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Abstract

Multi-item revenue-optimal mechanisms are known to be extremely complex, often offering
buyers randomized lotteries of goods. In the standard buy-one model, it is known that optimal
mechanisms can yield revenue infinitely higher than that of any “simple” mechanism—the ones
with size polynomial in the number of items—even with just two items and a single buyer [4, 19].

We introduce a new parameterized class of mechanisms, buy-k mechanisms, which smoothly
interpolate between the classical buy-one mechanisms and the recently studied buy-many mech-
anisms [12, 14, 13, 11]. Buy-k mechanisms allow the buyer to buy up to k many menu options.
We show that restricting the seller to the class of buy-n incentive-compatible mechanisms suf-
fices to overcome the bizarre, infinite revenue properties of the buy-one model. Our main result
is that the revenue gap with respect to bundling, an extremely simple mechanism, is bounded by
O(n2) for any arbitrarily correlated distribution D over n items for the case of an additive buyer.
Our techniques also allow us to prove similar upper bounds for arbitrary monotone valuations,
albeit with an exponential factor in the approximation.

On the negative side, we show that allowing the buyer to purchase a small number of menu
options does not suffice to guarantee sub-exponential approximations, even when we weaken the
benchmark to the optimal buy-k deterministic mechanism. If an additive buyer is only allowed
to buy k = Θ(n1/2−ε) many menu options, the gap between the revenue-optimal deterministic
buy-k mechanism and bundling may be exponential in n. In particular, this implies that no
“simple” mechanism can obtain a sub-exponential approximation in this regime.

1 Introduction

How should a revenue-maximizing seller price an item for sale when facing a buyer with a private
value for the item? If the seller knows the distribution of values, seminal work of Myerson [24]
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showed that it is optimal for the seller to offer the item at a take-it-or-leave-it price. The answer
to this question becomes unclear for the case of multiple, even just two, items.

Optimal multi-item auctions are known to be complex objects, offering no discernible mathe-
matical structure and often exhibiting “intuition-defying” properties [15]. A particularly egregious
one is that there exist correlated distributions over just two items such that the revenue-optimal
mechanism is infinitely better than any “simple” mechanism, ruling out the possibility of good
worst-case approximations [18, 19].1 The bizarre aspect of these pathological distributions is that
the optimal revenue is unbounded, but any finite-sized mechanism can get at most finite revenue.
One possible explanation for this bizarre phenomenon is that the seller is unrestricted in their choice
of mechanism: they only need to guard against the buyer’s deviations towards any single other
allocation. This allows the seller to utilize mechanisms where the buyer can only purchase a single
mechanism entry. These buy-one mechanisms can be heavily tailored to the buyer’s distribution,
often offering comparable allocations for widely different prices. Consider the following example.

Example 1. A buyer walks into a coffee shop. They are equally likely to have one of three valuations
over a cup of coffee and a bagel: either the buyer has value $2 for the cup of coffee and $0 for the
bagel, $0 for the cup of coffee and $4 for the bagel, or $4 for the cup of coffee and $6 for the
bagel (and $10 for the combination of a cup of coffee and a bagel). The optimal mechanism in
this example is as follows: the seller will offer the cup of coffee at $2, the bagel at $4 and the
combination of a cup of coffee and a bagel at $8. In this example, the optimal mechanism is buy-
one incentive-compatible. The buyer with non-zero valuations for both items (weakly) prefers buying
the combination at $8 to buying exactly one of the items separately. The mechanism, however, is
not buy-many incentive-compatible: when the buyer has non-zero value for both items, they would
prefer to visit the coffee shop twice and buy the items separately for a combined price of $6. This
achieves the same allocation at a cheaper price.

The example above highlights two problems with the classical buy-one model. The first is that
no high-valued customer would pay $8 for the combination of coffee and a bagel. They would
buy one item, queue in line again, and buy the other. This in turn creates the second problem:
the revenue of the optimal buy-one mechanism overshoots the real-world revenue the seller would
experience. The buy-one mechanism would net the seller an expected revenue of $(2+4+8)/3 = $42

3 .
In reality, because no buyer would pay $8 for the combination of items, the seller would experience
expected revenue $(2 + 4 + 6)/3 = $4.

While this example is simple, the pathological constructions of [19, 26] do significantly wilder
things such as offering similar randomized allocations for astronomically different prices. For in-
stance, a buy-one mechanism may offer randomized allocation ~q for price p, and randomized alloca-
tion ~q+~ε for price 4p. Just like in Example 1, a buyer would prefer to buy the cheaper option two,
three or even four times rather than the carefully tailored, more expensive option. However, if they
are forced to buy exactly one option, these pathological constructions ensure high-valued buyers
will marginally prefer buying one copy of the expensive item to buying one copy of the cheaper
one. Thus part of the reason why positive results in multi-item auctions (especially for correlated
items) are rare is because the “optimal” buy-one mechanism is unrealistic and not implementable
in a world were buyers may, reasonably, interact with the seller multiple times. It is this lack of
consideration on the seller’s choice of mechanism that allows for “infinite” revenue auctions.

1By “simple” mechanisms, we mean mechanisms of size polynomial in the number of items.
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One natural way to overcome this problem is to allow the buyer to purchase multiple menu
entries. Buy-many mechanisms, introduced more than ten years ago in [3, 4], are mechanisms
where the buyer may purchase any multi-set of menu entries, including sets of unbounded size.
This significantly restricts the seller’s choice of mechanism: buy-many mechanisms are always buy-
one incentive compatible but the converse is not true. A simple way to see this is that the prices in
(deterministic) buy-many mechanisms are always sub-additive, meaning that for any two disjoint
sets of items S, T , p(S) + p(T ) ≥ p(S ∪ T ). Buy-one mechanisms, like that of Example 1, need not
satisfy this property, making them less appealing for real-world applications.

The work of [3, 4] already exhibits how buy-many mechanisms overcome the revenue gap prob-
lem: they showed that a popular benchmark, known as item-pricing, could recover anO(log n) factor
of the revenue attained by the optimal buy-many mechanism for the case of a single, unit-demand
buyer. This was later extended to arbitrary valuations by [12], while preserving the approximation
factor. Key to these results is that by sufficiently restricting the seller’s choice of mechanisms, the
optimal revenue drops from unbounded in the buy-one case to finite in the buy-many case, allowing
for simple mechanisms like item-pricing to approximate the optimal buy-many revenue.

One question left unaddressed by these works is how much we need to restrict the seller’s choice
of mechanisms so that the optimal revenue is finite. While in Example 1 it was reasonable to
assume the buyer would purchase a single item, re-queue and purchase the other item, it would
not be reasonable to assume the buyer would be willing to re-queue any number of times. At some
point, the buyer will get tired. This means the buyer’s threat of interacting with the mechanism
any number of times is not a credible threat to the seller. Alternatively, we can think of buy-many
mechanisms as giving too much power to the buyer just like buy-one mechanisms give too much
power to the seller.

In order to answer the question outlined we need a more fine-grained family of mechanisms that
smoothly interpolates between buy-one and buy-many mechanisms. For this purpose we introduce
buy-k mechanisms, a parametric family of mechanisms where the buyer is allowed to purchase
any multi-set of at most k menu entries non-adaptively.2 We say a mechanism is buy-k incentive-
compatible if the buyer always prefers to buy a single menu entry rather than any multi-set of up to
k menu entries. Let Bk(D) be the set of buy-k incentive-compatible mechanisms for a distribution
D over n items, and let BuykRev(D) = maxM∈Bk(D)Rev(D,M) be the optimal revenue attainable
by a buy-k incentive-compatible mechanism. A simple observation, stated below and whose proof
we defer to later in the paper, shows that as k increases, the revenue of the seller weakly decreases.

Observation 1.

Buy1Rev(D) ≥ Buy2Rev(D) ≥ · · · ≥ BuyManyRev(D) ≥ BRev(D).

We first show that k, the number of times the buyer might interact with the mechanism, can play
a role in the seller’s optimal revenue. We prove there exists a support-size 3, correlated distribution
D over two items for which Buy1Rev(D) > Buy2Rev(D) > Buy3Rev(D) > Buy4Rev(D). This
example proves a strict separation between the class of buy-one and buy-2 mechanisms, and by
Observation 1, between the class of buy-2 mechanisms and buy-many mechanisms. This reinforces
the idea that buy-k mechanisms interpolate between buy-one and buy-many mechanisms, and thus
merit a study of their own.

2In other words, the buyer first chooses any multi-set of up to k menu options and only after they commit any
randomized allocations are decided. Our results will hold even if the buyer is allowed to adaptively choose the menu
entries. See Appendix A for a more detailed discussion.
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Proposition 1. There exists a distribution D over two items such that

Buy1Rev(D) > Buy2Rev(D) > Buy3Rev(D) > Buy4Rev(D).

