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Abstract: Floods account for the highest annual average losses from natural hazards across the United States, and the occurrence of repeat
flood inundation events in United States communities is increasing. Distinguishing damages caused by distinct flood events in a community
that has experienced repeated flooding is difficult, and best practices for repeat flood metrology are needed to better inform and validate flood
damage models. This paper presents a longitudinal methodology for measuring impacts from repeated flood inundation through a case study
of buildings in Lumberton, North Carolina, where major flood events occurred in 2016 and 2018. Sources of uncertainty encountered in flood
damage assessments are presented to inform best practices for future investigations of repeat flood events. A novel initial state parameter is
introduced for accurate damage characterization for a repeat flood event. This paper presents the first analysis of statistical distributions of
damage conditioned on flood depth for a set of buildings that have been flooded in two consecutive events, and the results show how floods
with similar intensities occurring in the same area at two different times can exhibit differing distributions. Flood damage data sets for the two
floods are combined to derive flood damage fragilities, and we propose the creation of a flood damage database by aggregating data from
various flood events across the United States to enable more robust fragility functions that can be applied across geographies and flood events.
DOI: 10.1061/AJRUA6.0001219. This work is made available under the terms of the Creative Commons Attribution 4.0 International
license, https://creativecommons.org/licenses/by/4.0/.

Introduction

Floods account for the highest annual average losses from natural
hazards across the United States. Between 2004 and 2014, major
flood events caused average annual losses of $9 billion and 71 lives,
according to the National Academies of Sciences, Engineering, and
Medicine (NASEM 2019). NASEM data, in combination with a
large body of social science literature, show that short- and long-
term impacts from flooding extend beyond immediately quantified
losses. For example, flood losses are acutely felt by communities
with higher concentrations of poverty and populations of racial and

ethnic minorities, elderly, renters, nonnative English speakers, and
mobility-challenged residents (Van Zandt et al. 2012; Masterson
et al. 2014; Highfield et al. 2014). Flood frequency is increasing
across the US (Brody et al. 2011; Macionis and Parrillo 2013), es-
pecially in areas near coasts and within river basins. Increases in
flood frequency and severity are due in part to increased urban den-
sification and development impacts on floodplains (Gori et al.
2019), as well as climate change, which has contributed to sea-level
rise and increased the likelihood of heavy precipitation events
(NASEM 2019). As the occurrence of intense flood events
increases, so does the occurrence of repeat flood events in
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communities. The Government Accountability Office (2020) re-
ports that the number of repetitive loss properties insured by the
National Flood Insurance Program, which are properties that have
flooded twice in 10 years, increased by 43% from 2009 to 2018.
Based on this information, the need for better decision tools for
mitigating flood risk to increase community resilience to flood haz-
ard is apparent and is the impetus for the present work.

Flood risk is a combination of three main components: hazard,
exposure, and vulnerability. Methods used to quantify these compo-
nents have been reviewed in articles covering concepts and chal-
lenges (Thieken et al. 2006), economic flood damage assessment
to buildings and infrastructure (Merz et al. 2010), and risk assess-
ment and communication (Salman and Li 2018). These reviews
showed that flood damage modeling approaches have typically relied
on stage-damage functions at the individual building scale using em-
pirical data from single historical flood events (Merz et al. 2004;
Nascimento et al. 2006). Stage-damage functions are commonly
used in the insurance industry (Messner 2007) and have been incor-
porated into the FEMA Hazus-MH tool for modeling physical and
economic losses due to natural hazard scenarios (HAZUS-MH
2008). Stage-damage functions deterministically relate flood inten-
sity to loss, but lack uncertainty propagation in the flood damage
assessment process. Recent advances in flood damage quantification
approaches were reviewed by Nofal and van de Lindt (2020c) and
Marvi (2020). These reviews listed flood-related data scarcity and an
inability to propagate uncertainties in flood damage assessments as
the main challenges to development and validation of robust flood
damage models. Probabilistic flood stage-damage functions were
proposed to address this research gap (McGrath et al. 2019),
although the functions were not fully probabilistic. Thus, recent re-
search efforts have employed approaches using fragility functions to
quantify the flood damage for given flood intensity values in a prob-
abilistic fashion (van de Lindt et al. 2018; Tomiczek et al. 2014;
Nofal et al. 2020) and have been compared with corresponding
stage-damage functions by Nofal and van de Lindt (2020b).

Fragility functions are considered a reliable probabilistic tool
to inform safety margins for buildings and systems, because they
naturally account for, and allow propagation of, uncertainty. There-
fore, fragility-based flood damage functions have been developed
using numerical models (Nadal et al. 2009; De Risi et al. 2013;
Nofal and van de Lindt 2020a) and empirical data collected from
field damage assessments (Amadio et al. 2019; van de Lindt et al.
2020). Fragility functions are often derived from a small set of data
collected from a single event or community; therefore, applying
these functions to other events or communities assumes that the
depth-damage relationship is general enough to be applicable
across events and geographies. Previous research has shown that
the quality and geographical applicability of existing flood damage
assessment approaches vary based on empirical data collected from
damage assessments (Galasso et al. 2021).

As fragility-based approaches to flood damage modeling are de-
veloped and refined, approaches taken in modeling other hazards
can help guide the development of the practice. The earthquake
engineering community has identified sources of uncertainty and
developed model parameters to account for those uncertainties
in their fragility-based assessment frameworks (FEMA 2009).
Galasso et al. (2021) state the need to identify the uncertainties in-
herent to probabilistic flood damage models, which is a necessary
starting point for the development of flood damage model param-
eters that can account for uncertainty, similar to the existing ap-
proaches for earthquake modeling.

