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abstract: To what degree is lifetime success determined by in-
nate individual quality versus external events and random chance,
whether success is measured by lifetime reproductive output, life
span, years that a tree spends in the canopy, or some other mea-
sure? And how do external events and chance interact with devel-
opment (survival and growth) to drive success? To answer these
questions, we extend our earlier age partitioning of luck in lifetime
outcomes in two ways: we incorporate effects of external environ-
mental variation, and we subdivide demographic luck into contri-
butions from survival and growth. Applying our methods to four
case studies, we find that luck in survival, in growth, or in environ-
mental variation can all be the dominant driver of success, depending
on life history, but variation in individual quality remains a lesser
driver. Luck in its various forms is most important at very early ages
and again close to the time when individuals typically first begin to be
successful (e.g., entering the canopy, reaching reproductivematurity),
but different forms of luck peak at different times. For example, a fa-
vorable year can boost a tree into the canopy, while luck in survival is
required to take full advantage of that fortunate event.

Keywords: reproductive skew, lifetime reproductive success, trait
variation, individual heterogeneity, individual stochasticity, environ-
mental variation.

Man mai longe lives weene
ac him lighet oft the wrench;
vair weder oft went into reene
veerlich maket hit his blench.

(“Man may expect long life but
the trick often deceives him;
fair weather often turns into

rain—suddenly it plays its trick”;
thirteenth-century English song)

Introduction

Howmuch is success driven by individual quality, howmuch
by external factors, and how much by random chance?
Two identical individuals will not lead identical lives,

even in identical circumstances. In a given year, one is
likely to grow a little more than the other, to have more
offspring than the other, to die before the other. Of course,
individuals are not identical. They differ in their traits and
other fixed attributes. Nonetheless, we and others have
shown that in constant identical environments, luck in sur-
vival/growth/reproduction has substantially more influ-
ence on lifetime measures of success such as life span or
lifetime reproductive output than differences in traits (Tul-
japurkar et al. 2009; Steiner et al. 2010; Caswell 2011; Steiner
and Tuljapurkar 2012; van Daalen and Caswell 2017; Har-
temink and Caswell 2018; Jenouvrier et al. 2018b; Snyder
and Ellner 2018; Broekman et al. 2020; Snyder et al. 2021).1

But researchers have not been able to evaluate how
strongly external factors influence success: how much does
environmental variation drive variation in success? Van
Daalen and Caswell (2020) analyze the effects of a stochasti-
cally varying fire environment, but in their analysis the con-
tribution of environmental variation was limited to the effect
of the environment state when an individual is born, while
effects of subsequent environmental variation are combined
with luck in demographic transitions. One of the goals of this
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1. What we have called luck and traits, Caswell and collaborators have
called individual stochasticity and heterogeneity, while Tuljapurkar and
collaborators refer to them as dynamic heterogeneity and fixed individual
differences.
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article is to study howmuch the variance in measures of life-
time success is inflated by ongoing environmental variation.
Does environmental variation influence success as much as
other forms of luck, or is it more like trait variation, a lesser
determinant? Moreover, we would like know how environ-
mental variation interacts with development: when in an in-
dividual’s life is it most important to get a good year? Are
there generic vulnerable periods in an individual’s life when
it is important to be lucky in both demographic transitions
and environmental conditions, or are the critical periods
for environmental luck and demographic luck different?
A second goal of this article is to dissect more finely the

sources of demographic luck. We previously found that
state trajectory luck—the result of taking different paths
through life—is typically the dominant source of variance
in lifetime reproductive output (Snyder and Ellner 2018;
Snyder et al. 2021). But is this large influence drivenmainly
by variance in the length of that life or by the variation in
state transitions (e.g., growth) during that life? Here, in ad-

dition to quantifying the effect of environmental variation,
we partition state trajectory luck into contributions from
survival and from transitions between states.
In this article, we build on the mathematical approach

in Snyder et al. (2021) to derive a partitioning of the var-
iance of individual lifetime success into contributions
from fixed trait variation, four forms of demographic luck
(birth state luck, fecundity luck, survival trajectory luck,
and growth trajectory luck), and two kinds of environmen-
tal luck (birth environment luck and environment trajec-
tory luck). Each of these contributions is further partitioned
into contributions at different ages.
Figure 1 shows a conceptual illustration of the different

kinds of luck, while table 1 gives examples of each. Birth
state luck measures howmuch variation in individual state
at birth contributes to variance in lifetime success—for ex-
ample, those born larger or earlier in the year may have
an advantage. Fecundity luck quantifies how much ran-
dom variation in number of offspring at a given age affects
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Figure 1: Conceptual figure showing how different forms of luck contribute to variance in lifetime success. The x-axis represents different
values of the individual state z, which in this example is individual size, while the y-axis represents different environment state values q:
every (z, q) represents a potential state in the megamatrix system. The two black lines represent two life trajectories, with one individual
starting at size 10 in environment 1 and the other individual starting at size 1 in environment 2. Circles or triangles are placed every 5 years
to help visualize the speed of growth. In this example, individuals mostly grow or stay the same size, so the trajectories proceed mostly
rightward or vertically. The color in the heat map is expected total future success: individuals of size z ≈ 80 have the best future prospects.
Individuals younger and smaller or older and larger have either lower annual fecundity or lower survival. Birth state luck is the variation that
comes from initial z value, while birth environment luck is the variation in lifetime success that comes from variation in initial q value.
Survival trajectory luck at a given age is the variation that comes from having your life terminate or continue to the next time step, growth
trajectory luck at a given age is the variation that comes from moving left or right in the next step, and environment trajectory luck is the
variation that comes from moving up or down in the next step—these turns in the path take individuals through redder and less red areas.
We have not shown offspring production or other annual success in this schematic, but fecundity luck at a given age is the variation that
comes from how much success an individual accrues at that age.
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variance in lifetime reproductive output. If our measure of
lifetime success is some other sum of successes over time,
then fecundity luck arises more generally from random
variation in that yearlymeasure at each age. Survival trajec-
tory luck summarizes how survival at a given age affects
variance in lifetime success,2 while growth trajectory luck
does the same for growth at a given age (or transitions be-
tween states if the model is not structured by size). Survival
and growth trajectory luck sum to what we have previously
called state trajectory luck. Birth environment luck specifies
how much random variation in the birth year environment
contributes to variance in lifetime success: for example, was a
seedling born into a high-light environment or a low-light
one? Environment trajectory luck at a given age quantifies
how much random variation in the environment at that
age affects variance in lifetime success. And finally, the contri-
bution of fixed trait variation, which we have sometimes
called “pluck” (Snyder and Ellner 2018), measures how fixed
differences between individuals—genotype, birth date, moth-
er’s weight, the location of a sessile individual, a fixed behav-
ioral syndrome—contribute to variance in lifetime success.
We demonstrate our new methods with four contrast-

ing empirical case studies. The contribution of survival
trajectory luck dominates in our first case study, a model
of two tropical trees, Simarouba amara and Minquartia
guianensis, experiencing varying light levels (Metcalf et al.
2009). By contrast, growth trajectory luck contributesmore
than survival trajectory luck except at very early ages in
our second case study, a model of the desert shrub Artemi-
sia ordosica (Li et al. 2011). (We do not have information
on environment variation for this species.) In our third
case study, a model of a fire-adapted perennial, Lomatium
bradshawii (Kaye and Pyke 2003), the contribution of en-
vironment trajectory luck is dominant except at very early
ages. Finally, we analyze a model with trait-dependent de-
mographic variation that depends on environmental con-

ditions: fulmars (Fulmarus glacioides) experience varying
sea ice levels and are characterized by fixed behavioral
syndromes that determine their survival and reproductive
rates (Jenouvrier et al., forthcoming).
Peaks in luck terms tend to occur at or shortly after birth