We conjecture in fact that for the distribution from Proposition 1, the seller’s revenue strictly
decreases as k increases. In other words, we conjecture there exists a simple distribution that can
witness separations between the classes of buy-k and buy-(k + 1) mechanisms for all k ≥ 1. We
discuss this conjecture in Appendix C.

Conjecture 1. There exists a distribution D over two items such that for all k ≥ 1,

BuykRev(D) > Buyk+1Rev(D).

After proving that the class of buy-k mechanisms is distinct from the previously studied classes of
buy-one and buy-many mechanisms, the next natural question is to understand their approximation
guarantees with respect to simple mechanisms. Our measure of simplicity for a mechanism M will
be its menu complexity or the number of menu entries |M| the mechanism offers. Under this
lens, broadly speaking, we think of “simple” mechanisms as those that have polynomial menu
complexity and “complex” mechanisms as those that have super-polynomial menu complexity. For
example, any mechanism which only offers the grand bundle of all items for a fixed price has menu
complexity 1. This family of mechanisms is so important that the revenue of the optimal grand
bundling mechanism, BRev(·) (henceforth bundling), is often a benchmark of interest.3 Therefore,
our main question of interest is the following.

Question 1. Given integers n, k, when does f(n, k) · BRev(D) ≥ BuykRev(D) hold for all distri-
butions D over n items, for some function f(n, k)?

1.1 Our Contributions

Our main result shows that restricting the seller to the class of buy-n incentive-compatible mech-
anisms suffices to get around pathological constructions for two or more items (like e.g., [19, 26]).
These works show that there are distributions over just two items for which no “simple” mech-
anism could approximate the revenue of the optimal buy-one mechanism, or in the language of
Open Question 1, that no such function f(n, 1) exists for n ≥ 2. We show that when facing a
single, additive buyer, the revenue from optimally pricing the bundle of items, BRev(D), recovers
a polynomial fraction of the optimal buy-n revenue.

Theorem 1. For any distribution D over n items for a single, additive buyer, it holds that

O(n2) · BRev(D) ≥ BuynRev(D).

The proof of 1 relies on the identification of a measure, MenuGapk(·, ·), whose formal definition
we defer to Section 2. This quantity is the generalization to buy-k mechanisms of MenuGap(·, ·)
introduced by previous work for buy-one mechanisms (see [19, 26]). In those works, MenuGap(·, ·)
was used to construct distributions whose optimal revenue was hard to approximate. In contrast,
our work is the first to show that this framework can be used to prove approximation guarantees

3Bundling is arguably one of the simplest mechanisms.
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instead. In fact, our techniques can be extended to also show similar results for the case of arbitrary
monotone valuation functions, 4 (albeit with a significant loss in the approximation factor).

Theorem 2. For any distribution D over n items, for a single buyer with a monotone valuation,
it holds that

O(n2 · 2n) · BRev(D) ≥ BuynRev(D).

We consider Theorem 2 as a result validating the robustness of the framework we introduce
as a proof technique for approximation algorithms for revenue maximization. The experienced
reader will recall that, historically, approximation algorithms for different valuations classes used
tools specific to the valuations themselves (e.g., [7, 8] for unit demand, [28, 17, 2] for additive
valuations and so on). It wasn’t until the work of [5] that a unifying framework was developed to
reprove (or even improve) such results. Thus, we interpret Theorem 2 additionally as proof that
the framework we develop is robust enough to handle general valuation classes and are optimistic
that results similar to Theorem 1 can be proved via our framework for other valuation classes.

The first piece of the proofs for Theorems 1, 2 is identical. We show that there exists an
appropriate choice of inputs (X,Q) such that MenuGapk(X,Q) upper bounds the ratio between
the optimal buy-k revenue and the revenue achieved by bundling, up to some O(k) factor. We
again defer a technical definition of MenuGapk(·, ·) until later. For the purposes of this exposition,
it suffices to say that given two sequences of vectors (X,Q), MenuGapk(X,Q) captures some
geometric property of the input pairs of sequences. Thus, more precisely, in the first step of the
proof we show that for any distribution D and any buy-k incentive-compatible mechanism M for
D, there exists a cleverly chosen set of valuations X in the support of the distribution D together
with their corresponding allocations Q under M whose “geometric property” witnesses an upper
bound to the revenue revenue that M achieves on D, up to a factor of O(k). In particular, this is
also true about the revenue-optimal buy-k incentive-compatible mechanism.

The second step of the proof upper bounds MenuGapn(X,Q) itself by n for the case of an
additive buyer (resp. by n · 2n for the case of a monotone buyer) for all input pairs (X,Q). It is
worth noting that for the case of an additive buyer, this second step is tight. This implies that our
approach of bounding revenue gaps via MenuGapk(X,Q) cannot give a sublinear approximation.
However, this is not a fault of our techniques. In Appendix B we provide a simple proof that there
exist distributions D for which BRev(D) ≤ BuykRev(D)/O(n) for any k. In other words, BRev(D)
can not give a sublinear (in the number of items n) approximation to BuykRev(D), for any k.

There are two subtle implications of these results. The first is that for all n-dimensional dis-
tributions D, BuynRev(D) is finite whenever BRev(D) is finite. This stands in contrast to the
buy-one case where even for just n = 2 items, there exist D such that Buy1Rev(D) > ∞ but
BRev(D) = O(1). The second is that since BuykRev(D) ≥ Buyk

′

Rev(D) whenever k < k′ (due to
Observation 1), then Theorems 1, 2 in fact also answer Question 1 for the case when n ≤ k.

The next goal is to answer Question 1 for the case when 1 < k < n. We make progress by
proving a strong lower bound for the case k ≤ n1/2−ε. We show that there exist distributions for
which there is an exponential revenue gap when k ≤ n1/2−ε. This is captured by Theorem 3.

Theorem 3. If k ≤ n1/2−ε for some ε > 0, then there exists an additive valuation function D over
n items such that for a single buyer

4A valuation x function is monotone if x(S) ≥ x(T ) whenever T ⊆ S. In other words, getting more items never
decreases the buyer’s value.
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BuykRev(D)

BRev(D)
≥

exp (Ω(nε))

2n2
.

The experienced reader will observe that Theorem 3 says something strong about the revenue
guarantees that simple mechanisms can obtain. Due to a Corollary from [19] which says that
bundling always recovers a 1/|M| fraction of the revenue of any mechanism M, the revenue of
any mechanism M of size poly(n) cannot exceed poly(n) · BRev(D). Thus, Theorem 3 implies
that for the instance that witnesses its proof, no mechanism of size polynomial in the number of
items can obtain a sub-exponential approximation. The proof of Theorem 3 will, unsurprisingly,
borrow ideas from [19, 4]. Interestingly the buy-k mechanism used in the lower bound instance
will be deterministic, in part because the construction of the instance itself makes use of discrete
combinatorial objects known as cover-free sets. This implies that the lower bounds hold even for
the optimal deterministic buy-k mechanism, a much weaker benchmark for comparison. To put
this in context, [18] showed that there exist distributions D for which BRev(D) ≤ 2n

n DetRev(D),
where DetRev(D) is the revenue of the optimal buy-one deterministic mechanism. Thus, Theorem 3
can be seen as an extension of this result, proving that even weakening the seller’s benchmark to
the optimal buy-k deterministic mechanism (for k ≤ n1/2−ε) does not significantly improve the
worst-case approximation with respect to bundling.

While our model and results are written for the case of a non-adaptive buyer, a simple argument
will allow us to translate both our upper bounds (Theorems 1, 2) and our lower bounds (Theorem 3)
to the case of adaptive buyers. We defer this discussion to Appendix A.

Our Techniques. The main conceptual contribution of this work is the introduction of a
new class of mechanisms, buy-k mechanisms, which interpolate between buy-one and buy-many
mechanisms. The main technical contribution of our work is a novel framework for proving ap-
proximation results for multi-item mechanism design under arbitrary distributions. We generalize
measures meant for the buy-one setting from [19, 26] to the buy-k setting. Similar to [26], we
prove that this measure upper bounds the revenue gap between the revenue-optimal mechanism
(in some class of mechanisms) and bundling. Unlike [26], we are able to show a finite upper bound
for this measure in the case of buy-n mechanisms, yielding a finite approximation result.

1.2 Related Work

Buy-many mechanisms have been proposed more than ten years ago, as early as [3, 4]. Results from
a recent line of work [12, 14, 13, 11] make the case to further the study of buy-many mechanisms.
For instance, [14] show that buy-many mechanisms satisfy some form of revenue monotonicity, an
intuitive property that does not hold in the case of buy-one mechanisms [20, 25]. In addition, as
mentioned earlier in the introduction, [12] show that item-pricing recovers a O(log n) factor of the
optimal buy-many revenue. Combining a Corollary from [19] with the main result of [12] shows
that bundling recovers at least a O(n log n) fraction of the optimal buy-many revenue. Our results
have a worse approximation factor because the benchmark is stronger (and this is proved formally
in Observation 1). Thus our work deepens the study of buy-many mechanisms by introducing more
fine-grained classes of mechanisms. We believe our results strengthen the case for the study of not
only buy-many mechanisms, but also fine-grained buy-many mechanisms.