This paper is focused on the measurement science necessary to
develop robust probabilistic flood damage models to enhance resil-
ience modeling frameworks. The paper is structured around two

research questions: (1) what are the uncertainties of assessing dam-
age to buildings from a repeat flood event, and (2) is the distribution
of flood damage to buildings, considering flood depth as the inten-
sity measure, similar for a repeat flood event as for the first flood
event, given a similar flood intensity? To answer these questions,
flood damage data collection and modeling considerations of a lon-
gitudinal field study of Lumberton, North Carolina, are presented.
The City of Lumberton experienced riverine flooding caused by rain-
fall from Hurricane Matthew in 2016, and again from rainfall caused
by Hurricane Florence in 2018. The two events presented similar
stage heights, based on nearby stream gauge data. Uncertainties en-
countered in the field damage assessment of the second flood event
are presented. A novel approach to create an initial state parameter to
distinguish unique damage in each flood event based on longitudinal
data is presented, along with best practices for future field damage
assessments of repeat flood events. The statistical distributions of
flood depth versus observed damage for each flood event in Lum-
berton are compared to understand whether the underlying depth-
damage relationship is consistent for two flood events with similar
intensities. Fragility functions created through aggregation of data
from the first and second flood events are compared to functions
previously created using only data collected in Lumberton following
the first flood event (van de Lindt et al. 2018). Results of the com-
parison confirm that observed damage distributions are different for
the two flood events despite the similar flood stage elevations, signal-
ing that fragility curves lack not only geographical but also temporal
applicability. Data gathered from two flood events in one community
is not fully sufficient to derive broadly applicable damage equations;
therefore, we make the case for a national database of flood damage
data that relies on standardized damage states (DSs), building typol-
ogies, and measurement datums and provide initial direction for the
creation of such a database.

Methodology

The damage fragility methodology is presented herein by first intro-
ducing the data collection methodology that followed two extreme
floods that occurred in Lumberton, North Carolina, in 2016 and
2018. The collected data are used to develop a set of fragility func-
tions for a suite of buildings, characterized by foundation type, build-
ing type, and measurement datum. This section describes the novel
measurement science used to distinguish damage from the two
events as well as the sources of uncertainty encountered in damage
assessments; this research provides a case for development of best
practices for future studies of repeat flood events. The results of the
study are presented along with a discussion and conclusions.

Lumberton Field Study Overview

The NIST and its Center of Excellence (CoE) for Risk-Based Com-
munity Resilience Planning have been studying the impacts to and
recovery of Lumberton, North Carolina, since it was flooded during
HurricaneMatthew in October 2016 (van de Lindt et al. 2018, 2020).
This longitudinal field study has collected three systematic waves of
field data at the time of this writing and is ongoing; the same sample
of residential buildings have been investigated throughout the study.

Longitudinal Data Collection Approach

Data collection efforts have focused on key social, economic, envi-
ronmental, and built infrastructure characteristics required to model
long-term housing and household, business, school, and commu-
nity recovery. This paper is focused on the damage assessment con-
siderations for residential structures. The timeline of deployments
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for the Lumberton field study is provided in Fig. 1. The first field
study, denoted as Wave 1 and performed in November 2016,
included: (1) measurements of high-water marks (HWMs) on res-
idential structures, (2) observations of damage to the structures and
their contents, and (3) systematic household surveys including
questions to residential homeowners and renters about the damage
that their housing unit sustained from the flood. The second field
study, denoted as Wave 2 and performed in January 2018, included
systematic household surveys of the same housing units surveyed
in Wave 1. These surveys included questions about the level of re-
pair of their housing unit. Details on the history of Lumberton,
flooding events, sampling, team coordination, and data collection
logistics are provided in the respective Wave reports (van de Lindt
et al. 2018; Sutley et al. 2021b; Helgeson et al. 2021).

Rainfall from Hurricane Florence caused a second extreme
flooding event in Lumberton in September 2018. Both flood events
in Lumberton were low velocity and therefore the primary flood
hazard observed was inundation depth. Other flood hazards exist
and should be accounted for in future work [see Kreibich et al.
(2009), Merz et al. (2010), Dang et al. (2011), and Qi and Altinakar

)2011,2012 ) for relevant discussions of velocity and duration flood
hazards]. NISTand the CoE deployed to North Carolina three times
following the flooding from Hurricane Florence, and these deploy-
ments, designated as Waves 3a, 3b, and 3c, are collectively denoted
as Wave 3. In Wave 3a, conducted in October 2018, researchers
collected physical measurements of HWMs and assessments of
damage to residential buildings that were sampled in Waves 1
and 2. These both augmented the damage analyses completed after
Wave 1 and provided scoping guidance to teams arriving in later
Wave 3 deployments. The Wave 3a damage assessment was con-
ducted very quickly after the flood event, which prevented human
subjects research from being performed due to the extended time
required for survey instrument approval. During Wave 3b, per-
formed in December 2018, researchers interviewed public housing
residents and administrators to understand the unique impacts and
recovery for the population of residents living in public housing
and the city’s plan to repair public housing units. Researchers in
Wave 3c, conducted in April 2019, surveyed households to further
understand recovery from the 2016 flood at the time when the 2018
flood occurred, as well as understand the damage to housing units
caused by the 2018 flood and the recovery of the housing unit from
any remaining damage caused by either flood event.

Assessing the Hurricane Matthew (2016) and Hurricane
Florence (2018) Flood Events

Predeployment web-based virtual reconnaissance was conducted in
Waves 1 and 3a to determine the nature and intensity of the flood

hazard, and the severity of damage to buildings. Virtual reconnais-
sance was implemented in accordance with guidelines established
by FEMA (FEMA 2018a) and included monitoring of stream gauges,
inspection of peri- and postevent aerial imagery, and monitoring
of media networks for firsthand accounts and imagery of the flood
events. These data were analyzed in a geographic information system
to direct planning for field damage assessments of the flood events.

Streamflow data from the USGS National Water Information
System stream gauge 02134170 located on the Lumber River
and within the city limits of Lumberton (USGS 2016) show peak
flood stage elevations of 6.67 m (21.87 ft) above the gauge datum
in Hurricane Matthew and 6.77 m (22.21 ft) above the gauge datum
in Hurricane Florence. Based on media reports, the two flood
events were low velocity and therefore presented hazards of flood
depth and duration but not hydrodynamic loads. Aerial imagery
captured during the events was used to estimate and compare
the extents of flooding for the two events. Fig. 2 highlights regions
of flood difference between the two events that were digitized
based on a comparison of aerial imagery captured by the National
Oceanographic and Atmospheric Administration (NOAA 2016,
2018). Solid orange polygons in Fig. 2 designate regions that were
flooded after Hurricane Matthew but not flooded after Hurricane
Florence, and dashed green polygons designate regions that were
not flooded after Hurricane Matthew but were flooded after
Hurricane Florence. The aerial imagery analysis shows that the area
south of the Lumber River was more severely flooded by Hurricane
Matthew than Hurricane Florence, while areas north of the river,
particularly a neighborhood west of I-95 (highlighted in the north-
ernmost image inset), were more severely flooded by Hurricane
Florence than Hurricane Matthew.

