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Abstract

The usual theoretical condition for coexistence is that each species in a com-

munity can increase when it is rare (mutual invasibility). Traditional coexis-

tence theory implicitly assumes that the invading species is common enough

that we can ignore demographic stochasticity but rare enough that it does not

compete with itself, even after it has reached a stationary spatial distribution.

However, short-distance dispersal of discrete individuals leads to locally dense

population clusters, and existing theory breaks down. We have an intuition

that when we account for invader–invader competition, shorter-range dis-

persal should reduce the invader’s ability to escape competition, but exactly

how does this translate into lower population growth? And how will invader

discreteness affect outcomes? We need a way of partitioning the contributions

to coexistence, but current modern coexistence theory (MCT) does not apply

under these conditions. Here we present a computationally based partitioning

method to quantify the contributions to coexistence from different mecha-

nisms, as in MCT. We also build up an intuition for how invader clumping

and discreteness will affect these contributions by analyzing a case study, a

lattice-based spatial lottery model. We first consider fluctuation-dependent

coexistence, partitioning the contributions of variable environment, variable

competition, demographic stochasticity, and their correlations and interac-

tions. Our second example examines fluctuation-independent coexistence

maintained by a fecundity–survival trade-off, and partitions the contributions

to coexistence from interspecific differences in fecundity, in mortality, and in

dispersal. We find that demographic stochasticity harms an invader, but only

slightly. Localized invader dispersal, on the other hand, can have a strong

effect. When invaders are more clumped, they compete with each other more

intensely when rare, so they too become limited by environment-competition

covariance. More invader clumping also means that variation in competition

changes from helping the invader to harming it. More broadly, invader

clumping is likely to weaken any coexistence mechanism that relies on the

invader escaping competition from the resident, because invader clumping

means that the resident is no longer the only source of competition.
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INTRODUCTION

We already have spatial coexistence theory for communi-
ties in temporally or spatiotemporally varying environ-
ments (e.g., Benaim & Schreiber, 2019; Chesson, 2000a;
Hening et al., 2021; Snyder et al., 2005; Snyder &
Chesson, 2003, 2004), so why do we need more?

Modern coexistence theory (MCT) is based on invasion
analysis, which asks whether a species will tend to increase
in abundance when it is very rare, either a rare new
invader or a previously abundant species reduced to low
numbers by a string of bad years or bad luck. Unless each
species tends to increase again after becoming rare, persis-
tence of the community is at best fragile and temporary.
Theory developed over the last four decades (Benaim &
Schreiber, 2019; Chesson, 1982; Chesson & Ellner, 1989;
Chesson & Warner, 1981; Hening et al., 2021;
Hening & Nguyen, 2018, 2020; Roth & Schreiber, 2014;
Schreiber et al., 2011) has confirmed that, in a broad class
of models, the coexistence of a set of competing species
depends on the ability of each species to increase when it
is rare and competing with either the full community or
various subsets of the community. The mechanisms
allowing a set of species to coexist are then identified by
asking what processes or mechanisms give each species a
positive population growth rate as a rare invader
(Chesson, 1994, 2000a)?

Though a good foundation, this body of theory makes
implicit assumptions that are difficult to meet when pop-
ulation dynamics depend on the discrete nature of indi-
viduals and their spatial distribution. The first
assumption is that demographic stochasticity can be
ignored. If we include demographic stochasticity, then
the ultimate outcome must always be extinction of one
species or the other (though the expected time to extinc-
tion may be so long as to be ecologically meaningless).
Second, in order for invader growth rate to be a single
number, rather than a function of the invader’s changing
population density, “rare” is assumed to mean that the
invader is so rare that it does not compete with itself at
all. In technical terms, the model is linearized at zero
density for the invader, and the linearized dynamics are
used to calculate the invasion growth rate,
 r½ � ¼ log N tþ1ð Þ=N tð Þð Þ, where N(t) is the total popu-
lation of the invader at time t. For populations with spa-
tial structure, existing theory assumes that a successful
invader is initially so rare that it converges to a stable

spatial structure (at which  r½ � is evaluated) while
remaining so rare that the model linearized at zero
invader density describes its dynamics; conversely, an
unsuccessful invader remains present, even though
steadily decreasing in abundance, long enough to reach a
stable spatial structure (Benaim & Schreiber, 2019;
Chesson, 2000a; Hening et al., 2021; Roth &
Schreiber, 2014).

When we apply this theory to real communities, we
are simultaneously assuming that the invading species is
common enough that we can ignore demographic
stochasticity but rare enough that it does not compete
with itself, even after it has reached a stationary spatial
distribution.

These assumptions are especially problematic in spa-
tially structured communities with discrete individuals.
Though a rare species can be microscopically rare in
models with continuous population density—and there-
fore still rare when it has converged to the stable spatial
distribution of the linearized model—with discrete indi-
viduals that is not possible. The stable spatial distribution
for a successful invader will have individuals spread
across the entire habitat, so the invader is no longer rare:
Invasion growth rates could be computed by linearization
at zero density only if individuals are so widely spaced at
their stationary distribution that they do not compete,
which is possible but not safe as a general assumption.
Conversely, an unsuccessful rare invader will likely go
extinct before reaching a stable spatial distribution.

Moreover, when there is localized dispersal, the
resulting clumping of invaders means that an invading
species is likely to affect its own dynamics even when it
is still very rare (Figure 1a,b). For example, in a model
for the spatial spread of an invader with discrete individ-
uals, Lewis (2000) found that the “key feature slowing
spread” (p. 449) below what it would be in the absence of
competition was the spatial correlation in the location of
related individuals. Spatial clustering of close relatives
results from limited parent–offspring distances. Even
where the average population density is very low, most
individuals are close to some other individual, potentially
competing with them directly or producing offspring that
will compete with other individuals’ offspring. As
Figure 1c illustrates, the clumping that results from lim-
ited offspring dispersal can have very large effects on the
low-density growth rate of a rare invader and, therefore,
on its persistence in the community.
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All populations consist of discrete individuals distrib-
uted in space. Nonetheless, we are not arguing that cur-
rent coexistence theory is universally problematic. If your
species of interest is distributed like Figure 1a where and
when it is rare, with intraspecific competition weak
enough to ignore, then existing theory is valid. However,
in many cases, clumping will lead to intraspecific compe-
tition even when a species is at the brink of extinction.
We need new tools to determine whether such a species
is likely to invade and to quantify the mechanisms that
influence the invasion’s success or failure.

But do we not already have coexistence theory for dis-
crete, spatial models (Durrett, 2002, 2009; Durrett &
Levin, 1994)? Yes and no. With rare exceptions
(e.g., Chan & Durrett, 2006; Turelli, 1980), in this body of

theory demographic stochasticity is the only
stochasticity—there is no temporal environmental vari-
ability (hence no fluctuation-dependent coexistence
mechanisms) and generally no spatial variability.
Moreover, nearly all results about coexistence apply only
in extremely limited situations: either very long-range
interactions between individuals or “rapid stirring,”
meaning that individuals move randomly on a much
faster time scale than births and deaths.

Our eventual goal is a MCT for communities of dis-
crete, locally interacting individuals that addresses all of
these limitations. This paper represents a step toward
that. Our main topic here is partitioning. We provide
methods to quantify the contributions to coexistence
from different mechanisms, as in classical MCT, and then
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F I GURE 1 Alternative assumptions about the spatial pattern of a rare invader or a species that has become rare due to a string of bad

years or bad luck, and their effect on invader growth rate. (a) Existing spatial coexistence theory assumes that a rare species is rare

everywhere, spread throughout the habitat so sparsely that it only experiences competition with resident species. (b) In this paper, we

consider the case where rare species are modeled as discrete individuals, clumped and locally common enough that a typical individual

experiences competitive pressure from nearby conspecifics. (c) Illustration of how clumping (which increases with decreased mean dispersal

distance) affects a rare invader’s population growth rate, with and without effects of demographic stochasticity, in the lattice lottery model

studied in this paper. “Case A” and “Case B” indicate that as mean dispersal distance decreases the population goes from the qualitative

scenario illustrated in panel (a) to the scenario in panel (b). Growth rates with demographic stochasticity are from model simulations where

adult mortality, and competition among larvae to occupy vacated sites, are stochastic “coin tosses” determining the fate of discrete

individuals. Growth rates without demographic stochasticity were calculated from the expected numbers of deaths and sites won. Figure

generated by scripts rarity.R and invGrowthVsAlpha.R using R version 4.0.2 or higher.
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apply those methods to a simple model to start building
intuition about how different coexistence mechanisms
are affected by invader discreteness and clumping. MCT
also addresses the question of what to partition (i.e.,
whether invader growth rate is a good predictor of coexis-
tence), which we touch on briefly in the Discussion
section.

To illustrate why partitioning can be informative,
consider again Figure 1c. For the model we study here, it
shows that shrinking the range of offspring dispersal has
a large negative effect on invader growth rate, whereas
demographic stochasticity decreases invader growth only
slightly (as previously found by Hart et al. [2016]). We
have an intuition that because discreteness and clumping
result in invader–invader competition even when the
invader is globally very rare, shorter-range dispersal
should reduce the invader’s population growth. But
exactly how does that translate into a lower population
growth rate? Is it because increased competition reduces
the contribution that each coexistence mechanism makes
to invader growth rate, or because the invader experi-
ences competition from itself when it is in a good envi-
ronment, limiting the invader’s potential for increase
when it is favored over its competitor? Moreover, some
coexistence mechanisms do not rely on escaping competi-
tion. Relative nonlinearity, for example, asks which spe-
cies benefits more from (or is less damaged by) the
Jensen’s inequality effect when competition fluctuates.
How much of the decrease (if any) is due to changes in
the temporal variance of competition or changes in the
degree of nonlinearity in the effect of competition on
population growth? Similarly, why does demographic
stochasticity have a small effect that is relatively constant
as invader clumping varies? Does it have no effect on any
coexistence mechanisms, or does it have substantial but
opposing effects on different mechanisms? The methods
that we develop in this paper make it possible to answer
these and similar questions.

The next two sections present background material on
the classical lottery model and the functional analysis of
variance (fANOVA) approach to partitioning. We then pre-
sent the discrete, spatial lottery model that we use to dem-
onstrate our methods. The details of our partitioning
methods for fluctuation-dependent mechanisms, analogous
to Chesson (1994), are presented in the section Methods:
partition based on fluctuation-dependent coexistence mecha-
nisms. That section begins with a graphical and conceptual
overview, allowing readers to skip directly to Results and
come back for step-by-step instructions if and when they
need them. The results for fluctuation-dependent mecha-
nisms are followed by an analysis of coexistence based on
life-history differences, for species whose coexistence is not
fluctuation-dependent.

BACKGROUND: THE CLASSICAL
LOTTERY MODEL AND THE
CANONICAL PARTITIONING OF
INVASION GROWTH RATE

To explain and demonstrate our approach, we use the
simplest model that contains the two key features, dis-
crete individuals and clumping: a spatially explicit ver-
sion of the lottery model in two-dimensional space. But
before we present and study that model, we need to
review the classical lottery model and the associated
coexistence theory.

The lottery model was originally presented as a model
for coral reef fish occupying individual territories
(Chesson & Warner, 1981), though it quickly became
used for plants and other sessile organisms. We will use
the original language, so that new offspring are larvae,
but these could just as well be seeds or other propagules.
The classical lottery model is based on the following
assumptions:

1. The habitat consists of a constant number N of sites,
where one adult occupies each site.

2. Each species q adult produces βq(t) larvae in year t,
which are dispersed evenly to all sites.

3. Following larval production, some adults die (with
mortality rate δq). The new occupant at each vacated
site is chosen by fair “lottery” among all larvae at
the site.

