
T

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 18, 2023 117

Explicit Wiretap Channel Codes via Source Coding,
Universal Hashing, and Distribution Approximation,

When the Channels’ Statistics are Uncertain
Rémi A. Chou

Abstract—We consider wiretap channels with uncertainty on
the eavesdropper channel under (i) noisy blockwise type II, (ii)
compound, or (iii) arbitrarily varying models. We present
explicit wiretap codes that can handle these models in a uni-fied
manner and only rely on three primitives, namely source coding
with side information, universal hashing, and distrib-ution
approximation. Our explicit wiretap codes achieve the best
known single-letter achievable rates, previously obtained non-
constructively, for the models considered. Our results are
obtained for strong secrecy, do not require a pre-shared secret
between the legitimate users, and do not require any symmetry
properties on the channel. An extension of our results to com-
pound main channels is also derived via new capacity-achieving
polar coding schemes for compound settings.

Index Terms—Compound wiretap channel, arbitarily varying
wiretap channel, polar codes, source coding, universal hashing.

I. INTRODUCTION

HE wiretap channel [2] is a fundamental primitive to
model eavesdropping at the physical layer [3], [4].

Beyond theoretical results that characterize the secrecy capac-
ity for this model, significant progress has been made in the
development of explicit wiretap codes for Wyner’s wiretap
channel [2]. Specifically, coding schemes based on low-density
parity-check codes, e.g., [5], [6], and [7], polar codes, e.g. [8],
[9], [10], [11], [12], [13], and [14], and invertible extractors,
e.g., [15], [16], and [17], have been successfully developed for
Wyner’s model [2] or some of its special cases.

An assumption made by all the above references is that the
eavesdropper channel statistics are perfectly known by the
legitimate users. To model uncertainty, several models have
been introduced: Type II models [18], [19], [20], where the
eavesdropper can learn an arbitrary and unknown part of the
legitimate sender codeword, and models where the eavesdrop-
per channel statistics are not perfectly known but only known to
belong to a given set. These latter models are useful when the
physical location of the eavesdropper is uncertain from the point
of view of the legitimate users, and include compound

Manuscript received 8 November 2021; revised 28 March 2022 and 28 July
2022; accepted 15 October 2022. Date of publication 31 October 2022; date of
current version 7 December 2022. This work was supported by NSF under
Grant CCF-1850227 and Grant CCF-2047913. An earlier version of this
paper was presented in part at the 2018 IEEE International Symposium on
Information Theory (ISIT) [DOI: 10.1109/ISIT.2018.8437777]. The associate
editor coordinating the review of this manuscript and approving it for
publication was Prof. Rafael Felix Schaefer.

The author is with the Department of Electrical Engineering and
Computer Science, Wichita State University, Wichita, KS 67260 USA (e-
mail: remi.chou@wichita.edu).

Digital Object Identifier 10.1109/TIFS.2022.3218414

models [21], [22], where the channel statistics are known to be
fixed for all channel uses, and arbitrarily varying models [23],
[24], where the channel statistics change at each channel use.

Our contributions are summarized as follows. (i) We con-
struct explicit wiretap codes that achieve the best known
single-letter achievable rates, previously obtained non-
constructively, when uncertainty holds on the eavesdropper
channel under a noisy blockwise type II, compound, or arbi-
trarily varying model. (ii) We prove the sufficiency of three
primitives to construct such wiretap codes: source coding with
side information, universal hashing, and distribution approxi-
mation. (iii) We extend our results to the case where uncer-
tainty holds on the main channel according to a compound
model. (iv) We demonstrate that all the models considered in
this paper can be handled in a unified manner by the same
encoding and decoding schemes, up to an appropriate choice
of parameters. We stress that our results are obtained for
strong secrecy, do not require a pre-shared secret between the
legitimate users, and do not require any symmetry properties
on the channel.

Our approach consists in separately handling the reliability
constraint and the security constraints. The reliability con-
straint is handled via a combination of source coding with
side information and distribution approximation implemented
with polar codes. The security constraints are handled with a
combination of universal hashing and distribution approxima-
tion implemented via two-universal hash functions and polar
codes, respectively. The main difficulty in our approach is to
combine universal hashing and source coding with side
information such that (i) non-symmetric and non-degraded
channels can be handled, and (ii) the analysis of the security of
the overall coding scheme is possible. (i) is performed via the
idea of block-Markov coding as introduced in [25] and [26]
with the following two important modifications to enable (ii):
(1) Each encoding block of the block-Markov construction is
constructed from L sub-blocks in which all the involved
random variables have the same joint distribution across all
sub-blocks. (2) The construction of each encoding block is
such that the encoder output distribution approaches a fixed
target distribution. In particular, these two points are key to
analyzing the security of universal hashing via the leftover
hash lemma [27], whose application in our analysis raises
several additional challenges. First, while the leftover hash
lemma proves a security guarantee on the output of a hash
function, in our coding scheme, we need to prove a security
guarantee on a message M that is not obtained as the output
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of a hash function. To circumvent this difficulty, we prove
the statistical equivalence between our coding scheme and
another coding scheme where the message M is obtained as
the output of a hash function. Second, because of the block-
Markov construction, a precise study of the inter-dependencies
between the encoding blocks is needed to evaluate the overall
leakage when considering all the blocks jointly.

In Section III, we formally describe the model con-
sidered in this paper. In Section IV, we state our main
results. In Section V, we describe our proposed coding
scheme. The analysis of our coding scheme is presented in
Sections VI, VII, VIII. In Section IX, we present an extension of
our results to the case where uncertainty holds on the
legitimate user channel under a compound model [3], [22].
Finally, in Section X, we provide concluding remarks.

II. NOTATION

For a , b � R  , define Ja, bK ,  [bac, dbe] ∩ N. The
components of a vector X1:N of size N are denoted with
superscripts, i.e., X1:N     ,  (X i ) . For any set A  �
J1, NK, let X 1:N [A] be the components of X1:N whose indices
are in A .  For two distributions pXY and qXY defined over X
×  Y ,  define the variational distance between pX and qX as
V( p X , q X ) , |pX (x ) −  qX (x )|, the Kullback-Leibler
divergence between pX and qX as D( pX kqX ), and the con-
ditional Kullback-Leibler divergence between pY|X and qY|X as
E p X [D(pY |XkqY |X )] ,                 pX (x )D( pY |X =x kqY |X =x ).
Unless otherwise specified, capital letters denote random
variables, whereas lowercase letters designate realizations of
associated random variables, e.g., x is a realization of the
random variable X . Let 1{ω} be the indicator function, which is
equal to 1 if the predicate ω is true and 0 otherwise. For any x
� R ,  define [x ]+ ,  max(0, x ). Finally, GF(2N ) denotes a finite
field of order 2N .

III. MODEL AND KNOWN RESULTS

Consider the finite alphabets X  ,  {0, 1}, Y ,  and (Z s ) s �S,
where S  is a finite set. Consider also the conditional prob-
abilities ( pY Z (s )| X )s�S. A wiretap channel is defined as a
discrete memoryless channel with transition probability for
one channel use pY Z (s)|X (y , z(s)|x ) where x � X  is the
channel input from the transmitter, y � Y  is the channel output
observed by the legitimate receiver, z(s) � Z s  is the channel
output observed by the eavesdropper, s � S  is arbitrary,
unknown to the legitimate users, and can potentially change for
each channel use. In the following, we omit the index s � S
whenever |S| =  1. Moreover, when the codeword X1:N is sent
over the channel, in addition to the channel output Z 1:N (s), s
� S N ,  the eavesdropper has access to X 1:N [S] ,  (X i )i�S ,
where S  � J1, NK is chosen by the eavesdropper and such that
|S| ,  αN for some α � [0, 1].

Definition 1: For B � N, define B ,  J1, BK. For b � B and
Rb ≥  0, define R , Rb/B. A (2N R , N , B ) code
has a rate R, operates over B encoding blocks, and consists
for each encoding Block b � B of

• A message set M  ,  J1, 2N Rb K.
• A stochastic encoding function fb : M b  →  X  N , used

by the transmitter to encode a message Mb, uniformly

distributed over M b ,  into X1:N ,  fb (Mb ). The messages
M1:B ,  (Mb )b�B are assumed mutually independent.

• A deterministic decoding function used by the legitimate
receiver g : Y N      →  M  , to form M , an esti-
mate of Mb, given the channel outputs Y 1:N . We write
M ,  (M ) .

Definition 2: A rate R is achievable if there exists a
sequence of (2N R , N , B ) codes such that

P[M1:B =  M1:B ] −−−−→  0,

s� 
max 

� 
I M1:B ; Z 1:N (s), X1:N [A] −−−−→  0,

where A  ,  { (A ) : A  � J1, NK and |A | =  αN ,�b �
B}, (Z 1:N (sb), X1:N [Ab ]) corresponds to the random vari-
ables in Block b � B for A  =  ( A  ) � A  and s � S N ,
X 1:N [A] ,  (X 1:N [Ab ])b�B , and Z 1:N (s) ,  (Z 1:N (sb))b�B for
s =  (sb )b�B � S .
The supremum of such achievable rates is called secrecy
capacity and denoted by Cs .
When α =  0 and |S| =  1, our model recovers Wyner’s wiretap
channel [2]. When α =  0 and s =  (sb )b�B � S N B  is unknown to
the legitimate users but all the components of sb, b � B , are
identical, our model recovers a wiretap channel with a
compound model for the eavesdropper’s channel [21], [22]; the
general model, as introduced in [21], with compound models
for both the eavesdropper’s channel and the main channel is
treated in Section IX. When α =  0 and s =  (sb )b�B � S N B  is
unknown to the legitimate users, our model recovers a
wiretap channel with an arbitrarily varying eavesdropper’s
channel [23]. When α >  0 and |S| =  1, our model recovers a
special case of the wiretap channel of type II [18] when pZ|X

=  pZ and pY|X (y|x) =  1{y =  x }, �(x , y) � X  ×  Y ,  a special
case of the wiretap channel of type II with noisy main
channel [19] when pZ|X =  pZ , and a special case of the hybrid
Wyner’s/type II wiretap channel [20]. Specifically, the
difference between our model and the models in [18], [20], and
[19] is that, in our model, the eavesdropper observes a fraction α
of each codeword X1:N , b � B , whereas in [18], [20], and
[19], the eavesdropper would be able to observe a fraction α of
all the codewords considered jointly, i.e., (X 1:N )b�B . While
the original type II constraint of [18] is stronger than a
blockwise type II constraint, the latter constraint is relevant to
model side-channel attacks where the eavesdropper is able to
learn a bounded fraction of each codeword sent over the
channel.

We now review the best known achievable rates for special
cases of our model.