(there will be no success if you die young) and again close
to the time individuals are typically first successful (when a
little luck can push an individual over a size threshold or
into a breeding class for the first time). In many cases, ini-
tial contributions to the variance of the success measure
come soon enough after birth that we get a cluster of peaks
at young ages; however, for the trees there is a distinct sec-
ond set of peaks as they approach the canopy.
Peaks in the contributions of survival, growth, and envi-

ronment luck can occur at different ages. One form of luck
may be most important in avoiding an early death, while
another form may be most important in getting past the
threshold of success. Or in the case of the trees, the contri-
butions of all forms of luck peak at birth or shortly there-
after, but the secondary peaks occur at different ages—
getting a favorable environment can push you into the
canopy, while once you are there, survival luck becomes
important so that you can take advantage of it. While there
are likely to be generically vulnerable periods (at or near
birth), there can also be distinct periods of life when getting
a favorable environment, a growth spurt, or luck in survival
is especially important. As expected, increasing positive
temporal autocorrelation of environmental conditions
increases the importance of birth environment luck
and environment trajectory luck—encountering good
or bad conditions is more important if those conditions
usually persist for a substantial fraction of a life span.
It is important to be clear about exactly what variance we

are analyzing: it is the variance in success among a cohort
of individuals that each experience their own sequence of
environment states, independent of others. This is the sce-
nario described by so-called megamatrix models for indi-
viduals in a Markovian time-varying environment (e.g.,
Pascarella and Horvitz 1998; Tuljapurkar and Horvitz
2006; van Daalen and Caswell 2020). It is most reasonable

2. The concept of survival trajectory luck was anticipated by Terry Pratchett,
among others: the lion “had lived in the desert for sixteen years, and the reason it
had lived so long was that it had not died” (Pratchett 1992).

Table 1: The different types of luck, with examples of good luck and its consequences

Luck type Example Consequence

Birth state luck Large birth size Spend less time at small sizes, which often experience
high mortality

Birth environment luck Born in a year with adequate rain Higher survival and faster growth
Survival trajectory luck Did not die this year Might eventually reach minimum size for reproduction
Growth trajectory luck Transitioned to a size or stage with low

mortality rate
More likely to eventually reach minimum size for

reproduction
Environment trajectory

luck
A forest gap opened up in the adjacent site The extra light allows higher growth and survival until

it closes
Fecundity luck Successfully reared twins Larger than average annual increment in lifetime

reproductive output

E126 The American Naturalist



if the environment varies spatiotemporally at a fine spatial
scale, such as conspecific trees in a tropical forest that each
experience their own sequence of light environments deter-
minedmainly by close neighbors (Metcalf et al. 2009). Study-
ing afire-adapted herbaceous perennial plant in Florida rose-
mary scrub, Coutts et al. (2021) similarly found that fine-scale
(!10-m) spatial variation in expected lifetime reproductive
success was as large as the temporal variation in success
imposed by fires, with large variation both within and be-
tween gaps (the open sandy areas between shrubs, where
the species grows). Alternatively, the megamatrix scenario
can be thought of as replicating (if we could) one individual’s
partially random path through life over and over again and
looking at the variation among replicate simulations.
A remaining challenge is to compute the contribution

of temporal environmental variation to the outcome var-
iation among a cohort of individuals that all experience
the same random sequence of environment states. Intu-
itively, we would expect this contribution to be small be-
cause environments experienced in common do not in-
trinsically create differences between individuals—it can
even be negative in theory, decreasing the variance in life-
time outcomes. The independent environments scenario
that we consider here gives environmental variation the
greatest opportunity to contribute substantially to among-
individual variance in lifetime outcomes.
At the population level, average success is what drives

population and evolutionary dynamics: in a sufficiently
large population, individual-level luck averages out and
traits that improve expected fitness increase in frequency
(Snyder and Ellner 2018). However, in finite populations
(and all populations are finite), highly skewed offspring
distributions among genetically identical individuals can
have substantial quantitative effects on evolutionary dynam-
ics, including the fixation probability of new beneficial mu-
tations and the site frequency spectra of neutral alleles
(Okada and Hallatschek 2021). And for each individual,
what happens in its own life is typically dominated by luck.

Model and Assumptions

We consider a structured population model in which there
is dynamic variation in individual stage or state (often var-
iation in size), fixed trait variation among individuals, and
environmental variation. The joint state and environment
dynamics for any individual are assumed to be governed
by a stationary Markov chain—that is, a discrete-time sto-
chastic process with theMarkov property and time-invariant
transition probabilities. The set of possible state and envi-
ronment values may be continuous (i.e., an integral projec-
tionmodel [IPM]), discrete (i.e., a matrix projectionmodel
[MPM]), or mixed. A stationary Markov chain is always a
linear operator on probability distributions, even if the

transition probabilities are (for example) nonlinear func-
tions of individual size or environment quality. However,
a density-dependentMPMor IPMwould not have station-
ary transition probabilities. Stationarity might hold be-
cause the underlying IPM or MPM is not density depen-
dent or because the dynamics have been linearized about
an equilibrium of the density-dependent dynamics.
The joint dynamics of individual stage/state and environ-

ment state (for any particular value of the fixed trait) can be
modeled using a so-called transition megamatrix in which
individuals are cross classified by individual and environ-
ment states.3 Let R be a random variable representing life-
time success—lifetime reproductive output, life span, num-
ber of years in the canopy, and so on. We would like to
determine howmuch of Var(R) is due to environmental var-
iation (or any other dynamic trait with Markovian dynam-
ics), howmuch is due to various forms of demographic luck,
and how much is due to fixed trait variation and to further
partition each of these into contributions at different ages.
Notation. Our notation is described in table 2 as well

as in the text. We let qa be the environment state (“qual-
ity”) at age a and let za be the individual state at age a,
either a discrete stage or a continuous variable such as size.
One possible state is q (dead). Note that indexing by age
(qa, za) is the same as indexing by time (qt, zt) if we aremod-
eling an individual, although not if we are modeling a pop-
ulation.We assume that the dead have no current or future
reproduction. We let x denote a fixed trait (or trait vector)
that varies among individuals—somemodels will have this
feature, others will not. The state transition and environ-
ment transition probabilities can both depend on x.
We assume that at time t, each individual’s current en-

vironment determines its transition probabilities from
state zt to zt11, and then the environment is updated from
qt to qt11. The term qt represents the state of external con-
ditions between the t and t 1 1 censuses at which we mea-
sure individual state. The terms qt and zt jointly and fully
determine the probability distribution for immediate re-
productive success (i.e., the number of new offspring pro-
duced between t and t 1 1 that recruit into the population
at time t 1 1). That is, given qt and zt, immediate reproduc-
tive success is independent of q and z at all other times, past
and future. These timing conventions are depicted in fig-
ure 2. Environment state affects individual state transi-
tions, but we assume that the reverse is not true: the con-
ditional distribution of qt11 given qt and zt11 equals the
conditional distribution given just qt.
As noted in the introduction, our calculations assume

that the environmental state draw is specific to the individ-
ual, so that the variance in lifetime outcomes across replicate
random simulations of one individual’s life is equivalent to

3. In IPM terminology, this is an example of a size-quality model.
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the variance in outcomes across many replicate individuals
having the same traits, initial state z0, and environment state q0.
In the remainder of this section, we work out in detail

how to do the partitioning of variance in success described
in the introduction. Readers who prefer to skip the techni-
cal details can find the recipes for calculating each term in
equation (7) (fixed trait variation), equation (9) (birth
state luck), equation (11) (birth environment luck), equa-
tion (S5) (state trajectory luck), equation (21) (environ-
mental luck), and equation (23) (fecundity luck).

Variance Decomposition with Environmental Variation

Our decomposition of the variance of success follows the gen-
eral variance decomposition in Bowsher and Swain (2012).
For a statement and proof of the decomposition in terms of
random variables (rather than the original j-fields), see sec-
tion S2 of the supplemental PDF for Snyder et al. (2021).