Mathematically, the classical lottery model is a mean
field equation for the expected changes in population
density given the per-capita fecundities that year.
Informally, we think of it as modeling very large
populations, with N being a population density (such
as sites/km2). When there are just two species,
occupying N1(t) and N2(t) sites, respectively, we have
N1(t) + N2(t) ≡ N and can write the model in terms of
N1(t) as follows:

N1 tþ1ð Þ¼N1 tð Þ 1�δ1ð Þþ δ1N1 tð Þþδ2 N�N1 tð Þð Þ½ �

� β1 tð ÞN1 tð Þ
β1 tð ÞN1 tð Þþβ2 tð Þ N�N1 tð Þð Þ

¼ SurvivorsþNumber of open sites

�Chance towin a site: ð1Þ

This model does not track discrete individuals, and there-
fore N1(t) can have any nonnegative real value.

Coexistence theory for the model involves two
steps, invasion analysis and partitioning of invader
growth rate.

4 of 23 ELLNER ET AL.
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Invasion analysis

To see if Species 1 persists, we linearize its dynamics
at N1 = 0:

N1 tþ1ð Þ¼N1 tð Þ 1�δ1þδ2
β1 tð Þ
β2 tð Þ

� �
,

 r1½ � ¼ log
N1 tþ1ð Þ
N1 tð Þ

� �
¼ log 1�δ1þδ2

β1 tð Þ
β2 tð Þ

� �
:

ð2Þ

Species 1 persists when  r1½ �>0. (Recall, there is no
demographic stochasticity in this model.)

Partitioning

This means that  r1½ � is expressed as the sum of contribu-
tions from different coexistence mechanisms. This can be
done in many different ways (Ellner et al., 2019). The
canonical decomposition (Chesson, 1994) partitions  r1½ �
into contributions from (i) fluctuation-independent
mechanisms, (ii) storage effect, and (iii) relative
nonlinearity of competition.

The storage effect consists of contributions to coexis-
tence resulting from density-dependent covariance between
environment and competition. Environment E is a mea-
sure of the potential for population increase under current
conditions, absent competitors. Competition C is a measure
of how much worse things really are because competitors
are present. For example, the lottery model, Equation (1),
can be rearranged into the following form:

Nq tþ1ð Þ¼Nq tð Þ 1�δqþEq tð Þ
Cq tð Þ

� �
, ð3Þ

where

Eq tð Þ¼ βq tð Þ, per-capita larval production, and
1=Cq tð Þ¼ chance that any one larva becomes an adult, so

Cq tð Þ¼ Total no: larvae
Total no:open sites

¼ β1 tð ÞN1 tð Þþβ2 tð Þ N�N1 tð Þð Þ
δ1N1 tð Þþδ2 N�N1 tð Þð Þ :

ð4Þ

When Species 1 is invading, letting N1(t) ! 0 we get
Cq(t) = β2(t)/δ2 for both species.

To compute the storage effect and other components
of invader growth rate, classical MCT uses small-variance
quadratic approximations, which require extensive,
detailed calculations. We use numerical simulations and
fANOVA (Ellner et al., 2019; Hooker, 2007). We start

with a simulation of invader population growth with all
model parameters set to their observed (fitted) values. We
then alter the simulated output to determine how the
invader and resident growth rates would change if the
world were different. Would the invader’s growth rate
increase or decrease if the environment were constant
instead of variable? What about the resident’s growth
rate? What if we hold competition constant? What if both
environment and competition are constant? What if we
break the correlation between environment and competi-
tion so they vary independently? We call these scenarios
counterfactuals. The right collection of counterfactuals
allows us to determine how different features of the
model, such as environmental variation, contribute to the
invader’s growth rate.

Restating this approach in mathematical terms, any
multivariate response χ w

!� �
can be partitioned exactly as

(e.g., Hooker, 2007)

χ w
!� �

¼ ε0þ
X
i

εi wið Þþ
X
i≠ j

εi,j wi,wj
� 	þ�� �þ ε1,2,���,d w

!� �
:

ð5Þ

That is,

Response¼ Baseline valueð ÞþΣ Main effectsð Þ
þΣ 2-way interactionsð Þ
þ � � �þ d-way interactionð Þ:

We partition invader growth rates based on presence ver-
sus absence of particular mechanisms or processes, that
is, each wi in Equation (5) has possible values 1 and
0, indicating presence or absence. Our fANOVA partition
of invasion growth rate χ¼ ri½ � is derived from a set of
counterfactual scenarios in which variation or covaria-
tion in E or C is absent. Given r¼ log 1�δþE tð Þ=C tð Þð Þ,
and dropping the species subscript for the moment, we
obtain the following:

1. The no-variance baseline is ε0 ¼ r E,C
� 	

.
2. The main effect of variation in E is εE ¼ r E,C

� 	
 �� ε0.
3. The main effect of variation in C is εC ¼ r E,C

� 	
 �� ε0.
4. The interaction of variation in E and C is

εEC ¼ r E,Cð Þ½ �� ε0þ εEþεCð Þ.
5. The effect of covariance between E and C is

ερ ¼ r E,Cð Þ½ �� r E#,Cð Þ½ �; here E# means that  r½ �
is calculated from temporally shuffled E(t) values, so
that the marginal distribution of E is the same, but
covariation with C is eliminated.

This math is saying that if we measure the invasion
growth rate with and without varying E, with C held con-
stant in each, then their difference, εE, is the main effect

ECOLOGICAL MONOGRAPHS 5 of 23
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of letting E vary. Similarly, if we let both E and C vary
and measure the invasion growth rate, then if we subtract
off the main effects of a variable E, a variable C, and the
baseline growth rate in which neither varies, then what
is left, εEC, must be the interaction between a variable
E and C. This interaction can be further partitioned by
letting E and C vary with their natural correlation, and
by breaking that correlation by shuffling the E values, so
that the change in invasion growth rate measures the
effect of E, C covariance. In Ellner et al. (2019), this idea
is explained in more detail and applied to nonspatial
models.

E, C covariance benefits a rare species indirectly, by
limiting how much a common species can increase in a
good year (the enemy of your enemy is your friend!). But
to see a “hit” to a resident as a “plus” for the invader, we
need to do a term-by-term comparison of growth rate
partitions for the invader and for the resident species, as
follows:

 ri½ � ¼ εi,0þεi,Eþεi,Cþεi,ECþ εi,ρ
 rr½ � ¼ εr,0þεr,Eþ εr,Cþ εr,ECþεr,ρ ¼ 0,

ð6Þ

where the expected resident growth rate is zero because
the resident is at equilibrium. Term-by-term differences
(starting with εi,0 � εr,0 = Δi,0) then parti-
tion  ri½ �� rr½ � ¼ ri½ �:

 ri½ � ¼Δi,0þΔi,EþΔi,CþΔi,ECþΔi,ρ: ð7Þ

Our Δs correspond approximately to Chesson’s (1994)
coexistence mechanisms, with some caveats discussed in
what follows in defining E, C, and demographic
stochasticity η, so the classical Chesson (1994) partition is
approximately

 ri½ �≈ Δi,0þΔi,Eð ÞþΔi,CþΔi,ρ: ð8Þ

Ellner et al. (2019) found that in models parameterized
from experiments, terms omitted from the classical parti-
tion can actually be some of the largest. Also, Δi,E is a
biologically meaningful component of population growth
rate (relative nonlinearity in the environment), so we
find it informative to keep it separate instead of combin-
ing it with Δi,0.

BACKGROUND: A LATTICE
LOTTERY MODEL

We now introduce our focal model, a lottery model with
discrete individuals and local offspring dispersal. The

environment (maximum per-capita fecundity βq) varies
in time but not in space.

The model’s spatial domain is a finite two-dimensional
integer lattice consisting of sites x = (x1, x2) with 1 ≤ x1,
x2 ≤ M, and dynamics occur in discrete time. At times
t = 0, 1, 2, … each site is either occupied by Species 1 or
occupied by Species 2. We let nq,x(t) be the number of spe-
cies q individuals in site x at time t; possible values are 0 or
1. We assume that all sites vacated by adult mortality are
immediately reoccupied.

We assume that competition between adults occurs
within a local neighborhood. (Our model is better suited
to plants, not fish, but we will continue to use the lan-
guage of Chesson & Warner [1981] and refer to offspring
as larvae.) Specifically, we assume a “top hat” competi-
tion kernel, constant within some neighborhood around
the focal site and zero outside the neighborhood. The
smallest neighborhood we consider is the Moore neigh-
borhood, in which a site’s neighbors are the other sites in
the 3 � 3 square centered at the focal site. To explore the
effects of longer-range competitive interactions, we con-
sider neighborhoods consisting of the squares of sides
5, 7, and so forth centered on the individual. We refer to
the squares of sides 3, 5, 7, and so forth as having compe-
tition radius ρ = 1, 2, 3, and so forth and call them the
Moore, Moore2, Moore3, and other neighborhoods. We
let N x denote the set of sites that are neighbors of x.

Larval dispersal is described by a dispersal matrix
Dx0 jx giving the fraction of larvae produced at site x that
land at site x0. We define D through an exponential ker-
nel with a finite-range cutoff. For convenience, following
Usinowicz (2015), we let larval dispersal from site x to
site x0 depend on the sup-norm distance between the sites

d x0jxð Þ¼ max jx01� x1j, jx02�x2j
� 	

: ð9Þ

The Moore neighborhood of a site then consists of all sites at
distance d = 1 from the focal site, the Moore2 neighborhood
consists of all sites at distance 0 < d ≤ 2 from the focal site,
and so on. We construct the dispersal matrix so that (ignor-
ing edge effects) the total number of larvae landing at all sites
at distance d from the parent is proportional to e�αd. The
total number of sites at distance d from a focal site far from
the lattice margin is (2d + 1)2 � (2d � 1)2 = 8d. Thus, with
the definition h(d)= e�αd/(8d) the dispersal matrix is

Dx0jx ¼
1
Zx

h d x0jxð Þð Þ if d x0jxð Þ≤ 4,

0 if d x0jxð Þ>4,

8<
: ð10Þ

where Zx is a constant such that
P

x0Dx0jx ¼ 1. This says
in particular that parents near the margins of the habitat

6 of 23 ELLNER ET AL.
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patch do not disperse larvae outside the patch. The cutoff
at d = 4 is to eliminate any possible artifacts from the
long leptokurtic tail of an exponential distribution.
Global dispersal is represented by a dispersal matrix in
which each parent’s larvae are distributed evenly across
all lattice sites. The largest possible mean distance for
nonglobal dispersal is 2 (resulting from α = 0), with lar-
vae dispersed across the 9� 9 block centered on the par-
ent such that dispersal distances 0, 1, 2, 3, and 4 are
equally likely.