Mitigation actions taken by the City of Lumberton before flood-
ing from Hurricane Florence likely contributed to the changes in
the flood extents. Community-level actions included building a
berm at a gap in Lumberton’s levee system where floodwater en-
tered the region south of the river during Hurricane Matthew and
deploying hydraulic pumps to quickly move water from the leveed
area into the downstream river channel. Individual actions taken by
community members in 2018 in anticipation of Hurricane Florence,
such as elevating interior contents of homes and businesses and
evacuating before flooding occurred, likely led to fewer local mor-
bidities, mortalities, and economic losses from this event compared
to the 2016 event, as has been discussed in previous studies
(Siegrist and Gutscher 2008; Osberghaus 2017). As uncovered in
the longitudinal study, more mitigation actions were taken in 2018
than 2016 given that the city had not experienced significant flood-
ing in over a decade leading into 2016 but had very recent expe-
rience leading into 2018. This is in line with existing literature that

Fig. 1. Timeline of deployments for the Lumberton field study.
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has shown that previous disaster experience can influence how an
individual or household perceives an environmental threat and,
therefore, whether they take protective action against a future event
(Lindell and Perry 2012). While individual- and community-level
mitigation efforts likely improved outcomes in the flooding expe-
rienced in Hurricane Florence, they also influenced the flood dam-
age assessment approaches, discussed in the next section, taken by
the Lumberton field study team for the second extreme flood event.

Measurement Science of a Repeat Flood Event

The occurrence of a second major flooding event in a community
within a short time span poses various challenges to damage

assessment. To understand isolated impacts from the 2018 flood
event, it was critical to determine whether observed damages and
HWMs were caused by the 2018 flood event or were an artifact of
the 2016 flood event. The Lumberton field study is uniquely
positioned to distinguish damage between events due to the prior
knowledge of the area, damages incurred following Hurricane
Matthew, and resulting recovery patterns gained through the
longitudinal data collection describing each sampled building
through time with a combination of physical measurements,
imagery, and survey responses. The present study is focused on
assessing and modeling isolated damages from the 2016 and
2018 flood events, as opposed to compound damages from the
two events.

Fig. 2. Difference of Hurricane Matthew and Hurricane Florence flood extents in Lumberton field study sample region. Sample region location with
respect to Lumberton city limits denoted by the dashed gray box in top right inset. Flood extent differences digitized using NOAA aerial imagery for
Hurricane Matthew (NOAA 2016) are denoted by solid orange polygons and Hurricane Florence (NOAA 2018) are denoted by dashed green poly-
gons (imagery edited to emphasize flooded areas). (Image © Google, US Geological Survey, © CNES/Spot Image, Data SIC, NOAA, US Navy,
NGA, GEBCO, Image PCG/NASA.)
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Flood Damage Measurement for the Hurricane Matthew
(2016) Flood Event

Wave 1 of the Lumberton field study followed measurement guid-
ance provided by the USGS for determining and measuring
tranquil-water HWMs (Koenig et al. 2016). HWMs created by riv-
erine floods denote the maximum elevation of floodwaters at the
location of the mark. They are created by film, sediment, or debris
on the surface profile of turbid water adhering to or staining flooded
natural or manmade objects such as trees or buildings. Importantly,
an object can contain multiple water lines, but only the highest line
is considered and measured. When assessing the highest elevation
of flooding for an object during a secondary flood event, HWMs
remaining from the first flood event can make determination of
maximum flood elevation difficult to distinguish.

To assess the maximum flood elevation for each housing unit
sampled in Lumberton, the height of the HWM with respect to
the first-floor elevation (FFE) of each building and the ground
elevation with respect to the FFE of each building were measured
for each structure. The Wave 1 deployment paired these measure-
ments with household surveys, which allowed the team to verify
with residents or neighbors that HWMs represented the maximum
flood elevation following Hurricane Matthew. In many cases, res-
idents allowed field team members to view interior damages while
surveys were being conducted. The damage assessment instrument
used to collect data in Wave 1 is available in Deniz et al. (2021).

Damage observed in Wave 1 was classified into five discrete,
sequential DSs for residential buildings, as given in Table 1
(Deniz et al. 2020). The damage assessment scheme adapted
component-based methodologies for determining damage due to
hurricane waves and storm surge (Tomiczek et al. 2017) and com-
bined wind/flood events (Friedland 2009) to assess flood damage to
exterior walls, foundation, and interior.

The DSs were developed based on existing methodologies
where loss is driven by damages to the interior of buildings, such
as Hazus-MH (Hazus-MH 2008). These methods determine the
percentage of damage to structural components and contents,
and assess losses using an industry standard for replacement costs
(RSMeans 2006). Buildings sustaining greater than 50% damage are
assumed to be complete losses (Scawthorn et al. 2006). In Wave 1,
damage was observed in many buildings with crawlspace founda-
tions where the observed HWM was below the FFE. While the
observed damages in these buildings, which typically included
HVAC damage and led to mold issues in some cases, were minor
compared with cases where the HWM exceeded the FFE, they
are critical for accurate modeling of social and economic impact.

To properly account for these damages in fragility models, DS 1 is
split into two categories. DS 1 is only split for buildings with crawl-
space foundations where inundation is measured with respect to the
ground, because fragility functions developed in this study are cre-
ated using lognormal distributions, which limit the probability
space to nonnegative values. For this analysis, DS 1 is broken into
DS 1a, indicating DS 1 observations with inundation measured be-
low FFE, and DS 1b, representing DS 1 observations with inunda-
tion measured above FFE.