The basic idea behind this decomposition is to calculate the
mean difference in outcome variance conditional on different
amounts of information. For example, the mean difference
between the variance conditioned on the state and envi-
ronmental histories up to age a, averaged over those his-
tories, and the (smaller) variance conditioned on those
histories and the state at age a1 1, averaged over those
histories, measures howmuch the randomness in the state
transition between a and a1 1 contributes to the total var-
iance in outcomes. Each term in the variance partitions be-
low (eqq. (1)–(4)) equals one such difference in expected
variance, even though it is not written in that form (see
eq. [15] in Bowsher and Swain [2012] or eqq. [S10]–[S12]
in Snyder et al. [2021]).
In principle, conditioning on multiple variables (e.g.,

states at multiple ages) can be done in any order, and the
choice affects the resulting variance partition. However,
the temporal order of events provides a natural sequence

Table 2: Notation and definitions

Notation Formula and/or meaning

c0(z) Probability distribution of state (or state and trait) at birth; c0(q) p c0(q, •) p 0; individuals are age 0 at birth
e Vector of all 1s (MPM) or function e(z) ≡ 1 (IPM); in both cases, eTP p state-specific survival probability
F Fecundity kernel
G• Megamatrix-sized block diagonal matrix that updates state conditional on survival but not environment
Gq Growth kernel/matrix conditional on environment q
M Megamatrix governing joint transitions of state and environment
m0(z, q) Megamatrix probability distribution of state and environment (or state and environment and trait) at birth
N Fundamental matrix for P: N p (I 2 P)21

q Dead; an absorbing state (the dead stay dead) with zero fecundity
P Survival-growth kernel or matrix without an absorbing state for death; thus, eTP p s(z), state-dependent survival
P• Megamatrix-sized block diagonal matrix that updates state but not environment
p0(x) Marginal distribution of trait at birth
Q Environment transition kernel or matrix
q, qa Possible value of individual environment or environment at age a
R Lifetime success, a random variable (e.g., lifetime reproductive output)
r1(z, q) E[immediate and future reproductive output] for state z, environment q individual
r0
1(z0, q) The conditional expectation of reproduction at ages a 1 1 and beyond, as a function of the value of z0a11:

E(r1(za11, qa11)jz0a11 p z0, qa p q)
r17(z, q) The conditional expectation of reproduction at a 1 1 and beyond: E(r1(za11, qa11)Fza11 p z, qa p q)
S• Megamatrix-sized block diagonal matrix that updates survival but not growth or environment
Sq Survival kernel/matrix conditional on environment q
j2(z) Var(immediate success) for state z individual (formula is model dependent)
u0(q) Probability distribution of environment at birth
Ve(z) Variance over next year’s environment of r1(z)
Vg(z) Variance over next year’s state of r17(z)
Vs(z) Variance over the next intermediate state of r0

1(z)
vec Operator converting a matrix to a column vector by stacking its columns with the first column at the top, the second

below it, and so on
x Possible value of trait
yj:k The vector (yj, yj11, :::, yk); for example, z0:a is an individual’s history of states fromages 0 to a, considered as a randomvector
z, za Possible value of individual state or state at age a
z, za, q, qa Individual state or environment (or state or environment at age a) considered as a random variable

Note: Many of these can depend on trait x in addition to other variables, but for clarity we omit x dependence in those cases. P here corresponds to U in van
Daalen and Caswell (2017), and r1 here corresponds to �r in Ellner et al. (2016).
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for partitioning luck by age: variances across later events
are conditioned on earlier events. Here, we assume that
each time step is broken up into a state transition (zt to zt11)
with transition probabilities depending on the environment
state qt, followed by an environment transition (qt to qt11),
as shown in figure 2. Thus, the variance of future reproduc-
tive output across possible states za11 is conditioned on in-
dividual state and environment at age a, while the variance
over possible environments qa11 is additionally conditioned
on za11. The same approach will still hold if the reverse
temporal order is assumed for state and environment tran-
sitions, but one would need to rederive equations like those
below that align with that ordering.
Applying the Bowsher and Swain (2012) general var-

iance decomposition to our model gives

Var(R) p Varx[E(Rjx)]|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
fixed trait variation ð“pluck”Þ

1 ExfVarz0 [E(Rjx, z0)]g|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
birth state luck

1 Ex,z0fVarq0jx,z0 [E(Rjx, z0, q0)]g|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
birth environment luck

1
XA21

ap0

Ex,z0:a ,q0:afVarza11jx,z0:a ,q0:a[E(Rjx, z0:a11, q0:a)]g
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

state trajectory luck

1
XA21

ap0

Ex,z0:a11,q0:afVarqa11jx,z0:a11,q0:a[E(Rjx, z0:a11, q0:a11)]g
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

environmental trajectory luck

1 Ex,z0:A ,q0:AVar[Rjx, z0:A, q0:A]|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
fecundity luck

:

ð1Þ
Before going any further, we simplify equation (1). Envi-
ronment transitions are Markov and unaffected by state

transitions, and state transition probabilities from a to
a1 1 depend only on za and qa. We therefore have

Var(R) p Varx[E(Rjx)]|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
fixed trait variation ð“pluck”Þ

1 ExfVarz0 [E(Rjx, z0)]g|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
birth state luck

1 Ex,z0fVarq0jx,z0 [E(Rjx, z0, q0)]g|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
birth environment luck

1
XA21

ap0

Ex,za ,qafVarza11jx,za ,qa[E(Rjx, za11, qa)]g
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

state trajectory luck

1
XA21

ap0

Ex,za11,qafVarqa11jx,qa[E(Rjx, za11, qa11)]g
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

environment trajectory luck

1 Ex,z0:A ,q0:AVar[Rjx, z0:A, q0:A]|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
fecundity luck

:

ð2Þ

The term called “prenatal luck” in our previous decompo-
sition without environmental variation (Snyder et al. 2021)
is split here into birth state luck and birth environment luck.
Similarly, there are two kinds of luck due to transitions at
each age: state trajectory luck coming from z transitions,
and environmental variation coming from q transitions.

Partitioning State Trajectory Luck into Survival
and Growth Components

In previous articles, our interpretation of patterns in the
importance of luck has often invoked the idea that the
contribution of luck in general and state trajectory luck
in particular peaks at ages, stages, or states where it is es-
pecially important not to die. However, those interpreta-
tions were based on an intuition that the dichotomy of

Recruitment, 
then census

Recruitment, 
then census

Recruitment, 
then census

Figure 2: Assumed relationship between environment qt and state zt for decomposing variance in success with respect to environment and
state transitions separately. Environment qt affects transition probabilities from zt to zt11 and the current reproductive success at time t (i.e.,
the number of offspring that join the population as new recruits at time t 1 1). Thus, the distribution of offspring recorded as new recruits at
time t 1 1 depends on zt and qt.

ð1Þ
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survival versus death is overshadowing everything else.
But is that really true, or can variability in growth (given
survival) also be important and perhaps sometimes dom-
inate the importance of survival?
In this section, we provide a way to answer that question

and to confirm or refute our previous interpretations by
decomposing state trajectory luck at each age into contri-
butions from survival and growth. To do that, we break
each time step into three events, as shown in figure 3. First,
do you survive to the next census or not? Second, condi-
tional on surviving, what is your state at the next census?
Third, what is your next environment state?
The term z0t11 denotes the state after possible mortality;

this equals zt if the individual survives andq if the individual
dies. The diagram assumes that mortality precedes growth
between one census and the next, but this is not really an as-
sumption. For any sequence of events or if mortality and
growth are ongoing throughout the time step, we can ex-
press the outcome distribution Pq(z0, z) as the product of
the survival probability sq(z) p

Ð
Pq(z0, z) dz0 with condi-

tional growth distribution Gq(z0, z) p Pq(z0, z)=sq(z).
For the sequence of events in figure 3, the Bowsher

and Swain decomposition then says that Var(R) equals

Varx[E(Rjx)]|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
trait variation
ð“pluck”Þ

1 ExfVarz0 [E(Rjx; z0)]g|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
birth state luck

1 Ex;z0fVarq0jx;z0 [E(Rjx; z0; q0)]g|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
birth environment luck

1
XA21

ap0

Ex;z00:a;z0:a;q0:afVarz0a11jx;z00:a;z0:a;q0:a

[E(Rjx; z00:a11; z0:a; q0:a)]g|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
survival trajectory luck

1
XA21

ap0

Ex;z00:a11;z0:a;q0:a
fVarza11jx;z00:a11;z0:a;q0:a

[E(Rjx; z00:a11; z0:a11; q0:a)]g|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
growth trajectory luck

1
XA21

ap0

Ex;z00:a11;z0:a11;q0:afVarqa11jx;z00:a11;z0:a11;q0:a

[E(Rjx; z00:a11; z0:a11; q0:a11)]g|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
environmental trajectory luck

1 Ex;z00:A;z0:A;q0:AVar[Rjx; z00:A; z0:A; q0:A]|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
fecundity luck

:

ð3Þ

We now simplify. All transitions are Markovian, and fe-
cundity at age a is fully determined by (za, qa). The age
decomposition is then

Varx[E(Rjx)]|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
trait variation
ð“pluck”Þ

1 ExfVarz0 [E(Rjx; z0)]g|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
birth state luck

1 Ex;z0fVarq0jx;z0 [E(Rjx; z0; q0)]g|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
birth environment luck

1
XA21

ap0

Ex;za;qafVarz0a11jx;za;qa[E(Rjx; z0a11; qa)]g
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

survival trajectory luck

1
XA21

ap0

Ex;z0a11;qa
fVarza11jx;z0a11;qa

[E(Rjx; za11; qa)]g
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

growth trajectory luck

1
XA21

ap0

Ex;za11;qafVarqa11jx;qa[E(Rjx; za11; qa11)]g
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

environment trajectory luck

1 Ex;z0:A;q0:AVar[Rjx; z0:A; q0:A]|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
fecundity luck

:

ð4Þ
Comparing this to the decomposition (2), we see that state
trajectory luck has been replaced by two separate terms for
survival trajectory luck and growth trajectory luck, and the
other terms are all identical to the prior decomposition.