The sequence of events in each time step is as follows:

1. A species q adult in site x—if there is one—produces
Fq,x larvae. The value of Fq,x(t) results from temporally
fluctuating maximum per-capita fecundity βq(t) (note
that this is spatially constant) possibly modified by
local adult competition:

Fq,x tð Þ¼ βq tð Þ

1þP2
s¼1

aq,s z�1
P

x0�N x

ns,x0 tð ÞÞ
" # ð11Þ

The quantity in square brackets in the denominator is
the fraction of neighbors that are species s, with z the
number of neighboring sites (z = (2ρ+ 1)2–1 for competi-
tion radius ρ, for example, z = 8 for the Moore neighbor-
hood; recall that a site is not a neighbor of itself). We
express competition in terms of the fraction of neighbors,
rather than the number of neighbors of each species, so
that changing the neighborhood size changes the scale of
competition but not the intensity. The coefficients aq,s
characterize the strengths of intra- and interspecific com-
petition. In the classical lottery model, aq,s = 0 for all
q and s. We consider both zero and nonzero competition
coefficients to isolate the effects of adult–adult competi-
tion and larval competition.
2. The number of species q larvae that land in site x0

is then

yq,x0 tð Þ¼
X
x
Dx0 jxFq,x tð Þnq,x tð Þ: ð12Þ

Note that the model is deterministic at this step,
assuming that the number of larvae is so large that
demographic stochasticity in larval dispersal can be
ignored.
3. Each species q adult dies with probability 0< δq<1,

creating an empty site.
4. If site x0 becomes empty, it is occupied by species

q with probability

yq,x0 tð Þ
y1,x0 tð Þþ y2,x0 tð Þ

: ð13Þ

As noted earlier, we start simulations with all sites occu-
pied, so y1,x0 tð Þþ y2,x0 tð Þ is always positive.

METHODS: PARTITION BASED ON
FLUCTUATION-DEPENDENT
COEXISTENCE MECHANISMS

Our goal in this section is to develop a partition of
invader growth rate for discrete, spatial models that is as
closely analogous as possible to the canonical
partitioning for the nonspatial model (Chesson, 1994,
2000b) and in addition takes into account the effect of
demographic stochasticity.

To accomplish that, we had to address a series of
questions:

1. How should we define the environment measure E,
competition C, and demographic stochasticity η for
the lattice lottery model?

2. How should we define the invasion growth rate  r½ �?
3. We concluded that the right measure of  r½ � is the

average per-capita invader growth rate when the
invader is distributed in small clusters. How can we
generate a sample of lattice configurations with small
invader clusters?

4. How do we evaluate the invasion growth rate  r½ � for
that sample?

5. How do we partition  r½ � into contributions from dif-
ference coexistence mechanisms?

Our approach is summarized in Figure 2 and Box 1.
Please look first at Figure 2, which summarizes the simu-
lations that are used to estimate and partition invader
growth rate. Invader growth rate is quantified as the aver-
age change in the log of total invader population over
one time step when the invader is distributed in isolated
small clusters.

We simulate the model up to some large time T, reset-
ting the lattice as necessary to maintain small invader
clusters (we explain below how this was done). For each
lattice configuration at time T, we do replicate simula-
tions of the populations at time T + 1, recording E, C,
and η for each simulation. We then use these recorded
values to calculate the counterfactual invader and resi-
dent growth rates that would have occurred if one or
more of E, C, and η were set to their time-averaged values
(see Figure 3 for some examples). Equation (27) details
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how these counterfactual growth rates are used to parti-
tion both the invader and resident growth rates. Finally,
Equation (28) shows the term-by-term comparison of
invader and resident partitions that creates the fANOVA
partitioning of invader growth rate.

Like all MCT partitions of contributions from differ-
ent coexistence mechanisms, this is a retrospective analy-
sis: For an observed instance of coexistence, it identifies
the contributing mechanisms and how much each con-
tributes. A prospective analysis, in contrast, would pre-
dict whether or not a set of species will coexist based on
intrinsic properties of each species (e.g., thermal toler-
ances) that could be quantified outside the context of a
community where all coexist.

The rest of this section gives the details of these pro-
cedures and provides explicit formulas for all of the cal-
culations. If and when you want to do this yourself, or
you really want to know the details, you need to read the
rest of this section. Readers more interested in the gen-
eral approach and the results can focus on Box 1 and
Figure 2 and then skip to the section Results: partition

based on fluctuation-dependent coexistence mechanisms to
see the payoffs.

Defining E, C, and demographic
stochasticity η

Our definitions of E, C and η are based on the following
principles:

1. E and C determine the expected population change
given the state of the lattice. The effects of demo-
graphic stochasticity are defined in terms of deviations
from this expected value.

2. We define E and C as biologically interpretable
aspects of the model rather than using the “standard
parameters” E, C that analytic MCT introduces to sim-
plify quadratic approximations.

3. We also do not use the comparison coefficients qir from
analytic MCT, which are chosen to zero out a term in
the quadratic approximation. Instead, we develop

 

 

(a) 

(b)

(c)

K configurations of 

invader (black) and 

resident (blue) 

populations at time T. 

For each: V vacancy 

(white) configurations 

created by deaths. This 

step includes demographic 

stochasticity in adult 

mortality.  

For each: R replicate 

simulations of adult 

population next year. This 

step includes demographic 

stochasticity in competition 

for vacant sites.  

F I GURE 2 Schematic summary of one-step-ahead simulations that provide the information needed for the partition. Black indicates a

site occupied by an adult of the invading species; blue, a site occupied by a resident species adult; and white, a vacant site. Separating one

time step into the two stages depicted above is only required for considering separately the effects of demographic stochasticity in adult

mortality and in the lottery for vacated sites. (a) Do replicate simulations up to time T � 1 to generate K configurations of resident and

invader adults in the lattice. For each record Sq, the expected number of adults in each species that will survive to the next year. (b) For each

configuration do V replicate coin-tossing simulations of adult mortality creating vacant sites. For each record Sq, the actual number of adults

that survived in each species. (c) For each of the KV adult/vacancy configurations, do R replicate simulations of larval competition for vacant

sites: Choose environments Eq, disperse larvae, and choose the winner at each vacant site. These outcomes are used to compute measures of

competition Cq and demographic stochasticity ηq, as explained in the main text. Because demographic stochasticity has very small effects in

our model, we do not distinguish between the two kinds of demographic stochasticity. For that case, it is simplest to take R = 1 and do

V complete one-step-ahead simulations from each adult configuration at time T.
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methods for pairwise comparisons between an invader
and each resident species as in Ellner et al. (2019),
because this provides more information than the classi-
cal approach of comparing the invader’s growth rate to
a weighted average of resident growth rates.

Defining Eq

As in the standard lottery model, we define Eq = βq.

Defining Cq

For the standard lottery model Cq is the ratio by which
the total number of new larvae NqEq is reduced by com-
petition, to give the number of new recruits. We want
Cq(t) to have the same meaning in our lattice model.
Based on the foregoing Principle 1, we define Cq(t) to be
the ratio between the number of new larvae Nq(t)Eq(t)
and the expected number of species q new recruits at

time t + 1, Rq tþ1ð Þ, conditional on the lattice state and
the environments Eq(t)

Cq tð Þ¼ βq tð ÞNq tð Þ
Rq tþ1ð Þ : ð14Þ

When βq(t) = 0, also Rq tþ1ð Þ¼ 0, and so Cq(t) is defined
to be the limit of Equation (14) as βq(t)! 0. The some-
what complicated formulas for calculating Rq and Cq are
derived in Appendix S1: Section S1.

These are not the only possible choices for E and C; for
example, the logs of our E and C could be used instead, or
any other monotonic transformation preserving the property
that large E is good for population growth, and large C is
bad. Different choices will affect the baseline (no fluctua-
tions) growth rate (because the mean of log Eð Þ is not the
log of mean E), and therefore the main effects of variance
in E and C. We do not argue that any one choice is
“best.” All such choices give valid partitions, and it may
be informative to do several different partitions.

BOX 1 Conceptual recipe for an invasion growth rate partition based on fluctuation-dependent
mechanisms, analogous to the classical analysis of the nonspatial lottery model.

1. Define environment E (per-capita fecundity in absence of competition), competition C limiting actual
recruitment, and demographic stochasticity η, so that the dynamics of the total invader population N can be
written

N tþ1ð Þ¼ 1�δð ÞN tð ÞþN tð ÞE tð Þ=C tð Þ½ �η tð Þ: ð29Þ

Although nothing in Equation (29) is explicitly spatially dependent, the values of E, C, and η reflect how the
spatial distribution of each species influences fecundity, competition, and demographic stochasticity.

2. Through simulations (Figure 2) evaluate E, C, and η for all K � V � R � 1 one-step-ahead model
simulations.

3. For each simulation there is a true value of a population growth measure χ such as r¼ log N tþ1ð Þ=N tð Þð Þ.
4. Partition χ, the average of χ across all simulations, into contributions from different mechanisms. We do that

by evaluating the effects of Var (C), Var (E), Cov (E, C), Var (η), and their interactions on the invader and
resident population growth rates through a series of counterfactuals in which some aspects of the real inva-
sion dynamics are present while others have been removed—see Figure 3 for some examples. The resulting
partition is given by Equation (27).

5. Use the simulation results (Step 2) to evaluate the necessary counterfactuals. For example, for the counter-
factual situation in Figure 3C where there is only variation in E, we set all C(t) values to C (the average C
value across all one-step-ahead simulations), set all η(t) values to η, use those to recompute N(t+ 1) values
for each one-step-ahead simulation using Equation (29), and use the new N(t+ 1) values to recompute χ.
This tells us what χ would have been had only E been varying while C remained constant at its
observed mean.

6. As in the nonspatial model, coexistence mechanisms are calculated as term-by-term differences between the
partitions of invader and resident growth rates, Equation (28).

ECOLOGICAL MONOGRAPHS 9 of 23
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Separating the effects of demographic
stochasticity

To do this, we write Nq(t + 1) as the product of its
expected value—given the lattice configuration at time
t and the environments Eq(t)—with a deviation ηq(t)
resulting from demographic stochasticity in adult mortal-
ity and the lottery at vacated sites. The expected number
of current adults in species q that are still alive at time
t + 1 is

Sq tþ1ð Þ¼
X
x

1�Vx tð Þð Þ¼ 1�δq
� 	

Nq tð Þ: ð15Þ

The conditional expected population at t + 1 is
S þ R ¼ S þ NE=C, so we set

Nq tþ1ð Þ¼ Sq tþ1ð ÞþNq tð ÞEq tð Þ=Cq tð Þ
 �
ηq tð Þ: ð16Þ

Note that Equation (16) is the definition of ηq(t) and the
formula for computing it. Given the lattice state and envi-
ronments at time t, the expression in square brackets,
which is the conditional expectation of Nq(t + 1), is
known. Nq(t + 1) is a simulation output resulting from
coin tossing at each site to see if the adult dies and coin
tossing at each vacated site to determine the lottery win-
ner. The ratio between the conditional expectation and
the simulated outcome is the demographic stochasticity
effect ηq(t).

Having defined the terms so that the population
dynamics can be written in the form of Equation (16), in
principle we can again carry out the partitioning given by

0
.0

1
.0

2
.0

E
, C

, 
η

Real invasion
E
C
η

(a)

0
.0

1
.0

2
.0

E
, C

, 
η

Null Baseline(b)

2 4 6 8 10 12 14

0
.0

1
.0

2
.0

Replicate simulations

E
, C

, 
η

Variance in E(c)

Variance in C(d)

(E#,C): independent E and C(e)

2 4 6 8 10 12 14

Replicate simulations

(E,C): Correlated E and C(f)

F I GURE 3 Conceptual illustration of some counterfactuals used to evaluate different fluctuation-dependent mechanisms.

(a) Simulations with all mechanisms present. (b) Baseline “null” where E, C, and η are set to their means across simulations. (c) Variance in

E only—this lets us evaluate the main effect of Var(E). (d) Variance in C alone—this lets us evaluate the main effect of Var(C).