The number of residential building observations for each DS in
Wave 1 is provided in Table 2 and the raw data are available in van
de Lindt et al. (2021). These observations are categorized by foun-
dation type, building type, and measurement datum. The building
types used in the analysis include an aggregate of all building types,
which is further categorized into single-family and multifamily
building types. Three observations with slab-on-grade foundations
and four observations with crawlspace foundations either did not
receive a building type assessment or were categorized as “other”
and were included in the aggregate data set but not in single-family
or multifamily data sets. Indicative of the residential construction
patterns for the city, 32% of sample observations had slab-on-grade
foundations and 68% had crawlspace foundations.

Flood Damage Measurement for the Hurricane
Florence (2018) Flood Event

Wave 3a of the Lumberton field study included damage assessment
of residential buildings sampled in Waves 1 and 2. The HWMmeas-
urement approach used in Wave 3a was consistent with Wave 1. In
Wave 3a, measurements of HWMs with respect to ground elevation
and FFE with respect to ground elevation were collected for each
sampled structure. Unique measurement challenges were encoun-
tered due to the potential of repeated inundation of buildings, which
led to uncertainty in assessing the depth-damage relationship. The
damage assessment instrument used to collect data in Wave 3a is
available in Crawford et al. (2021).

Sources of Uncertainty Encountered in Repeat Flood
Event Damage Assessment

Multiple sources of uncertainty were evident in the flood depth and
damage measurements collected in Wave 3a that became critical to
account for in the fragility analysis. Five specific sources of uncer-
tainty were identified and are presented in Table 3. HWMs were
fainter in Wave 3a compared to Wave 1, likely due to hydraulic
pumps shortening the duration of inundation by moving floodwaters

Table 1. Flood-based DS descriptions for residential buildings

Damage
state Description

DS 0 No damage; water may enter crawlspace or touch foundation (crawlspace or slab on grade) but has no contact with electrical or plumbing, etc., in
crawlspace, and no or limited contact with floor joists. No sewer backup into living area.

DS 1 Minor water enters house; damage to carpets, pads, baseboards, flooring. Approximately 25.4 mm (1 in.), but no drywall damage. Water touches
joists. Could have some mold on subfloor above crawlspace. Could have minor sewer backup and/or minor mold issues.

DS 2 Drywall damage up to approximately 0.61 m (2 ft) and electrical damage, heater and furnace and other major equipment on floor damaged. Lower
bathroom and kitchen cabinets damaged. Doors or windows need replacement. Could have major sewer backup and/or major mold issues.

DS 3 Substantial drywall damage, electrical panel destroyed, bathroom/kitchen cabinets and appliances damaged; lighting fixtures on walls
destroyed; ceiling lighting may be okay. Studs reusable; some may be damaged. Could have major sewer backup and/or major mold issues.

DS 4 Significant structural damage present; all drywall, appliances, cabinets, etc., destroyed. Could be floated off foundation. Building must be
demolished or potentially replaced.

Source: Data from Deniz et al. (2020).
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from the developed areas back to the river channel and disallowing
turbid water to fully develop marks on structures, leading to the first
source of uncertainty listed in Table 3. The second source of un-
certainty, attribution of HWMs to specific flood events, became a
prominent focus of Wave 3. Sampled buildings that were gutted and
abandoned after Hurricane Matthew were excluded from the analy-
sis; buildings with damage that were located in areas where no in-
undation was observed in aerial imagery documenting the 2018
flood event were attributed to the 2016 flood event. For all other
buildings, a method to estimate the initial state of buildings at the
time of the repeat flood event was created to reduce uncertainty in
data used for fragility analysis. That initial state assessment is de-
scribed in the next section. The third source of uncertainty is the
relation of flood depth for each building to the damage observed in
the building. It was noted inWave 1 (van de Lindt et al. 2018, 2020)
that in some cases buildings were gutted even though the elevation
of HWM for the building was not indicative of complete loss. In
many cases, this was due to the long duration of inundation causing
extreme mold growth, which required the building to be gutted, but
it was also noted that perception of the building owner played a
role in the relationship, as some owners may have removed interior
components unnecessarily because nearby buildings were com-
pletely gutted. These situations were observed again in some build-
ings during Wave 3a and highlight the need for probabilistic
modeling of flood damage. The fourth source of uncertainty comes

from the measurement of HWMs. Measurements in Waves 1 and 3a
were typically conducted near the front door of the building, if pos-
sible. For buildings where observed HWMs were not present in the
vicinity of the front door, the measurement was taken at the location
of the observed HWM, which may have been different in Wave 3a
than Wave 1. Due to the variation in ground elevation around a
structure, measurements taken at different locations could lead
to variable inundation measurements when measuring with respect
to ground elevation. The fifth source of uncertainty is the assess-
ment of damage to building interiors. Wave 3a did not include res-
ident surveys, and field team members rarely entered residences,
which made verifying HWMs with residents impossible in most
cases. Additionally, and as learned in Wave 3c when household
surveys were conducted, many residents who were in their homes
during the 2016 flood chose to evacuate in anticipation of Hurri-
cane Florence in 2018, and therefore could not verify the height of
maximum inundation. The sources of uncertainty are documented
here to answer the first research question of this study, but should
not be considered an exhaustive list for all flood hazard types,
building types, and geographies.

Development of an Initial State Parameter

Understanding the differential impact to individual buildings
caused by the two flood events required determination of the flood
event that caused the damages and HWMs observed in Wave 3a. A
longitudinal analysis of the data obtained in Waves 1, 2, 3a, and 3c
produced an initial state for each building observation that noted,
with varying levels of confidence, the state of the building at the
time that Hurricane Florence impacted the City of Lumberton. The
data and decision criteria used to assign this initial state are shown
in the flowchart in Fig. 3.