Computing the Terms

We now derive analytic formulas for each term in equa-
tion (4), following closely the corresponding section of our
previous article. These formulas will imply (exactly as in
Snyder et al. 2021) that we can let A → ∞ in equation (4)
to get a decomposition across all ages, so long as there is
a number smax ! 1 and time span t such that every individ-
ual in any environment (any x, z, q values at time t) has
probability at most smax of surviving to time t 1 t.
Each term in equation (4) is a moment with respect

to the distribution of x at birth, so the task at hand is to
compute each integrand for any given x value. So until fur-
ther notice, we suppress x dependence to simplify the no-
tation. We use kernel notation to be fully explicit about the
integrals/sums in analytic formulas, but we use matrix no-
tation in calculation formulas because in practice those
will be matrix operations even for IPMs. Those formulas

ð3Þ

ð4Þ
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assume that the IPM has been implemented using a bin-to-
bin method, such as the midpoint rule (see Ellner et al. 2016,
ch. 6), so that on the computer it is equivalent to a large
MPM. However, readers should be aware that in the latter
case matrix notation may hide bin-width factors that are
used in numerical integration; for example, vTw, denotingÐ
v(x)w(x) dx, would be calculated as h ⋅ sum(v ⋅ w) if v

andw are vectors storing v(x) andw(x) values at integration
mesh points and h is the distance betweenmesh points. Ad-
ditionally, calculation formulas assume that themodel (IPM
or MPM) has been implemented as a size-quality model in
the format of Ellner and Rees (2006, app. A) and Ellner et al.
(2016, sec. 6.6.2), which is the same layout as a standard
megamatrix MPM. That is, the state distribution n(z, q, t)
is represented as a matrix whose (i, j) entry is n(zi, qj, t),
the vec operator converts such matrices to vectors by stack-
ing the columns with column 1 at the top, then column 2,
and so on, and transitionmatrices are constructed to operate
appropriately on those vectors (for full details and R code,
see either of the references cited above).
Now wemake some definitions. The term Pq(z0, z) is the

transition matrix/kernel for states z in environment q. In
the matrix case, Pq(i, j) is the transition probability from
state j to state i. The term Q(q0, q) is the transition matrix/
kernel for environment states q. The term M(z0, q0jz, q) is
the transition probability function governing joint state and
environment transitions: M(z0, q0jz, q)p Pq(z0, z)#Q(q0, q).
The function r1(z, q) p E(Rjx, z0 p z, q0 p q), expected
success (current and future) as a function of current state.4

Below, we tacitly assume that any function, vector, or
matrix is restricted to living states—this differs from the
notation in Snyder et al. (2021). The term c0(z) is the initial
distribution for states, u0(q) is the initial distribution for
environments, and m0(z, q) p c0(z)#u0(q) is the initial

cross-classified distribution. We assume that initial state
and initial environment are independent. We do not as-
sume that an individual’s initial environment is drawn
from the stationary distribution of the environment chain.
Let N p (I 2M)21 be the fundamental matrix/opera-

tor associated with M and F be the fecundity megamatrix.
Then as usual,

vec(r1) p eTFN ð5Þ

gives expected current and future success as a function of
(z, q) at a census time, where e is a vector of all 1s (MPM)
or a constant function with value 1 (IPM).
The first three terms in equation (4) can all be calculated

from r1. For the first term, we have

E(R) p
ðð

r1(z, q)m0(z, q) dz dq

p (vec(r1))
T vec(m0):

ð6Þ

In models with a fixed trait x, both r1 and m0 can depend
on x. The fixed trait variation term in equation (4) is the
variance of E(R) as a function of x with respect to the trait
distribution at birth, p0(x). Suppressing the dependence of
m0 and r1 on z and q for notational clarity,

fixed trait variation p Varx[E(Rjx)]

p

ð
((vec(r1(x)))

Tvec(m0(x)))
2
p0(x) dx

2

� ð
((vec(r1(x)))

Tvec(m0(x)))p0(x) dx

�2

:

ð7Þ

For the second term (birth state luck),

E(Rjz0) p
ð
r1(z0, q)u0(q) dq p r1u0, ð8Þ

Survive or die Growth

Recruitment, 
then census

Recruitment, 
then census

Figure 3: Assumed relationship between environment qt and state transitions for further decomposing state trajectory luck into survival
luck and growth luck. Environment qt affects the chance of survival between t and t 1 1 (the zt to z0t11 transition), the growth conditional
on survival (z0t11 to zt11), and the current reproductive success at time t. So as before, the distribution of offspring recorded as new recruits at
time t 1 1 is a function of zt and qt.

ð7Þ

4. Because of the Markovian dynamics, calculating expected current and
future success starting at (z, q) is the same as calculating lifetime success
when born into (z, q).
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the last equality assuming that r1(z, q) is stored as a matrix
and u0 as a vector summing to 1. Birth state luck is the var-
iance of E(Rjz0) with respect to c0:

birth state luck p Varz0[E(Rjz0)]
p cT0 (r1u0)

2 2
�
cT0r1u0

�2
:

ð9Þ

For the third term (birth environment luck), E(Rjz0, q0)p
r1(z0, q0). First we need the variance with respect to q0 for
each z0, given by

ð
r1(z0, q)

2u0(q) dq2

�ð
r1(z0, q)u0(q) dq

�2

p r2
1u0 2 (r1u0)

2:

ð10Þ

This needs to be averaged over the marginal distribution
of z0:

birth environment luck p cT0 [r2
1u0 2 (r1u0)

2]: ð11Þ

For the trajectory luck lines in equation (4), the age a
terms in the sums involve variances of R, total lifetime re-
production, conditional on events prior to the census at age
a1 1. As in Snyder et al. (2021), we can break R up into
two pieces: reproduction up though age a, and reproduc-
tion at ages a1 1 and beyond. In these three lines, it is only
the second piece that varies as a function of z0a11 (survival
trajectory), za11 (growth trajectory), or qa11 (environment
trajectory), conditional on events up through age a. Thus,
the conditional variances in those lines are the variance of
reproduction at ages a1 1 and beyond.
To compute these variances, we need to express ex-

pected success conditional on (z0a11, qa), the state where
we have updated survival but not growth or environment,
or on (za11, qa), the state where we have updated survival
and growth but not environment. To enable this, let P•

denote the megamatrix-sized block diagonal matrix in
which the blocks are the state transition or iteration ma-
trices Pq for environment states q1, q2, :::.5 Let S• be the
megamatrix-sized block diagonal matrix in which the
blocks are the survival matrices Sq for environment states
q1, q2, ::: and similarly for G•. (Formally, S• is the survival
operator whose action on living states is mapping the state
vector n(z, q, t)↦s(z, q)n(z, q, t), and G• is the growth op-
erator mapping n(z, q, t)↦

Ð
G(z, z0, q)n(z0, q, t) dz0.)