(e) Uncorrelated variance in both E and C generated by drawing a new realization of E(t) values from the assumed distribution (indicated by

shading)—this lets us evaluate the interaction between variance in E and variance in C. (f) Correlated variance in both E and C—the

difference between this case and e) lets us evaluate the effect of E, C covariance. Figure made by script PartitionSchematicFigure.R using R

version 4.1.1.
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Equation (7), with an additional main effect for demo-
graphic stochasticity η and the resulting additional inter-
action terms. A crucial difference, however, is that for the
spatial model we cannot sample Cq and ηq from known
distributions—we have to use simulations to generate
samples from their distributions and average across those
samples to estimate the terms in Equation (7). The fol-
lowing sections explain how those are accomplished.

Defining the invasion growth rate  r½ �

There is considerable mathematical theory on long-term
population expansion patterns in spatial models with con-
tinuous population density (reviewed by Kot [2003] and
Lutscher [2019]) or with discrete individuals (e.g., Allstadt
et al., 2007; Bessonov & Durrett, 2017; Cox & Durrett, 1988;
Durrett, 1988; Gandhi et al., 1999; Korniss & Caraco, 2005;
Kot et al., 2006; Lewis, 2000; O’Malley et al., 2006, 2009;
Reluga, 2016; Snyder, 2003)—often the long-term behavior
is a traveling wave with asymptotically constant velocity in
one dimension and in two dimensions an expanding disc
with asymptotically constant radial rate of increase. Based
on existing theory, we initially thought that the initial
invader population growth rate in our model would reflect
the expansion of small clusters with a constant rate of radial
growth. In that case, the square root of invader population,
which is proportional to cluster radius, would show a con-
stant rate of increase over time. But this turned out to be
wrong—possibly because previous theory with discrete indi-
viduals typically assumed that offspring only dispersed to
nearest-neighbor sites. For the model we consider here, our
simulation experiments suggest that the best measure of ini-
tial spread is, somewhat surprisingly, still  r½ �, the expected
change in log total population over one time step, for lat-
tice states where the invader’s abundance is in a range
where  r½ � is approximately constant as a function of
invader abundance.

As we discuss in Appendix S1: Section S2, the last
statement is specific to our particular model, not about
spatial models in general, and it is a statement qualified
by the fact that the supporting evidence comes entirely
from simulations. The standard lottery model uses the
same invasion growth rate measure, with one difference.
For the standard lottery model it is computed for an
infinitesimally rare invader by linearizing the model
around zero invader abundance. Here we consider  r½ �
when the invader total abundance is in some range
[Gmin, Gmax], where Gmin is large enough that extinction
in one time step is so unlikely that it never actually
occurs in simulations, and Gmax is small enough that pop-
ulation growth is not appreciably reduced by the slightly
greater intraspecific competition that is observed to occur
in larger clusters. In practice we used Gmin = 10,

Gmax = 40. Simulation results (Appendix S1: Figure S3)
show that over that range, the slope of  r½ � with respect
to invader abundance N is ≈ 0.01 of the mean value of
 r½ �. As we have emphasized, the combination of discrete
individuals and clumping means that even in small clus-
ters, invaders experience intraspecific competition. An
ideal measure of invader population growth would
become completely independent of invader population as
the invader becomes increasingly rare. That ideal appears
not to exist for our model—the limit of rarity is a single
invader experiencing no intraspecific competition, which
is not typical of small invader clusters—but average  r½ �
for N in [Gmin, Gmax] comes very close to the ideal.

Generating a sample of lattice
configurations with small invader clusters

We thus need a sample of lattice configurations with
invader total abundance in the target range [Gmin, Gmax].
We cannot just let the residents come to a stationary dis-
tribution and sprinkle in a few invaders: The whole pur-
pose of this paper is to address situations where invader
aggregation matters, so we need a realistic invader cluster
structure. The ideal method would be to simulate the
model long enough to wipe out the effects of the initial
population state, simulate further until the invader enters
and then leaves the target range, and randomly choose
one of the lattice states in the target range—repeat
K times. However, that approach is computationally
infeasible because a species that coexists in a community
will rarely enter the target range, where its abundance
will be far below average.

We therefore used the following shortcut. Whenever the
invader population went extinct or exceeded a threshold
Nmax > Gmax, we restarted the simulation from the original
initial conditions, which had Nmin < Gmin. In all our simu-
lations, Nmax was at least 2Gmax, and Nmin = 4 (one 2 � 2
cluster). The rationale for this shortcut is that by the time a
simulation gets to the target range [Gmin, Gmax], it will have
“forgotten” how it was restarted, so invader population
states in the target range will be equivalent to those arising
in a very long simulation without restarts.

Because this repeated-invasions approach is a shortcut,
we compared the lattice configurations that it generated with
those generated in a different way, using a version of the
Fleming–Viot algorithm for sampling from quasi-stationary
distributions (e.g., Asselah et al., 2011; Groisman &
Jonckheere, 2013). This method, and the evidence that it
gives samples equivalent to those from our repeated inva-
sions shortcut, is presented in Appendix S1: Section S3.

Replicate simulations were initialized with a single
2 � 2 cluster of invaders and were run in parallel for long
enough that replicates were uncorrelated because each
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had been reinitialized many times (T = 500 or more).
Sufficient replicates were run (generally 250 or more) so
that at least 50 ended with the invader population in the
target range for all parameter values considered.

Evaluating  r½ � for a given lattice
configuration

For each of the K replicate lattice configurations at time
T (indexed by k for “konfiguration”), we compute the
vacancy probability V kð Þ

x Tð Þ for each lattice site, as
defined earlier, and the expected number of surviving
adults S

kð Þ
q Tþ1ð Þ for each species.

For each configuration k, V different configurations of
site vacancies (indexed by v) are randomly generated
according to the species-specific mortality rates. For each
k, v pair we record S vjkð Þ

q Tþ1ð Þ, the actual number of
adults in each species surviving to time T+ 1. We will
use this to calculate the new resident and invader
populations in the next step.

For each (k, v) combination, we do R one-step-ahead
simulations (indexed by r) to compute population sizes at
time T + 1 starting from the resident-invader configura-
tion k and vacancy configuration v. Each such simulation
starts by drawing a new set of random values of the envi-
ronment variables for each species, β rjv,kð Þ Tð Þ

q ; we add the
r, v, and k superscripts to βq(T) to indicate that there is an
independent environment value for each replicate. Using
those, we compute larval production by each adult, com-
pute the larvae landing at each site y rjv,kð Þ

q,x tð Þ, draw a win-
ner at each vacant site, and record the resulting total
population of each species N rjv,kð Þ

q Tþ1ð Þ. Note that the
new population N rjv,kð Þ

q Tþ1ð Þ depends on the actual
number of survivors S vjkð Þ

q Tþ1ð Þ recorded for each
vacancy configuration. Because larval production occurs
before adult mortality in our model, larval production
actually depends on k and r but not v, but we include the
v index in our general procedure to allow for models
where nearby adults might affect larval dispersal or
survival.

For each (k, v, r) combination we use Appendix S1:
Equation S2 to compute R

rjv,kð Þ
q Tþ1ð Þ, and then

C rjv,kð Þ
q Tð Þ¼ β rjv,kð Þ

q tð ÞN kð Þ
q Tð Þ

R
rjv,kð Þ
q Tþ1ð Þ

,

η rjv,kð Þ
q Tð Þ¼ N rjv,kð Þ

q Tþ1ð Þ
R

rjv,kð Þ
q Tþ1ð ÞþS

kð Þ
q Tþ1ð Þ

h i :
ð17Þ

For each of the KVR one-step-ahead simulations we store
the values of E rjv,kð Þ

q Tð Þ, C rjv,kð Þ
q Tð Þ, R

rjv,kð Þ
q Tþ1ð Þ,

η rjv,kð Þ
q Tð Þ, the initial and final population sizes, and the

measure of the population growth between T and T+ 1,
which we denote χ rjv,kð Þ

q . In this paper, χ is always the
change in the log of total population, but for generality
we present the formulas in terms of a general growth
measure χ. We also need to compute and store for each
configuration k any measures of spatial structure that we
might want to use as covariates in a regression analysis of
how spatial structure affects the magnitude of different
“mechanisms.” However, it is not necessary to save the
complete lattice state, which would be memory-intensive,
because the calculations needed for the fANOVA decom-
position can all be done using the stored η, E, C, χ, and
N values and spatial summary statistics.

The overall estimate of the population growth mea-
sure χq is

χq E,C, ηð Þ¼ 1
KVR

XK
k¼1

XV
v¼1

XR
r¼1

χ rjv,kð Þ
q E,C, ηð Þ ð18Þ

where the (E, C, η) notation means that the value of χq is
computed for the actual stored E, C, and η values for each
species.

Partitioning  r½ � into contributions from
difference coexistence mechanisms

Exactly as for the standard lottery model (Ellner
et al., 2019), the partition is based on applying the gen-
eral fANOVA decomposition given by Equation (5) to
invader and resident population growth rates, based on
counterfactual population growth rates when particular
processes or mechanisms are removed (Figure 3). These
counterfactual growth rates are calculated by altering
components of the one-step-ahead population changes
expressed in the form

N rjv,kð Þ
q Tþ1ð Þ¼ S

kð Þ
q Tþ1ð ÞþN kð Þ

q Tð ÞE
rjv,kð Þ
q Tð Þ

C rjv,kð Þ
q Tð Þ

" #
η rjv,kð Þ
q Tð Þ:

ð19Þ
The necessary counterfactuals are as follows:

1. To create the E counterfactual, for each (r, v, k), com-
pute a pseudo-one-step-ahead population change as

N rjv,kð Þ
q Tþ1ð Þ¼ S

kð Þ
q Tþ1ð ÞþN kð Þ

q Tð Þ Eq

C rjv,kð Þ
q Tð Þ

" #
η rjv,kð Þ
q Tð Þ,

ð20Þ

where Eq is either the average of all E rjv,kð Þ
q Tð Þ values or

the theoretical mean of the distribution from which Eq is
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drawn. For each (r, v, k), use the pseudo-one-step-ahead
population value given by Equation (20) to compute a
population change measure χ rjv,kð Þ

q E,C, η
� 	

, where the E
indicates that the calculations were done using average
E values. The counterfactual population change measure
is then

χq E,C, η
� 	¼ 1

KVR

XK
k¼1

XV
v¼1

XR
r¼1

χ rjv,kð Þ
q E,C, η

� 	
: ð21Þ

2. The E# counterfactual requires breaking (E, C) covari-
ance without changing marginal distributions. To do
this, for every (r, v, k) combination, draw a new set of
E values for each species, E# rjv,kð Þ

q Tð Þ. Then compute
the pseudo-one-step-ahead population changes as

N rjv,kð Þ
q Tþ1ð Þ¼ S

kð Þ
q Tþ1ð ÞþN kð Þ

q Tð ÞE
# rjv,kð Þ
q Tð Þ
C rjv,kð Þ
q Tð Þ

" #
η rjv,kð Þ
q Tð Þ

ð22Þ

and compute the resulting population change measure
χ rjv,kð Þ
q E#,C, ηð Þ. The average of these RVK values gives
the counterfactual population change measure
χq E#,C, ηð Þ.