The work of [12] also gave strong lower bounds for the description complexity, a measure that
lower bounds the menu complexity of a mechanism. In particular, they showed that no mechanism
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with sub-exponential description complexity could get an o(log n) approximation to the optimal
buy-many revenue, even for additive buyers. In follow up work, [14] extended the lower bound to
the larger class of fractionally sub-additive (or XOS) valuations.

A prolific line of work assumes that the underlying distribution of values D is a product dis-
tribution. Under this assumption, it is known that mechanisms with low menu complexity can
achieve constant-factor approximations to the optimal revenue for sub-additive valuations (see
e.g., [23, 17, 28, 7, 9, 2, 6, 27, 8, 10, 1], among others), effectively circumventing the pathological
constructions of [19]. Some recent results even show strong positive results for arbitrary approxima-
tion schemes. For instance, [1] show that for any product distribution D, there exists a mechanism
with finite menu complexity that recovers a (1 − ε) approximation to the optimal revenue when
selling to an additive buyer. More recently, [22] give a quasi-polynomial approximation scheme for
revenue maximization for a single, unit-demand buyer interested in n independent items. Notwith-
standing the significant contributions of these works, the question of revenue-maximization under
arbitrary distributions remained unaddressed.

Finally, work of [25] provides yet another way to circumvent the pathological constructions
of [19]. In their work, the authors borrow ideas from the celebrated smoothed-analysis framework
and initiate the study of beyond worst-case revenue maximization. Their results show that, under
some smoothing models, simple mechanisms can approximate optimal ones.

Organization. In Section 2, we present formal definitions for the objects of our interest as
well as for the relevant benchmarks we use. Section 3 contains the proofs of our upper bounds in
Theorems 1, 2. Section 4 contains the proof of our lower bound in Theorem 3. We conclude in
Section 5 and outline questions for future work. Appendix A contains the discussion for the case of
adaptive buyers. Appendix B proves that Theorem 1 can not be improved to provide a sub-linear
approximation. Appendix C presents the proof of Proposition 1 and presents a simple candidate
distribution to prove Conjecture 1.

2 Preliminaries and Notation

We consider the case of a single buyer interested in n items from a single revenue-maximizing seller.
We assume the buyer is utility-maximizing and risk-neutral. The buyer draws their valuation x
from a known, possibly correlated n-dimensional distribution D, with support set X = supp(D)
and probability density function fD(·) (and the index may be ommitted when clear from context).
For all our results, we will assume that the buyer’s valuation over the items is monotone, i.e.,
whenever S ⊆ T , x(S) ≤ x(T ). For our main result, Theorem 1, we will additionally assume that
the buyer is additive across the items, i.e., for any subset of items S ⊆ [n], x(S) =

∑

i∈S xi. Given
a possibly randomized allocation of items ~q ∈ [0, 1]n, we use x(~q) to denote the buyer’s expected
value for the realized set of items. For an additive buyer, x(~q) =

∑n
i=1 xi · qi. For a monotone

buyer, x(~q) =
∑

S⊆[n] x(S) ·Pr(~q, S), where Pr(~q, S) =
∏

j∈S ~qj
∏

j 6∈S(1− ~qj) is the probability that
the buyer gets exactly the items in set S from randomized allocation ~q. Let Λ = {~q1, ~q2, . . . , ~qk, . . . }
be a multi-set of allocations (of possibly unbounded size). We denote by ~Lot(Λ) ∈ [0, 1]n (read
“lottery”) the expected allocation that results from being allocated every ~qi ∈ Λ independently and
at once, i.e., for all j ∈ [n], ~Lot(Λ)j = 1−

∏

i=1(1− qij).
5

5The careful reader might wonder what would happen if instead of buying all their menu options at once, the
buyer was allowed to do so adaptively (as opposed to the model presented here which is non-adaptive). We discuss
this in Appendix A, but the main takeaway is that our upper bounds also hold for adaptive buyers.
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A mechanism M = (p, q) is defined by a pair of functions p : X → R≥0, q : X → [0, 1]n known
as the pricing and allocation functions, respectively. For a fixed integer k we say that a mechanism
M is buy-k incentive-compatible if for every valuation ~x ∈ X it is in the buyer’s best interest to
purchase a single option from the mechanism rather than any combination of up to k menu options.
In other words, there exists some (p, ~q) ∈ M such that x(~q(x)) − p(x) ≥ x( ~Lot(Λ)) −

∑

i=1 p(~qi)
for any possible multi-set of menu options Λ of size at most k. Thus, setting k = 1 recovers
the standard notion of (buy-one) incentive-compatible mechanisms, and as k → ∞ it recovers the
existing definition of buy-many incentive-compatible mechanisms.

2.1 Benchmarks of Interest

We now formally define some of the benchmarks that will be used throughout this paper. For a
given (arbitrarily correlated) distribution D, let

• BRev(D) be the revenue of the mechanism which sells the grand bundle for its optimal price.
Namely, BRev(D) = maxp p · Pr~x∼D(

∑

xi ≥ p),

• Rev(D) be the revenue of the optimal buy-one incentive-compatible mechanism,

• Rev(D,M) be the revenue of mechanism M when the buyer is allowed to buy up to 1 menu
entry from M,

• BuykRev(D) be the revenue of the optimal buy-k incentive-compatible mechanism,

• BuykRev(D,M) be the revenue of (not necessarily buy-k incentive-compatible) mechanism
M when the buyer is allowed to buy up to k menu entries from M,

• BuyManyRev(D) be the revenue of the optimal buy-many incentive-compatible mechanism.

Proof of Claim:1. If a mechanism M is buy-k incentive-compatible for some k, it is also buy-k′

incentive-compatible for all k′ ≤ k. This follows from the fact that the buyer can always buy the
empty lottery k − k′ times and the mechanism must guard against such deviations. Thus, the
best buy-k mechanism can perform no better than the best buy-(k − 1) mechanism, proving the
claim. The last inequality follows from the fact that bundling is a buy-many incentive compatible
mechanism.

2.2 Menu Gaps: An Intermediary Measure

We now present the definition of gapki (X,Q) and MenuGapk(X,Q), the quantities that will serve
as intermediaries in proving Theorems 1, 2.

Definition 1. Let X = {xi}
N
i=1 be a sequence of monotone valuation functions and Q = {~qi}

N
i=0 ∈

[0, 1]n be a sequence of vectors with ~q0 = ~0n. Then

gapki (X,Q) = min
j1,j2,...,jk<i

xi(~qi)− xi( ~Lot(~qj1 , ~qj2 , . . . , ~qjk)). (1)

Furthermore, define

MenuGapk(X,Q) =

N
∑

i=1

gapki (X,Q)/xi([n]), (2)

where xi([n]) is the valuation of a buyer of type xi for the grand bundle of items.
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In particular, if X = {xi}
N
i=1 are additive valuations, then they can be represented as vectors

X = {~xi}
N
i=1 ∈ R

n
≥0. One can check that the following definition is a special case of Definition 1.

Definition 2. Let X = {~xi}
N
i=1 ∈ R

n
≥0, Q = {~qi}

N
i=0 ∈ [0, 1]n be sequences of vectors with ~q0 = ~0n.

Then

gapki (X,Q) = min
j1,j2,...,jk<i

~xi · (~qi − ~Lot(~qj1 , ~qj2 , . . . , ~qjk)). (3)

Furthermore, define

MenuGapk(X,Q) =

N
∑

i=1

gapki (X,Q)/||~xi||1, (4)

These measures are generalizations of similar notions introduced in [19] and further developed
by [26]. For the case where k = 1, we exactly recover these earlier definitions. In Definition 1, it is
useful to think of the first sequence of vectors X as possible valuation vectors and the sequence of
vectors Q as possible allocation vectors of a mechanism, with the built-in option of not participating.
Thus, one way to interpret Equation 1 is to think of pi = gapik(X,Q) as the largest price a seller
can post on menu entry (pi, ~qi) so that a buyer with valuation xi will prefer that single menu entry
to any subset of at most k “previous” options for free.

2.3 Some Useful Properties

We prove a simple, useful property of the ~Lot(Λ) function. Namely, that if Λ = {~q1, ~q2, . . . , ~qk},
then ~Lot(Λ) dominates the vector consisting of coordinate-wise max entries of the vectors in Λ.

Claim 4. If Λ = {~q1, ~q2, . . . , ~qk}, ~qi ∈ [0, 1]n for all i, then ~Lot(Λ)j ≥ maxi∈[k]{qij} for all j ∈ [n].

Proof. Fix j ∈ [n]. Assume wlog q1j = maxi∈k qij . It is easy to see that (1−q1j)·(1−
∏k

j=2(1−qij)) ≥

0 since each term on the left is non-negative. Expanding it we get that 1− q1j −
∏k

j=1(1− qij) ≥ 0.