Theorem 1 [2], [28]: Suppose that |S| =  1, and α =  0.
Then, the secrecy capacity is

Cs =  
U −

max
, Z ) 

[ I (U ; Y ) −  I (U ; Z )]+ .
|U|≤|X |

Theorem 2 [18]: Suppose that |S| =  1, pZ|X =  pZ , and
for any x � X ,  y � Y ,  pY|X(y|x) =  1{y =  x}. Then,

Cs =  1 −  α.
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Theorem 3 [19]: Suppose that |S| =  1, and pZ|X =  pZ.
Then,

Cs =  
U

max
Y 

[ I (U ; Y ) −  α I (U ; X )]+ .

Theorem 4 [20]: Suppose that |S| =  1. Then,

Cs =
U −

max
, Z )  

[ I (U ; Y ) −  α I (U ; X ) −  (1 −  α) I (U ; Z )]+ .
|U|≤|X |

Theorem 5 [21], [22]: Consider the wiretap channel with
compound eavesdropper channel statistics, i.e., assume that
s =  (sb )b�B � S N B  is unknown to the legitimate users but all the
components of sb, b � B , are identical. Assume also that α =
0. Then,

C ≥ max min [ I (U ; Y ) −  I (U ; Z (s ))]+ .
�s�     ,U −X −(Y , Z (s ))  s�

|U|≤|X |

Moreover, for a degraded channel, i.e., when for all s � S ,
X −  Y −  Z (s), we have

C =  max min I (X ; Y |Z (s)).
X     s�

Theorem 6 [23], [24]: Consider the wiretap channel with
arbitrarily varying eavesdropper channel, i.e., assume that s
� S N B  is unknown to the legitimate users. Assume also that α
=  0. Define S  as the set of all the convex combinations
of elements of S .  If there exists a best channel for the
eavesdropper, i.e., �s� � S , �s  � S ,  X −  Z (s�) −  Z (s), then

Cs ≥ max min [ I (U ; Y ) −  I (U ; Z (s̄ ))]+ .
�s̄�     ,U −X −(Y , Z ( s̄ ))  s̄ �S

|U|≤|X |

Moreover, if there exists a best channel for the eavesdropper
and for all s̄ � S ,  X −  Y −  Z (s̄ ), then

Cs =  max min I (X ; Y |Z (s̄)).
X     s̄�

Note that [20], [21], [22], [23], and [24] prove the existence
of coding schemes that achieve the rates in Theorems 3-6
but do not provide explicit coding schemes. To the best of
our knowledge, no explicit coding schemes that achieve the
secrecy rates in Theorems 3-6 have been previously proposed.

More specifically, [12], [13], and [29] provided polar coding
schemes that achieve the strong secrecy capacity for Wyner’s
wiretap channel, i.e., Theorem 1, with the following caveats:
a pre-shared secret with negligible rate is required in [13]
and [29], no efficient method is known to construct the
codebooks in [12], and the existence of certain deterministic
maps is needed in [13], similar to [30, Theorem 3]. Note that a
main tool in [13] and [29] is block-Markov coding to support
non-degraded and non-symmetric channels. Using techniques
similar to [12], [13], and [29], including block-Markov coding,
and ideas for compound channels without security constraints
in [25] and [31], it is unclear to us how to extend exist-
ing polar coding schemes to the wiretap channel models of
Theorems 2-5 and Theorems 7, 8, 11 because of the uncer-
tainty on the eavesdropper’s observations.

A different approach than polar coding to obtain wiretap
codes for Wyner’s wiretap channel is provided in [15], [16],
and [32]. Specifically, these works construct wiretap codes

using (i) capacity-achieving channel codes (without security
constraint), and (ii) universal hashing [33], and have been
the first works to provide efficient codes that asymptotically
achieve optimal secrecy rates and strong secrecy for additive or
symmetric and degraded wiretap channels. Reference [34] sub-
sequently extended these constructions to any wiretap channels
as in Theorem 1.

It is also worth noting that [35] proposed wiretap channel
coding for Wyner’s model using source coding with side
information and universal hashing. It is, however, unclear to us
how to directly translate the scheme of [35] to an efficient code
construction without employing block-Markov coding for the
part of the coding scheme that involves source coding with side
information.

Our approach in this paper departs from the works
in [15], [16], [32], and [34] because, instead of relying
on channel codes, we rely on source codes to handle the
reliability constraint, which allows us to use a block-Markov
coding approach to handle non-symmetric and non-degraded
channels. Our approach also departs from existing polar coding
schemes, as our construction solely relies on polar coding
results for source coding with side information, does not
require the existence of certain maps, and does not require
a pre-shared key to ensure strong secrecy. In addition to
proposing the first explicit coding schemes that achieve the
secrecy rates in Theorems 3-6 and Theorems 7, 8, 11, our
coding approach also proves that all the models considered
in this paper can be treated under a unified framework
that only requires three primitives: (i) source coding with
side information, (ii) universal hashing, and (iii) distribution
approximation.

IV. STATEMENT OF MAIN RESULTS

Our main results are the following theorems.
Theorem 7: If all the components of sb, b � B , are

identical, then the coding scheme of Section V achieves the
secrecy rate

+
max I (U ; Y ) −  α I (U ; X ) −  (1 −  α) max I (U ; Z (s )) ,

U s�

where the maximum is taken over U such that �s � S , U − X −
(Y, Z (s )) and |U| ≤  |X|.

Theorem 8: Assume that the components of sb, b � B , are
arbitrary. If there exists a best channel for the eavesdropper,
then the coding scheme of Section V achieves the secrecy rate

+
max I (U ; Y ) −  α I (U ; X ) −  (1 −  α) max I (U ; Z (s̄ )) ,

U s̄ �S

where the maximum is taken over U such that �s̄ � S , U − X −
(Y, Z (s̄ )) and |U| ≤  |X|.

The proof of Theorem 7 is presented in two parts. First,
in Section VI, the initialization phase, i.e., Algorithms 1, 2,
is ignored and Theorem 7 is proved under the assumption
that the legitimate users have a pre-shared key whose rate
is negligible. Next, in Section VII, Theorem 7 is proved
without this assumption by considering the initialization phase
combined with Algorithms 3, 4. The proof of Theorem 8
is similar to the one of Theorem 7 and is discussed in
Section VIII.
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Finally, from Theorems 7 and 8, we conclude that the
secrecy rates of Theorems 1-6 are achieved.

Note that we will also extend Theorem 7 to the case of a
compound main channel in Theorem 11.

V. CODING SCHEME

Our coding scheme consists of two phases: An initialization
phase presented in Section V-B, and the actual secure com-
munication phase presented in Section V-C. The initialization
phase allows the legitimate users to share a secret key which is
used in the second phase of the coding scheme. Both phases rely
on three primitives presented in Section V-A.

In this section, for s � S ,  we consider an arbitrary joint
distribution qU XY Z (s ) ,  qU X pY Z (s)|X with |U| =  |X| =  2
and such that U −X −  (Y , Z (s)). Let K be a power of two,
let (U 1:K ,  X1:K ) be distributed according to q 1:K     1:K      ,

K     q , and define A1:K ,  U 1:K G , V 1:K ,  X1:K G ,

where G K ,      1 1 

�log K 
is the matrix defined in [36]. Define

also for δK ,  2−K β  
, β �]0, 1/2[, the sets

VU ,  i � J1, KK : H (Ai |A1:i−1) >  1 −  δK ,

HU  ,  i � J1, KK : H (Ai|A1:i−1) >  δK     ,

VU|Y ,  i � J1, KK : H (Ai|A1:i−1Y 1:K ) >  1 −  δK     ,

HU |Y ,  i � J1, KK : H (Ai|A1:i−1Y 1:K ) >  δK     ,

VX ,  i � J1, KK : H (V i |V 1:i−1) >  1 −  δK     ,

VX|U ,  i � J1, KK : H (V i |V 1:i−1U 1:K ) >  1 −  δK     .

A. Primitives Used in the Coding Scheme

1) Primitive 1: Source coding (SC) with side information
for the source (U ×  Y , q ) [36]. Define the encoder f SC ,  (
f SC, f SC) with

f SC(A1:K ) ,  A1:K [VU|Y ],
f SC(A1:K ) ,  A1:K [HU |Y \VU|Y ].

Then, define gSC as the successive cancellation decoder of [36]
such that if A1:K ,  gSC( f SC( A1:K ), f SC(A1:K ), Y 1:K ), then

P[A1:K =  A1:K ] ≤  K δK . (1)

Remark 1: We decompose f SC in two parts f SC and
f SC because f SC(A1:K ) can be shown to be almost uniform
in divergence, e.g., [37, Lemma 8], which will be a useful
property in our coding scheme analysis. Note, however, that
the distribution of ( f SC(A1:K )k f SC(A1:K )) is not necessarily
close to a uniform distribution.

2) Primitive 2: Universal hashing (UH) [38]. Let c, d � N
such that d ≤  c, and define S  ,  {0, 1}c\{0}. Then, define for
S � S ,  T � {0, 1}c, R � {0, 1}d , R0 � {0, 1}c−d

f UH(R , R0) ,  S−1  (RkR0),
gUH(T , d ) ,  (S  T )d ,

where  is the multiplication in GF(2c) and (·)d selects the d
most significant bits, such that

gUH( f UH(R , R0), d) =  R.

By [16], F      ,  {gUH}S�S     is a family of two-universal
hash functions.

3) Primitive 3: Distribution approximation (DA) for q 1:K ,
the distribution of A1:K ,  U 1:K G , where U1:K follows
q 1:K     , K     q . Let T 1:|VU | be a sequence of uniformly
distributed bits over {0, 1}|VU|. Then, define A1:K according to
the distribution pA1:K , j =1 pA j |A1: j−1 with

1{a j =  T j } if j � V
A j |A1: j−1

qA j |A1: j−1 (a j |a1: j−1) if j � VU

(2)

We write A1:K =  f DA(T 1:|VU |). Moreover, we have

D(qA1:K kpA1:K ) =  Eq
A1: j −1 D(qA j |A1: j−1 kpA j |A1: j−1 ) j =1

=  
 
(1 −  H (A j | A1: j−1)) ≤  K δK ,  (3)

j�VU

where (a ) holds by the chain rule, (b) holds by (2), (c) holds
by the definition of VU .