3. To compute the C counterfactual (completely constant
competition), for each species, compute

Cq Tð Þ¼ 1
KVR

XK
k¼1

XV
v¼1

XR
r¼1

C rjv,kð Þ
q Tð Þ: ð23Þ

Then for each (r, v, k), compute the pseudo-one-step-ahead
population change as

N rjv,kð Þ
q Tþ1ð Þ¼ S

kð Þ
q Tþ1ð ÞþN kð Þ

q Tð ÞE
rjv,kð Þ
q Tð Þ
Cq Tð Þ

" #
η rjv,kð Þ
q Tð Þ

ð24Þ

and compute the resulting population change measure
χ rjv,kð Þ
q E,C, η

� 	
. The average of these RVK values gives the

counterfactual population change measure χq E,C, η
� 	

.

4. To compute the η counterfactual, for each species,
compute

ηq Tð Þ¼ 1
KVR

XK
k¼1

XV
v¼1

XR
r¼1

η rjv,kð Þ
q Tð Þ, ð25Þ

which should be approximately 1. Then, for each
(r, v, k), compute the pseudo-one-step-ahead population
change as

N rjv,kð Þ
q Tþ1ð Þ¼ S

kð Þ
q Tþ1ð ÞþN kð Þ

q Tð ÞE
rjv,kð Þ
q Tð Þ
Cq Tð Þ

" #
η rjv,kð Þ
q Tð Þ

ð26Þ

and compute the resulting population change measure
χ rjv,kð Þ
q E,C, ηð Þ. The average of these RVK values gives the
counterfactual population change measure χq E,C, ηð Þ.

We now have all the necessary ingredients to parti-
tion χq E,Cð Þ using Equation (5):

ε0q ¼ χq E,C, η
� 	

εEq ¼ χq E,C, η
� 	� ε0q

εCq ¼ χq E,C, η
� 	� ε0q

εηq ¼ χq E,C, η
� 	� ε0q

εECq ¼ χq E,C, ηð Þ� εEq þ εCq þ ε0q
� �

εE♯Cq ¼ χq E#,C, η
� 	� εEq þ εCq þ ε0q

� �
εCov E,Cð Þ
q ¼ χq E,C, ηð Þ�χq E#,C, η

� 	
εEηq ¼ χq E,C, η

� 	� εEq þ εηqþ ε0q
� �

εE♯ηq ¼ χq E#,C, η
� 	� εEq þ εηqþ ε0q

� �
εCov E,ηð Þ
q ¼ χq E,C, η

� 	�χq E#,C, η
� 	

εCηq ¼ χq E,C, η
� 	� εCq þ εηqþ ε0q

� �
εECηq ¼ χq E,C, ηð Þ� εEηq þ εECq þ εCηq þ εEq þ εCq þ εηqþ ε0q

� �
:

ð27Þ

We could also have decomposed εCηq into variance and
covariance effects, but we chose not to. Note that the
effect of covariance between two factors is evaluated by
comparison to the counterfactual in which those two
factors are independent but retain their marginal dis-
tributions, while all other factors are constant. If the
marginal distributions are not known, those counter-
factuals can be implemented by randomization (Ellner
et al., 2016).

Having done the growth rate partition given by
Equation (27) for invading species i and resident species
s, we define Δ •

i ¼ ε •
i � ε •

s . The fANOVA partition of
invader growth rate into coexistence mechanisms is

χi E,Cð Þ¼Δ0
i þΔE

i þΔC
i þΔE♯C

i þΔCov E,Cð Þ
i þΔE♯η

i

þΔCov E,ηð Þ
i þΔCη

i þΔECη
i : ð28Þ
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Finer partitions are possible. For example, the C counter-
factual of Equation (23) washes out all information about
how spatial structure affects the distribution of C values.
To preserve some of that information, we could consider
an intermediate counterfactual where each “real” Cq

value is replaced by its average for the particular
invader–resident configuration—this retains variation in
average C between different configurations but removes
variance within each configuration. We explain how to
do this calculation in Appendix S1: Section S4.

As in Ellner et al. (2019), we consider only the direct
effect of fluctuations. Indirect effects can be mediated via
changes in the size structure of the population or, here, in
changes to the lattice configuration. We originally thought
we could include indirect effects by generating new lattice
states for each counterfactual, but this is not feasible: What
would it mean (for example) to simulate the model to time
T with covariance between E and C removed? C is an over-
all measure of how much competition suppresses popula-
tion growth. In a nonspatial model with continuous
population density, we can remove E, C covariance by
drawing a C value at each time step from the marginal dis-
tribution of C in the full model (Ellner et al., 2016) and
using that C value to compute next year’s population. But
in our discrete spatial model, doing the same does not give
us the spatial configuration of individuals, which is essential
information for taking future time steps and generating the
necessary lattice states at time T.

RESULTS: PARTITION BASED ON
FLUCTUATION-DEPENDENT
COEXISTENCE MECHANISMS

We now use our partitioning method to dissect an exam-
ple of fluctuation-dependent coexistence in the lattice lot-
tery model. The upper panel of Figure 4 shows the ε
partitions (Equation 27) for both species. Parameter
values (given in the caption) are such that the invader
(Species 2) and resident (Species 1) are identical, except
that the invader’s mean fecundity is slightly lower, so in
the absence of fluctuations or intraspecific competition
the invader could not persist. These results show that
tighter invader clustering (resulting from lower larval dis-
persal distance) has little effect on the components of res-
ident population growth rate, but for the invader the
baseline (no-fluctuations) growth rate is slightly larger,
variation in C is less helpful, and Cov(E, C) is more
harmful. Demographic stochasticity η has a weak nega-
tive effect on the invader that is larger for wider larval
dispersal but has no effect on the resident. An equivalent
barplot for mortality rate δ = 0.1, showing similar results,
can be found in Appendix S1: Section S6.

The lower panel of Figure 4 shows the resulting inva-
sion growth rate partition (Equation 28) for Species
2. With decreasing larval dispersal distance, relative
nonlinearity of competition (Var C) hurts the invader more
(relative to the resident), the storage effect (Cov[E, C])
helps the invader less, and demographic stochasticity
hurts the invader slightly less. We thus find—answering
one question we posed in the introduction—that the
reduction in invader growth rate with shorter-range lar-
val dispersal results from two factors: decreasing benefit
from the storage effect and increasing harm from relative
nonlinearity of competition, partially offset by an
increase in the baseline no-fluctuations growth rate.

Let us explore these results a little further. Figure 5
shows that the strength of the temporal storage effect is
largely determined by the mortality rate δ and by the
average larval invader fraction, the average fraction of a
randomly chosen invader larva’s fellow larvae within its
site that are conspecifics. (This is essentially Lloyd’s
mean crowding index, applied to invader larvae.)
Average larval invader fraction is a useful measure of
invader clumping and intraspecific competition: If
invaders are clumped and dispersal is local, then an
invader larva is likely to find itself accompanied by larvae
from other nearby invader parents, rather than resident
species larvae.

To assess the impact of other model parameters, we
therefore ask how they affect average larval invader
fraction. By fitting linear models with average larval
invader fraction as the response and model parameters
as explanatory variables (see script AnovaAnalyses.R),
we find that 91% of the variance in average larval
invader fraction is explained by the main effects of dis-
persal parameter α (83% of the total sum of squares)
and adult competition a (7%); the interaction between
α and a explains an additional <1%. Surprisingly, mor-
tality rate δ had no detectable effect on the average lar-
val invader fraction. Both α and a have positive
regression coefficients: Higher values of both increase
invader crowding and weaken the storage effect. The
effect of α is intuitive: More localized dispersal
increases crowding. We might expect higher adult com-
petition a to decrease invader crowding by increasing
the spacing between adults, but it actually leads to the
opposite. We suspect that this is because the biggest
effect of intraspecific competition is to decrease resi-
dent average fecundity, thereby decreasing the average
number of resident larvae in each site.

ΔC is also strongly affected by the average larval
invader fraction (Figure 6), but the relationship is less
tight than that for ΔCov(E,C). The average larval invader
fraction explains 50% of the total sum of squares, but in
addition a explains 21% and δ explains 15% (see script
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AnovaAnalyses.R). Variation in C directly benefits both
invader and resident—this is inevitable because 1/C is a
concave-up function of C—but with more clumping the
direct benefit to the invader goes down (Figure 4a). As a
result, the net effect of variation in C on invader growth
rate goes from positive to negative with increased
clumping in Figure 6. At the same time, for any given dis-
persal distance (color), increasing adult competition
(going from � to �) increases ΔC. Variation in C directly
benefits both invader and resident—this is inevitable
because 1/C is a concave-up function of C—but with
more clumping the direct benefit to the invader goes
down (Figure 4a). This reduction is due to reduced vari-
ance in C. Increased clumping decreases mean competi-
tion (as shown by the increase in the baseline invader
growth rate ε0), which would by itself instead increase
the direct benefit of variation in C.

Plotting Δη versus larval invader fraction
(Figure 7), we confirm the finding of Hart et al. (2016)
that demographic stochasticity reduces the invader
growth rate by only a small amount. The average larval
invasion fraction, mortality (δ), and their interaction
explain 93% of the variance in Δη (accounting for 31%,
59%, and 4%, respectively, of the total sum of squares).
As discussed earlier, larval dispersal distance is the
prime determinant of average larval invader fraction
and, hence, a major determinant of Δη, but for a given
dispersal distance, increasing adult competition
increases the average larval invader fraction and, thus,
reduces the magnitude of Δη. Demographic
stochasticity causes the finite growth rate λ = Nt+1/Nt

to fluctuate and therefore decreases the long-run
growth rate  r½ � ¼ logλ½ �, since the log function is
concave-down. Because the invader experiences greater

Baseline Var E Var C Var η E#,C Cov(E, C) E#, η Cov(E, η) C,η E,C,η

ε for a = 0, Moore neighborhood, δ = 0.4

ε
Δ

−
0
.0

5
0
.0

0
0
.0

5
0
.1

0

(a)

Global dispersal

Mean dispersal distance 1.51

Mean dispersal distance 1.09

Mean dispersal distance 0.55

Invader

Resident

Baseline Var E Var C Var η E#,C Cov(E, C) E#, η Cov(E, η) C,η E,C,η

Invader growth rate partition for a = 0, Moore neighborhood, δ = 0.4

−
0
.0

4
0
.0

0
0
.0

4
0
.0

8 (b)

F I GURE 4 Barplot of partitions for the two-species lattice lottery model with Moore competition neighborhood and death rate δ = 0.4.

(a) ε partition for invader and resident. (b) Δ partition, that is, partition of invader growth rate into coexistence mechanisms. Lighter colors

represent shorter-range dispersal, which produces more invader clustering. The mean dispersal distances for nonglobal dispersal correspond

to α values 0.25, 0.5, and 1 in the dispersal matrix, Equation (10). At α = 0.25, dispersal distance d = 4 (the maximum possible with

nonglobal dispersal) is e�1≈ 37% as likely as distance d = 0. Other parameter values: M = 50, T = 500, K = 50, R = 20, V = 50, Nmin = 1,

Nmax = 120, Gmin = 10, Gmax = 40, μ1 = 0.5, μ2 = 0.45, σ1 = σ2 = 0.6, ρ = �0.75. Figure generated by plotDeltasVsAlpha2.R using

simulation results generated by latticePartitionLoops.R and scripts that it sources using R version 4.1.1.
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demographic stochasticity than the resident, demo-
graphic stochasticity suppresses invader growth more
than resident growth, and Δη is negative. Though the
effect of demographic stochasticity is small, it can be
enough to change a barely successful invasion into a
failed invasion; this happened in a number of our runs
without adult competition (a = 0).