The Wave 3c household survey included a question assessing
whether the respondent’s home was still damaged from the 2016
flood event when Hurricane Florence hit. Answer choices to the
question were none, some, most, or all, as shown in Fig. 3, and
N/A represents buildings where this question was not answered by
residents. Reasons for the question not being answered include no
survey being conducted because residents were not available during
data collection or declined the survey, or because the residents

Table 2. Hurricane Matthew (Wave 1) damage state observations categorized by building occupancy type, measurement of HWM with respect to ground or
FFE, and foundation type

Number of observations

Aggregate building type Single-family building type Multifamily building type

Damage
state

HWM measured
with respect
to ground

HWM measured
with respect

to FFE

HWM measured
with respect
to ground

HWM measured
with respect

to FFE

HWM measured
with respect
to ground

HWM measured
with respect

to FFE

Slab-on-grade foundation
DS 1 39 40 12 12 27 28
DS 2 52 51 17 17 32 31
DS 3 5 6 5 6 0 0
DS 4 0 0 0 0 0 0
Total 96 97 34 35 59 59

Crawlspace foundation
DS 1 80 41 79 40 0 0
DS 1a 32 0 32 0 0 0
DS 1b 48 41 47 40 0 0
DS 2 104 105 96 99 4 4
DS 3 15 17 15 16 0 1
DS 4 4 5 4 5 0 0
Total 201 168 194 160 5 5

Table 3. Sources of uncertainty encountered in the damage assessment of
the second extreme flood event in Lumberton

Number of
uncertainty
sources Explanation of uncertainty sources

1 Location of HWMs due to shorter duration of inundation
compared to Wave 1

2 Attribution of HWMs to specific flood events
3 Relation of flood depth to observed damage
4 Differing measurement datums for flood events based on

the location of visible HWMs in each event
5 Assessment of damage to building interiors
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being surveyed were not living in the building at the time of
Hurricane Florence and therefore did not know the answer.
Answers to this question were the most beneficial in the deter-
mination of initial condition, as buildings with residents that
answered all were categorized as undamaged at the time of
Hurricane Florence. The Wave 2 household survey included a
question assessing how long it took to fully repair damages
caused by Hurricane Matthew. Answer choices to this question
were the number of days after the storm before the building was
fully repaired or still not repaired, as shown in Fig. 3, and N/A
represents buildings where this question was not answered by
residents. Buildings with survey responses indicating that dam-
ages had been fully repaired were categorized as undamaged at
the time of Hurricane Florence. A situational flag was employed
in the Wave 3a damage assessment by leaving a comment for
each building where field team members believed that observed
HWMs and damages were remaining from Hurricane Matthew.
Fig. 3 represents this as any building with a situational flag com-
ment answering yes to an implied question of building damage
remaining from Hurricane Matthew, and N/A represents build-
ings that did not contain a situational flag in the comments.
Buildings that did not contain answers to the two household
survey questions identifying their initial condition were ana-
lyzed on a case-by-case basis using photography collected in
Waves 1 and 3a and notes taken during the Wave 3a assessment. In
certain cases, this additional information provided confidence in
assigning an initial state, such as a HWM or damage observed for
a building in Wave 1 photography appearing again in Wave 3a
photography. An initial state parameter was created to describe the
condition of each building at the time of Hurricane Florence by ag-
gregating all relevant information, and a level of confidence in the

assessment was assigned based on the presence and quality of the
evidence for each building.

The initial state parameter was sorted into one of four categories:
(1) Undamaged (suspected)–there was no evidence in Wave 3a of
damage remaining from the 2016 flood event and no survey infor-
mation fromWaves 2 or 3c available for the structure; (2) Damaged
(confirmed)—damage from the 2016 flood event remained unre-
paired when Hurricane Florence occurred, based on Wave 3c sur-
vey response that Hurricane Matthew damage remained when
Hurricane Florence impacted the city, or if no Wave 3c survey re-
sponse was available for a structure, then (a) the building was
flagged during Wave 3a, indicating damage was likely an artifact
from the 2016 flood event, and (b) Wave 2 survey information con-
firmed that damage from Hurricane Matthew had not been repaired
at the time of the Wave 2 survey; (3) Undamaged (confirmed)—
based on Wave 3c survey response indicating that damage from the
2016 flood event was fully repaired at the time of Hurricane Flor-
ence or Wave 2 survey response indicating that damage had been
fully repaired at the time of the Wave 2 survey; and (4) Repaired
between Wave 2 and Wave 3 (suspected)—based on Wave 2 survey
data indicating that Hurricane Matthew damage had not been fully
repaired in the structure, but no flag in the Wave 3a deployment that
observed damage was likely caused by Hurricane Matthew and no
response to the Wave 3c survey question about damage remaining
at the time of Hurricane Florence. Wave 3a was conducted eight
months after Wave 2, providing sufficient time for some homes to
be repaired between data collection trips. In cases where survey
responses between waves contradicted, photographs from Waves 1
and 3a and comments recorded in Wave 3a were analyzed and ini-
tial state parameters were assigned on a case-by-case basis, consid-
ering all evidence available for each building. All observations

Fig. 3. Flowchart showing information and decision criteria used to assign an initial state parameter to each building in the Lumberton field study
sample for Hurricane Florence fragility analysis.
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assigned Initial state categories (1), (3), and (4) were used in the
fragility analysis, and the observations assigned Initial state category
(2) were discarded, as the observed damages were not sustained
solely from the repeat flood event. Table 4 displays the number
of observations for residential structures in the Wave 3a data after
determining the initial state, and is categorized by foundation type,
measurement datum, and building typology. The raw data dis-
played in Table 4 are available at Sutley et al. (2021a).

Approximately 80% fewer sampled residential structures were
newly damaged by Hurricane Florence than Hurricane Matthew.
Similar to Table 2, most of the sampled buildings were single-
family residences with crawlspaces. However, it is important to
point out that the 97% fewer multifamily slab-on-grade buildings
in Table 4 compared to Table 2 were primarily due to repairs not
being completed after Hurricane Matthew. This finding matches
slower housing recovery patterns for multifamily housing observed
after other disasters (Wu and Lindell 2004; Hamideh et al. 2018;
Sutley and Hamideh 2020).