4) Variant of Primitive 3: Channel prefixing (CP) for the
distribution qX1:K U 1:K     , i =1 qXU . Given U 1:K distributed
according to qU1:K , define V 1:K according to the distribution
pU 1:K V 1:K ,  qU 1:K j =1 p j |V 1: j−1U 1:K with

pV j |V 1: j−1U 1:K (v j |v1: j−1u1:K )

1/2                                              if j � VX|U

qV j |V 1: j−1U 1:K (v j |v1: j−1u :K ) if j � VX|U

We write V 1:K =  f CP(U 1:K ). Moreover, we have

D(qU 1:K V 1:K kp 1:K V 1:K )
=  Eq

U 1:K V 1: j −1 D(qV j |V 1: j−1U 1:K kp j |V 1: j−1U 1:K ) j =1

=
 

(1 −  H (V j |V 1: j−1U 1:K )) ≤  K δK , (5)
j�VX|U

where (a ) holds by the chain rule, (b) holds by (4), (c) holds
by the definition of VX|U .

B. Coding Scheme: Phase I - Initialization

The legitimate users create a secret key with length lkey,
which will be specified later in Section VII-B, with
Algorithms 1 and 2, which operate over B0 blocks of length N
,  K L, where L , K � N, and K is a power of two. We define
B0 ,  J1, B0K and L  ,  J1, LK. In each Block b � B0, the
encoder forms the key Keyb with length l ,  lkey/B0,
as described in Algorithm 1. The encoder uses the following
randomization sequences: Rinit0     ,  (Rinit0 )l�L, where Rinit0,
l � L ,  is a sequence of uniformly distributed bits over
{0, 1}|HU|Y |−|VU|Y |, Rinit is a sequence of uniformly distributed
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Algorithm 1 Initialization at the Transmitter

Require: Randomization sequences (R init)b�B and
(Rinit )b�B

1: for Block b � B0 do
2: for Sub-block l � L  do
3: Define A1:K ,  f DA(Rloc)
4: Define U1:K ,  A1:K GK

5: Define V 1:K ,  f CP(U 1:K )
6: Define X1:K ,  V 1:K GK
7: end for
8: Transmit X1:N ,  k b,l     over the channel

9: Let Y 1:N ,  k Y 1:K , Z 1:N (sb) ,  k Z 1:K (sb,l ) denote

the channel outputs
l�L

10: Transmit with a channel code [39]
Db ,  k f SC(A1:K ) � Rinit0      

k f SC(A1:K ) ,

where
l
� denotes modulo 2 addition

11: Define U 1:N ,  k Ub,l

12: Define Keyb ,  gU
init (U 1:N , lkey)

13: end for

Algorithm 2 Initialization Phase at the Receiver

Require: (R init)b�B     and (Rinit0 )b�B
1: for Block b � B0 do
2: Form an estimate Db of Db
3: for Sub-block l � L  do
4:  Given (D ,  Rinit ) and Line 10 of Algorithm 1, form an

estimate of ( f SC( A1:K ), f SC(A1:K )) and denote this
estimate by (A1:K [VU|Y ], A1:K [HU |Y \VU|Y ])

5: Form an estimate of Ab,l     as

A1:K ,  gSC(A1:K [VU|Y ], A1:K [HU |Y \VU|Y ], Y 1:K )

7: e 
Form Ub,l     ,  Ab,l G K an estimate of Ub,l

8: Form U1:N ,  
l 
k Ub,l     an estimate of U 1:N

9: Form Keyb =  gU
init (U 1:N , lkey) an estimate of Keyb

10: end for

bits over Rinit  ,  {0, 1}N \{0}. The encoder also uses the local
randomness (Rb,l )l�L , where Rb,l , l � L ,  is a sequence of
uniformly distributed bits over {0, 1} U .

Remark 2: In Line 10 of Algorithm 1, note that the channel
code [39] requires a uniformly distributed message. While
kl�L A1:K [HU |Y ] is not a sequence of uniformly distributed
bits, D is a sequence of uniformly distributed bits over
J1, 2L|HU |Y |K.

High-level description of the initialization phase: The
initialization phase is depicted in Figure 1 and consists in B0

communication blocks. All the communication blocks are
independent, and each Block b � B0 will lead to the
exchange of a key Keyb between the legitimate users, which
will be shown to be secret from the eavesdropper. Additionally,

Fig. 1.     Initialization phase for Block b � B0 . The encoder creates A1:N ,
which is made of L sub-blocks ( A1:K )l�L .  Then, from A1:N , the encoder

creates Keyb (by universal hashing), and the codeword X1:N (via channel
prefixing), which is sent over the channel and whose noisy observation by the
legitimate receiver is Y 1:N . The decoder creates an estimate of A1:N from
Y 1:N and an estimate of Db , which is sent to him via a channel code,
as described in Line 10 of Algorithm 1. Finally, the decoder creates Keyb,

an estimate of Keyb , from his estimate of A1:N .

B0 is chosen such that the length of the keys (Keyb)b�B     is
sufficiently large to be used in the main coding scheme, which is
described in the next section and allows the exchange of a
secret message between the legitimate users. It will also be
shown that the initialization phase considered jointly with the
main coding scheme has a negligible effect on the overall
communication rate and the overall information leakage to
the eavesdropper.

Consider Block b � B0 in Algorithm 1. As described in
Lines 3-4, the encoder creates (U 1:K ) l�L  such that the distri-

bution of (U 1:K ) l�L  is close to the product distribution qU 1:N .
Then, as described in Lines 5-6, channel prefixing is performed
to create from (U 1:K ) l�L  the codewords (X 1:K ) l�L  that are
sent over the channel, and whose noisy observations at the
legitimate receiver are (Y 1:K )l�L . Additionally, the key Keyb

is formed from (U 1:K ) l�L  through universal hashing, as
described in Line 12. As shown later, secrecy of the key is
ensured via an appropriate choice of the hash function output
length. As described in Line 10, the encoder sends Db to the
legitimate receiver using a regular channel code (without
security guarantees) - see also Remark 2.

Finally, as described in Lines 2-7 of Algorithm 2, upon
estimating Db , the legitimate receiver forms an estimate of
(Ub,l ) l�L  from (Yb,l )l�L . Then, as described in Line 9 of
Algorithm 2, from the estimate of (U )l�L , the legitimate
receiver creates an estimate of Keyb.

C. Coding Scheme: Phase II - Secure Communication

The encoding scheme operates over B blocks of length
N ,  K L, where L , K � N and K is a power of two.
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We define B ,  J1, BK and L  ,  J1, LK. Encoding at the
transmitter and decoding at the receiver are described in
Algorithms 3 and 4, respectively. In each block b � B , the
transmitter encodes, as described in Algorithm 3, a message
Mb uniformly distributed over J1, 2|Mb|K and represented by a
binary sequence with length

|M1| if b =  1
b |M1|−L|VU|Y | otherwise

Algorithms 3 and 4 depend on the parameter

r ,  |M1|, (6)

which will be specified later.
In each block b � B , as described in Algorithm 3, the

encoder uses the local randomness R0 , a binary randomization
sequence uniformly distributed over J1, 2|R0 |K. The sequences
R1:B ,  Rb are mutually independent. The length of the
sequences R           is defined for b � B as |R | ,  L|VU| − r .  In
each block b � B , the encoder also uses, as described in
Algorithm 3, R , a binary randomization sequence with length
L|VU|, uniformly distributed over R  ,  {0, 1}L|VU |\{0}. The
sequences R1:B ,  ( Rb )b�B are mutually independent. More-
over, it is assumed that M1:B , R1:B , and R are mutually
independent.

Remark 3: In Algorithm 3, observe that T 1:| U|L, b � B ,
is uniformly distributed over {0, 1}|VU |L because (MbkM0 kR0 )
is uniformly distributed over {0, 1}| U|L and independent
of Rb. Hence, the L random variables (Tb,l 

U |)l�L are
uniformly distributed over {0, 1} U      and independent. When
the elements of sb are all equal to s, then, by construction, the
conditional probability p 1:K (s)|T

1:|VU | is the same for all

l � L ,  and the L pairs ((T 1:|VU |, Z1:K (s )))l�L are inde-
pendently and identically distributed according to the joint
distribution p 1:|VU | Zb,1 (s )

.

Remark 4: In Algorithm 3, consider X [Ab ,l ], b � B ,
l � L ,  where for all l � L ,  Ab ,l  � J1, KK and |Ab,l| =  αN
such that X1:N [Ab ] ,  kl�L

1:K [Ab ,l ] corresponds to the αN
symbols of the codewords emitted at the transmitter
that the eavesdropper has chosen to have access to. Similar to
Remark 3, the L triplets ((T 1:| U |, X1:K [Ab ,l ], Z 1:K (sb,l )))l�L
are independent, however, they are not necessarily identically
distributed because the components of sb,l are arbitrary, and
because the sets (Ab , l ) l�L are arbitrarily chosen by the
eavesdropper.

High-level description of the coding scheme: We depict in
Figure 2 how codewords are created at the transmitter. Note that
there exists an interdependence between two consecutive
encoding blocks since M0 , b � J2, BK, used in Block b, is
obtained from Block b −  1, as described in Line 3 of
Algorithm 3.

Consider Block b � B of Algorithm 3. The encoder

starts by creating T 1:|VU 

|
L via universal hashing applied on

the sequence created by M0 , the secret message Mb , and the

local randomness R , as described in Line 4. Next, T 1:|VU|L

is broken down into L pieces with same length in Line 6,
from which the encoder creates L sub-blocks

Algorithm 3 Encoding
Require: Randomization sequences (Rb )b�B , (R0 )b�B , and

messages (Mb )b�B
1: Define M ,  �
2: for Block b � B do
3: Define M0 ,  k f SC     A1:K 

,l      
if b =  1

4: Define T 1:|VU 

|
L ,  f UH(Mb , M0 kR0 )

5: for Sub-block l � L  do

6: Consider the notation Tb,l 
U ,  Tb

U U

7: Define A1:K ,  f DA     Tb,l 
U

8: Define U 1:K ,  A1:K GK

9: Define Vb,l
K ,  f CP Ub,l

10:

e 
Define Xb,l ,  Vb,l GK

12: Transmit X 1 : N ,  k (Xb,l ) over the channel

13: Let Y 1:N ,  k Y 1:K , Z 1:N (sb) ,  k Z1:K (sb,l ) denote

the channel outputs
l�L

14: end for
15: Using a pre-shared secret, apply a one-time pad to

( f SC( A1:K ))l�L,b�B , and ( f SC( A1:K ))l�L , then transmit
the result with a channel code [39].