Why is Δη smallest when invaders are most clumped
(Figure 7)? When invaders are highly clumped, there is
little uncertainty about which species will win each
vacant site because most vacant sites are either far from
an invader clump or inside one. As a result, λ fluctuates
less when the invaders become more clumped (Figure 8),
invader growth rate is less suppressed, and Δη shrinks in
magnitude.

So far, we have always assumed that invader and resi-
dent have the same larval dispersal distance. When those
can differ, Figure 9 shows that average larval invader frac-
tion is driven primarily by invader dispersal distance
(i.e., lighter color symbols are to the right of darker sym-
bols). An ANOVA analysis confirms that invader dispersal
distance is the dominant factor, explaining 81% of the vari-
ance in average larval invader fraction, with resident dis-
persal distance contributing an additional 5% (within
colors, circles and triangles are to the left of crosses and dia-
monds in Figure 9).

None of these findings is particularly surprising.
What is most important is illustrating how the methodol-
ogy we have introduced makes it possible to quantita-
tively partition the invasion growth rate into
contributions from different mechanisms for spatial

models with discrete individuals. As we review in the
Discussion section, many questions remain about coexis-
tence that the lattice lottery model does not address, but
the tools to tackle those questions are now available.

PARTITION BASED ON
LIFE-HISTORY DIFFERENCES

We turn now to a completely different coexistence mecha-
nism, eliminating the recruitment fluctuations that are
essential for coexistence in the lottery model. Instead, we
allow the species to differ in life-history parameters μ (log of
per-capita fecundity), δ (per-capita adult mortality), and α
(dispersal range parameter). The spatial lottery model also
allows fluctuation-independent coexistence in a constant
environment based on these life-history differences. Shmida
and Ellner (1984) showed this in a spatially implicit
mean-field version of the model with a “top hat” dispersal
kernel (i.e., some larvae remain in their natal site, while the
rest disperse uniformly across all sites). Guided by the coex-
istence conditions for that model (their equation 8), we con-
firmed that the same kind of behavior occurs in our model:
Coexistence in a constant environment (i.e., the only
stochasticity in the model is the demographic stochasticity)
can occur as a result of a large difference in per-capita
fecundity, balanced by a large difference in per-capita sur-
vival probability (Figure 10a). Dispersal differences are not
needed for coexistence. The survival–fecundity trade-off is
analogous to the competition–colonization trade-off: One
species is better at holding onto sites (by surviving), the

δ = 0.4

Average larval invader fraction

∆C
o
v
(E

, 
C

)

0.0 0.2 0.4 0.6

0
.0

2
0
.0

4
0
.0

6
0
.0

8

R2 = 0.95

Symbol size indicates competition neighborhood size.

δ = 0.1

Average larval invader fraction
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Global dispersal

Mean dispersal distance 1.51

Mean dispersal distance 1.09

Mean dispersal distance 0.55

No adult competition

a = 1

a = 3

F I GURE 5 ΔCov(E,C) as a function of average larval invader fraction. ΔCov(E,C) is largely determined by average larval invader

fraction and by the mortality rate δ. Lighter colors are for shorter-range dispersal. Size of the competition neighborhood is indicated by

symbol size. The smallest points are for a Moore competition neighborhood, medium-sized points are for the Moore2 competition

neighborhood, and the largest points are for global competition. Figure generated by plotDeltasVsLarvalInvFrac2.R using simulation results

generated by latticePartitionLoops.R and scripts that it sources, using R version 4.1.1.
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other is better at taking open sites (by producing more
larvae).

In this section, we explain and demonstrate how to
partition invasion growth rates into contributions from
the three life-history differences between the two compet-
ing species. This is an example of a “T decomposition” as
defined by Ellner et al. (2019).

The three counterfactuals used in the partitioning are δ,
in which both species have per-capita mortality rate
δ = (δ1+ δ2)/2; β, in which both species have per-capita

fecundity logβ¼ logβ1þ logβ2ð Þ=2; and α, in which both
species have α = (α1+ α2)/2. As usual, these are applied
individually and in all possible two- and three-way
combinations to create the counterfactual scenarios
used in the partitioning. Because we are interested in
trait effects, demographic stochasticity is not included
as a factor in the decomposition. The calculations,
detailed in Appendix S1: Section S5, are very similar to
those for the partition based on fluctuation-dependent
mechanisms.

δ = 0.4
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F I GURE 6 ΔC as a function of average larval invader fraction. Lighter colors are for shorter-range dispersal. In addition to the colors

and symbols identified in the legend, the smallest size points are for a Moore competition neighborhood, the medium-sized points are for the

Moore2 competition neighborhood, and the largest points are for global competition. Figure generated by plotDeltasVsLarvalInvFrac2.R

using simulation results generated by latticePartitionLoops.R and scripts that it sources, using R version 4.1.1.
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F I GURE 7 Δη as a function of average larval invader fraction. Lighter colors are for shorter-range dispersal. In addition to the colors

and symbols identified in the legend, the smallest size points are for a Moore competition neighborhood, the medium-sized points are for the

Moore2 competition neighborhood, and the largest points are for global competition. Figure generated by plotDeltasVsLarvalInvFrac2.R,

using simulation results generated by latticePartitionLoops.R and scripts that it sources, using R version 4.1.1.
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Trait differences in fecundity and survival—but not
dispersal—contribute to coexistence, but their interac-
tions are minimal (Figure 10b,c). Species 2 as invader
gains from its higher fecundity slightly more than it loses
due to its higher mortality—the reverse being true for
Species 1 as invader. Species 1 is better at holding sites
(δ1 � δ2), whereas the invader is better at claiming
empty sites because of its much higher fecundity. Each
species, as resident, creates a biotic environment where
the other species has a slight advantage.

Changes in trait values largely affect the invader pop-
ulation growth rate, not the resident (Figure 10b). That is
a consequence of the resident’s ubiquity: It cannot
increase much in our model because it already occupies
most sites, and it cannot decrease much because most
sites are so far from any invader that the resident always
reclaims them if the occupant dies. Note that our previ-
ous partition based on fluctuation-dependent mecha-
nisms includes counterfactuals where the resident
population can change substantially in one time step—
for example, removing E, C covariance allows the resi-
dent population to increase significantly in years when
E is high but C is nonetheless low for the resident. Hence
some counterfactuals have large effects on expected resi-
dent population growth in Figure 4a, but none do in
Figure 10b.

DISCUSSION

Here we have shown quite generally how to estimate
contributions to coexistence for discrete and spatial
models by partitioning invader growth rates. This method
can be used to partition among any variables or mecha-
nisms, not just the classic environment–competition par-
tition. As a demonstration, we applied our method to the
lattice lottery model. Our first partition was according to
the contributions of variable environment, variable
competition, and demographic stochasticity. Our second
example examined a constant-environment lattice model in
which a fecundity–survival trade-off maintains coexistence
and partitioned the contributions to coexistence from the
differences in fecundity, mortality, and dispersal.

Using the lattice lottery model, we found that the effects
of environment–competition covariance (E, C covariance)
and variable competition on coexistence are strongly
affected by invader clumping, which is in turn driven
mostly by the range of invader dispersal, though invaders
also become slightly more clumped as adult competition
becomes stronger. Recall that in the classical lottery model,
E, C covariance benefits the invader indirectly by harming
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R using data generated by calcVarLambdaVsLarvalInvFrac.R and
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(besides those labeled in the figure) are the same as in

Appendix S1: Figure S5.
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the resident: because a good E entails a high C for the resi-
dent, the resident cannot benefit from years with potentially
high recruitment. In contrast, the invader, with much lower
E, C covariance, can “make hay while the sun shines.” In
our spatial lottery model, when invaders are more clumped,
they compete with each other more intensely when rare, so
they too become limited by their own E, C covariance.

More invader clumping also means that variation in compe-
tition changes from helping the invader to harming it. More
broadly, invader clumping is likely to weaken any coexis-
tence mechanism that relies on the invader escaping com-
petition from the resident, because invader clumping
means that the resident is no longer the only source of
competition.
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F I GURE 1 0 Partition for fluctuation-independent coexistence based on life-history differences between two species. (a) Simulations of

lattice lottery model on a 50 � 50 lattice with parameter values μ1 ¼ logβ1 ¼ 1, μ2 ¼ logβ2 ¼ 1þ log 3ð Þ≈ 2:1, δ1 ¼ 0:2, δ2 ¼ 0:8, α1 ¼ 0:1, α2 ¼ 0:3.

Although all parameters (in particular fecundity) are constant over time, population size fluctuates due to demographic stochasticity

rather than converging to an equilibrium. (b, c) ε and Δ trait partitions of Species 2 invasion growth rate, direct effects only. Figure

generated by scripts DeathFecundityTradeoffSimulate.R, survFecTradeoffPartitionDirectOnly.R, plotTraitDeltasDirect.R using R

version 4.1.1.
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Invader clumping need not be entirely detrimental to
the invader. If we had used a model where the resident
population density could vary from site to site or even
leave gaps, then this would have opened up another way
for the invader to avoid competition: by exploiting
ephemeral areas of low resident density (Bolker &
Pacala, 1999; Hassell et al., 1991), which can arise ran-
domly or through endogenous spatial dynamics
(e.g., Comins & Hassell, 1996; Durrett & Levin, 1997;
Hassell et al., 1994). Alternatively, if we allowed more
than one individual at a site and there were a founder
effect, so that the invader could hold a site once it had
won it, then again, invader clumping could boost the
invader growth rate (Bolker & Pacala, 1999). These are
examples of the general principle that short-range dis-
persal can allow a species to concentrate its population in
areas where its local growth rate is high and thereby
boosts its invasion growth rate (Snyder & Chesson, 2003).
Nonetheless, once we consider the invader’s competitive
effect on itself, we expect that these coexistence mecha-
nisms will be weakened.

Some theoretical studies have suggested that species
clumping should enhance coexistence because it reduces
contacts between an inferior competitor and a superior
competitor, for example (Murrell et al., 2001). Chesson
and Neuhauser (2002) pointed out that this is not correct
if clusters are solid: though competition is indeed
reduced inside a cluster of competitively inferior individ-
uals, what determines whether a population increases or
decreases is whether the cluster expands or contracts at
its boundary, and boundary movement necessarily
depends on between-species competition. Invader clus-
ters in our model are not solid, so it is possible for a clus-
ter to grow by filling in. However, this does not mean
that invader clumping promotes coexistence. Rather,
because the invader and resident find different times
favorable, invader clumping means that an invader indi-
vidual is more likely to have neighbors who also experi-
ence the current year as favorable, increasing
competition.

We also confirmed the findings of Hart et al. (2016)
that demographic stochasticity hurts the invader but that
the effect size is very small. Turelli (1980), who examined
the combined effects of demographic stochasticity and
temporal environmental variation, also found that demo-
graphic stochasticity had a modest negative effect on
coexistence, although temporal variation reduces rather
than enables coexistence in that model. (To isolate the
effect of demographic stochasticity in that paper, note
that the finite growth rate in the absence of demographic
stochasticity or temporal variation is given on p. 127 of
that paper as 1 + r(1 � γ(α))—the invasion probabilities
in Turelli’s table 1 do decline steeply when the finite

growth rate gets close to 1). Nonetheless, demographic
stochasticity can turn a barely positive invader growth
rate into a negative one, thereby preventing coexistence.
We hypothesize that demographic stochasticity could

TABL E 1 Notation and definitions.