For survival trajectory luck, we need to compute the
variance of E(Rjx, z0a11, qa)] with respect to the distribu-
tion of z0a11 conditional on x, za, qa. Splitting R into repro-
duction up to age a and reproduction from a1 1 onward,

this variance is the variance of the conditional expectation
of reproduction at ages a1 1 and beyond, as a function
of the value of z0a11. That conditional expectation is given
by

r0
1(z0, q) ≔ E(r1(za11, qa11)jz0a11 p z0, qa p q)

p

ð
r1(z, y)Gq(z, z0)Q(y, q) dz dy:

ð12Þ

In matrix form, we can write vec(r0
1) p vec(r1Q)G•.

Survival trajectory luck is the variance of r0
1 across the

distribution of z0a11 conditional on the current state za
and the current environment qa:

Vs(z, q) p
ð
(r0

1(z0, q))
2Sq(z0, z) dz0

2

�ð
r0
1(z0, q)Sq(z0, z) dz0

�2

:

ð13Þ

Note that the integrals on the right-hand side do not need
to include the dead state, q, because r0

1(q, q) ≡ 0. Because
the kernel on the right-hand side depends on q, values of
Vs for each q need to be computed separately. A direct ap-
proach is to compute Vs as

vec(Vs) p (vec(r01)
2)TS• 2 (vec(r01)

TS•)
2
: ð14Þ

We then need to averageVs over the distribution of (za, qa),
given by Mavec(m0). The age partition of survival trajec-
tory luck is then

XA21

ap0

(vec(Vs))
TMavec(m0): ð15Þ

For growth trajectory luck, we need to compute the var-
iance of E(Rjx, za11, qa) with respect to the distribution of
za11 conditional on x, z0a11, qa. As above, only reproduction
at ages a1 1 and beyond contributes to that variance. The
conditional expectation of reproduction at a1 1 and be-
yond is given by

r17(z, q) ≔ E(r1(za11, qa11)jza11 p z, qa p q)

p

ð
r1(z, q0)Q(q0, q) dq0:

ð16Þ

In matrix form, we can write vec(r17) p r1Q.
Growth trajectory luck is the variance of r17(za11, qa)

across the distribution of za11 conditional on the current
intermediate state z0 and the current environment q:

Vg(z0, q) p
ð
(r17(z, q))

2Gq(z, z0) dz

2

�ð
r17(z, q)Gq(z, z0) dz

�2

:

ð17Þ
5. P• can be built easily as a sparse matrix using the bdiag function in the

Matrix library in R (Bates and Maechler 2019).
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We compute Vg as

vec(Vg) p (vec(r17)
2)

T
G• 2 (vec(r17)

TG•)
2
: ð18Þ

Here, we need to average Vg over the distribution of
(z0a11, qa), which is given by S•Mavec(m0) (as usual in these
calculations, this is the distribution over only the living
states because the contribution from q is zero). The age
partition of growth trajectory luck is then

XA21

ap0

(vec(Vg))
TS•Mavec(m0): ð19Þ

Those wishing to calculate state trajectory luck can ei-
ther add the contributions of survival and growth trajec-
tory luck or follow the calculation in section S1.1 of the
supplemental PDF. To calculate survival and growth tra-
jectory luck in the absence of environmental variation, see
section S1.2 of the supplemental PDF.
The variance in the environment trajectory luck term

in equation (2) is the variance of r1(za11, qa11), across the
conditional distribution of qa11 given qa. That variance,
as a function of za11 and qa, is given by

Ve(z, q) p
ð
r1(z, q0)

2Q(q0, q) dq0

2

�ð
r1(z, q0)Q(q0, q) dq0

�2

p r2
1Q2 (r1Q)

2:

ð20Þ

We then need to average Ve(z, q) over the distribution of
(za11, qa), which is given by P•Mavec(m0). The environ-
mental variation term is then

environment trajectory luck p
XA21

ap0

(vec(Ve))
TP•Mam0,

ð21Þ
where we can calculate vec(Ve) as

vec(Ve) p (vec(r1)
2)TQ2 (vec(r1)

TQ)
2
: ð22Þ

Again, the dead state q does not have to be included in
the average because Ve(q, •) ≡ 0.
Finally, there is fecundity luck. Conditional on the

current state, we assume that success in different years
is independent. The variance of success up to age A is
therefore just the sum of the variances at each age:
Var[Rjx, z0:A, q0:A] p

PA
ap0j

2(za, qa), where j2 is the vari-
ance in success in a given year. Thus,

fecundity luck p
XA

ap0

Eza ,qa(j
2(za, qa)): ð23Þ

Where These Calculations Break Down
and What to Do About It

While the variance partition equations (1) and (3) hold so
long as state and environment transitions occur in the se-
quence shown in figures 2 and 3, equations (2) and (4) and
our calculation methods in the “Computing the Terms”
section also depend on the additional assumptions that
we stated above. Notably, for the three forms of trajectory
luck as well as fecundity luck, we used the fact that we can
break R up into two pieces, reproduction up through age a
and reproduction at ages a1 1 and beyond, and that it is
only the second piece that varies as a function of za11 (state
trajectory) or qa11. This is true under our assumption that
conditional on (za, qa), immediate reproductive success
is independent of all past and future events. But that as-
sumption will not be true, for example, in a semelparous
organism with a state-dependent probability of repro-
ducing. If an individual is alive to possibly reproduce at
age a1 1, then we know that it did not reproduce at age
a or earlier, and thus reproduction up through age a (con-
ditional on state and environment at age a) is not indepen-
dent of the state at age a1 1. The same problem turns up
whenever there are trade-offs between reproduction and
survival or growth, so that an individual’s state at age
a1 1 is informative about whether it reproduced at age
a. For example, if an individual is alive and reproducing
at age a1 1, it is more likely to have had a higher survival
rate, associated with not breeding, at age a.
In most cases, the situation can be rescued by enlarging

the individual state variable z to include all information rel-
evant to immediate reproductive success. In the case of a
semelparous organism, the model could be implemented
with the population censused immediately before repro-
duction but after it has been determined whether the indi-
vidual reproduces that year. The state variable z is then
augmented by a 0/1 variable distinguishing current year
breeders from nonbreeders. In that setup, although repro-
duction at different ages is correlated, we still have the nec-
essary property that conditional on individual (augmented)
states and environments up to age a, reproduction at ages
zero to a is independent of states at later ages.
The simplified decompositions (2) and (4) break down

if the transition probabilities from the environment at time
t to the environment at time t 1 1 (or whatever event
happens later in the time step) is not independent of the
state at time t (or whatever gets updated first in the time
step). Such correlations can be subtle. For example, we
had hoped to further partition each component of luck into
contributions from whether the individual ever breeds be-
fore death versus variation in the number of offspring
given that they bred at least once, as in Snyder et al. (2021).
However, that calculation involves the transition matrix/
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kernel conditional on breeding before death, and with that
conditioning the environment at time t 1 1 may not be in-
dependent of the state at time t. For example, consider a
model where all sufficiently small individuals have never
been large enough to breed and die if the next environment
state is 1. Conditional on breeding before death, small
enough size implies that the next environment state cannot
be 1. Again, what breaks down is not the general variance
partition (1) or (3) but the calculation formulas we provide
to evaluate the terms. Analogous butmore complicated for-
mulas will apply, using the age- and state-dependent joint
transition probabilities for individual state and environ-
ment conditional on breeding before death.

Case Studies

Tropical Trees in a Varying Light Environment

Our first case study uses size-structured IPMs of two
tropical trees with time-varying light levels presented in
Metcalf et al. (2009). The models were parameterized for
lowland tropical rain forest trees at La Selva Biological Sta-
tion in northwestern Costa Rica, based on the data pro-
vided by Clark and Clark (2006). We thank the authors of
Metcalf et al. (2009) for providing unpublished R scripts
and for additional information about their model develop-
ment and implementation. The models and how we im-
plemented them for our analyses are summarized in sec-
tion S3 of the supplemental PDF.
We chose two canopy species for analysis, Simarouba

amara and Minquartia guianensis, based on their con-
trasting responses to the light environment: “Small juvenile
Simarouba exhibit the highest growth rate and the highest
sensitivity to light, while small juvenile Minquartia and
Lecythis have the lowest growth rates and relatively low
sensitivity to light” (Metcalf et al. 2009, app. A, p. 1).
The models have a megamatrix structure (Pascarella

and Horvitz 1998) in which individuals are cross classified
by size z and light environment q (equivalently, they are
size-qualitymodels sensu Ellner et al. [2016, sec. 6.4.4] with
(z, q) as the bivariate individual state). The smallest size at
which individuals were measured is 1 mm, so there was al-
ready substantial mortality in the years when seedlings are
still too small to be counted as recruits. Light levels 1, 2, and
3 represent low, medium, and high lateral light; level 4 rep-
resents some overhead light; level 5 is full overhead light;
and level 6 indicates that the crown is fully exposed—either
extending above the canopy or in a gap. Following Metcalf
et al. (2009), an individual of size 300-mm dbh or larger
is considered to be a canopy tree. We define lifetime suc-
cess R to be the number of years in the canopy as a proxy
for lifetime reproduction because we do not have a model
for size-dependent fecundity.