A comparison of flood height measurement distributions col-
lected in Waves 1 and 3a is displayed in Fig. 4. The collected data
are represented as violin plots, where kernel density estimations of
the data are used to represent the underlying distributions. The plots
are categorized by observations of buildings with crawlspace foun-
dations and measurements taken with respect to the ground in
Fig. 4(a), observations of buildings with crawlspace foundations
and measurements taken with respect to FFE in Fig. 4(b), observa-
tions of buildings with slab-on-grade foundation and measurements
taken with respect to the ground in Fig. 4(c), and observations of
buildings with slab-on-grade foundation and measurements taken
with respect to FFE in Fig. 4(d). For each set of observations, mea-
surements are further categorized by DS, with Wave 1 measurements
shown in blue on the left side of each plot and Wave 3a measure-
ments shown in orange on the right side of each plot. DS 3 and
higher are combined due to the low number of observations in those
categories. The first, second, and third quartile of each distribution
are shown as dashed lines. It is apparent from these data that the
statistics of the DS 1 distributions are similar between waves, while
the distribution of DS 2 measurements are significantly lower for
Wave 3a, and no comparison can be made for DS 3 due to the lack
of that DS in Wave 3a data. This indicates that measurement

distributions are affected by the flood hazard intensity and mitiga-
tion actions taken in preparation for flood events. While it is likely
that the entire range of depths that result in DS 1 observations was
observed, only the lower portion of that range for DS 2 was observed
and caused the distribution to be skewed toward lower measure-
ments. This is important, because probabilistic models built from
these data may also be skewed and therefore not representative of
the true depth-damage relationship.

Method to Develop Empirical Flood Fragilities

The understanding produced from the measurement of the second
extreme event—that flood damages are dependent on the nature of
the event as well as the community preparation and response to the
event—further highlights the need for probabilistic methods of cap-
turing flood damage and provides insight into the needs of these
probabilistic methods when using empirical data. The original in-
tent of the study was to develop an independent set of fragility func-
tions derived from newly damaged buildings observed in the 2018
flood event to compare to a set of fragility functions developed
using observations of damage from the 2016 flood event (van de
Lindt et al. 2018, 2020). Due to the limited number of newly dam-
aged buildings observed following the 2018 flood event, statisti-
cally significant fragility functions could not be derived from
this data set. The earthquake engineering literature has established
methods for reducing uncertainty in empirical fragility functions by
aggregating data from multiple events (FEMA 2018b). Following
the FEMA (2018b) approach, the newly damaged building obser-
vations in the 2018 flood event are combined with the damage ob-
servations in the 2016 flood event, and the event-combined data are
used to derive fragility functions.

Fragility functions are developed using DSs conditioned on
flood depth above a specified datum. Additionally, separate func-
tions were created for buildings with slab-on-grade and crawlspace
foundations as well as aggregate building types, which are further
disaggregated into single-family and multifamily building types.
Cumulative distribution functions (CDFs) of lognormal distribu-
tions are used to capture the uncertainty in the damage data, fol-
lowing the approach used in Wave 1 for deriving fragility functions
from the set of observations collected during that wave (van de
Lindt et al. 2018, 2020). In this approach, the natural logarithms of

Table 4. Hurricane Florence (Wave 3a) residential damage observations categorized by building occupancy type, measurement datum of HWM with respect
to ground or FFE, and foundation type

Number of observations

Aggregate building type Single-family building type Multifamily building type

Damage
state

HWM measured
with respect
to ground

HWM measured
with respect

to FFE

HWM measured
with respect
to ground

HWM measured
with respect

to FFE

HWM measured
with respect
to ground

HWM measured
with respect

to FFE

Slab-on-grade foundation
DS 1 5 4 5 4 0 0
DS 2 4 4 2 2 2 2
DS 3 0 0 0 0 0 0
DS 4 0 0 0 0 0 0
Total 9 8 7 6 2 2

Crawlspace foundation
DS 1 21 13 20 12 1 1
DS 1a 8 0 8 0 1 0
DS 1b 13 13 12 12 0 1
DS 2 21 18 21 18 0 0
DS 3 1 1 1 1 0 0
DS 4 0 0 0 0 0 0
Total 43 32 42 31 1 1
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the mean and standard deviation are calculated using the measured
data in each DS for each combination of foundation type, building
type, and measurement datum. These parameters are used to cal-
culate the lognormal distribution of each DS. Lognormal distribu-
tions are commonly used in the derivation of engineering fragility
functions and are appropriate for flood modeling because observa-
tions are limited to nonnegative values and provide simple paramet-
ric forms that can be applied in community-level risk analysis
frameworks. Additionally, a suite of distributions was tested,
and the lognormal distribution was chosen because it provided
the best fit to the data based on the Akaike information criterion.
Lognormal CDFs were used following Eq. (1)

P½D ≥ djX ¼ x� ¼ FdðxÞ ¼ Φ

�
lnðxÞ − λd

ξd

�
ð1Þ

where P½D ≥ djX ¼ x� represents the conditional probability that
D, the random variable representing the DS for a structure, is
greater than or equal to a specific DS equal to d (e.g., 0, 1,
2, : : : ), conditioned on X, the random variable representing flood
depth with respect to a specified datum, equal to the observed flood
depth above the same datum, x. Eq. (1) defines the fragility func-
tion of damage state d, evaluated at x. The flood depths were mea-
sured in units of inches above the specified datum. The parameters

of the cumulative lognormal distribution are denoted as λd and ξd.
λd represents the mean value of the natural logarithm of the obser-
vations of flood elevation above a specified datum that were as-
signed DS d, and Φ represents the normal CDF. ξd represents
the standard deviation of the natural logarithm of the observations
of flood elevations above a specified datum that were assigned DS
d. The lognormal standard deviation, ξd, of each fragility function
represents the uncertainty in the height of inundation above a speci-
fied datum at which a DS is likely to be reached.