Algorithm 4 Decoding

Require: (Rb )b�B , ( f SC( A1:K ))l�L,b�B , ( f SC( A1:K ))l�L
1: Define A1:K [VU|Y ] ,  f SC(A1:K ) for any l � L
2: for Block b � B from b =  B to b =  1 do
3: for l � L  do
4: Form an estimate of Ab,l     as

A1:K ,  gSC(A1:K [VU|Y ], f SC(A1:K ), Y 1:K )

5: end for
6: From Line 7 in Algorithm 3, determine an estimate of

T 1:| U|L as

1:|VU|L ,  k A1:K [VU ]
l�L

7: From Line 4 in Algorithm 3, form an estimate of
(MbkM0 kR0 ) as

(MbkMbkRb) ,  Rb  T 1:|VU 

|
L

8: From Line 3 in Algorithm 3 and Mb, form

Ab−1,l[VU |Y ] an estimate of f SC     Ab−1,l
9: end for

( A1:K )l�L , as described in Line 7. Then, from ( A1:K )l�L , the
codewords (Xb,l )l�L , are obtained via channel prefixing, as
described in Lines 8-10. The codewords (X ) l�L  are
sent over the channel and their noisy observations at the
legitimate receiver are denoted by (Y 1:K )l�L . Note that the L
sub-blocks ( A1:K )l�L are created such that their distri-bution
is close to the product distribution qA1:N . A crucial
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Fig. 2. In Block b � B ,  A1:N is made of L sub-blocks ( A1:K )l�L ,  which are
constructed from Rb (randomness for universal hashing), Mb (secret message),

M0 (a part of A1:N from Block b −  1), and R0 (local randomness). The
construction of M0 in Line 3 of Algorithm 3 creates a dependency between
Block b � J2, BK and Block b − 1. In Block b � B ,  the codeword X1:N , to be

sent over the channel, is then obtain via channel prefixing from A1:N .

Fig. 3. Summary of the steps in Algorithm 3 to obtain the code-
word X1:N ,  kl�L( X 1:K ) from Rb (randomness for universal hashing),

Mb (secret message), M0 (a part of Block b − 1), and R0 (local randomness).
Line 7 (distribution approximation) describes the creation of the L sub-blocks

( A1:K ) l�L  from T1:| U |L , and ensures that their distribution is close to
the product distribution q 1:N , which will be a crucial fact to analyze the
information leakage of the coding scheme.

point to ensure this property comes from the uniformity of
M0 , i.e., the uniformity of A1:K     [VU|Y ], l � L ,  which follows
from Line 7 and the property VU|Y � VU . Finally, as
described in Line 15, using a pre-shared secret (obtained from
the initialization phase in Section V-B), the encoder
applies a one-time pad to (A1:K [HU |Y \VU|Y ])l�L,b�B , and
(A1:K [VU|Y ])l�L , and sends the result to the legitimate receiver
with a channel code [39]. This step is done for technical
reasons: (A1:K [HU |Y \VU|Y ])l�L,b�B are not uniformly distrib-
uted and could not be included in the definition of M , b � B , as
our analysis relies on the uniformity of M0 , b � B . How-ever,
as shown later, the length of (A1:K [HU |Y \VU|Y ])l�L,b�B is
negligible compared to N B such that the overall commu-
nication rate is not affected. It will also be shown that this
has a negligible effect on the overall information leakage to
the eavesdropper.
In a given block b � B , we depict in Figure 3 a summary of

the different phases in Algorithm 3 through which the

encoder output is obtained from the local randomness R0 ,
the secret message Mb, the randomness Rb used for universal
hashing, and M . Note that Rb needs to be shared between the
legitimate users but does not need to be secret from the
eavesdropper, and can be recycled over several blocks so that
the exchange of necessary randomness for universal hashing
between the legitimate users does not affect the overall
communication rate.

At the decoder, the legitimate receiver first estimates
( A1:K )l�L from ( A1:K [HU |Y ])l�L and (Y 1:K )l�L , as described in
Lines 2-4 of Algorithm 4 for Block B . Then, from this esti-mate
of (A1:K )l�L , the legitimate receiver forms an estimate of M

and M 0, as described in Lines 6-7 of Algorithm 4 for
Block B . Next, to estimate the message MB−1 and M0 ,
the legitimate receiver uses the estimate of M 0     along with
(A1:K     [HU |Y \VU|Y ])l�L , and (Y 1:K     )l�L , as described in
Lines 2-7 of Algorithm 4 for Block B −  1. Hence, the
legitimate receiver can estimate all the messages (Mb )b�B
starting from the last block and iterating through the previous
blocks via the loop in Line 2 of Algorithm 4.

Note that in the analysis of the coding scheme secrecy rate,
one needs to account for (i ) the one-time pad in Line 15 of
Algorithm 3, (i i ) the transmission of the randomness (Rb )1:B

that is used in Algorithms 3 and 4, and (i i i ) the initialization
phase (Algorithms 1 and 2). We will show that (i ), (i i ), and
(i i i ) are done with a negligible impact on the secrecy rate in
Sections VI-C, VI-G, and VII-C, respectively.

VI. PROOF OF THEOREM 7 WITH A PRE-SHARED KEY

In this section, we prove Theorem 7 when the legitimate
users have access to a pre-shared secret key whose rate is
negligible. Hence, we ignore in this section the initialization
phase, i.e., Algorithms 1, 2. We also assume in this section
that all the components of sb, b � B , are identical and equal to
s. To simplify notation, we write s instead of sb, b � B .

A. Characterization of the Distribution Induced by the
Encoder

Let pU1:N X1:N Y 1:N Z 1:N (s) denote the distribution induced by

the encoding scheme described in Algorithm 3. Lemma 1
gives an approximation of p 1:N X1:N Y 1:N Z 1:N (s ) in terms of the

distribution qU XY Z (s ) defined in Section V-A. This result will
be useful in our subsequent analysis.

Lemma 1: For b � B , we have

D(qU 1:N X1:N Y 1:N Z 1:N (s)kp 1:N X1:N Y 1:N Z 1:N (s )) ≤  2L K δK ,

where qU1:N X1:N Y 1:N Z 1:N (s) ,  N     qU XY Z (s ).
Proof: See Appendix A.

B. Reliability

We now show that the receiver is able to recover the
original message with a vanishing error probability. Define
M1:B ,  (Mb )b�B . Define for b � B , A1:N ,  kl�L A1:K , A1:N

,  kl�L A1:K , A1:N ,  A1:L K , Eb−1 ,  {A1:N =  A1:N }, and EA

,  {(Y 1:N , A1:N ) =  (Y 1:N , A1:N )}. For b � B ,
consider a coupling [40, Lemma 3.6] between p 1:N A1:N and
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qY 1:N A1:N     such that P[EAb ] =  V(p 1:N A1:N , qY 1:N A1:N ). For

b � B , consider ( A1:N , Y 1:N , A1:N , Y 1:N ) distributed accord-
ing to this coupling, then

1:B 1:B

≤ P Mb =  Mb b�B

≤ P 1:|VU|L =  T 1:|VU|L 
b�B

≤ P A1:N =  A1:N b�B

≤ P A1:N =  A1:N |Ec
b 
∩ Ec     +  P[EAb � Eb]

b�B

≤  
 

P A1:K =  A1:K |Ec
b 
∩ Ec

 
+  P[EAb ] +  P[Eb] ≤

b�B  l

K LδK +  
√

2 ln 22L K δK +  P
A1:N =  A1:N

b�B

≤ (K LδK +  
√

2 ln 2 2L K δK )(B −  b +  1)
b�B

= ( K LδK + 2 ln 2 2L K δK )B(B +  1)/2, (7)

where (a ) holds by Line 7 in Algorithm 4, (b) holds by
Line 6 in Algorithm 4, (c) holds by the union bound, (d )
holds because P A1:K =  A1:K |Ec

b 
∩ Ec ≤ K δK

by (1) and because P[EAb ] =  V(p 1:N A1:N , qY 1:N A1:N ) ≤
2 ln 2 2L K δK     by Lemma 1 and Pinsker’s inequality,

(e) holds by induction.

C. Pre-Shared Key Rate
The coding scheme described in Algorithms 3 and 4 invo-

lves a one-time pad to securely transmit ( f SC( A1:K ))l�L,b�B ,

and ( f SC(A B ,l ))l�L , which requires a pre-shared key with
length lOTP ,  L B|HU|Y \VU|Y | +  L|VU|Y | and rate

lOTP |HU|Y | −  |VU|Y | |VU|Y |
N B K K B

|HU|Y | −  |VU|Y | 1
K B

=  δ(K ) +  1/B ,

where δ(K ) is such that lim K →∞ δ(K ) =  0 since lim K →∞
|HU|Y |/K =      H (U|Y ) [36], and lim K →∞ |VU|Y|/K =
H (U|Y ) [30], [41].

D. Blockwise Security Analysis

We prove in this section that security holds in each block
b � B individually. We use a series of lemmas to obtain this
result and determine acceptable values for the parameter r
defined in (6). For ( X , Z ) distributed according to pX Z ,
defined over the finite alphabet X  × Z ,  recall that the -smooth
min-entropy of X given Z is defined as [27]

H∞( pX Z | pZ ) ,  
rX Z 

max 
X Z ) z� 

min
pZ ) 

min log 
r X Z (x , z)

,

where Supp( pZ ) ,  {z � Z  : pZ (z) >  0} and B( pX Z ) ,
{(rX Z : X  ×  Z  →  [0, 1]) : V( pX Z , r X Z ) ≤  }. We will also
need the following version of the leftover hash lemma.

Lemma 2 [27]: Let T and Z be distributed according to pT

Z over T ×  Z .  Consider F : R  ×  {0, 1}k →  {0, 1}r , where the
first input, denoted by R, is uniformly distributed over R  to
indicate that F is chosen uniformly at random in a family
of two-universal hash functions. Then, for any  � [0, 1[,

V( pF ( R ,T ), R , Z , pUK  pU R  pZ ) ≤  2 +  
√

2r −H∞ ( pT Z |pZ ), (8)

where pU      and pU are the uniform distribution over {0, 1}r

and R ,  respectively.
We now would like to use Lemma 2 to make (MbkM0 )
almost independent from the eavesdropper channel obser-
vations. However, in the encoding scheme described in
Algorithm 3, (MbkM0 ) is not defined as the output of a
two-universal hash function as required in Lemma 2. To over-
come this challenge, we show in the following lemma that
the distribution p induced by the encoder in Algorithm 3
also describes a process for which (MbkM0 ) is defined as
(MbkM0 ) ,  gUH(T 1:| U |L , r ) where r is defined in (6). For

convenience, we write in the following F (Rb , T 1:|VU |L) ,
gUH(T 1:| U |L , r ).

Lemma 3: Fix b � B . To simplify notation, we write T
instead of T1:| U |L, Zb(s) instead of Z 1:N (s), Xb instead of
X1:N , and Z (s ) instead of Z 1:N (s). We also define M ,
(MbkMb ) such that Tb ,  R−1  (MbkRb). Next, define

q ¯ bTb Xb Zb (s )Rb 
,  p b Zb(s)|Tbq bq bq ¯ b|

T
b Rb

, (9)

with q the uniform distribution over {0, 1}|VU |L, q the
uniform distribution over R ,  and �m̄ b , �tb , �rb, q ¯ |T R

(m̄ b|tb, rb) ,  1{m̄ b =  F (rb , tb)}. Then, we have

p ¯ bTb Xb Zb (s )Rb 
=  q ¯ bTb Xb Zb (s)Rb

.