The different light sensitivities of these species are
reflected in the proportional importance of environment
trajectory luck: environmental variation contributes only
4% to Minquartia’s overall luck but 21% to Simarouba’s.
Because tree growth is slow and steady, we expected

that survival trajectory growth would be more important
than growth trajectory luck, and that is true overall: sur-
vival trajectory luck contributes more than 75% of the var-
iance in the number of years in the canopy for both spe-
cies (fig. 4). However, for Minquartia, growth trajectory
luck is the largest term at birth. This likely connects to sur-
vival in the end, however, because mortality is high for tiny
trees, so young trees are most likely to reach the canopy
if they leave the high mortality size window as quickly as
possible.
The contributions of survival, growth, and environment

trajectory luck peak at or near birth—the first step to a
successful life is not dying young, and having some favor-
able years early on helps ensure that you do not die young.
There are then secondary peaks or plateaus in the contri-
butions of survival, growth, and environment trajectory
luck, which occur at different ages.
The contribution of environment trajectory luck peaks

just before the age at whichmost individuals reach the can-
opy. Environment trajectory luck at a given age is based on
howmuch the next year’s environment will affect expected
future success. Early in life, individuals are a long way from
canopy height, so any one environment transition will not
have much effect on the odds of eventual success. And
once they have reached the canopy, trees usually stay there:
shrinkage of large trees is rare, and when it happens, it is
small. But just before an individual reaches canopy height,
a good year can push them over the threshold or hold
them back.
ForMinquartia, a faint secondary peak in the contribu-

tion of growth trajectory luck occurs a little before trees
typically reach the canopy, similar to the secondary peak
in the contribution of environment trajectory luck. Get-
ting a favorable year or some extra growth can boost a tree
into the canopy. For Simarouba, there is an almost imper-
ceptible secondary peak in the contribution of growth tra-
jectory luck around the age when trees typically hit the
canopy.
The contribution of survival trajectory luck peaks shortly

after most individuals reach the canopy. Expected number
of future years in the canopy is highest just after an indi-
vidual reaches the canopy. Dying at an earlier age has less
of an effect on expected years in the canopy, since young
individuals are unlikely to reach the canopy and have a
low expected value of success. Dying at a later age has less
of an effect because the very largest trees have higher mor-
tality than slightly smaller trees—as senescence looms, in-
dividuals have fewer expected years left.
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Artemisia ordosica

Artemisia ordosica is a dune-dwelling shrub found in
Mongolia. We use the IPM presented in Li et al. (2011)
with the parameters for a fixed dune with microbiotic
crust. We have no environmental or trait data for this spe-
cies, but we can investigate demographic luck. Section S1.2
of the supplemental PDF shows how to partition in the
absence of environmental luck. Unlike our tree case stud-
ies, this shrub can shrink substantially, so we expect that
growth trajectory luck may take on greater importance.
We also expect growth trajectory luck to be important be-
cause in Snyder and Ellner (2016), we found that across all
ages the probability of reaching 40 cm or taller (the sizes
that produce most of the offspring) is most sensitive to
changes in expected growth.
Figure 5 shows that our intuition was largely correct.

While the contribution of survival trajectory luck is most
important in the years immediately following birth, the
contribution of growth trajectory luck soon overtakes it
and remains dominant throughout the rest of life. In this
example, we measure success by the number of years at
40 cm or taller, and so it is not surprising that growth tra-
jectory luck peaks just before the age at which individuals
most commonly reach these sizes: variation in growth at
that age can boost an individual into the successful size
range or hold them back.

Lomatium bradshawii

Lomatium bradshawii is an endangered herbaceous pe-
rennial found in a few grasslands and prairies in Oregon
and Washington. It is fire adapted, and fire suppression
is thought to be one reason for its decline. We used the
demographic matrices for Rose Prairie site 1 from Kaye
and Pyke (2003). There are five stages: seedlings, vegetative
plants with one or two leaves, vegetative plants with three
or more leaves, reproductive plant with one umbel, and re-
productive plants with two or more umbels. Almost all
seed production comes from the last stage. Our definition
of success is lifetime seedling production.
We chose Lomatium because we wanted a case study

with prominent environmental variation, and the data
on Lomatium in Kaye andPyke (2003) include results from
a prairie-burning experiment (Kaye et al. 2001). Figure 6
shows that environment trajectory luck is in fact the largest
contribution to variance in lifetime seedling production.
The times when the luck contributions peak are by now

familiar. The contribution of environment trajectory luck
peaks at the same age that most individuals hit the ≥2 um-
bel stage—that is, whenmost individuals start reproducing
by seed. Fecundities vary substantially by year, so it is valu-
able to get a favorable year as soon as you become large
enough to begin reproduction. However, the contribution
of fecundity luck peaks the following year. Evidently the
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additional year of mortality is more than offset by the
higher mean fecundity (and therefore higher variance in
fecundity) because of expected growth during that year.
The contribution of growth trajectory luck is also promi-
nent and peaks the year before most individuals begin
seed production (individuals need to transition into the
final developmental class to get many seedlings), while the
contribution of survival luck peaks at birth (do not die
young).

Southern Fulmars

Southern fulmars (Fulmarus glacioides) are long-lived Ant-
arctic seabirds. Fulmars forage near the ice edge, where
productivity is high. In low-ice years, they must forage
over longer distances to feed their chicks and breeding
success is reduced, while high-ice years bring increased
success. Jenouvrier et al. (forthcoming) presents a model
in which individuals belong to one of three behavioral
syndromes and are subject to time-varying sea ice levels.
The model is structured by breeding status, with states con-
sisting of prebreeders, successful breeders, failed breeders,

and nonbreeders. The behavioral syndromes govern sur-
vival, breeding probability, and breeding success and are
fixed traits (Jenouvrier et al. 2018a). For example, individ-
uals exhibiting the group 2 behavioral syndrome tend to
skip breeding more often than individuals in other groups
and have the lowest juvenile survival, but they tend to have
higher lifetime reproductive output than other groups un-
der high-ice conditions because of their high adult sur-
vival. Jenouvrier et al. (2015) discretizes sea ice conditions
(summarized by an index combining sea ice cover and
the location of the sea ice edge) into three levels represent-
ing the bottom 10%, the middle 80%, and the top 10% and
assumes that these levels occur at these frequencies. When
discretized in this way, sea ice conditions are temporally
uncorrelated (Jenouvrier et al. 2015).
The model we are using is one of very few that include

both trait variation and effects of environmental varia-
tion. However, in order to fit that model with the available
data it was necessary to omit age dependence in vital rates
(S. Jenouvrier, personal communication), which is also
known to be present (Jenouvrier et al. 2003). Thus, using
this model may run the risk of overstating the importance
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of environmental or trait variation. Nevertheless, we find
that the contribution of survival trajectory luck dominates
in groups 1 and 3, and the contributions of survival, growth,
and environment trajectory luck all peak at roughly the
same time (fig. 7). The timing of these peaks arises from
a balance: at older ages more individuals have moved be-
yond the prebreeder stage, where demographic and envi-
ronmental transitions matter more, while at younger ages
individuals are more likely to still be alive. Group 1 as a
whole loses individuals to death more slowly than other
groups, and so the balance tips toward later ages: the luck
contributions peak at age 10, when the population of suc-
cessful breeders (stage 2) is at its highest. For behavioral
group 2, however, early luck is driven by the contribution
of growth trajectory luck—transitions among breeding
statuses. This is because individuals in group 2 have lower
prebreeder survival than the other groups, so it is impor-
tant to transition quickly to the successful breeder group.
The contribution of survival trajectory luck never reaches
the heights that it does for the other groups because
by the time it peaks, many group 2 individuals have died
(e.g., a newborn group 2 individual has a 48% chance of