Rewriting gives ~Lot(Λ)j ≥ q1j.

We also prove a simple, useful property of the MenuGapk(X,Q) function. Namely, that it is
without loss of generality to remove points whose contributions to the sum are non-positive.

Claim 5. Let X,Q be sequences as defined in Definition 1, and X ′ ⊆ X,Q′ ⊆ Q be the sub-sequences
that result from removing any pair of points (~xi, ~qi) whose gapki (X,Q) ≤ 0. Then

MenuGapk(X,Q) ≤ MenuGapk(X ′, Q′).

Proof. Consider the earliest integer i such that gapki (X,Q) ≤ 0. Since it is non-positive, removing
(xi, ~qi) from (X,Q) will weakly increase the sum of the gaps up to i. Moreover, if ~qi was helping
set the gap for some later (xj , ~qj), then gapkj (X

′, Q′) ≥ gapkj (X,Q) since by removing ~qi we are
reducing the number of earlier points to compare to. Therefore, removing any point with negative
gap can only weakly increase the menu gap of the resulting subsequence.
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3 Bundling Approximates the Optimal Buy-N Revenue

As highlighted in the introduction of the paper, the first part of the proofs of Theorems 1, 2 will
be via the surrogate quantity, MenuGapk(X,Q). We will first show that for any distribution over
n items D, there exists two sequences of points (X,Q) such that MenuGapk(X,Q) upper bounds
the ratio between the revenue-optimal buy-k mechanism for D and the revenue from bundling, up
to a O(k) factor:

Lemma 6. For any distribution of monotone valuations D over n items and any buy-k incentive
compatible mechanism M for D, there exists a sequence of valuations X = {xi}i=1 ⊆ X , and a
sequence of allocations Q = {~qi}i=0 ⊆ M (starting with ~q0 = (0, . . . , 0)) such that

MenuGapk(X,Q) ≥
BuykRev(D,M)

9k · BRev(D)
.

Next we will show that this quantity itself is upper bounded for all pairs of sequences (X,Q).
In particular, when the buyer has additive valuations, we show that the quantity is upper bounded
by n. The proof of Theorem 1 then follows directly.

Lemma 7. For all sequences X,Q as defined in Definition 2, coming from an additive valuation
function, it holds that MenuGapn(X,Q) ≤ n.

Theorem 1. For any distribution D over n items for a single, additive buyer, it holds that

O(n2) · BRev(D) ≥ BuynRev(D).

Proof of Theorem 1. Follows directly from Lemma 6 by choosing M to be the revenue-optimal
buy-k incentive-compatible mechanism and Lemma 7 (setting k = n).

The proof of Theorem 2 is similar, but only a weaker version of Lemma 7 can be proved:

Theorem 2. For any distribution D over n items, for a single buyer with a monotone valuation,
it holds that

O(n2 · 2n) · BRev(D) ≥ BuynRev(D).

Lemma 8. For all sequences X,Q as defined in Definition 1, coming from a monotone valuation
function, it holds that MenuGapn(X,Q) ≤ n · 2n.

Proof of Theorem 2. Follows directly from Lemma 6 by choosing M to be the revenue-optimal
buy-k incentive-compatible mechanism and Lemma 8 (setting k = n).

Note that in Lemma 6, the number of times the buyer can interact with the mechanism, k, may
be different than the number of items n for sale. However, we are only able to prove Lemma 8 for
the case where k ≥ n. We hope future work can address the question of what happens when k < n.
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3.1 Menu Gap Approximately Upper Bounds Revenue Gap: Proof of Lemma 6

The proof of Lemma 6 is split into two parts. In the first part, we will any buy-k incentive-
compatible mechanism for D and massage it down to a sub-menu of interest whose revenue remains
close to the original one. The sub-menu itself may not be buy-k incentive-compatible. However,
the key to approximately preserving the revenue will be in just removing entries from the original
mechanism and not modifying existing ones. In the second part, we will show how to use an
appropriate sub-menu in order to construct the desired sequence of points. The proof of Lemma 6
is inspired on a similar construction of [26].

3.1.1 Finding a Sub-menu of Interest

Let M = {(pi, ~qi)}i=1 be a buy-k incentive compatible mechanism for distribution D, where (pi, ~qi)
denotes the price and expected allocation of the i-th option of the menu.

Claim 9. Let M be a buy-k incentive-compatible mechanism for D, Mc ⊆ M be the sub-menu of
M that only offers options of price at least c. Then BuykRev(D,Mc) ≥ BuykRev(D,M)− c.

Proof. If a buyer with valuation x chose a menu entry (p, ~q) from the original menu M with p ≥ c,
they will purchase the same menu entry in Mc since (p, ~q) was utility-maximizing and no new menu
entries were introduced. If p < c, it is possible that the buyer would purchase some other option
(p′, ~q′) (or combination of options). Regardless, the loss in revenue from that buyer is bounded by
cf(x). Let Sc be the set of valuation vectors that preferred a menu entry in M priced at p < c.
Then the total loss in revenue is at most c

∑

x∈Sc
f(x) ≤ c.

Claim 10. Let M be a mechanism, and let M1,M2 ⊆ M be sub-menus of M defined as follows:

• M1 has all options whose price pi ∈ ∪∞
i=0[c · (2k)

2i, c · (2k)2i+1).

• M2 has all options whose price pi ∈ ∪∞
i=0[c · (2k)

2i+1, c · (2k)2i+2).

Then maxi=1,2 Buy
kRev(D,Mi) ≥ BuykRev(D,M)/2.

Proof. Because M1 ∪M2 = M, observe that

BuykRev(D,M) ≤ BuykRev(D,M1) + BuykRev(D,M2).

This is because any buyer with valuation x who purchases an option from M1 when presented the
menu M will buy the same option when only presented M1. By a simple averaging argument, the
better of the two menus must get revenue at least half of the revenue of the original menu.

Lemma 11. There exists a menu M such that

• All prices are at least c.

• All prices belong to the set of intervals
⋃∞

i=0[c · (2k)
2i+a, c · (2k)2i+a+1) for an a ∈ {0, 1}.

• BuykRev(D,M) ≥ BuykRev(D)−c
2 .

Proof. Take the initial buy-k incentive-compatible menu M, apply Claim 9 to obtain a menu M′

that satisfies the first bullet point. Take the menu M′ and apply Claim 10 to obtain a menu M′′

that immediately satisfies the first and second bullet points. Finally, due to the revenue guarantees

of Claims 9, 10, we have that BuykRev(D,M′′) ≥ BuykRev(D,M′)
2 ≥ BuykRev(D,M)−c

2 .
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3.1.2 Construction of the Sequences X,Q

In this subsection we will show how to use the sub-menu found in the previous subsection to
construct the sequences (X,Q) of interest who would witness

MenuGapk(X,Q) ≥ O(BuykRev(D,M)/BRev(D)).

Consider the menu M′′ from Lemma 11. Let Bj ⊆ M′′ be the sub-menu that has all menu
entries priced in [c · (2k)2j+a, c · (2k)2j+a+1) for the same a ∈ {0, 1} from Lemma 11. We say a
valuation x ∈ Bj if the menu option (p(x), ~q(x)) ∈ Bj. Let xj be the valuation on Bj such that
xj([n]) ≤ (1 + δ)x([n])∀x ∈ Bj. We call valuation xj the representative of bin Bj.

Claim 12. Pr(x ∈ Bj) ≤
BRev(D)(1+δ)

xj([n])
.

Proof. Consider the mechanism that sells the grand bundle at price xj([n])/(1 + δ). Since any
valuation on Bj has value at least that much for the grand bundle, the revenue of this menu is at
least Pr(x ∈ Bj)xj([n])/(1 + δ). But this is a grand bundling menu and is thus its revenue is at
most BRev(D).

Let (X,Q) be the sequence defined by the choice of xj and their respective allocations in M,
~qj.

Claim 13.
gapk

j (X,Q)

xj([n])
≥

pj
2·xj([n])

≥
Pr(x∈Bj)pj

2·BRev(D)(1+δ) .

Proof. Because the initial mechanism M∗ was buy-k incentive-compatible, we know that for any
previous set of k options ~qj1, . . . , ~qjk ,

xj(~qj)− pj ≥ xj( ~Lot(~qj1 , . . . , ~qjk))−
k

∑

i=1

pji.

We can rewrite this as

gapkj (X,Q)

xj([n])
≥

pj −
∑k

i=1 pji
xj([n])

.

Recall by our choice of points and the fact that ji < j, pj ≥ 2k · pji . Therefore, the right hand is
at least

pj
2xj([n])

. The second inequality comes from Claim 12.

We are now ready to prove Lemma 6.

