-
mological constant problem [93].

A particular example of dynamical systems
where basin volume methods could prove fruitful
is the study of ecosystems, i.e. ensembles of popu-
lations following Lotka-Volterra dynamics [94]. In
the limit of symmetric antagonistic interactions,
such systems have been shown to map onto glassy
Hamiltonian systems, which leads to aging dynam-
ics in a rugged landscape, the properties of which
have been studied analytically at the mean-field
scale [97–100]. Therefore, in this setting, one can
apply the strategy of basin volume calculations to
determine the existence and nature of phase tran-
sitions in the limit of a finite number of species.
Furthermore, since a Hamiltonian structure is not
needed to define entropy via basin-volume calcu-
lations, the same approach can also be used in the
much more complicated case of non-reciprocal, not-
all-antagonistic interactions. In this scenario, qual-
itative results, both experimental and theoretical,
have shown that stable structures tend to emerge in
steady state [101–103]. Basin-volume approaches
could provide insight into these systems, for in-
stance by quantifying how many ecosystems are
possible in steady-state for a given mix of inter-
actions, or which ecosystem is the most typical.

Finally, another exciting lead is the application
of basin-volume methods to Deep Neural Networks
(DNNs) [104]. It has been widely observed that the
parameters learned by DNN during training corre-
spond to “flat minima” of the loss-function land-
scape [105–110]. Basin volume calculations may
enable researchers to answer questions concerning
the structure of the error landscapes of DNNs and
to identify the relationship between the probability
of finding a given solution, its flatness and its gen-
eralization performance. Addressing these ques-
tions would have a significant impact on our under-
standing of generalization in deep learning systems
with implications for high-stakes applications such
as transportation, security and medicine.
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V Conclusions

In this perspective, we presented the principles, re-
cent successes, and possible future applications of a
powerful new approach to study disordered many-
body systems through the estimation of the number
and volume of basins of attractions. This approach
enables the computation of the Shannon entropy,
which appears as a natural extension of the ther-
modynamic entropy of equilibrium systems, in a
much broader class of systems. It has already been
shown that basin-volume computations work in the
specific case of granular packings, but there is an
avenue ahead. Not only can this method lead to
estimations of the features of complex energy land-
scapes in thermal systems like supercooled liquids,
molecular liquids or spin glasses, it also provides a
systematic and quantitative way of characterising
the state space of generic dynamical systems. At
a time when numerical and experimental studies of
a broad spectrum of non-equilibrium many-body
systems are booming, in spite of the absence of a
general theoretical framework to understand them,
such a generic tool could prove to be invaluable.
Our vision is that the theoretical ideas and pro-
tocols presented herein will become new canonical
forms of computation adopted in multiple areas of
science and engineering.
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A Scaling of the number of replicas

We derive a scaling for the required number of repli-
cas, Kd, to correctly estimate the volume of a hy-
percube in dimension d. Each of these replicas
is attached to the center of the cube by a spring
with rigidity k and samples positions according
to a distribution that is well approximated by a
d�dimensional Gaussian. The narrowest of these
distributions is the one for kmax, hkmax(r), with
variance

�2
max =

1

kmax

 
d� 2

�
�
d+1
2

�

�
�
d
2

�
!
. (15)

We can impose that the mode of hkmax coincide
with the radius, a, of the largest hyperball inscribed
in the hypercube, yielding the condition

kmax =
d� 1

a2
. (16)

Finally, we know that the k = 0 replica will have
most of its mass concentrated at a

p
d/3. We can

therefore require that the number of replicas, Kd, is
such that the interval [a;

p
d/3a] sums up to Kd ⇥

2�max. Putting all of this together, we arrive at
the result:

Kd =

p
3d� 3

6

s
d�2

�( d+1
2 )

�( d
2 )

d�1

, (17)

which for d ! 1 reduces to Kd ⇠ d/
p
6. In other

words, in the case of a hypercube, the number of
replicas necessary to estimate the volume grows lin-
early with d.

B Implications of the power-law be-
tween basin volumes and pres-
sures

We report how to deduce an expression for the
di↵erence between the Boltzmann and Gibbs en-
tropies of granular packings from the power-law
scaling between the volumes of basins and the pres-
sures of the corresponding packings. Recall that
the Gibbs entropy of a jammed configuration of N
particles can be written as SG = �

P⌦
i pi ln pi �

lnN ! with a sum running over basins. Noticing that
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pi = vi/V, one gets SG = �hln viiB � lnN ! + lnV,
where the average is biased proportionally to the
volume of the basins. The power-law relation
shown in Fig. 9b entails a linear law between logs,
�hln viiB = N(�(�)hlnP iB + c(�)). Therefore, the
Gibbs entropy reads

SG = N�hlnP iB +Nc� lnN ! + lnV. (18)

Now, the Boltzmann entropy at a given value of
pressure and volume can be computed as the log of
the number of configurations ⌦(P, V ), which can
be written as

⌦(P, V ) = ⌦(V )

P+�PZ

P

U(⇧|V )d⇧, (19)

where U(P |V ) is the unbiased distribution of pres-
sures given a total volume V , and the integral over
a small element imposes the value of P within the
measure U . Since in our protocol the basins are
sampled proportionally to their volume, B is linked
to U via

B(P |V ) = U(P |V )
v(P,�, N)

hvi
, (20)

with v(P,�, N) the volume of a basin at pres-
sure P , packing fraction � and N particles. Ac-
cording to the results in Fig. 9b, these volumes
verify v(P,�, N) = P�N�e�Nc. Recalling that
⌦(V ) = V/hvi, the number of configurations with
a fixed pressure reads

⌦(P, V ) = VeNc

P+�PZ

P

B(⇧|V )⇧N�d⇧. (21)

Furthermore, the number of configurations consid-
ering all possible pressures at a given volume is sim-
ply the sum

⌦(V ) =

1Z

0

dP⌦(P, V ). (22)

The Boltzmann entropy at a given volume therefore
reads

SB(V ) = ln

2

4
1Z

0

dP

P+�PZ

P

B(⇧|V )⇧N�d⇧

3

5

+Nc� lnN ! + lnV. (23)

In order to simplify this expression, we use the re-
sult of Ref. [14] that lnP is approximately normal-
distributed, so that

B(P |V )PN�
⇡

1

P
p
2⇡�2

e�
(lnP�µ)2

2�2 +N� lnP . (24)

It is convenient to rewrite the integral in square
brackets in Eq. 23 as

⌅ =

1Z

0

dP

1Z

0

d⇧B(⇧|V )xN��(⇧ � P ). (25)

After some algebra, one finds

⌅ = exp


N�µ+N2�2�

2

2

�
. (26)

Using the empirical observation that �2 = s/N and
µ = µ1 + m/N where s, µ1,m are all O(1) [14],
we find that

lim
N!1

ln⌅

N
= �µ1 + �2 s

2
. (27)

Identifying µ1 with hlnP iB , from Eqs. 18, 23 and
27 we finally get

lim
N!1

1

N
[SB(V )� SG(V )] = �2 s

2
. (28)

This expression shows that the two entropies only
coincide when � ! 0, but also that SB � SG, as
observed in the measurements reported in Fig. 9
of the main text.
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