Proof: See Appendix B.
Let A � J1, NK such that |A | =  αN and con-

sider X 1:N [Ab], the αN symbols that the eavesdropper has
chosen to have access to in Block b � B . We study, by
combining Lemmas 2, 3, the independence between (Rb ,
Z 1:N (s), X1:N [Ab ]), i.e., all the knowledge at the eaves-
dropper in Block b � B , and (MbkM ) as follows.

Lemma 4: Fix b � B . We adopt the same notation as in
Lemma 3 and also write X b [Ab ] instead of X 1:N [Ab] for
convenience. We have for any γ �]0, 1[

V(pMb Rb 

Z
b (s ) X b[Ab ] , pMb 

pRb Zb (s ) Xb[Ab ])

≤  21−L γ  
+ 2r−H (Tb|Zb (s ) X b [Ab ])+ N δ (1) ( K , L ) , (10)

where δ (1)(K , L ) ,  ( K −1 +  1)
√

2 L γ −1 .
Proof: See Appendix C.

Next, using Lemma 1, we lower bound the conditional
entropy in (10) in the following lemma.

Lemma 5: Fix b � B . We adopt the same notation as in
Lemmas 3, 4. We have

H Tb|Zb(s)Xb[Ab]
≥  N [(1 −  α)H (U |Z (s)) +  αH (U|X) −  δ(2) (K , L )],
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with δ (2) (K , L ) ,  2
√

2 ln 2
√

2 N δ (log(|X |2 max |Z |) −
N −1 log( 2 ln 2 2NδK )) + N −1 Hb ( N δK ) + N δK + o(1), and
Hb(·) the binary entropy.

Proof: See Appendix D.
By combing Lemma 4 and Lemma 5 we obtain the follow-

ing result.
Lemma 6: Fix b � B . We adopt the same notation as in

Lemma 5. We have for any γ �]0, 1[

V(pMb Rb 

Z
b (s ) Xb [Ab ] , pMb 

pRb Zb (s ) X b[Ab ])

≤  21−L γ  
+ 2r

−N [(1−α ) H (U | Z (s ))+αH (U | X )−δ (3)( K ,
L
)],

where δ (3) (K , L ) ,  δ (1)(K , L ) +  δ (2) (K , L), with δ (1)(K , L )
defined in Lemma 4 and δ (2) (L , K ) defined in Lemma 5.

Finally, we obtain security in a given block as follows.
Lemma 7: Fix b � B and ξ >  0. We choose

r ,  N (1−α) min H (U |Z (s))+αH (U |X )−δ (3)(K , L )− ξ
s�

with δ (3)(K , L ) defined in Lemma 6. Then, for L large enough
I MbM0 ;  Zb(s)Xb [Ab]Rb

 
≤  δ (4)(K , L , ξ ),

where δ (4)(K , L , ξ ) ,  (21−L γ  +  
√

2 − N ξ  ) log 
1−Lγ 

2N      

−N ξ  .
Proof: We adopt the same notation as in the previous

lemmas. By definition of r and by Lemma 6, we have

V(pMb Rb Zb (s ) X b[Ab ] , pMb 
pRb Zb (s ) Xb[Ab ]) ≤  21−L γ  

+ 2−N ξ
 .

(11)

We thus have

I (Mb M
b ; Zb(s)Xb[Ab]Rb )

=  I (Mb ; Zb(s)Xb[Ab]Rb)

≤  f (V(pMb Rb Zb (s ) X
b[Ab ] , pMb 

pRb Zb (s ) X b[Ab ]))

≤  f (21−L γ  
+ 2−N ξ

 ), (12)

where (a ) holds by [42, Lemma 2.7] with f : x →
x log(2N /x ), (b) holds for L large enough since f is increas-
ing for small enough values.

E. Analysis of Security Over All Blocks Jointly

We obtain security over all blocks jointly from Lemma 7
as follows.

Lemma 8: For convenience, we define for i , j �     B ,
Z1:i (s) ,  (Z 1:N (s))b�J1,iK , X1:i [A] ,  (X 1:N [Ab])b�J1,iK ,
Ri: j ,  (Rb)b�Ji, j K , and Mi: j ,  (Mb )b�Ji, j K . We have

max max I (M1:B ; Z1:B (s)X1:B [A]R1:B ) ≤  2Bδ(4)(L , K , ξ ),

where δ (4)(L , K , ξ ) is defined in Lemma 7.
Proof:      For convenience, define for i � B , Li      ,

(Z i (s ), X i [Ai ], Ri ) and L1:i ,  (Z1:i (s), X 1:i [A], R1:i ). Then,

B −1

I (M1:B ; L1:B ) = I (M1:B ; Li+1|L1:i )
i =0

B −1

= I (M1:i +1 ; Li+1|L1:i )
i =0

B −1

≤ I (M1:i+1 L1:i ; L i +1 ) i =0

B −1

= I (Mi +1 ; L i +1 )
i =0

+ I (M1:i L1:i ; Li+1|Mi+1 )

≤  Bδ (4)(K , L , ξ )
B −1

+ I (M1:i Mi +1 L1:i ; L i +1 Mi +1 ) i =0

B −1

=  Bδ (4)(K , L , ξ ) + I (M 0
+1 ; L i +1 Mi +1 )

i =0
B −1

=  Bδ (4)(K , L , ξ ) + I (M 0
+1 ; Li +1|Mi+1 )

i =0
B −1

≤  Bδ (4)(K , L , ξ ) + I (Mi +1 M0
+1 ; L i +1 )

i =0

≤  2Bδ(4)(K , L , ξ ), (13)

where (a ) holds by the chain rule and since we have
I (Mi +2: B ; Li+1|L1:i M1:i +1 ) ≤  I (Mi +2: B ; L1:i+1 M1:i+1 ) =  0,
(b) holds by Lemma 7, (c) holds by the chain rule and because
(M1:i , L1:i ) −  M0 −  ( L i +1 , Mi +1 ) forms a Markov chain,
(d ) holds by independence between M and Mi +1 , (e) holds
by Lemma 7. The lemma holds since (13) holds for any s � S
and any A  � A.

F. Secrecy Rate

The rate of the transmitted messages is

b�B |Mb| (a ) r +  (B −  1)(r−L|VU |Y |)
B N B N

r |VU|Y|
N           K

=  I (U ; Y ) −  α I (U ; X ) −  (1 −  α)max I (U ; Z (s ))

−δ (3 ) ( K , L ) −  ξ +  o(1),
s�

where (a ) holds by (6), (b) holds by the choice of r in
Lemma 7 and because lim |VU|Y |/K =  H (U|Y ) by [41].

G. Randomness Amortization

The randomness (Rb)1:B      in the coding scheme of
Section V-C needs to be shared between the legitimate users.
This can be done with negligible impact on the overall
communication rate similar to [16] using an hybrid argument
by repeating the coding scheme of Section V-C with the same
randomness (Rb )1:B .

VII. PROOF OF THEOREM 7 WITHOUT PRE-SHARED KEY

The coding scheme of Section V-C requires a pre-shared
secret key between the legitimate users. We now consider the
initialization phase, described in Algorithms 1, 2, to generate
such a key with negligible impact on the overall communi-
cation rate. We study the reliability and the secrecy of the
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generated key in Sections VII-A and VII-B, respectively, the
impact of the initialization phase on the overall communication
rate in Section VII-C, and the joint secrecy of the initialization
phase and the coding scheme of Section V-C in Section VII-D.
We adopt the same notation as in Section VI.

A. Key Reliability

Similar to Lemma 1, we have the following result.
Lemma 9: For b � B0 , the distribution p induced by the

encoder of Algorithm 1 is approximated as follows.

D(qU 1:N X1:N Y 1:N Z 1:N (s )kp 1:N X1:N Y 1:N Z 1:N (s )) ≤  2L K δK .

Then, we have

 P (Keyb)b�B0 =  (Keyb)b�B0

≤  P[(U 1:N )b�B0 =  (U 1:N )b�B0 ]

≤  B0 L( 2 ln 2 2K δK +  2K δK ),

where the last inequality holds similar to (7).

B. Key Secrecy
We first show secrecy in a given Block b � B  . Let A  �

J1, NK such that |Ab| =  αN and consider X 1:N [Ab], the αN
symbols that the eavesdropper has chosen to have access to in
Block b � B0. Define pUKey the uniform distribution over

{0, 1}lk
e
y . We have

V( pKey
b R

init Zb(s )Xb[Ab ]Db Rinit0 ,  pUKey pRinit Zb (s)Xb[Ab ]
D

b R init0 )

≤  2 + 2
lkey−H        p

Ub Zb (s)Xb [Ab ]Db
R

init0 |p
Zb (s)Xb[Ab ]Db Rinit0

≤  2 · 2−L γ  
+ 2

l0
ey−HUb|Zb(s) Xb [Ab ]Db R init0 +Nδ (1) (K ,L ),

(14)

where (a ) holds by Lemma 2, (b) holds by Lemma 14 with γ
�]0, 1[ as in the proof of Lemma 4 with δ (1) (K , L ) defined in
Lemma 4.

Lemma 10: For b � B0 , wehave

H Ub|Zb(s) Xb[Ab]Db Rinit

≥  N [ I (U ; Y )−α I (U ; X )− (1−α ) I (U ;  Z (s ))−δ (5) ( K , L )],

where δ (5)(K , L ) , 2  2 ln 2
√

2 N δ (log(|X |2 max |Z |)−
N −1 log( 2 ln 2 2NδK )) +  o(1).

Proof: We have

H Ub|Zb(s) Xb[Ab]Db Rinit     

=  H Ub|Zb(s) X b [Ab] −  I Db Rinit ; Ub|Zb(s) X b [Ab]

≥  H Ub|Zb(s) X b [Ab ] −L (|HU |Y | +  |HU|Y \VU|Y |)
≥  H Ub|Zb(s) Xb [Ab]−N H (U |Y ) −  o(K L )

≥  N (1 −  α)H (U |Z (s)) +  NαH (U |X )−N H (U|Y )
−  Nδ (5) (K , L ),

where (a ) holds because lim K →∞ |HU|Y |/K =  H (U|Y ) [36],
and lim K →∞ |VU|Y|/K =  H (U|Y ) [30], [41], (b) holds
similar to the proof of Lemma 5.