The DSs listed in Table 1 are sequential, therefore the condi-
tional probability that a structure will sustain damage defined by
a given DS d given a demand parameter x is found using Eq. (2)

P½D¼ djX ¼ x�

¼

8>>>>>>>>>>><
>>>>>>>>>>>:

1−P½D ≥ 1jX ¼ x� ¼ Φ

�
lnðxÞ− λ1

ξ1

�
d¼ 0

P½D ≥ djX ¼ x�−P½≥dþ 1jX ¼ x�

¼ Φ

�
lnðxÞ− λd

ξd

�
−Φ

�
lnðxÞ− λdþ1

ξdþ1

� ≤ d < nD 1

P½D ≥ djX ¼ x� ¼ Φ

�
lnðxÞ− λd

ξd

�
d¼ nD

ð2Þ

Fig. 4. Distributions of flood inundation measurements for observations with (a) crawlspace foundations and measurements taken with respect to
ground level; (b) crawlspace foundations and measurements taken with respect to FFE; (c) slab foundations and measurements taken with respect to
ground level; and (d) slab foundations and measurements taken with respect to FFE. Hurricane Matthew (Wave 1) data are shown in blue on the left
side of each violin plot and Hurricane Florence (Wave 3a) data are shown in orange on the right side of each violin plot. First, second, and third
quartiles of each distribution are represented as dashed lines.
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where the demand parameter = inundation above the specified da-
tum; and nD = number of the highest DS considered.

To validate the use of the lognormal distribution considered in
the analysis, the Kolmogorov-Smirnov (K-S) and Lilliefors good-
ness-of-fit tests are performed for each set of fragility functions.
The K-S test (Massey 1951) has been widely used in engineering
analyses and is conducted by comparing the cumulative frequency
of the observed data with the CDF of the assumed theoretical dis-
tribution. The model fit is rejected when the maximum difference
between measured and modeled distributions exceeds a critical
value for a given sample size. The critical value is determined given
a prescribed significance level a. A significance level of 5%
(a ¼ 0.05) is chosen for the flood fragility functions described
here, given the sample size of the data set. The K-S test has been
shown to have high sensitivity at the extreme values of the distri-
bution (Ghasemi and Zahediasl 2012). The Lilliefors test (Lilliefors
1967) is a correction of the K-S test that results in higher explana-
tory power compared to the K-S test (Ghasemi and Zahediasl
2012). FEMA (2018b) recommends applying the Lilliefors test
when assessing goodness-of-fit for fragility analyses.

Results

Table 5 presents λd and ξd for structures, categorized by foundation
type, building type, and measurement datum for the set of event-
combined observations. Multifamily residential structures built
with slab-on-grade foundations contain fragility parameters for
DS 1 and DS 2, but lognormal functions could not be created for
DS 3 due to a statistically insignificant sample size of observations
in that DS. The observed sample size of multifamily residential
structures built on crawlspace foundations is also insufficient to de-
rive statistically significant fragility functions. Consistent with the
Wave 1 fragility analysis, the event-combined data did not allow for
the derivations of DS 3 for multifamily homes with slab-on-grade
foundations and all damages states for multifamily homes with
crawlspace foundations. To provide an example for physical con-
text of the lognormal CDF parameters, the mean values of the
measurements for the combined data set corresponding to slab
foundation, aggregate building type, and ground measurement da-
tum for DS 1, DS 2, and DS 3 are 47.6 cm (18.7 in:), 66.2 cm
(26.1 in:), and 104.1 cm (41.0 in:), respectively, whereas the λ

parameter values for these observations are 2.87, 3.20, and 3.68,
respectively, as given in Table 5. The standard deviations of the
same observations are 7.9 cm (3.1 in:), 8.9 cm (3.5 in:), and
11.3 cm (4.4 in:) for DS 1, DS 2, and DS 3, respectively, while
the ξ parameter values are 0.34, 0.39, and 0.29, respectively, as
given in Table 5.

To indicate statistical significance in Table 5, functions that pass
K-S testing are indicated with a superscript a to the right of the λ
value of the function. Functions that pass Lilliefors testing are in-
dicated with a superscript b. Ultimately, 86% passed the K-S test,
54% passed both tests, and 14% passed neither test. The results of
the goodness-of-fit tests should be considered in scenarios where
the fragilities are applied to model flood damages, especially for
those functions that failed both tests. In general, the event-
combined set of observations performed better in goodness-of-fit
tests compared to the fragility functions derived from Wave 1 data
alone (van de Lindt et al. 2018, 2020), which supports aggregating
observations across multiple hazard events. To better understand
the inundation-damage relationship, more observations are needed.

A graphical illustration of a set of fragility functions is displayed
in Fig. 5. Fig. 5(a) shows the lognormal CDF for each DS created
using the event-combined data set describing observations belong-
ing to the aggregate building type with crawlspace foundations and
inundation measured with respect to the ground. Fig. 5(b) shows
the fragility functions using the same data, but with DS 1 split
to account for observations where inundation was observed below
the building FFE.

In comparing the fragility function parameters and goodness-of-
fit test results presented in Table 5 and the functions shown in Fig. 5
when DS 1 is split into DS 1a and DS 1b, there is a significant
difference in the split DS functions. The model fit for DS 1a is
comparable to the unsplit DS 1, while the model fit for DS 1b
is improved. These results show the effectiveness of breaking
DS 1 into DS 1a and DS 1b, yielding results that will improve loss
analyses that previously would not have considered damage occur-
ring below the FFE.

Discussion

Initial states of the buildings surveyed in Lumberton, North
Carolina, were difficult to ascertain while the field damage assessment

Table 5. Event-combined lognormal fragility parameters

HWM measurement
datum

Damage
state

Crawlspace foundation Slab-on-grade foundation

Aggregate
building type

Single-family
building type

Aggregate
building type

Single-family
building type

Multifamily
building type

λ ξ λ ξ λ ξ λ ξ λ ξ

Ground DS 1 3.20a 0.38 3.20a 0.38 2.87a 0.34 3.04a,b 0.44 2.76a,b 0.19
DS 1a 2.96a 0.38 2.96a 0.38 N/A N/A N/A N/A N/A N/A
DS 1b 3.36a,b 0.30 3.36a,b 0.30 N/A N/A N/A N/A N/A N/A
DS 2 3.56 0.34 3.57a 0.32 3.20a 0.39 3.26a,b 0.31 3.16a 0.44
DS 3 3.94a,b 0.26 3.94a,b 0.26 3.68a,b 0.29 3.68a,b 0.29 N/A N/A