Proof of Lemma 6. Let us first observe that

BuykRev(D,M′′) =
∑

j

∑

x∈Bj

p(x)f(x) ≤
∑

j

Pr(x ∈ Bj)2kpj . (5)

Recall that the price any valuations x ∈ Bj , its price p(x) is no greater than 2kpj . Therefore,
the inequality follows. Moreover, from Claim 13 we get that

MenuGapk(X,Q) =
∑

j

gapkj (X,Q)

xj([n])
≥

∑

j

Pr(x ∈ Bj)pj
2 · BRev(D)(1 + δ)

. (6)
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Applying Eq. 5 together with Lemma 11 we get that

∑

j

Pr(x ∈ Bj)pj ≥
BuykRev(D,M′′)

2k
≥

(BuykRev(D,M)− c)

4k
. (7)

Putting Eqs. 6, 7 we get that

MenuGapk(X,Q) ≥
(BuykRev(D,M)− c)

8k · BRev(D)(1 + δ)
. (8)

Let c = BuykRev(D,M)/100, δ = 1/100 in Equation 8. Therefore,

99 · BuykRev(D,M)

101 · 8k · BRev(D)
≥

BuykRev(D,M)

9 · k · BRev(D)
.

3.2 Menu Gap is Finite when k ≥ n: Proof of Lemmas 7, 8

The proof of Lemmas 7, 8 will be similar. We introduce some common notation to both Lemmas
before proving each of them individually. Given a sequence of points Q, let Qi be the sequence trun-
cated at the i-th point, that is to sayQi = {~q0, ~q1, . . . , ~qi}. Let ~mi = (max~qi∈Qi

{~qi,1}, . . . ,max~qi∈Qi
{~qi,n})

be the n-dimensional vector whose entries are the largest coordinates among the points in Qi.

3.2.1 Proof Lemma 7

In this subsection we abuse the fact that for additive buyers, we can think of their valuation function
x as an n-dimensional vector ~x = (x1, . . . , xn) and x(~q) = ~x · ~q.

Claim 14. For any i, gapni (X,Q)/||xi||1 ≤
∑n

d=1 max{~qi,d − ~mi−1,d, 0}.

Proof. Let ~xi, ~qi be given. Since gap is defined to be the minimum over all pairs of previously placed
points, we can just upper bound it by witnessing its value with earlier points. Let i∗1, i

∗
2, . . . , i

∗
n be

the indices such that:

• i∗1, i
∗
2, . . . , i

∗
n < i,

• ~qi∗
d
,d = ~mi−1,d∀d ∈ [n].

That is to say, {i∗d}
n
d=1 are the indices of the points that witness that ~mi−1 is indeed the coordinate-

wise max of all points in Qi−1. Then

gapni (X,Q)/||~xi||1 ≤
~xi

||~xi||1
· (~qi − ~Lot(~qi∗1 , ~qi∗2 , . . . , ~qi∗n)).

Recall that
~Lot(~qi∗1 , ~qi∗2 , . . . , ~qi∗n)d ≥ max{~qi∗1 , ~qi∗2 , . . . , ~qi∗n}d ≥ ~mi−1,d.

Therefore,
~qi,d − ~Lot(~qi∗1 , ~qi∗2 , . . . , ~qi∗n)d ≤ ~qi,d − ~mi−1,d,
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for all d ∈ [n]. Therefore, for any choice of ~xi, it will be true that

gapni (X,Q)/||~xi||1 ≤
~xi

||~xi||1
· (~qi − ~Lot(~qi∗1 , ~qi∗2 , . . . , ~qi∗n))

=

n
∑

d=1

~xi,d
||~xi||1

(~qi,d − ~Lot(~qi∗1 , ~qi∗2 , . . . , ~qi∗n)d)

≤
n
∑

d=1

~xi,d
||~xi||1

(~qi,d − ~mi−1,d)

≤
n
∑

d=1

max{0, ~qi,d − ~mi−1,d}

This proves the claim (Naturally, ~xi,d ≤ ||~xi||1 for all d).

Proof of Lemma 7. For any pair of sequences (X,Q) coming from an additive valuation function,

MenuGapn(X,Q) =

N
∑

i=1

gapni (X,Q)/||xi||1

≤
n
∑

d=1

N
∑

i=1

(max{~qi,d − ~mi−1,d, 0})

≤
n
∑

d=1

N
∑

i=1

(max{~mi,d − ~mi−1,d, 0})

≤
n
∑

d=1

N
∑

i=1

(~mi,d − ~mi−1,d)

≤ n.

The first inequality follows from Claim 14. For the second inequality, first note that for any
fixed d, by definition ~qi,d ≤ ~mi,d, with equality only if ~qi,d ≥ ~qi′,d for all i′ < i. But note also that by
definition ~mi,d − ~mi−1,d ≥ 0. Therefore max{~mi,d − ~mi−1,d, 0} ≤ ~mi,d − ~mi−1,d. The last inequality
follows from observing that the final sum across each coordinate telescopes. Since ~qi,d ≤ 1, the sum
is at most 1 per coordinate.

Observation 15. Setting both sequences (X,Q) equal to the standard basis of R
n shows that

Lemma 7 is tight.

3.2.2 Proof of Lemma 8

In this subsection we assume the valuation function is monotone, i.e. v(S) ≥ v(T ) whenever T ⊆ S.
We will show that for such valuation classes, MenuGapn(X,Q) ≤ 2n · n for all sequences (X,Q).
To prove this, we’ll make use of the following lemma.

Claim 16. For any monotone valuation v and two vectors p, q ∈ [0, 1]n with p ≤ q coordinate-wise
(i.e., pi ≤ qi for all i ∈ [n]), we have v(p) ≤ v(q).
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Proof. To simplify the proof, observe that we only need to consider the case where p and q differ
in exactly one coordinate (i.e., pi = qi for i ∈ [n− 1] and pn < qn). We can then apply this result
(up to) n times in order to conclude our desired result.

Since we can partition the powerset of [n] into sets which contain n and sets which don’t contain
n, we can rewrite v(~p) as:

v(~p) =
∑

A⊆[n]

Pr(~p,A) · v(A) =
∑

B⊆[n−1]

Pr(~p,B ∪ {n}) · v(B ∪ {n}) +
∑

B⊆[n−1]

Pr(~p,B) · v(B) (9)

This implies that v(~q)− v(~p) = A+B, where A,B are defined as:

A =
∑

B⊆[n−1]

[Pr(~q,B ∪ {n})− Pr(~p,B ∪ {n})] · v(B ∪ {n}) (10)

B =
∑

B⊆[n−1]

[Pr(~q,B)− Pr(~p,B)] · v(B) (11)

Our goal is to show A+B ≥ 0. To do this, let’s first find explicit expressions of [Pr(~q,B ∪ {n})−
Pr(~p,B ∪ {n})] and [Pr(~q,B)− Pr(~p,B)]. We have:

[Pr(~q,B ∪ {n})− Pr(~p,B ∪ {n})] = (qn − pn)
∏

i∈B

qi ·
∏

i6∈B∪{n}

(1− qi) (12)

and

[Pr(~q,B)− Pr(~p,B)] = [(1− qn)− (1− pn)]
∏

i∈B

qi ·
∏

i6∈B∪{n}

(1− qi) (13)

by direct calculation (and noting that pi = qi for all i ∈ [n − 1]). Thus, we observe that the two
probabilities are additive complements of each other. Hence, if we denote pB = [Pr(~q,B ∪ {n}) −
Pr(~p,B ∪ {n})], we can write

v(~q)− v(~p) =
∑

B⊆[n−1]

pB · [v(B ∪ {n})− v(B)]. (14)

But we know the right hand side is at least 0 since v(B ∪ {n}) ≥ v(B) by monotonicity. Hence, we
can conlude v(~q)− v(~p) ≥ 0 =⇒ v(~p) ≤ v(~q).

We are now ready to prove Lemma 8.

Proof of Lemma 8. Recall that, for all i, we can choose i∗1, . . . , i
∗
n < i such that ~qi∗

d
,d = ~mi−1,d for all

d ∈ [n]. Thus, by monotonicity and Claim 16, we have maxj1,...,jn<i v( ~Lot(qj1 , . . . , qjk)) ≥ v(~mi−1).
Additionally, by definition of ~mi and monotonicity (combined with Claim 16), we have v(~qi) ≤
v(~mi). Consequently, we can write

gapki (X,Q)

vi([n])
= min

j1,...,jk<i

vi(~qi)− vi( ~Lot(~qj1 , . . . , ~qjk))

vi([n])
≤

vi(~mi)− vi(~mi−1)

vi([n])
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since vi are assumed to be monotone. Writing out the definition of vi, we know

vi(~mi)− vi(~mi−1)

vi([n])
=

∑

A∈2[n]

vi(A)

vi([n])
· [Pr(~mi, A)− Pr(~mi−1, A)]

≤
∑

A∈2[n]

|Pr(~mi, A)− Pr(~mi−1, A)|

since vi(A) ≤ vi([n]) by monotonicity. Combining this with above yields

MenuGapn(X,Q) =

N
∑

i=1

gapni (X,Q)

vi([n])

≤
∑

A∈2[n]

N
∑

i=1

|Pr(~mi, A)− Pr(~mi−1, A)|

It remains to show
∑N

i=1 |Pr(~mi, A)−Pr(~mi−1, A)| ≤ n for all A ∈ 2[n]. It would then follow directly
that MenuGapn(X,Q) ≤ 2n · n. Fix a set A and consider each term |Pr(~mi, A) − Pr(~mi−1, A)|
individually.