Next, we choose

lkey ,  N [ I (U ; Y ) −  α I (U ; X ) −  (1 −  α)maxI (U ; Z (s ))

−  δ (1)(K , L ) −  δ (5)(K , L ) −  ξ ],

with ξ >  0. By (14) and Lemma 10, we obtain for b � B0,

V( pKeyb R
init Zb (s )Xb[Ab ]Db Rinit0 ,  pUKey pR init Zb (

s
)Xb[Ab ]

D
b Rinit0 )

≤  2 · 2−L γ  
+ 2−N ξ

 . (15)

Lemma 11: We have for L large enough

I Keyb ; Zb(s)Xb [Ab]Db RinitRinit0       
≤  δ (4)(K , L , ξ ),

log |Kb| −  H (Keyb) ≤  δ (4)(K , L , ξ ),

with K b  ,  {0, 1}lk
e
y and δ (4) (K , L , ξ ) defined in Lemma 7.

Proof: The first inequality holds as the proof of Lemma 7
by using (15) in place of (11). The second inequality holds
by [42, Lemma 2.7] and (15).

By mutual independence of all the B0 blocks of the initial-
ization phase, we obtain from Lemma 11 the following result.

Lemma 12: Define Key ,  (Key ) and K  ,  K B0 .
Let Z init(s) denote all the knowledge of the eavesdropper
related to the initialization phase, i.e., Z init(s) ,  (Z (s ),
X b [Ab ], Db , Rinit, Rinit )b�B0 . Then, for K large enough

max max I Key; Z init(s) ≤  B δ (4) (K , L , ξ ),
s� �

log |K| −  H (Key) ≤  B0δ (4)(K , L , ξ ).

C. Impact of the Initialization Phase on the Overall
Communication Rate

The initialization phase requires ρN B0 channel uses, for
some fixed ρ � N, to generate the secret key and transmit
(Db , Rinit, Rinit )b�B0 . We choose B0 such that

lOTP
0 0

key

where lOTP =  o(N B ) represents the key length necessary to
perform the one-time pad that appears in Algorithms 1, 2.
Hence, the impact of the initialization phase on the overall
communication is

ρN B <  ρN 1 +  lOTP =  ρ o(N B ) =  o(N B ). (16)
key                      key

We deduce from (16) that the communication rate of the
coding scheme of Section V-C and the initialization phase
(considered jointly) is the same as the communication rate of
the coding scheme of Section V-C alone.

D. Security of Algorithms 3, 4 and the Initialization Phase
When Considered Jointly

Let MOTP be the sequence that needs to be secretly transmit-
ted with a one-time pad in Algorithm 3. Let C ,  MOTP �Key be
the encrypted version of MOTP using Key, obtained in the
initialization phase. Let Z B (s ) ,  (Z1:B (s), X 1: B [A], R1:B )
denote all the observations of the eavesdropper related to the
coding scheme of Section V-C, excluding C . Let Z init(s),
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defined as in Lemma 12, denote all the observations of the
eavesdropper related to the initialization phase. The following
lemma shows that strong secrecy holds for the coding scheme
of Section V-C and the initialization phase considered jointly.

Lemma 13: We have

s�
max 

A
I (M1:B ; C ZB(s)Z init(s)) ≤  2( B + B0)δ (4) (K , L , ξ ),

where δ (4)(K , L , ξ ) is defined in Lemma 7.
Proof: We have

I (M1:B ; C ZB(s)Z init(s))

=  I (M1:B ; Z B (s )) +  I (M1:B ; C|ZB(s)Z init(s))
≤  I (M1:B ; Z B (s )) +  I (M1:B ZB(s)Z init(s); C )
=  I (M1:B ; Z B (s )) +  I (C ; M1:B Z B (s ))

+  I (C ; Z init(s)|M1:B Z B (s )), (17)

where (a ) holds by the chain rule and because I (M1:B ;
Z init(s)|ZB(s)) ≤  I (M1:B Z B (s ); Z init(s)) =  0. Next, we have

I (C ; M1:B B (s ))
≤  log |K| −  H (C|M1:B B(s))
≤  log |K| −  H (Key � MOTP|MOTPM1:B B (s ))
=  log |K| −  H (Key|MOTPM1:B Z B (s ))
=  log |K| −  H (Key). (18)

We also have

I (C ; Z init(s)|M1:B B (s ))
≤  I (C MOTP ; Z init(s)|M1:B B (s )) =
I (KeyMOTP; Z init(s)|M1:B B (s ))

=  I (Key; Z init(s)|MOTP M1:B B (s ))
≤  I (KeyMOTP M1:B B (s ); Z init(s))

=  I (Key; Z init(s)), (19)

where (b) holds by the chain rule and because I (M ;
Z init(s)|M1:B B (s )) ≤  I (MOTP M1:B B (s ); Z init(s)) =  0,
(c) holds by the chain rule and because I (M M Z (s );
Z init(s)|Key) ≤  I (MOTP M1:B B (s ); Z init(s)Key) = 0. By co-
mbining (17), (18), and (19), we obtain I (M ; C Z (s )
Z init(s)) ≤  I (M1:B ; Z B (s )) +  I (Key; Z init(s)) +  log |K| −
H (Key). Finally, we obtain the lemma with Lemmas 8 and 12.

VIII. PROOF OF THEOREM 8

We assume in the following that there exists a best channel
for the eavesdropper [23], i.e., �s� � S , �s  � S ,  X −  Z (s�) −
Z (s). Similar to the proof of Theorem 7, we proceed in two
steps. We first ignore the initialization phase and assume that
the legitimate users have access to a secret key to perform the
one-time pad in Algorithms 3, 4. We only show blockwise
security as the remainder of the proof is similar to the proof in
Section VI. We also omit the second step that consists in
analyzing the initialization phase jointly with Algorithms 3, 4,
as it is similar to the analysis in Section VII.

A. Blockwise Security Analysis

We adopt the same notation as in Section VI. We have the
following inequality, whose proof is identical to the proof of
Lemma 1. For b � B , we have

D(qU 1:N X1:N Y 1:N Z 1:N (sb)kp 1:N X1:N Y 1:N Z 1:N (sb )) ≤  2NδK ,
(20)

where we have defined qU 1:N X1:N Y 1:N Z 1:N (s ) , N
qU XY Z (s ) . Next, similar to Lemma 4 using (20) in place
of Lemma 1, we have for any γ �]0, 1[

V(p ¯ b Rb Zb (sb ) Xb [Ab ] , p ¯ b 
pRb Zb (sb ) X b [Ab ])

≤  21−L γ  
+  2 2r−H (

T
b | Zb (sb ) X b [Ab ])+N δ (1) (K ,L ) ,     (21)

where δ (1)(K , L ) is defined in Lemma 4. We then have
H Tb|Zb(sb)Xb[Ab]

≥  H (Ub|Zb (sb )X b[Ab ]) −N δ(2) (K , L )
≥  H Ub|Zb(s�)Zb(sb)Xb[Ab] −N δ (2) ( K , L )
≥  H Ub|Zb (s�)Xb[Ab]−Nδ(2) (K , L )

=  N (1 −  α)H (U |Z (s�)) +  NαH (U |X )−Nδ(2) (K , L ),
(22)

where (a ) holds as in the proof of Lemma 5 with δ (2)(K , L )
defined in Lemma 5, (b) holds because (Ub , Xb) −  Zb(s�) −
Zb(sb ) forms a Markov chain, (c) holds as in the proof of
Lemma 5. Finally, from (21) and (22), we can conclude as
in Section VI-D that blockwise security holds.

IX. EXTENSION TO UNCERTAINTY

ON THE MAIN CHANNEL

Assume now that uncertainty on the main channel also
holds according to a compound model, i.e., the channel of
Section III is now defined by the conditional probabilities
( pY (t )Z (s )|X)s�     ,t�T, where T  is a finite set. Assume also that
for all channel uses s � S  and t � T  are fixed. We extend
Theorem 7 to this setting in Section IX-C using
new polar coding schemes for source coding with compound
side information and for compound channel coding described
in Sections IX-A and IX-B, respectively.

A. Source Coding With Compound Side Information

[43] provides a polar coding scheme with optimal rate
for lossless source coding with compound side information.
However, for our purposes, we modify the coding scheme
in [43] to ensure near uniformity of the encoder output.

Consider a compound source (U ×  Y j ) j �J  , ( pU Y j ) j �J  ,
where U ,  {0, 1} and J  ,  J1, JK. Let (t j ) j �J     � NJ with
t1 ,  1 and define for j � J  , Tj     , ti and
N     ,  NT , where N is a power of two. Consider for
j � J  , (U 1:NJ , Y 1:NJ ) =  (U 1:N , (Y j )1:N )               distributed
according to the product distribution p

U 1:NJ Y
1:NJ . For j0 � J ,

we also use the notation Y
1:N j =  (Y 1:N j −1 )t�J1,

t
 K, j � J2, JK,

to indicate that Y
1:N j     is made of t j blocks of length N j −1 .
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Define for t � J1, TJ K, A1:N ,  U 1:N GN and for δN ,  2−N β  
,

β �]0, 1/2[, and j � J  define the sets

V ,  i � J1, NK : H (Ai |A1:i−1) >  1 −  δ ,

HU |Y j ,  i � J1, NK : H (Ai |A1:i−1(Y j )1:N ) >  δN , VU|Yj

,  i � J1, NK : H (Ai |A1:i−1(Y j )1:N ) >  1 −  δN     .

We also use the notation U1:N j      =  (U 1:N j −1 )t�J1,
t
 K, j �

J2, JK, to indicate that U 1:N j is made of t j blocks of length
N j −1 . The encoding is described in Algorithm 5. By the
successive cancellation decoder for polar source coding with
side information [36], Decoder 1 with [e(1)(U 1:N1 ), E0 ] =
A1:N [H ] and Y 1:N can compute a good estimate U 1:N1

of U 1:N1 . Now, assume that when L � J1, J −  1K, for
any Decoder l � J1, LK, there is a function g(L ) such that
U1:NL ,  g(L )(e(L )(U 1:NL ), E0, Y 1:NL ) is a good estimate of
U1:NL . Then, Algorithms 6 and 7 show that any decoder
l � J1, L +  1K can form a good estimate U 1:NL+1 of U 1:NL+1

from [e( L +1)(U 1:NL +1 ), E0, Y 1:NL+1 ].
The encoding and decoding algorithms for source cod-ing

with compound side information are described in
Algorithms 5, 6, 7, and yield the following result.
Theorem 9: The algorithms 5, 6, 7 perform source cod-ing

with compound side information on sequences with
length TJ N with optimal rate max j �J H (U|Yj ) and encod-
ing/decoding complexity TJ N O(log N ).