FFE DS 1 1.46a,b 0.92 1.47a,b 0.90 1.78 0.82 2.28a,b 0.52 1.50a 0.83
DS 2 2.47 0.78 2.46 0.79 2.76 0.59 2.68a,b 0.69 2.84 0.53
DS 3 3.23a,b 0.49 3.24a,b 0.51 3.39a,b 0.40 3.39a,b 0.40 N/A N/A

Note: Summary of fragility function parameters, where λ represents the mean value of the natural logarithm of each observation within the set of observations
of flood elevation that correspond to the foundation type, building type, measurement datum, and DS specified, and ξ represents the standard deviation of the
natural logarithm of each observation within the set of observations of flood elevation that correspond to the foundation type, building occupancy type,
measurement datum, and DS specified.
aParameter fit passes the K-S test.
bParameter fit passes the Lilliefors tests.
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was conducted. To better understand the initial states, longitudinal
data comprised of physical measurements and surveys were used to
create an initial state parameter. The large proportion of buildings
with damage incurred from Hurricane Matthew at the time of Hur-
ricane Florence points to challenges faced by residents along recov-
ery trajectories. While the longitudinal nature of this study allowed
the initial state of structures to be assigned with a high degree of
confidence, future studies should allow for uncertainty if a struc-
ture’s pre-event condition is not known. Additionally, future studies
of communities affected by repeat inundation events should con-
sider including surveys of building residents and owners to better
understand the recovery trajectories of individual buildings from
the first flood event and the pre-event condition of the buildings
at the time of the second event.

A comparison of the results of the damage observations mea-
sured following Waves 1 and 3a showed that the statistical distri-
bution of measurements for DS 1 remained fairly consistent while
observations for DS 2 were much lower in Wave 3a, and no com-
parison could be made for DS 3 because there were too few obser-
vations in that DS in Wave 3a. The changes in flood measurement
distributions are likely due to improved flood mitigation actions
taken in the second event. The results agree with previous findings
in the flood modeling literature that fragility functions derived from
a single event are not fully sufficient to model the inundation-
damage relationship across events, even those occurring in the
same location and with a similar intensity. Aggregating data from
a large number of flood events would allow for the entire range of
inundation values for each DS to be observed, although the data
could be biased if, for example, a large number of the flood events
were less severe and did not cover the range of inundation values
for each DS.

Conclusions and Recommendations

As floods are the costliest natural hazard in the US, communities
require methods to adequately quantify their risk in order to effec-
tively plan for increased community resilience. Repeated flood haz-
ards are becoming more common in the US, and flood risk
modeling methods are needed to more accurately assess the initial
state of community infrastructure in order to assess the effects of
repeated inundation. This study presented a novel flood assessment

approach for repeated inundation and a set of fragility functions
produced from damage observations representing repeat inundation
events, using the 2016 and 2018 floods of the city of Lumberton,
North Carolina, as a case study. The flood assessment approach
included documentation of sources of uncertainty in measuring
damages for a repeat inundation event, and development of a
methodology to consider the initial state of buildings using a lon-
gitudinal data set consisting of physical inundation and damage
measurements as well as surveys of residents. A comparison of
the fragility function analyses provided insight into the nature of
building damage and the effect on flood damage modeling ap-
proaches. Best practices for flood metrology for repeated inunda-
tion and flood damage modeling, and a summary of future work
needed for further improving flood damage models, are provided
next.

In future repeat flood events for a community, a metrology ap-
proach including measurement and initial state uncertainty will be
needed to distinguish the effects of each distinct flood event. These
studies should consider incorporating surveys of building occu-
pants into their methodology to create an initial state parameter to
distinguish which flood event caused the observed HWMs and
damages. Additionally, FEMA documentation has parameterized
uncertainties in seismic engineering (FEMA 2009) to account
for measurement variability; future work should explore methods
to incorporate the effects of the five sources of measurement un-
certainty identified here in flood damage models. Those sources
of uncertainty include (1) location of HWMs due to shorter dura-
tion of inundation compared to Wave 1, (2) attribution of HWMs
to specific flood events, (3) relation of flood depth to observed
damage, (4) differing measurement datums for flood events based
on the location of visible HWMs in each event, and (5) assessment
of damage to building interiors.

A comparison of flood depth measurements taken in Waves 1
and 3a of the Lumberton field study was described. The compari-
son showed that the DS 1 measurement distribution was consistent
between waves while DS 2 inundation measurements were much
lower in Wave 3a than in Wave 1, likely attributable to mitigation
actions reducing the maximum flood heights across many of the
buildings in the measurement sample. Because two flood events in
a single community are not fully sufficient to develop damage equa-
tions that are applicable across geographies, a case is made for
aggregating flood damage measurements for multiple events to

Fig. 5. Fragility functions (CDFs) for (a) observations in the aggregate building type category with crawlspace foundation and ground measurement
datum; and (b) the same data set with DS 1 split into DS 1a and DS 1b.
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more broadly account for the uncertainty in the flood inundation-
damage relationship. To adequately account for probabilistic corre-
lation of flood depths to damage levels for community risk modeling,
a database of flood inundation levels measured in multiple events
and categorized by consistent DS definitions, measurement datums,
and building typologies is necessary. Recent innovations in the
natural hazards community, such as the NSF-funded Natural Haz-
ards Engineering Research Infrastructure (NHERI) Designsafe
Cyberinfrastructure (Designsafe-CI) (Rathje 2017), facilitate na-
tionwide research collaboration and data storage. Designsafe-CI
and other cyberinfrastructure platforms on which a flood depth and
damage database could be indefinitely stored and maintained fur-
ther enable broad and specific risk-based damage modeling efforts.
To support the creation of such a database, deidentified data col-
lected in the Lumberton field study (van de Lindt et al. 2021; Sutley
et al. 2021b) are available in the NHERI DesignSafe-CI platform as
a starting point for discussion among the research community, and
to further enable the determination of adequate DSs to account
for regional variation in building typology, DS descriptions, and
acceptable measurement datums. Future work will include addi-
tional model inputs, including additional building and hazard types,
and will require consensus among the research field to determine
the standard model inputs and formats to build more robust models
from the aggregated data.
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