Let ~mi = ~m(0), ~m(1), . . . , ~m(n) = ~mi−1 be a sequence of vectors where ~m(j) matches ~mi on the
first j coordinates and matches ~mi−1 on the last n− j coordinates. By the triangle inequality,

|Pr(~mi, A)− Pr(~mi−1, A)| ≤
n
∑

j=1

|Pr(~m(j), A) − Pr(~m(j−1), A)|.

But by definition of Pr(~q, S), we know

|Pr(~m(j), A)− Pr(~m(j−1), A)| =

∣

∣

∣

∣

∣

∣

∏

ℓ∈A

~m
(j)
ℓ

∏

ℓ 6∈A

(1− ~m
(j)
ℓ )−

∏

ℓ∈A

~m
(j)
ℓ

∏

ℓ 6∈A

(1− ~m
(j)
ℓ )

∣

∣

∣

∣

∣

∣

≤ ~mi,j − ~mi−1,j

since ~m(j) and ~m(j−1) differ only in the jth coordinate and the remaining probabilities are at most
one. Hence, combining with the above, we have

|Pr(~mi, A)− Pr(~mi−1, A)| ≤
n
∑

j=1

~mi,j − ~mi−1,j.

Summing over i ∈ [N ], we see that the sum telescopes:

N
∑

i=1

|Pr(~mi, A)− Pr(~mi−1, A)| ≤
n
∑

j=1

N
∑

i=1

~mi,j − ~mi−1,j ≤
n
∑

j=1

~mN,j ≤ n,

since ~mN,j ≤ 1 for all j ∈ [n].
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4 Few Tickets Do Not Suffice: Proof of Theorem 3

In this section we show that if k ≤ n1/2−ε, then there exists a distribution D over n items for which
there is an exponential gap in n (up to poly(n)) between BRev(D) and BuykRev(D), the revenue
attained by the optimal buy-k mechanism.

Theorem 3. If k ≤ n1/2−ε for some ε > 0, then there exists an additive valuation function D over
n items such that for a single buyer

BuykRev(D)

BRev(D)
≥

exp (Ω(nε))

2n2
.

The proof of Theorem 3 will be broken down in three steps. Firstly, we will describe the
pair of sequences (XL, QL) that we use (Subsection 4.1.1). The construction will make use of a
combinatorial Lemma about cover-free sets from [21]. Next, we will show that for that instance,

MenuGapk(XL, QL) ≥ exp(Ω(nε))
2n2 when k ≤ n1/2−ε (Lemma 20). In the final step, we will show how

to construct a distribution D such that BuykRev(D)/BRev(D) ≥ MenuGapk(XL, QL) (Lemma 21).
The proof of Lemma 21 will use ideas from [19].

Before we delve into the proof of Theorem 3, we analyze its implications for mechanisms with
polynomial menu size. We invoke the following Corollary from [19].

Corollary 17 (Restated from [19]). Consider any mechanism M with menu size M , then for any
distribution D ∈ R

n

M · BRev(D) ≥ Rev(D,M).

This Corollary, combined with Theorem 3 imply the following Corollary.

Corollary 18. Let M be a buy-k mechanism with menu size M = poly(n), then there exists a
distribution D ∈ R

n such that for any single, additive buyer

BuykRev(D)

Rev(D,M)
≥

exp (Ω(nε))

poly(n)
.

In other words, Corollary 18 rules out all polynomial-sized mechanisms M as candidates for
good approximations to BuykRev(D) for the case k ≤ n1/2−ε.

4.1 Proof of Theorem 3

Throughout this Subsection we again abuse the fact that for additive valuation functions x, we can
think of the valuation as an n-dimensional vector ~x = (x1, . . . , xn).

4.1.1 Part 1: Description of the Instance

In order to describe the instance we consider, we first need to introduce the concept of k-cover-free
families of sets.

Definition 3. A family of sets F is called k-cover-free if A0 6⊆ A1 ∪ A2 ∪ · · · ∪ Ak holds for all
distinct A0, A1, . . . , Ak ∈ F .
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We will be interested in constructing the largest possible family of sets that is k-cover-free. Let
T (n, k) denote the maximum cardinality of a k-cover-free family of sets F . We use the following
bound from [16], attributed there to [21].

Theorem 19 ([21]). For all n, k, it holds that

Ω

(

1

k2

)

≤
log(T (n, k))

n
.

In other words, there exists a family of sets Fk that is k-cover-free and |Fk| ≥ 2
Ω
(

n

k2

)

.

We will use k-cover-free sets to construct pairs of sequences that have large menu gaps. Then,
we will take this pair of sequences and show how to obtain a n-dimensional distribution whose
revenue gap is lower bounded by the menu gap of the underlying pair of sequences. We are now
ready to define the instance of interest. Assume k ≤ n1/2−ε.

Definition 4. Let FL be a k-cover-free family of sets of maximal size, i.e., such that |FL| =
T (n, k) = exp

(

Ω(n/k2)
)

. Set ~xLi = ~qLi = ~eAi
∀Ai ∈ FL, where by ~eS we denote the n-dimensional

indicator vector for set S.

Observe that unlike other constructions (e.g., [19], [26]) the number of points in each pair of
sequences is finite. Thus this instance cannot witness an infinite revenue gap, but we claim it can
witness an exponential revenue gap.

4.1.2 Part 2: The Instance has Large Menu Gap

In the next step of the proof of Theorem 3 we will show that the constructed instance has large
menu gap.

Claim 20. For the instance described in Definition 4, it holds that

MenuGapk(XL, QL) ≥
|FL|

n
.

Proof.

gapki (X
L, QL) = min

j1,j2,...,jk≤i

~eAi

|~eAi
|
·
(

~eAi
− ~Lot(~eAj1

, ~eAj2
, . . . , ~eAjk

)
)

≥ min
j1,j2,...,jk 6=i

~eAi

|~eAi
|
·
(

~eAi
− ~Lot(~eAj1

, ~eAj2
, . . . , ~eAjk

)
)

≥ min
j1,j2,...,jk 6=i

~eAi

|~eAi
|
·
(

~eAi
− ~e∪k

ℓ=1Ajℓ

)

≥ min
j1,j2,...,jk 6=i

|Ai| − |Ai ∩
(

∪k
ℓ=1Ajℓ

)

|

|Ai|

= min
j1,j2,...,jk 6=i

|Ai \
(

∪k
ℓ=1Ajℓ

)

|

|Ai|
≥

1

n
.

The first inequality observes that the gap only worsens when we allow for all other points to
be used, rather than just those that come before i. The second inequality observes that, since all
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vectors inside the argument have integral coordinates, the output is the indicator vector over the
union of the inputs. The third inequality observes that for any two sets S, T, ~eS ·~eT = |S ∩T |. The
fourth inequality restates the previous line. The last inequality uses |Ai| ≤ n in the denominator
and the fact that FL is k-cover free, thus Ai \

(

∪k
ℓ=1Ajℓ

)

6= ∅ for any choice of Ajℓ in the numerator.

Thus, gapki (X
L, QL) ≥ 1/n for all i ∈ FL. Therefore, MenuGapk(XL, QL) ≥ |FL|

n .

4.1.3 Part 3: from Sequences to Distributions

We now present the final piece for the proof of Theorem 3. Lemma 21 states that given a pair of
sequences (X,Q) of a certain form, we can find a distribution whose revenue gap is at least as large
as MenuGapk(X,Q). This is a slight generalization of a lemma from cite [19]. The experienced
reader will notice that our construction uses many similar ideas. Their work makes no assumptions
on the sequences X,Q, but only works for the case of k = 1.

Lemma 21. Let (X,Q) be a pair of sequences such that ~xi ∈ {0, 1}n, ~qi ∈ {0, 1}n for all i. Moreover,
suppose gapki (X,Q) ≥ 1

n for all i. Then, there exists a distribution D ∈ R
n such that for any integer

k,

BuykRev(D)

BRev(D)
≥

MenuGapk(X,Q)

2n
.

Proof. In order to construct a distribution D we need both a valuation x̂ and a density function
f(hatx). Let Ci = (n + 1)2i. Then we define distribution D by setting ~̂xi = ~xi · Ci, f(~̂xi) =

1
Ci . It

is clear that this defines a valid distribution, i.e., f(~̂xi) ≥ 0 and
∑

i f(
~̂xi) ≤ 1. Place the rest of the

probability mass at a valuation of ~0n.
We will now show that BuykRev(D) ≥ MenuGapk(X,Q) and BRev(D) ≤ 2n. Consider the

menu M which offers allocation ~qi at price pi = gapki (X
L, QL) ·Ci. Let Mi be the sub-menu of M

consisting of the first i menu entries and the (0,~0n) entry. We will first claim that M is a buy-k
menu.