surviving to age 10, compared with a 77% chance for
group 1 and 61% for group 2.)
The contribution of fixed trait variation comes in when

we compare the performance of individuals in the three be-
havior groups, shown in the lower right panel of figure 7.
Age partitioning of the contribution of traits can be done
by a simple extension of the methods developed in Snyder
et al. (2021); we present a summary in section S2 of the
supplemental PDF.
We explored the effect of temporal autocorrelation in

the environment by changing the environment transition
matrixQ toQnew p fI 1 (12 f)Q, where I is the identity
matrix. That is, the environment remains in its current
state with probability f and otherwise changes according
to the actual transition probabilities (which also include
the possibility of staying in the same environment). This
keeps the long-term frequencies of different environment
states the same (because Qnew has the same eigenvectors
as Q) but adds positive temporal autocorrelation. Because
the transition matrix Q has zero autocorrelation, it can be
shown that the correlation between the current environ-
mental state and next year’s state equals f. We found that
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as temporal autocorrelation increases, environment trajec-
tory luck and birth environment bothmattermore. For ex-
ample, for the original model (f p 0), the contribution of
birth environment luck is 0.01 and the contribution of en-
vironment trajectory luck is 0.376, while when f p 0:5,
their contributions are 0.034 and 0.931, respectively. Posi-
tive autocorrelation increases the importance of environ-
mental luck because whatever environment state you expe-
rience in the next time step, you are more likely to be stuck
with it for a while.

Discussion

At the beginning of this article, we asked how much suc-
cess is driven by individual quality versus external factors
versus random chance. We have shown how to partition

the variance of some measure of lifetime success into a con-
tribution from fixed trait variation plus age-specific con-
tributions fromdifferent kinds of demographic and environ-
mental luck. We assume that each individual experiences
their own Markovian sequence of environment states, in-
dependent of what other individuals are experiencing. If
the environment varies over a fine spatial scale as well as
temporally, so that individuals do experience independent
environments, then this individual-level variance is the
variance across individuals within the population. Other-
wise, we are partitioning into different components the
variance of an individual’s success over an imagined en-
semble of replicate lifetimes.
Our empirical examples in earlier work indicated that

adult life span is an important driver of luck (Snyder and
Ellner 2018), which led us to suspect initially that the
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contribution of survival trajectory luck would typically
predominate. The contribution of survival trajectory luck
is indeed dominant for organisms that exhibit slow and
steady growth through sizes or stages, such as trees. How-
ever, the contribution of growth trajectory luck can domi-
nate atmost ages for organisms withmore variable growth,
such as our shrub case study. External factors—environ-
ment at birth and the sequence of subsequent environment
states—can predominate for organisms that rely on distur-
bance or other infrequent environment conditions, such as
in our fire-adapted perennial case study.
Variation in individual quality continues to play a lesser

role in empirical examples. In theory, individual quality
variation can be the dominant factor. But as we argued
in Snyder and Ellner (2018), whenever the distribution of
success (by whatever measure) is skewed so that only a
“lucky few” are highly successful, natural selection will
quickly weed out genotypes that have no chance of becom-
ing one of the lucky few, so the link between traits and suc-
cess is blurred. More generally, when theoretical models
are constrained by empirical estimates of fitness variation
in the wild, the impact of quality variation never exceeds
that of luck (Snyder and Ellner 2018). Hypothetical popu-
lations on the computer can have any trait distribution and
any trait impacts, but if the traits are heritable things will be
very different after a few generations of natural selection.
Large impacts of persistent trait variation are most likely
when the variation is not heritable, such as persistent var-
iation in individual performance among plants due to attri-
butes of the site where they are rooted.
Luck contributions tend to peak soon after birth and

again around the time when most individuals are first be-
coming successful. When success comes a long time after
birth, as it does for trees, this produces two sets of luck
peaks. The contributions of survival, growth, and environ-
ment trajectory luck often peak at different times, however,
offering insight into why luck is important at that age. For
example, a favorable environment can push a tree into
the canopy, while high survival just after they get there
allows them to take advantage of it. Environment trajectory
luck becomes more important as the environment be-
comes positively autocorrelated. The longer this year’s en-
vironment is likely to persist, the more important it is
whether those conditions are favorable or unfavorable.
We used multiple definitions of individual success in

this article—lifetime reproductive output, number of years
at sizes with high reproductive success—and can imagine
others, including binary outcomes such as reaching a crit-
ical size or life stage (e.g., canopy height) or not. One ben-
efit of our approach is that the same theory and formulas
apply to all of these, so that different facets of the life his-
tory and different components (or definitions) of fitness
can all be examined. Our approach can be used whenever

(1) one can calculate the mean and variance of the lifetime
success measure as a function of starting state, (2) dynam-
ics are Markovian (the state at time t depends only on the
state at time t 2 1), and (3) the transition probabilities
from the environment at time t to the environment at time
t 1 1 (or whatever event happens later in the time step) is
independent of the state at time t (orwhatever gets updated
first in the time step). So what we have been calling “envi-
ronment” can in principle be any variable that affects in-
dividual performance or state dynamics without being af-
fected by them.
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Supplement to Snyder et al., “Success: luck, traits, and environment,” Am. Nat.

S1 Calculating state trajectory luck and partitioning in the absence of

environmental variation

S1.1 Computing state trajectory luck

In eqn. (2) state is updated first, then environment. We therefore need a function giving expected

success at ages a + 1 and above, conditional on za+1 (the updated state) and qa (the current

environment). We will call this ρ∗1(z, y), and it can be computed as

ρ∗1(z, y) := E[ρ1(z, qa+1)|qa = y] =
∫

ρ1(z, y′)Q(y′, y) dy′. (S1)

For computing: if ρ1 is stored as a matrix with (i, j) entry ρ1(zi, qj) , then (S1) is a single matrix

multiplication ρ∗1 = ρ1Q.

Returning to (1), the variance in the state trajectory luck is the variance (across different

possible next states za+1) of expected reproduction at ages a + 1 and beyond, conditional on state

za+1 and environment qa. That is, it is the variance of ρ∗1(za+1, qa) across the distribution of za+1

conditional on za, qa, and x. That variance, as a function of za, qa, is given by

Vs(z, q) =
∫

ρ∗1(z
′, q)2Pq(z′, z) dz′ −

(∫
ρ∗1(z

′, q)Pq(z′, z) dz′
)2

. (S2)

Note that the integrals on the right-hand side do not need to include ω, because ρ∗1(ω, q) ≡ 0.

Because the kernel on the right-hand side depends on q, values of Vs for each q need to be

computed separately. A direct approach is to do

Vs(•, q) = vec(ρ∗1(•, q)2)TPq − (vec(ρ∗1(•, q))TPq)
2 (S3)

for each q and fill in Vs by a loop over q values.

Alternatively, let P• denote the megamatrix-size block-diagonal matrix in which the blocks

2
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are the state-transition or iteration matrices Pq for environment states q1, q2, · · · . P• can be built

easily as a sparse matrix in R if the set of Pq matrices are stored as a list, using the function

bdiag m that is on the help page for bdiag in the Matrix library. Then

vec(Vs) = (vec(ρ∗1)
2)TP• − (vec(ρ∗1)

TP•)2. (S4)

We then need to average over the distribution of (za, qa), which is given by Ma vec(m0). The

decomposition of state trajectory luck is then

State trajectory luck =
A−1

∑
a=0

(vec(Vs))
TMa vec(m0). (S5)

S1.2 Partitioning in the absence of environmental variation

When there is no environmental variation, survival and growth trajectory luck become

∑A−1
a=0 Ex,za

{
Varz′a+1|x,za [E(R|x, z′a+1)]

}
Survival trajectory luck

+ ∑A−1
a=0 Ex,z′a+1

{
Varza+1|x,z′a+1

[E(R|x, za+1)]
}

. Growth trajectory luck

(S6)

We define

ρ′′1 (z
′) := E(ρ1(za+1)|z′a+1 = z′) =

∫
ρ1(z)Gq(z, z′) dz, (S7)

and in place of eq. (13), we have

Vs(z) =
∫
(ρ′′1 (z

′))2Sq(z′, z) dz′ −
( ∫

ρ′′1 (z
′)2Sq(z′, z) dz′

)2

. (S8)

We can then use eq. (15) to calculate survival trajectory luck. In place of eq. (17), we have

Vg(z′) =
∫
(ρ1(z))2Gq(z, z′) dz−

( ∫
ρ1(z)Gq(z, z′) dz

)2

, (S9)

and we then use eq. (19) to calculate growth trajectory luck.
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S2 Age-partitioning the contribution of fixed trait variation in the

presence of environmental variation

The contribution of trait variation is given by Varx[E(R|x)]. To age-partition this term, as in Sny-

der et al. (2021) we first evaluate it under the assumption that trait variation disappears after age

a, and then calculate the term as the sum of the marginal changes in value as the threshold age

is sequentially increased from 1 to ∞.