Note that the encoding is different than in [43] as the
encoder output is split into E and E0, however, the decoder is
equivalent to the one in [43]. Consequently, the probability of
error in the reconstruction of the source asymptotically
vanishes by [43]. Additionally, remark that the rate of E0 is
negligible compared to NJ     because for any j � J ,
|HU|Yj \VU|Yj | =  |HU|Yj

 | −  |VU|Yj | =  o(N ) by [36] and
[29, Lemma 7]. Hence, the coding scheme rate is the same
as in [43] but now can also be used to ensure a near uniform
encoder output by one-time padding E0 with a sequence of |E0|
uniformly distributed bits shared by the encoder and decoder.
Note that it generalizes the polar coding schemes for source
coding with nearly uniform output [44] in [37] and [45].

B. Compound Channel Coding From Source Coding

We now propose a capacity-achieving compound channel
coding scheme from source coding with compound side infor-
mation via a technique similar to the one in [26] used to obtain
channel coding from source coding with side information.

Consider a compound channel X , ( pY j | X ) j �J , (Y j ) j �J  ,
where X  ,  {0, 1} and J  ,  J1, JK. Consider an arbitrary
distribution pX on X  and define for j � J ,  pXY ,  pX pY |X .
Consider for j � J  , (X 1:N , Y 1:N ) distributed according to the

product distribution pX1:N Y 1:N . Define V 1:N ,  X1:N GN and

for δN ,  2−N β  
, β �]0, 1/2[, and j � J ,  define the sets

VX ,  i � J1, NK : H (V i |V 1:i−1) >  1 −  δN     ,

HX |Y j ,  i � J1, NK : H (V i |V 1:i−1Y 1:N ) >  δN     ,

Algorithm 5 Encoding

Require: Assume that the sequence to compress is U 1:NJ

1: Define the function e(1) : U 1:N1 →  A1:N [VU|Y ]
2: for j =  1 to J −  1 do
3: Define f ( j ) : U1:N j →  (A1:N [VU |Y j +1 ])t�J1,T K
4: Define the function e ( j +1) which maps U 1:N j +1 to

[e( j )(U 1:N j ), (e( j )(U 1:N j )� f ( j )(U 1:N j ))t�J1,t j +1−1K , f
( j )(U 1:N j )],

(if the two sequences have different lengths, then the
shorter sequence is padded with zeros)

5: end for
6: Define E ,  e( J )(U 1:NJ )
7: For j � J ,  define E0 ,  (A1:N [HU |Y j \VU|Yj ])t�J1,T K, and

E0 ,  (E0 ) j �J  .
8: return ( E , E )

Algorithm 6 Decoder j0 � J1, LK

Require: ( E , E0) and Y 1:NL+1

1: Form U 1:NL , g(L )(e(L )(U 1:NL ), E0 , Y 1:NL ), where

e(L )(U 1:NL ) is obtained from e( L +1)(U 1:NL +1 )
2: for Block t =  2 to Block t =  t do
3: Form U 1:NL ,      g(L )(e(L )(U 1:NL ) � f (L )(U 1:NL ) � 

4:

end f

)(U j 
:
,t −1 ), E j0 , Y j0 ,t 

L )

5: return U j0     
L +1       ,  (U j0 ,t 

L )t�J1,tL +1K , an estimate of
U L +1

Algorithm 7 Decoder L +  1

Require: ( E , E0) and Y 1:NL+1

1: With the successive cancellation decoder for source coding
with side information [36], form UL +1,t L +1 

from

f (L )(U 1:NL ), E0 
+1 , Y 1:N 

,t L +1

2: for Block t =  t −  1 to Block t =  1 do
3: Form an estimate f (L )(U 1:NL ) of f (L )(U 1:NL ) with

f (L )(U 1:NL )
,  f (L )(U 1:NL ) � e(L )(U 1:NL ) � e(L )(U 1:N 

, t +1 )

4: With the successive cancellation decoder for source
coding with side information [36], form UL +1,t from

f (L )(U 1:NL ), E L +1 , Y 1:N 
,t

5: end for
6: return UL +1 

+ 1  ,  (UL +1,t )t�J1,tL +1K

VX|Yj ,  i � J1, NK : H (V i |V 1:i−1Y 1:N ) >  1 −  δN .

Let (t j ) j �J      � NJ with t1 ,  1 and define for j � J ,  Tj ,
ti and N j ,  NTj . We use the same notation

as in Section IX-A. Let |E| be the length of the output E in
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the encoder of source coding with compound side information
described in Algorithm 5. By Euclidean division, there exist q
� N and r � J1, TJ −  1K such that |E| =  TJ q +  r . For t �
J1, rK, consider an arbitrary set A t  � VX such that |At| =  q
+  1, and, for t � Jr +  1, TJ K, consider an arbitrary set A t  � VX

such that |At| =  q . Hence, J     |At| =  |E|.
The encoding and decoding algorithms for compound chan-nel
coding are described in Algorithms 8 and 9, and yield the

following result, whose proof is similar to [46]. Note that
other capacity-achieving polar coding schemes had also been
proposed for compound symmetric channels in [25] and [31].
Theorem 10: Algorithms 8 and 9 perform compound chan-nel

coding over B blocks of length TJ N with optimal
rate maxp min j�J I (X ; Y j ) and encoding/decoding com-
plexity O(BTJ N log N ).

Algorithm 8 Encoder

Require: E0 ,  (E0,t )t�J1,T K, where E0,t , t � J1, TJ K, is a
sequence of |At| uniformly distributed bits (local random-
ness). Messages (Mb,t )b�J1, BK,t�J1,T K, where Mb,t , b �
J1, BK, t � J1, TJ K, is a sequence of |VX \At | uniformly
distributed bits

1: for Block b =  1 to Block b =  B do
2: for Sub-block t =  1 to Sub-block t =  T do
3: Define V 1:N according to N p j 1: j −1 with

b,t      b,t

pV j t |V 1: j−1 (vb,t |vb,t 
−1 )

�1{vb,t =  Mb,t } if j � V X \At

, 1{vb,t =  Eb−1,t } if j � A t

pV j |V 1: j−1 (vb,t |vb,t ) if j � Vc

4: Send X1:N ,  V 1:N GN over the channel.
5:      end for
6: Define (Eb , E0 ) as the output of the encoder described

in Algorithm 5 (for the compound source ( pX Y ) j �J  )

applied to X1:NJ ,  (X 1:N )t�J1,T K
7: Break down Eb into TJ sequences (Eb,t )t�J1,T K, such

that |Eb,t| =  |At|, t � J1, TJ K.
8: end for
9: Do a one-time pad with (E0 )b�J1, BK and EB to ensure

uniformity (similar to Algorithm 3) and send it to the
receiver via channel codes [39] for each pYj |X , j � J

Remark 5: We do not write the dependence of the estimates
with respect to j � J  in Algorithm 9 to simplify notation.

C. Extension to Compound Uncertainty on the Main Channel

Using the preliminary results of Section IX-A and IX-B,
an immediate extension of Theorem 7 is as follows.

Theorem 11: Assume that in the coding scheme of Section V
the primitive source coding with side information is replaced
by source coding with compound side information from
Section IX-A. Assume also that instead of channel coding in
Lines 10 and 15 of Algorithm 1 and 3, respectively, we
use compound channel coding from Section IX-B. Then,

Algorithm 9 Decoder j � J

Require: Channel output Y 1:B NJ , estimate EB of EB , and
estimate (E0 )b�J1, BK of (E0 )b�J1, BK

1: for Block b =  B to Block b =  1 do
2:      Use (E ,  E0 ) with Decoder j in Algorithms 6, 7 to

create an estimate X1:NJ ,  (Xb,t )t�J1,TJ K of X1:NJ ,
(X )t�J1,T K.

3: for Sub-block t =  1 to Sub-block t =  T do
4:          Form an estimate V 1:N ,  X1:N GN of V 1:N

5: Form an estimate Mb,t ,  V 1:N [VX \At ] of Mb,t

6: Form an estimate Eb−1,t ,  V 1:N [At ] of Eb−1,t
7:      end for
8: Form Eb−1 ,  (Eb−1,t )t�J1,T K an estimate of Eb−1

9: end for
10: return (Mb,t )b�B,t�J1,TJ K

the following secrecy rate is achieved
+

max min I (U ; Y (t ))−α I (U ; X )− (1−α ) max I (U ; Z (s ))
t� s�

where the maximum is over random variables U such that
�t � T, �s � S , U − X  −  (Y (t ), Z (s)), and |U| ≤  |X|.

X. CONCLUDING REMARKS

We constructed explicit wiretap codes that achieve the best
known single-letter achievable rates, previously obtained non-
constructively, when uncertainty holds on the eavesdropper
channel under a (i) noisy blockwise type II, (ii) compound, or
(iii) arbitrarily varying model. Our construction solely relies
on three primitives: source coding with side information,
universal hashing, and distribution approximation. We also
extended our result to the case where uncertainty holds on
the legitimate user channel under a compound model. This
extension can thus be applied to the problem of secret sharing
from correlated randomness. Specifically, it can directly be
applied to the case of a discrete channel model as in [47,
Section II], and adapted to the case of a discrete source model
with a single dealer, as in [48] and [49], for arbitrary access
structures. The case of Gaussian channels or sources, e.g., [47]
and [50], is, however, more challenging as quantization may
be needed. The case of rate-limited communication for source
models is also more challenging as vector quantization is
needed and requires other proof techniques [51].

We anticipate that our code construction can be generalized
to the broadcast channel with confidential messages and the
multiple access wiretap channel when uncertainty holds on
the eavesdropper’s channel according to a compound model,
using a distributed version of the leftover hash lemma akin to
[52]. Such results would generalize known constructions
based on polar codes, e.g., [11], [29], and [53], that require a
seed for strong secrecy and assume perfect knowledge of the
eavesdropper’s channel statistics. An open problem is to pro-
vide explicit coding schemes to handle an arbitrarily varying
main channel as, for instance, in the models in [23], [24], [54],
and [55].
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APPENDIX A PROOF OF LEMMA 1

Let b � B  and l � L .  By (3), we have

D(qA1:K kpA1:K ) ≤  K δK , (23)

we can indeed apply (3) because the bits A1:K [VU ] are
uniformly distributed, which is a consequence of the definition
of A1:K [VU ] in Line 7 of Algorithm 3 using the fact that the

bits T 1:|VU|L =  R−1 (M kM0 kR0 ) are uniformly distributed
since the bits (MbkM0 kR0 ) are uniformly distributed. Next,
we have

=  p b Zb (s)|Tb (xb, zb(s)|tb)2−|V
U

 |L |R|−11{F (rb , tb) =  m̄ b}

=  q ¯ bTb Xb Zb (s )Rb
(m̄ b , tb , xb , zb (s ), rb ),

where (a ) holds because p ¯ T X Z R =  pXb Zb|Tb
 p ¯ pRb p

|M R     and Rb is independent of (Mb , Rb), (b) holds by
uniformity of Mb , Rb, R , and by definition of Tb, (c) holds
because (F (rb , tb ) =  m̄ b) H⇒  ( r0 1{rb  tb =  (m̄ b , rb)} =  1)
(because �!r0 � {0, 1}|VU |L−r such that rb tb =  (m̄ bkr0 )) and
(F (rb , tb) =  m̄ b) H⇒  ( 0 1{rb  tb =  (m̄ b , r )} =  0),
(d ) holds by definition of q.