Notation Formula or meaning

aqs Competitive effects of species s adults on species q
adults

βq(t) Fecundity of species q at time t

Cq(t) Competition experienced by species q at time t

Dx0 jx Dispersal probability from site x to site x0

δq Mortality rate of species q

Δk Invader–resident comparison εik � εrk
Eq(t) Environment experienced by species q at time t

Eq
♯(t) Temporally shuffled environments experienced by

species q

εq,k fANOVA contribution of effect k for species q

ηq(t) Demographic stochasticity for species q at time t

Fq,x(t) Number of larvae produced by a species q parent
at site x at time t

Gmin, Gmax Fleming–Viot algorithm generates “small” invader
clusters with size between Gmin and Gmax

K Number of lattice configurations used in
one-step-ahead model simulations

Nq(t) Population size of species q at time t

N x Set of sites that are neighbors of x for adult
competition

rq Long-run growth rate of species q

R Number of replicates per vacancy configuration in
one-step-ahead model simulations

Rq tð Þ Expected number of species q recruits at time t

Sq tð Þ Expected number of surviving adults of species q
at time t

V Number of vacancy configurations per lattice
configuration in one-step-ahead model
simulations

χq Population growth measure being partitioned,
calculated here as rq

yq,x(t) Number of species q larvae landing in site x at
time t

Zx Normalization constant for dispersal probability
function Dx0 jx

z Number of sites in adult competition
neighborhood

•(rjv,k) Quantity • for replicate r conditional on vacancy
configuration v and lattice configuration k, for
example, C rjv,kð Þ

q tð Þ
Abbreviation: fANOVA, functional Analysis of Variance.
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have stronger effects on coexistence in models where
sites can remain unoccupied. Demographic stochasticity
could then create localized extinctions that might qualita-
tively change dynamics, for example by creating transient
openings that maintain a fugitive species.

The analysis by Lande (1998) predicted that demo-
graphic stochasticity would reduce an invader’s growth
rate most severely when its population size was smallest,
but we have not observed that in our model
(e.g., Appendix S1: Figure S2D does not show a dip in
invader growth rate [average change in log N] as total
invader population N approaches zero). But Lande’s
model differs from ours in several important ways: it is
nonspatial, and it employs a diffusion approximation
with continuous population size even for small
populations. Lande (1998) also assumed that at low den-
sity the fates of invaders were independent. Because
invaders are spatially clustered in our model, their fates
are correlated even when invaders are rare: if one of my
offspring gets a site, my neighbors’ offspring do not.

We have only treated temporal environmental varia-
tion, but we plan to address fixed spatial variation and
spatiotemporal variation soon. Spatial variation that is
permanent or long-lasting can powerfully promote coex-
istence if it permits the invader population to concentrate
in areas where growth rate is highest (either because of a
favorable environment or low competition)
(Snyder, 2008; Snyder & Chesson, 2003), a mechanism
called growth-density covariance (Chesson, 2000a). We
hypothesize that, once we have partitioning methods for
discrete spatial models with spatially or spatiotemporally
varying habitat quality, growth-density covariance will
frequently prove to be a stronger coexistence mechanism
than the spatial storage effect (a storage effect caused by
environmental variation in space instead of time). This
difference may be even greater with discrete individuals
(relative to the cited previous results with continuous
population density) if invader clumping reduces the spa-
tial storage effect, analogously to our findings here about
the temporal storage effect.

A more difficult goal is answering the question of
what to partition. Some have argued that invasion growth
rates are not an adequate guide to coexistence because
they ignore demographic stochasticity and that we should
really focus on something like expected time to extinction
(Pande et al., 2020). Here we continue to partition inva-
sion growth rates, for two reasons. First, the sign of the
invasion growth rate distinguishes two different regimes
(Ellner et al., 2020): If the invasion growth rate for a spe-
cies is negative, then time to extinction is always short,
whereas if all invasion growth rates are positive, then the
mean time to extinction increases rapidly with commu-
nity size (e.g., the total amount of space or resources that

is available to individuals in the community). Thus, posi-
tive invasion growth rates are necessary for coexistence,
and it is meaningful to ask which mechanisms or pro-
cesses contribute to their being positive. Second, the
existing conceptual framework for partitioning invasion
growth rates is well developed and provides the basis for
our extension here to discrete spatial populations. In par-
ticular, we know that a meaningful partitioning needs to
account for each mechanism’s effect on both the invader
and the resident, because something that harms a resi-
dent species more than it harms the invader can promote
coexistence just as much as something that benefits the
invader directly. For invasion growth rates, these indirect
benefits are accounted for by partitioning both invader
and resident population growth rates, as we have demon-
strated. At present, it is not known how to account for
these indirect benefits when extinction time is used to
quantify coexistence.

However, even with a decision to focus on invasion
rates, it is not clear what definition of invasion rate is
sensible in a spatial context—we need a measure that
becomes independent of invader density (or nearly so)
when the invader is sufficiently rare. In Appendix S1:
Section S2 we briefly discuss why we think that
 log Ntþ1=Ntð Þ is the best available measure in our
model when the range of natal dispersal is not too nar-
row, but more work remains to be done.

We close with a plea for experimental studies that col-
lect all of the data needed to apply our methods to
real-world systems, including data on fixed spatial varia-
tion or spatiotemporal variation in habitat quality for dif-
ferent species. We now have the machinery to partition
coexistence mechanisms in any spatial model, but we
remain unable to estimate the strength of different coex-
istence mechanisms in real systems because we do not
have fully parameterized models. The data requirements
are daunting: Researchers will need measurements of
demographic parameters and their variation in time and
space, the strengths of interactions as a function of dis-
tance, and dispersal distributions. However, because we
now have the theoretical machinery to take advantage of
those data, whatever form the appropriate model may
take, we believe that our best hope for understanding the
relative importance of different coexistence mechanisms
is for experimental ecologists to collect the necessary data
and build fully parameterized data-driven models for the
spatial and temporal dynamics of interacting species.
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Appendix S1
Stephen P. Ellner, Robin E. Snyder, Peter B. Adler, and Giles Hooker, Toward a “Modern Coexistence1

Theory” for the Discrete and Spatial, Ecological Monographs.2

Section S1 Formulas for calculating competition Cq3

Cq can be calculated as follows. Conditional on the environments βs(t) for all species, the expected4

number of new species q recruits at (t+1) is the sum over all sites of the probability that the site becomes5

vacant, times the probability that species q wins the lottery for the site. Let ns,x(t) be 1 at sites occupied6

by a species s adult, zero elsewhere. The probability that site x becomes vacant is then7

Vx(t)=∑
s

δsns,x(t). (Eq. S1)8

The expected number of species q new recruits Rq(t+1) is then9

Rq(t+1)=∑
x

Vx(t)
yq,x(t)

∑
s
ys,x(t)

. (Eq. S2)10

We define C so that R=NE/C, thus11

Cq(t)=
βq(t)Nq(t)
Rq(t+1)

. (Eq. S3)12

A potential difficulty with (Eq. S3) is that Rq(t+1)=0 whenever βq(t)=0. To handle that situation13

we define Cq(t) as the limiting value of the definition above as βq(t)→0. That is really the only sensible14

definition, because it is the only way to make Cq a continuous function of βq. For example if βq(t) has15

a point-mass at zero and otherwise is lognormally distributed, we want the value of Cq for βq = 0 to16

be very close to the value for βq=0.001.17

The limit as βq(t)→0 is as follows. Note that yq,x(t)=βq(t)y
(1)
q,x(t), where y(1)q,x(t) is the value that18

yq,x(t) would take if βq(t) has the value 1 in eqns. (11) and (12). Consequently19

Rq(t+1)=βq(t)∑
x

Vx(t)
y(1)q,x(t)

βq(t)y
(1)
q,x(t)+ ∑

s6=q
ys,x(t)

. (Eq. S4)20
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So as βq(t)→0,21

1
Cq(t)

=
Rq(t+1)

Nq(t)βq(t)
→ 1

Nq(t)
∑
x

Vx(t)
y(1)q,x(t)

∑
s6=q

ys,x(t)
. (Eq. S5)22

Section S2 Defining invader growth rate for a discrete, spatial23

system.24

Analysis of coexistence through invasion growth rates is based on the premise that an invading population25

grows exponentially so long as it is so rare that it does not compete with itself. This means that the change26

in logN over one time step (or the expected change, in a stochastic environment model) is independent27

of N over the range of population sizes N for which the invader does not compete with itself. This is true28

even in spatial models with continuous population size, for example integrodifference equation models,29

where the long-term population behavior is a traveling wave with constant velocity implying that the30

rate of change in N (in one dimension) or
√

N (in two dimensions) is independent of N when N is large.31

But with discrete individuals in a spatial system, such as the lattice lottery model that we consider here,32

if offspring tend to be near their parents due to limited natal dispersal or mobility, an invader will typically33

start to compete with itself after just one or two time steps when it is still very rare. Even if an individual and34

its parent do not compete directly (e.g., they do not increase each other’s mortality, or decrease each other’s35

production of seeds or larvae), the natal dispersal range for their offspring necessarily has considerable36

overlap resulting in competition at the offspring recruitment stage. Shorter-range dispersal and direct com-37

petition between adults will result in competition becoming important at smaller invader population sizes.38

Simulation results in Fig. S1 confirm that in our lattice lottery model, even a rare invader (N=1039

to 40) is sufficiently clustered that the Moore2 neighborhood of a typical invader individual (i.e., the40

5×5 square of lattice cells centered on the individual) contains several other invader individuals. So41

even when adult competition is absent (a= 0) or limited to nearest neighbors, the larvae of a typical42

invader individual will be competing with larvae from other invaders.43

But competition at low densities does not rule out exponential or approximately exponential44

population growth if the intensity of competition experienced by a typical individual does not vary with45

N. In that case, the one-step change in logN would be (approximately) independent of initial population.46

Alternatively, if an initial small cluster of invaders quickly reaches its local “carrying capacity” within the47
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Figure S1: Average fraction of conspecific individuals in the Moore2 neighborhood of an invader
individual in the lattice lottery model. Simulations of the lattice lottery model were run on a 60×60
lattice, initialized with the invader as a 2×2 cluster of individuals and all other sites occupied by the
resident. The invader population was re-initialized whenever the total population fell to 0 or exceeded
100, so that the state at T =1000 should represent a typical state during the initial spread of the invader.
Parameter values were a= 0 or 2, α = 0.5 or 1, δ = 0.1 or 0.4, and adult competition neighborhood
either Moore, Moore3, or global competition. Parameters µ1=0.5,µ2=0.45 (with species 2 the invader),
σ1 = σ2 = 0.6,ρ =−0.75 were the same for all runs. For each parameter combination 400 parallel
simulations were run, and the fraction of invader neighbors was computed for all final population states
with total invader population 10≤N≤40, up to a maximum of 100 such states. Figure produced by
script ClusterInvaderCompetition.R using R version 4.1.1.

region it occupies, we might see population growth characteristic of a traveling wave in two dimensions,48

with the one-step change in
√

N roughly independent of initial population.49

To see if either of these occurs in our model, we conducted a series of model simulations as described50

in section Generating a sample of lattice configurations with small invader clusters, at a series of51

model parameter settings. For each parameter combination (described below) we did K=250 parallel52

simulations on a 50×50 lattice and computed the population change for 100 replicate one-step-ahead53

simulations from lattice configurations at T =500 with invader population N between 10 and 40. Figure54
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Figure S2: An example of simulation results on the relationship between invader population N and invader
population growth rate. A) a sample of simulation trajectories, showing re-initializations. B) Plot of one-
step-ahead change in N versus N. Plotted points are the mean (± one standard error) of the change in N
across 100 replicate one-step-ahead simulations from a lattice configuration at time T =500. C) Plot of the
change in

√
N. The red curve is a regression line fitted to all one-step-ahead changes. D) Plot of the change

in logN, as in C). Figure produced by script CompareClusterMetrics-loops.R using R version 4.1.1.