More precisely, let ~x = (x0, x1, x2, · · · ) be a vector of the individual’s trait at all ages, and let

x∗ denote a trait value such that individuals with trait x∗ have trait-averaged state/environment

transition matrix/kernel, M =
∫

Mx p0(x) dx and the trait-averaged fecundity matrix/kernel F =∫
Fx p0(x) dx, where p0(x) is the trait distribution. Define

v−1 = Varx E(R|~x = (x∗, x∗, x∗, · · · )) = 0 (S10)

v0 = Varx E(R|~x = (x, x∗, x∗, · · · ))

v1 = Varx E(R|~x = (x, x, x∗, · · · )).

We then have

Varx[E(R)] = (v0 − v−1) + (v1 − v0) + (v2 − v1) + · · · (S11)

and the marginal increase (va − va−1) is the age-a contribution to the total contribution of fixed

trait variation to variation in R.

The age-specific contributions can be evaluated by just substituting megamatrix state/en-

vironment and fecundity kernels for their constant-environment counterparts in the formulas

derived by Snyder et al. (2021, p. E121), giving

va = Varx
(
ρ0,a(x)

)
, (S12)
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for

ρ0,a(x) = Ax + bT
x Ma

xm0,x, (S13)

where Ax = eTFx Nxm0,x and bT
x = eT(F N − Fx Nx)M. (S14)

S3 Models for tropical trees in a varying light environment

Our analyses, like those of Metcalf et al. (2009), concern only growth and longevity rather than

actual reproductive output, so only survival and growth need to be modeled as functions of

individual size and light environment. The size measure is continuous — the natural log of tree

diameter (mm dbh) — and light environment is discrete, with six categories (Metcalf et al. 2009,

p. 2678): values 1, 2, and 3 indicate low, medium, and high lateral light only, 4 indicates some

overhead light, 5 indicates full overhead light, and 6 indicates that the crown was completely

exposed (either emergent from the canopy or in a gap).

In order to visualize and inspect the models relative to the data, we downloaded the Clark

and Clark (2006) data set (the online file LS trees 1983 2000.txt linked to that paper). Using

code provided by the authors of Metcalf et al. (2009), we extracted from it a data frame with the

following variables:

• d.t0, logd.t0: Size and log-transformed size at an annual census.

• d.t1, logd.t1: Size and log-transformed size at the subsequent annual census.

• surv: did the tree with initial size d.t0 survive to the subsequent census?

• Q.t0: light environment category of each tree at an annual census corresponding to d.t0.

• light: factor variable indicating the higher light environment categories (4,5,6).

Because tree mortality is relatively rare, Metcalf et al. (2009) fitted a relatively simple survival

model for each species, with only two light environment categories and a single slope:

5
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sfit=glm(surv∼ logd.t0+light,family="binomial")

Here logd.t0 is the log of tree diameter at an annual census, surv indicates whether or not the

tree survived to the next census, and light is a factor variable with value TRUE indicating light

environments 4,5,6 and value FALSE indicating light environments 1,2,3. The model assumes a

constant slope of logit survival versus size, and an intercept that differs between the lower three

and the higher three light environments.

To account for size-dependent growth variance, Metcalf et al. (2009) fitted the growth model

by generalized least squares using the gls function in the nlme package:

gfit.SA=gls(logd.t1∼ logd.t0*factor(Q.t0),weights=varExp(form= ∼ fitted(.)))

Because mortality is rare, there are many observations of growth from one year to the next (6637

for Simarouba, 2895 for Minquartia), so this model included a slope and intercept that both depend

on the 6-level classification of light environment.

Figure S1 shows the fitted survival and growth models. Feeling obliged to follow our own

published advice (Ellner et al., 2016), we carried out some graphical model diagnostics. We did

find evidence of some small imperfections, but as these involved a very small fraction of the data,

we saw no reason to try fitting more complicated models. Details follow, if you’re interested.

The fitted survival functions seem to capture the trends in the binned survival estimates,

except for very small trees in higher light conditions. There, the binned survival estimates remain

high while the fitted models have a decline in survival at the smallest sizes. However, because

the smallest trees rarely occur in higher light environments (i.e., the red points for initial log size

< 3 are massively out-numbered by the gray points), this discrepancy affects an inconsequential

number of individuals. We therefore left the model as-is rather than adding parameters to make

it “wag its tail” in the direction of a few stray data point.

The growth models are similarly plagued by a few outlier observations, which lie far outside

the fitted growth model’s prediction. But again, these are a few dozen points out of thousands,

so we made no attempt to complicate the model to accommodate them. In a study of this size
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Figure S1: Survival (top) and growth (bottom) models for our focal species. Survival: Values
0 and 1 corresponding to death or survival have been jittered. Colors gray and red indicate
lower (categories 1,2,3) versus high (categories 4,5,6) light conditions. The colored curves are
the fitted logistic regression models. The solid circles connected by lines are average survival
in size categories defined by quantiles of initial log size, plotted against the median log size
of individuals in that quantile. Growth: solid blue line is the predicted mean subsequent size,
combining data from all light categories. The dotted blue curves are the predicted mean ±2
times the fitted size-dependent standard deviation of growth increments.
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and duration, it seems quite possible to us that shrinkage of a medium-size tree by 50% or more

is perhaps best explained as somebody measuring the wrong tree.

At the smallest sizes, the observed growth increments appear to lie slightly above the fitted

linear model. Fitting growth with a spline instead of a linear model, we did find a slight curvature

in the fitted mean growth at the smallest sizes. However, this apparent deviation in the mean is

small relative to the variability in growth, and is driven by small number of data points, so we

again chose to retain the linear model.

The validity of the exponential model for size-dependent variance (apart from the outliers)

is hard to assess visually in these plots. We therefore made plots of scaled residuals (i.e., resid-

uals divided by the fitted standard deviation) against fitted values for both models. If the ex-

ponential model is correct, the scaled residuals should be homoscedastic, and the plots (not

shown) did not suggest any heteroscedasticity. As a more quantitative check, we re-fitted the

variance models nonparametrically, using the gam function in the mgcv package (Wood, 2017)

with family=gaulss. In both cases, the log of the fitted standard deviation had a close to linear

decline with initial log size, which corresponds to the exponential variance model used in the

gls fit of the growth model.

The strong size-dependence in growth variance on log-scale makes it difficult to work with

the model, because a very large number of mesh points is needed to resolve the growth distri-

bution at the largest sizes. (Metcalf et al. (2009) only modeled trees’ lives prior to reaching the

canopy, and therefore did not encounter this problem.) We therefore implemented the models

numerically using the square root of dbh, rather than log dbh, as the size measure. The under-

lying demographic functions are all retained, but the growth variance expressed on square root

scale is only weakly dependent on size, and 500 mesh points was sufficient to get accurate nu-

merical results using integrated bin-to-bin calculations of the projection matrices. Our check for

numerical accuracy was to compare the variance of LRO computed directly (using sec. 3.2.2 of

Ellner et al. (2016)) with the sum of all terms in our partition, because these are two entirely dis-

tinct and separate calculations of the same quantity. The difference between them decreased with
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increasing number of mesh points, and with 500 mesh points the relative error was a fraction of

a percent for both species.
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