Claim 22. Any valuation x̂i prefers to purchase the menu entry (pi, ~qi) to any other combination
of k menu entries from Mi.

Proof. First, observe that if the valuation x̂i purchases at least one copy of (pi, ~qi), because ~xi = ~qi
and ~qi ∈ {0, 1}n, there is no value in purchasing any other menu entry. This is because a buyer
with valuation x̂i is only interested in the items in the support of ~qi, all of which are given to the
buyer with probability 1. There is no benefit from purchasing any other lottery. Thus, any other
reasonable deviations involve buying up to k menu entries from Mi−1. The utility from purchasing
any such combination is upper bounded by x̂i · ~Lot(~qi1 , ~qi2 , . . . , ~qik). The utility from purchasing

(pi, ~qi) is ~̂xi · ~qi − pi. By choice of pi, ~̂xi we get that this is

Ci~xi · ~qi − Ci · gap
k
i (X

L, QL) ≥ Ci~xi · ~Lot(~qi1 , ~qi2 , . . . , ~qik),

where the inequality follows from recalling the definition of gapik(X,Q) (and cancelling the Ci).

The next thing we need to show is that the valuation will not prefer to buy any option on
M\Mi. The utility from purchasing the preferred option is at most Ci ·n. The cost of any further
option is at least Ci+1 · gap

k
i+1(X

L, QL). By assumption, gapki (X,Q) ≥ 1
n . Therefore, the price of
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any option with j > i is at least Ci+1/n. By construction, the price alone for any option (pj, ~qj)
with j > i is already greater than the possible utility the buyer could get. Thus, purchasing such
menu entries would give them non-positive utility. Therefore, a valuation x̂i will purchase exactly
one copy of the menu entry (pi, ~qi). The revenue of mechanism M is

∑

i f(x̂i)pi =
∑

i gap
k
i (X,Q) =

MenuGapk(X,Q). Since M is a buy-k menu, BuykRev(D) ≥ BuykRev(D,M).
All that remains is to show that the revenue of bundling is at most 2n. Note that the value a

valuation x̂i has for the bundle is at most nCi ≤ Ci+1. Thus, any price between (Ci−1 ·|~xi−1|, Ci ·|~xi|]
will sell to the same set of bidders. Since we want to maximize revenue, it only makes sense to
consider prices bi = Ci · |~xi| for all i. Consider any such price bi for the bundle. The revenue is
bi · Prx̂j∼D(Cj |~xj | ≥ bi) = bi · Prx̂j∼D(Cj ≥ Ci) = bi ·

∑

j≥i f(x̂j) = bi ·
2n

Ci(2n−1) ≤ 2bi ·
1
Ci

≤ 2n.

4.1.4 Part 4: Putting it all together

We are now ready to present the Proof of Theorem 3.

Proof of Theorem 3. Consider the instance (XL, QL) from Definition 4. By Claim 20, the instance
satisfies MenuGapk(XL, QL) ≥ |FL|/n and has only integral vectors. By Lemma 21, we can turn

the pair of sequences into a distribution D with BuykRev(D)/BRev(D) ≥ MenuGapk(XL,QL)
2n . Thus,

BuykRev(D)

BRev(D)
≥

|FL|

2n2
.

Finally, for k ≤ n1/2−ε, note that |FL| = exp(Ω(nε)). Therefore, the right hand side becomes
exp(Ω(nε))

2n2 .

5 Conclusion

In this paper we initiate the study of fine-grained buy-many mechanisms. The motivation for
our work stems from a simple observation: there exist distributions for which the buy-one rev-
enue gap Rev(D)/BRev(D) is unbounded, but for all distributions the buy-many revenue gap
BuyManyRev(D)/BRev(D) is finite. There is a wide worst-case revenue gap between optimal buy-
many and optimal buy-one mechanisms, which begs the question: how much must we constraint
the seller’s choice of mechanism until the revenue gap becomes finite for all distributions? In order
to answer this question, we introduce the concept of buy-k mechanisms, those where the buyer can
buy any multi-set of up to k many menu choices. We show that buy-n mechanisms are not much
better than bundling. For all distributions D, the revenue from bundling recovers a O(n2) fraction
of the optimal buy-n revenue when the buyer is additive and a O(2n · n2) fraction of the optimal
buy-n revenue when the buyer has an arbitrary monotone valuation. Our proof uses a recent frame-
work proposed in [19, 26] for buy-one mechanisms. While in those works, the framework has been
used to produce examples of inapproximable distributions, our work shows that it can be used to
prove approximation guarantees. Moreover, all our results hold for the case of an adaptive buyer.

There are numerous questions for future work:

• We have already outlined one interesting question for future work, to prove or disprove Con-
jecture C. Even a slight weakening of the conjecture, just showing that for every k there exists
some Dk such that BuykRev(Dk) > Buyk+1Rev(Dk) would be interesting. We discuss our
candidate instance for Conjecture 1 in Appendix C.
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• We showed that restricting the seller to be buy-n incentive compatible sufficed to obtain a
O(2n · n2)-approximation via bundling. It would be interesting if the exponential bound is
tight in general; if it is, it would be interesting to characterize the distributions for which a
polynomial approximation is possible.

• It would be interesting to understand the role of k in whether or not the revenue gap is
finite. Concretely, we would like to answer the following question: for a given n, what is the
smallest k for which BuykRev(D)/BRev(D) is finite for all D? Ultimately, we would like to
understand the exact trade off between k, n in the revenue gap, answering Open Question 1.

• Future work could also follow the steps of [14] in understanding whether or not fine-grained
buy-many mechanisms satisfy revenue monotonicity, or whether or not fine-grained buy-many
mechanisms admit (1 − ε)-approximations via finite-sized mechanisms (and what role k has
in answering any of these questions).

• Another interesting avenue would be to explore the power that buy-many or fine-grained buy-
many mechanisms have over product distributions. There is a long line of work with elegant
approximation results for the case of product distributions, but progress towards polynomial
time approximation schemes has been slow. It is possible that restricting the seller’s choice
of mechanism improves the performance of existing algorithms or allows for the discovery of
more efficient ones.

• Finally, very little is understood computationally about buy-many and fine-grained buy-many
mechanisms. For instance, it is not immediately clear how to efficiently test whether or not
a mechanism is buy-many or buy-k for some k.

We hope that our results strengthen the importance of developing a deeper understanding of
fine-grained buy-many mechanisms.
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A Adaptive Buy-Many Mechanisms

In this Appendix, we briefly review another notion of buy-k mechanisms, which we refer to as adap-
tive buy-k mechanisms. We will define them to be analogues of the adaptive buy-many mechanisms
as defined in [12].

In the standard definition of buy-k mechanisms, formalized in section 2, the buyer may purchase
any multi-set of menu options of size up to k. In a randomized mechanism, this corresponds to
committing to up to k options and only after that receiving their outcome allocations; in other
words, the choice of, say, second option, is not a function of probabilistic outcomes of the lottery
for the first option. This is formally captured in our definition of the function ~Lot(·).

We can naturally also consider a variant of this definition that allows for adaptively choosing the
options to purchase, based on the probabilistic outcomes of the lotteries for the prior options. In
this case, the buyer can commit to a strategy of different ways of purchasing up to k options, while
seeing the outcome of each purchased lottery before purchasing the next option. A strategy can
be thought of as a 2n-ary tree of depth at most k where each node identifies what to purchase on
the next step depending on which items of the current purchased lottery “succeeded” or “failed”.
The buyer is then interested in a strategy with maximum expected payoff. Analogous to [12], we
say a mechanism M is adaptive buy-k incentive-compatible if for every valuation of the buyer, the
strategy with maximum expected payoff consists of buying a single option (see also Section 2 of
[12] for more details on this definition).

As was observed in [12], it is easy to see that since the set of non-adaptive buy-k options
are all valid strategies for an adaptive buy-k mechanism, any mechanism that is adaptive buy-k
incentive-compatible is also (non-adaptive) buy-k incentive-compatible (but the reverse direction is
not necessarily true). As a corollary of this, we can immediately extend our bounds in Theorems 1
and 2 to adaptive buy-k incentive-compatible mechanisms.

Finally recall that the construction of Theorem 3 presented in Section 4 gave a deterministic
mechanism. When a mechanism is deterministic, there is no distinction between adaptive and non-
adaptive strategies because there is no randomness in the allocation. Therefore, the lower bounds
of Theorem 3 also extend to the case of adaptive buyers.

B BRev(D) Can Not Give a Sublinear Approximation to BuykRev(D)

In this section we show that Theorem 1 can not be improved to a sublinear approximation factor
for any k.

Claim 23. There exists a distribution D such that for a single, additive buyer and any k,

BRev(D) ≤
2 · BuykRev(D)

n
.