S2 illustrates a typical outcome when the invader increases robustly when rare (panels A and B). The55

one-step change in
√

N increases with initial population size, representing an accelerating wave. The56

one-step change in logN decreases slightly with population size (note the difference in y-axis scale57

between panels C and D). This corresponds to roughly exponential growth, with the growth rate gradually58

slowing as the population grows due to gradually increasing impacts of density dependence.59

As model parameters are varied, there is a tight relationship between the average one-step change60

in logN or
√

N for 10≤N≤40 and the slope of the fitted regression line (Fig. S3A, B). In both cases61

the magnitude of the slope is about 1% of the average. In both cases, the highest averages and thus the62
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Figure S3: Summary of simulation results, as described in Fig. S2 and the text, across a range of
parameter combinations: a∈{0,1,2,3}, α ∈{0.25,0.5,0.75,1}, δ ∈{0.1,0.4} and other parameters as
in Fig. S2. Panels A) and B) show the slope of the regression lines (as in Fig. S2 C, D) for one-step-ahead
change as a function of initial population, as a function of the average one-step-ahead change, for the
change in logN and

√
N respectively. Dashed lines are fitted linear regressions with intercept fixed

at zero. Panels C) and D) show the same slopes as a function of adult competition strength a. Figure
produced by scripts CompareClusterMetrics-loops.R and SlopesPlot.R using R version 4.1.1.

largest slopes occur when intraspecific adult competition is strong (which affects the resident more than63

the invader) and larvae disperse widely (α= 0.25 or 0.5). Because the dispersal kernel has a finite range64

cutoff, increase with N of the change in
√

N cannot be an accelerating traveling wave resulting from a65

fat-tailed dispersal kernel. The decrease with N of the change in logN can be interpreted as approximately66
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exponential growth, decelerating as population density increases, so the limiting value as N→0 would67

be a close analog to the usual invasion growth rate for models with continuous population density.68

However, we have chosen to use the average one-step increase in logN for initial N in [10, 40] as our69

measure of the invader’s initial rate of increase. The slopes are small enough that average and intercept70

should be similar, and the intercept of the fitted linear regression may not be representative in cases71

where the slope is mainly the result of density dependent effects at the upper end of N values. And as72

we wrote in the main text, our focus here is how to partition any growth rate measure for any discrete,73

spatial model, not on what to partition for any particular model.74

Several studies of invader spread in discrete spatial models have observed the phenomenon of nucle-75

ation, meaning that small initial clusters tend to shrink, while only larger ones have the potential to grow,76

depending on parameter values (Allstadt et al., 2007; Gandhi et al., 1999; Korniss and Caraco, 2005;77

O’Malley et al., 2006). When nucleation is present, successful invasion depends on repeated introductions,78

until demographic stochasticity allows a cluster of invaders to reach the critical size at which expected clus-79

ter growth rate becomes positive. Nucleation would again invalidate E[r] as a metric of invasion success.80

But we have not seen any signs of nucleation in our model, at any values of the parameters, even81

though it was observed by Usinowicz (2015) in a lattice lottery model nearly identical to ours. We82

cannot say for sure what accounts for this difference, but we suspect that it is because our model allows83

an invader to colonize beyond its nearest neighbor sites. Except for Usinowicz (2015), the ecological84

models where nucleation has been observed limit invader spread to nearest neighbor sites. Usinowicz85

(2015) derived a nucleation approximation for non-nearest-neighbor dispersal, but did not report any86

simulations with non-nearest-neighbor dispersal verifying that small clusters still tended to shrink or87

to grow less quickly than larger clusters.88

Section S3 Sampling small invader clusters with the Fleming-Viot89

algorithm90

The Fleming-Viot algorithm is a general method to generate samples from the quasi-stationary91

distribution of a Markov chain whose ultimate fate is to eventually enter and thereafter remain in some92

set of absorbing states (e.g. Asselah et al., 2011; Groisman and Jonckheere, 2013). For our model,93
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the absorbing states are extinction of one or the other species. The quasi-stationary distribution is the94

distribution of model states at large times T conditional on neither species being extinct.95

The general Fleming-Viot algorithm is very simple. N�1 independent simulations of the model96

are conducted in parallel up to time T�1. If a simulation enters an absorbing state at time t≤T , that97

move is canceled and instead that simulation’s state at time t is drawn at random from the states of all98

simulations that are in a non-absorbing state at time t. As T,N→∞, the N simulation states at time T99

converge to a sample from the quasi-stationary distribution.100

Fleming-Viot again encounters the problem that states where a successfully coexisting species is very101

rare will be very infrequent in the quasi-stationary distribution, resulting in impossibly long computing102

times to get the samples that we need. We therefore applied Fleming-Viot with extinction defined to103

occur whenever the invader abundance was far from the target range [Gmin,Gmax] within which E[r] is104

approximately constant — we call this a “quasi-extinction”. So long as the quasi-extinction thresholds105

are far enough away from the target range of invader population sizes, the thresholds should have little106

effect on the quasi-stationary distribution within the target range.107

Figure S4 compares four measures characterizing small invader clusters generated by the repeated108

invasions method described in the main text, versus the Fleming-Viot method described above, across109

a range of parameter values. There are no systematic differences in the one-step-ahead population growth110

rate, which is the key quantity for our analyses of coexistence. For the two measures of cluster structure,111

there may be some small systematic differences, which is not entirely surprising. In the repeated invasions112

method, model trajectories always enter the target range (between 10 and 40 invaders) from below. In113

Fleming-Viot, model trajectories rarely enter from below because the quasi-stationary distribution is114

concentrated near the upper quasi-extinction threshold; most enter from above, a few start within the115

target range. Thus, there will be more Fleming-Viot samples near the top of the target range. The small116

differences between Fleming-Viot and repeated invasion samples is in line with Fig. S3 showing that117

the mean one-step-ahead change in log invader population (i.e., E[r]) is nearly constant as a function118

of cluster size within the target range.119

Thus, two very different approximate but feasible ways of generating random samples of small120

invader clusters give nearly identical results. On that basis, we consider that it is reasonable to use either121

one of them.122
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Figure S4: Comparisons between small invader clusters generated by the repeated invasions method
described in the main text, with clusters generated by the Fleming-Viot simulations described in this
section for all combinations of a=0 or 1; α =0.5, 0.5, 0.75, or 1 for both species ; δ =0.1,0.2,4 for
both species, and Moore or Moore3 adult competition neighborhoods. Demographic parameters for
all simulations, were E[logβ ]=0.5, 0.4 respectively for resident and invader species, with variances 0.62

and correlation -0.75 between β1(t) and β2(t). The panels show comparisons of A) mean one-step-ahead
change in log invader total population, B) mean one-step-ahead change in square root of invader
total population, C) mean fraction of invaders in an invader individual’s competition neighborhood,
and D) mean larval invader fraction as defined in the main text. The Fleming-Viot quasi-extinction
thresholds were at total invader populations of N=1 and N=80, and the cluster samples were limited
to total invader populations between N =10 and N =40. Simulations were done on a 50×50 lattice,
and each plotted value is based 100 one-step-ahead simulations for each of 50 randomly generated
invader clusters in the target range. Figure generated by scripts CompareClusterSampling.R,

ClusterSamplingComparisonPlot and scripts that those source, using R version 4.0.2.
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Section S4 Further partitioning of the contributions of variation123

in competition124

The C counterfactual (23) washes out all information about how spatial structure affects the distribution of125

C values. To preserve some of that information, we can consider an intermediate counterfactual where each126

“real” Cq value is replaced by its average for the particular invader-resident configuration — this retains127

variation in average C between different configurations, but removes variance within each configuration.128

The calculations are as follows. For each species, compute129

Ĉ(k)
q (T)=

1
VR

V

∑
v=1

R

∑
r=1

C(r|v,k)
q (T). (Eq. S6)130

Then for each (r,v,k), compute the pseudo-one-step-ahead population change as131

N(r|v,k)
q (T+1)=

(
S(k)q (T+1)+N(k)

q (T)
E(r|v,k)

q (T)

Ĉ(k)
q (T)

)
η
(r|v,k)
q (T). (Eq. S7)132

and compute the resulting population change measure χ
(r|v,k)
q (E,Ĉ,η). The average of these RVK values133

gives the counterfactual population change measure χq(E,Ĉ,η).134

The εC and resulting ∆C term are then sub-partitioned into two pieces:135

ε
C
q =
[
χq(E,C,η)−χq(E,Ĉ,η)

]
+
[
χq(E,Ĉ,η)−χq(E,C,η)

]
=ε

Cw
q +εqCb (Eq. S8)136

where the w and b subscripts refer to variance in C within and between invader-resident partitions.137

Section S5 Detailed methods for partition based on life history138

differences139

As in the partition based on fluctuation-dependent mechanisms, K lattice states at time T with small invader140

clusters (indexed by k) are generated by simulating the full model (including all life history differences),141

and stored — this much is identical. But then, because site vacancies depend on mortality rates that differ142

across different scenarios, vacancy configurations are generated anew for each counterfactual. In each143
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scenario, for each lattice state k, V vacancy configurations are generated using the scenario’s δ values, and144

R one-step-ahead simulations of population change are simulated using the scenario’s β values to generate145

population change measures χq, q=1,2. For example, χq(δ ,β ,α) results from vacancies and one-step-146

ahead replicates where species differ in all three traits, while χq(δ ,β ,α) results from vacancies and147

one-step-ahead replicates where species are identical in all three traits. Because demographic stochasticity148

is not included as a factor in the decomposition, any combination of R and V can be used such that RV149

is large enough to estimate average growth rates; we used V�1 and R=1 as before.150

The partitioning of each species’ population growth rates is then151

ε
0
q=χq(δ ,β ,α)

ε
δ
q =χq(δ ,β ,α)−ε

0
q and analogously for ε

β
q ,ε

α
q .

ε
δ ,β
q =χq(δ ,β ,α)−(ε0

q+ε
δ
q+ε

β
q ) and analogously for other pairs

ε
δ ,β ,α
q =χq(δ ,β ,α)−(ε0

q+ε
δ
q+ε

β
q +ε

α
q +ε

δ ,β
q +ε

δ ,α
q +ε

β ,α
q )

(Eq. S9)152

Like the T-partitions in Ellner et al. (2019), the counterfactuals in (Eq. S9) vary the traits, but not153

the biotic environment in which they operate. In this case, the biotic environment is the lattice state with154

small invader clusters at time T . Thus, these partitions only consider the direct effect of the traits on155

population growth, not their indirect effects mediated by how species’ traits affect the biotic environment.156

We attempted to include both direct and indirect effects by generating new lattice states at time T157

for each scenario’s δ , β , and α values. This failed spectacularly because coexistence depends on the158

balance of δ and β : setting one of these to the average value breaks the tradeoff and causes one species159

or the other to rapidly exclude the other. Thus, there is no such thing as a “typical small invader cluster”160

when traits have been altered.161
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