D(qU 1:K V 1:K kp 1:K V 1:K )

=  EqU 1:K D(qV 1:K |U1:K kp 1:K |U1:K ) +  D(qU 1:K kp 1:K )
APPENDIX C PROOF OF LEMMA 4

We have

≤  EqU 1:K D(qV 1:K |U1:K kp 1:K |U1:K ) +  K δK

≤  2 K δK , (24)

where (a ) holds by the chain rule for relative entropy [56],
(b) holds by (23) because D(qU 1:K kp 1:K ) =  D(qA1:K kpA1:K ) by
invertibility of G K , (c) holds by (5). Then,

D(qU 1:N X1:N Y 1:N Z 1:N (
s)k pU 1:N X1:N Y 1:N Z 1:N (s ))

= D(qU 1:K X1:K Y 1:K Z 1:K (s)kp 1:K X1:K Y 1:K Z 1:K (s ))
l�L

= l�L[D(qU 1:K X1:K kp 1:K X1:K )

+  E[D(qY 1:K 
Z

1:K (s)|
U

1:K X1:K kpY 1:K Z1:K (s)|U1:K X1:K )]]

= D(qU 1:K X1:K kp 1:K X1:K )
l�L

≤ 2K δK =  2L K δK ,
l�L

where (a ) holds because the random variables (U 1:K ,
X1:K , Y 1:K ,  Z 1:K (s )) across the different sub-blocks l � L  are
independent by construction (see Algorithm 3 and
Remark 3), (b) holds by the chain rule for rela-
tive entropy [56] and the expectation is over q 1:K      1:K

, (c) holds because p 1:K Z1:K (s)|U1:K X1:K     =  pY 1:K Z1:K (s)|X1:K =

qY 1:K Z1:K (s)|X1:K      =  qY 1:K 
Z

1:K (s)|U1:K X1:K , (d ) holds by (24)
U 1:K

 X1:K U 1:K
 X1:K U 1:K V 1:K U 1:K V 1:K

by invertibility of GK .

APPENDIX B PROOF OF LEMMA 3

For any (m̄ b , tb , xb , zb(s), rb ), we have

p ¯ bTb Xb Zb (s )Rb
(m̄ b , tb , xb , zb (s), rb )

=  pXb Zb (s)|Tb(xb , zb(s)|tb)p ¯ b
(m̄ b)pRB (rb )

×       r0 pR 0 (rb)p b
|R0 ¯ b Rb 

(tb|rb, m̄ b , rb )

=  p b Zb (s )|Tb (xb, zb (s)|tb)2−r |R|−1

1{tb =r −1 (m̄ bkr0
 )}

rb 2−r +|VU |L

=  pXb Zb (s)|Tb (xb, zb(s)|tb)2−|V
U

 |L |R|−1

× r0 1{rb  tb =  (m̄ bkrb)}

V(pMb Rb Zb (s ) Xb [Ab ] , pMb 
pRb Zb (s ) Xb[Ab ])

=  V(qF ( Rb ,Tb ) Rb Zb (s ) Xb [Ab ] , q ¯ q bq b (s ) X b[Ab ])

≤  2 + 2
r−H∞      pTb Zb

(
s
)
Xb [Ab ]| pZb

(
s )Xb [Ab ]

≤  2 · 2−L γ  
+  2r−H (Tb |Zb (s ) X b [Ab ])+ Lδ (0) ( K , L ) ≤

2 · 2−L γ  
+ 2r−H (

T
b|

Z
b (

s
) X b [Ab ])+ N δ (1) ( K , L ) ,

where (a ) holds by Lemma 3 and the definition of q, (b)
holds by Lemmas 2 and 3, (c) holds by Lemma 14 below,
which can indeed be applied by Remark 4, with  ,  2−L ,
δ (0)(K , L ) , 2Lγ −1

 log(2|VU | +  3), (d ) holds by choosing
δ (1)(K , L ) ,  ( K −1 +  1) 2Lγ −1 ≥  δ (0)(K , L )/K .

Lemma 14 [57] : Let p L     L     , L pX Z     be a prob-
ability distribution over X ×  Z  . For any δ > 0,
H  ( pX L Z L |pZL ) ≥ H (X L|Z L) −  Lδ, where ,

Lδ

2 2 log2 (|X |+3) .
Remark 6: An argument similar to [58, Lemma 10] to lower

bound the min-entropy would require adding an extra round of
reconciliation to the coding scheme as in [59]. Lemma 14
appears to be a simpler alternative here.

APPENDIX D PROOF OF LEMMA 5

We first introduce some notation for convenience. Define
for any I  � J1, KK, Ab [I ] ,  (A1:K [ I ]) l�L  and Ab ,
( A1:K )l�L . For b � B , consider (U 1:K , X1:K ,  Z1:K (s ))l�L

distributed according to qU 1:N X1:N 
Z

1:N (s )     , i =1 qU X Z (s )
and define for l � L ,  Ab,l ,  Ub,l GK . Next, define
for any I � J1, KK, Ab [I ] , ( A      [ I ] ) l�L      and
Ab      ,      ( A1:K )l�L . Define Ub [Ab]     ,  (U 1:K [Ab ,l ])l�L ,
Ub[Ab ] ,  (Ub,l [Ab ,l ])l�L , Ub ,  (Ub,l )l�L , X b[Ab ] ,
(Xb,l [Ab ,l ])l�L , X b [Ab ] ,       (Xb,l [Ab ,l ])l�L , Xb ,
(Xb,l )l�L , Zb(s )[Ab ] ,  (Zb,l (s )[Ab ,l ])l�L , Zb(s )[Ab ] ,
(Zb,l (s )[Ab ,l ])l�L , Zb (s) ,  (Zb,l (s ))l�L . Then, we have

H (Ab[VU ]|Zb(s)Xb[Ab]) −  H (Ab[VU ]|Zb(s)Xb[Ab])
=  H ( Ab[VU ]Zb(s)Xb[Ab]) −  H (Ab[VU ]Zb(s)Xb [Ab])

+  H (Zb(s)X b [Ab ]) −  H (Zb(s)X b [Ab ])

≥  −2
√

2 ln 22L K δK log √
2 ln 2

| 

2L K δK
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≥  −2
√

2 ln 22L K δ (L K log(|X |2 max |Z |)
s�

−  log( 2 ln 2 2L K δK )) ,  −δ�, (25)

where the first inequality holds by [42, Lemma 2.7]
applied       twice       because       for       N       large       enough,
V(qAb [VU ]Zb (s ) X b[Ab ] , pAb [VU ]Zb (s )Xb[Ab ])           ≤                2 ln 2

D(qAb[VU ]Zb (s)Xb[Ab ]kpAb [VU ]Zb (s ) X b[Ab ])                               ≤
2 ln 2 D(qU 1:N X1:N Y 1:N Z 1:N (s )kp 1:N X1:N Y 1:N Z 1:N (s ))             ≤

2 ln 2 2L K δK where we have used Pinsker’s inequality,
the chain rule for divergence, positivity of the divergence,
and Lemma 1. Then, we have
H Tb|Zb(s)Xb[Ab]

=  H Ab[VU ]|Zb(s)Xb[Ab]

≥  H (Ab[VU ]|Zb(s)Xb[Ab]) −  δ�

=  H ( Ab[HU ]|Zb(s)Xb[Ab])

−  H (Ab[HU \VU ]| Ab[VU ]Zb(s)Xb[Ab]) −  δ�

≥  H ( Ab[HU ]|Zb(s)Xb [Ab]) −  L|HU \VU | −  δ�

=  H ( Ab[HU ]|Zb(s)Xb[Ab]) −  o(L K ) −  δ�

=  H (Ab[HU ]Ub|Zb(s)Xb [Ab])

−  H (Ub|Ab[HU ]Zb(s)Xb[Ab]) −  o(L K ) −  δ�

≥  H ( Ab[HU ]Ub|Zb(s)Xb[Ab])
−  Hb (L K δK ) −  (L K )2δK −  o(L K ) −  δ�

≥  H (Ub|Zb(s)Xb[Ab])

−  Hb (L K δK ) −  (L K )2δK −  o(L K ) −  δ�

=  H Ub|Zb(s)[Ac ]Xb[Ab]
−  Hb (L K δK ) −  (L K )2δK −  o(L K ) −  δ�, (26)

where (a ) holds by definition of Ab[VU ], (b) holds by (25),
(c) holds because lim K →∞ |HU |/K =  H (U ) by [36], and
lim K →∞ |VU|/K =  H (U ) by [30], [41], (d ) holds by Fano’s
inequality since the error probability in the reconstruction of
Ub from Ab [HU ] is upper-bounded by L K δK by the result
for source coding with side information from [36],
reviewed in (1), and the union bound, (e) holds because
Ub − ( Z b (s )[Ac ], X b [Ab ])− Z b (s )[Ab ] forms a Markov chain.
Next, we have

H (Ub|Zb(s)[Ac ]Xb[Ab])
=  H (Ub[Ac ]|Zb(s)[Ac ]Xb[Ab])

+  H (Ub[Ab ]|Ub[Ac ]Zb(s)[Ac ]X b[Ab])

=  H (Ub[Ab]|Zb(s)[Ab])
+  H (Ub[Ab ]Xb[Ab]|Ub[Ac ]Zb(s)[Ac ])
−  H (Xb[Ab ]|Ub[Ab]Zb(s)[Ab])

=  H (Ub[Ac ]|Zb(s)[Ac ]) +  H (Ub[Ab ]X b [Ab ])
−H ( X b [Ab ])

=  H (Ub[Ab]|Zb(s)[Ab]) +  H (Ub[Ab]|Xb[Ab])

=  N (1 −  α)H (U |Z (s)) +  NαH (U|X ), (27)

where (a )     holds because X b [Ab ]     is independent of
(Ub [Ab ], Zb (s )[Ab ]), (b) holds because (Ub [Ab ], X b [Ab ])

is independent of (Ub [Ac ], Z b (s )[Ac ]) and X b [Ab ] is
independent of(Ub[Ab ], Zb (s )[Ab ]),     (c)     holds     because

qU 1:N X1:N 
Z

1:N (s )      = qU X Z (s ). We obtain the lemma
from (26) and (27).
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