Proof. Consider the distribution D from Example 15 of [17]. This distribution satisfies the fol-
lowing property: BRev(D) = 2,SRev(D) = n, where SRev(·) is the optimal revenue attained
by item-pricing. Observe that item-pricing is a buy-many incentive-compatible mechanism. Thus,
SRev(D) ≤ BuyManyRev(D). Moreover, from Claim 1 we know that for any k, BuyManyRev(D) ≤
BuykRev(D). Therefore,

BRev(D) ≤
2 · BuykRev(D)

n
.
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In particular, this shows that the ratio between BRev(D) and BuykRev(D) for additive buyers is
Ω(n), implying that Theorem 1 can not be substantially improved.

C Candidate Distribution for a Separation Between BuykRev(D)
and Buyk+1Rev(D)

In this section we present the instance D that proves Proposition 1 and that we posit could prove
Conjecture 1.

Example 2. Consider the following (correlated) distribution D over two additive items:

Pr(v1 = a, v2 = b) =











1/6 for a = 3, b = 4

1/6 for a = 4, b = 3

4/6 for a = 5, b = 7.

For the following proofs, we introduce some additional notation. Namely, we denote each
xj ∈ supp(D) as “buyer j” and let uj(Λ) = xj( ~Lot(Λ))−

∑

i=1 p(~qi) be the utility gained by buyer
j from purchasing the multi-set of allocations Λ. We also prove the following useful claim about
the utility function.

Claim 24. Let buyer j have a valuation of xj. Let Λ be some multi-set of allocations such that
qi ∈ Λ with multiplicity mi ≥ 0. Then, uj(Λ) is concave in mi.

Proof. We verify that the second derivative of the utility function for buyer j with respect to mi is
non-positive.

∂2uj(Λ)

∂m2
i

=
∂2

∂m2
i

(

xj( ~Lot(Λ))−
∑

i=1

p(~qi)

)

=
∂2

∂m2
i

(

∑

t=1

xjt · (1− (1− q1t)
m1 · ... · (1− qit)

mi)−
∑

i=1

p(~qi)

)

=
∑

t=1

−xjt · ln (1− qit)
2 · (1− q1t)

m1 · ... · (1− qit)
mi

≤ 0

since ~qi ∈ [0, 1] and xj ≥ 0.

Proof of Proposition 1. The LP formulation presented in [4] provides us with a simple way to
compute optimal mechanisms in the buy-one world. Naturally, for some fixed input distribution,
the LP constructs an allocation and payment function which maximizes expected revenue while
maintaining feasibility and buy-one incentive-compatibility constraints. Through this LP, we can
compute the revenue-optimal buy-one mechanism for the distribution D shown below:

M1 =











((0.2, 0.2), 1.4)

((1, 0), 4)

((1, 1), 11).
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This mechanism achieves an expected revenue (subject to truncation) of 8.233. More generally,
the previous program can be altered to compute the optimal buy-k mechanism for a distribution
D, albeit by introducing non-convex constraints to enforce buy-k incentive-compatibility. Despite
non-convexity, for k = 2, 3, 4, a non-convex optimizer was able to compute the revenue-optimal
buy-k mechanism. The annotated code samples for computing these optimal mechanisms can be
found here. For each respective value of k, the optimizer found the optimal expected revenue to be
[8.135, 8.096, 8.074], allowing us to conclude that Buy1Rev(D) > Buy2Rev(D) > Buy3Rev(D) >
Buy4Rev(D). Thus, we empirically validate Proposition 1.

We also conjecture that Example 2 is a good candidate for proving Conjecture 1. Fix some value
of k ≥ 1 and consider the following mechanism Mk = {t1 = ((αk, αk), 7αk), t2 = ((1, 0), 4), t3 =
((1, 1), 11)}, where αk is the smallest positive real root of the k-degree polynomial fk(x) = 12(1 −
(1− x)k)− 7k · x− 1. Intuitively, the value αk has the following property: when buyer 3 purchases
k copies of t1, they receive a utility of 1, which is the same utility gained from purchasing a single
copy of t3.

Claim 25. The mechanism Mk is buy-k incentive compatible for the distribution defined in Ex-
ample 2, and achieves expected revenue Rk = 8 + 7/6 · αk.

Proof. We first verify that Mk is a buy-k incentive-compatible mechanism for the distribution D.
By Claim 24 the utility of buyer j from purchasing a multi-set of allocations Λ is concave in the
number of identical allocations bought. Consequently, once we establish that a buyer achieves
non-positive utility from purchasing a multi-set Λ of allocations, we can conclude that purchasing
any multi-set Λ′ ⊇ Λ will similarly yield non-positive utility for the buyer.

We proceed by calculating the utility received by each buyer for each allocation and showing
that each buyer (weakly) maximizes their utility by purchasing a single ticket. First, consider buyer
1 who achieves u1((αk, αk)) = 0, u1((1, 0)) < 0, and u1((1, 1)) < 0. Second, consider buyer 2 who
achieves u2((αk, αk)) = 0, u2((1, 0)) = 0, and u2((1, 1)) < 0. By Claim 24, both buyer 1 and buyer
2 satisfy the buy-k incentive-compatibility constraints since they will always prefer to purchase
tickets t1 and t2, respectively, compared to another other multi-set of allocations.

For buyer 3, a slightly more careful analysis is required. We can first check that buyer 3
satisfies buy-one incentive-compatibility constraints since 0 < u3((αk, αk)) ≤ 1, u3((1, 0)) = 1, and
u3((1, 1)) = 1. We must additionally check that the higher order incentive-compatibility constraints
also hold since buyer 3 obtains positive utility from individually buying t1 and t2. Notice, t2 offers a
deterministic allocation, so purchasing multiple copies of this ticket does not yield additional utility.
This leaves two cases to analyze. Specifically, we can easily verify that u3({(αk, αk), (1, 0)}) = 1
and u3({(αk, αk)1, ..., (αk , αk)k}) = 1, where the last equality follows directly from the definition
of αk. Moreover, since αk is the smallest positive root of the polynomial fk(x), we know that
u3({(αk, αk)1, ..., (αk , αk)i}) < 1 for 1 ≤ i < k. By Claim 24, we can conclude that buyer 3
can achieve a utility of at most 1 by deviating from the ticket t3. Thus, buyer 3 satisfies buy-k
incentive-compatibility constraints.

The revenue of Mk follows from the fact that buyer j will purchase ticket tj and from the density
of the valuation classes. In the case where two allocations yield the same utility for a buyer, we
break the tie in favor of the seller. As a result, Rk = 2/3 · 11 + 1/6 · 4 + 1/6 · 7α = 8+ 7/6 ·αk.

Claim 26. For all integers k ≥ 1, the polynomial fk(x) always has a positive, real root below 1.
Moreover, the sequence {αk}

∞
k=1, where αk is the smallest positive, real root of fk(x), is strictly

decreasing.
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Proof. The proof follows via an inductive argument using the intermediate value theorem. First,
recognize that f is continuous and fk(0) = −1 for all k ≥ 1. By the proof of Proposition 1, we
have that f1(0.2) = 0 < 1. Let us inductively assume that fk(αk) = 0 and αk ≤ 1 for k ≥ 1. We
wish to show that fk+1(αk) > 0 as this would imply that fk+1(x) has a root 0 < αk+1 < αk by the
intermediate value theorem. To begin,

fk+1(αk) = −12(1 − (1− αk)
k+1) − 7αk · (k + 1) − 1

= −12(1 − αk)
k+1 + 12(1 − αk)

k − 7αk

= −12(1 − αk)
kαk − 7αk,

where the second equality follows from the fact that αk is a root of fk(x). From the reduced
form above, it suffices to show that αk < (1 − ( 7

12 )
1/k) to prove that fk+1(αk) > 0. This can be

accomplished by the following algebraic manipulations:

fk(1− (7/12)1/k) = −12((7/12)1/k)k − 7k · (1− (7/12)1/k) + 11

= −7k · (1− (7/12)1/k) + 4

> 0.

Since fk(1− (7/12)1/k) > 0, by the intermediate value theorem, it follows that αk < (1− ( 7
12 )

1/k).
Consequently, we find that fk+1(αk) > 0, finishing the proof that 0 < αk+1 < αk < 1.

Note that Claim 26 clearly implies that the sequence {Rk}
∞
k=1 is also strictly decreasing as it

is the same sequence as {ck}
∞
k=1 but shifted by a constant. Given Claims 25, 26, all that remains

is to show that BuykRev(D) = Rk for all k ≥ 2. Then since Buy1Rev(D) > R2 and the sequence
Rk is strictly decreasing, we would have that BuykRev(D) > Buyk+1Rev(D) for all k, proving
Conjecture 1. The principal obstacle to proving the missing step is find a technique to overcome
non-convexity of the optimization problem. We currently have a candidate mechanism, but the non-
convexity of the constraints hinders our ability to prove it is optimal via some notion of duality.
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