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Explicit Wiretap Channel Codes via Source Coding,
Universal Hashing, and Distribution Approximation,
When the Channels’ Statistics are Uncertain

Rémi A. Chou

Abstract—We consider wiretap channels with uncertainty on
the eavesdropper channel under (i) noisy blockwise type II, (ii)
compound, or (iii) arbitrarily varying models. We present
explicit wiretap codes that can handle these models in a uni-fied
manner and only rely on three primitives, namely source coding
with side information, universal hashing, and distrib-ution
approximation. Our explicit wiretap codes achieve the best
known single-letter achievable rates, previously obtained non-
constructively, for the models considered. Our results are
obtained for strong secrecy, do not require a pre-shared secret
between the legitimate users, and do not require any symmetry
properties on the channel. An extension of our results to com-
pound main channels is also derived via new capacity-achieving
polar coding schemes for compound settings.

Index Terms— Compound wiretap channel, arbitarily varying
wiretap channel, polar codes, source coding, universal hashing.

I. INTRODUCTION

HE wiretap channel [2] is a fundamental primitive to

model eavesdropping at the physical layer [3], [4].
Beyond theoretical results that characterize the secrecy capac-
ity for this model, significant progress has been made in the
development of explicit wiretap codes for Wyner’s wiretap
channel [2]. Specifically, coding schemes based on low-density
parity-check codes, e.g., [5], [6], and [7], polar codes, e.g. [8],
[9], [10], [11], [12], [13], and [14], and invertible extractors,
e.g., [15], [16], and [17], have been successfully developed for
Wyner’s model [2] or some of its special cases.

An assumption made by all the above references is that the
eavesdropper channel statistics are perfectly known by the
legitimate users. To model uncertainty, several models have
been introduced: Type II models [18], [19], [20], where the
eavesdropper can learn an arbitrary and unknown part of the
legitimate sender codeword, and models where the eavesdrop-
per channel statistics are not perfectly known but only known to
belong to a given set. These latter models are useful when the
physical location of the eavesdropper is uncertain from the point
of view of the legitimate users, and include compound
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models [21], [22], where the channel statistics are known to be
fixed for all channel uses, and arbitrarily varying models [23],
[24], where the channel statistics change at each channel use.

Our contributions are summarized as follows. (i) We con-
struct explicit wiretap codes that achieve the best known
single-letter achievable rates, previously obtained non-
constructively, when uncertainty holds on the eavesdropper
channel under a noisy blockwise type II, compound, or arbi-
trarily varying model. (ii) We prove the sufficiency of three
primitives to construct such wiretap codes: source coding with
side information, universal hashing, and distribution approxi-
mation. (iii) We extend our results to the case where uncer-
tainty holds on the main channel according to a compound
model. (iv) We demonstrate that all the models considered in
this paper can be handled in a unified manner by the same
encoding and decoding schemes, up to an appropriate choice
of parameters. We stress that our results are obtained for
strong secrecy, do not require a pre-shared secret between the
legitimate users, and do not require any symmetry properties
on the channel.

Our approach consists in separately handling the reliability
constraint and the security constraints. The reliability con-
straint is handled via a combination of source coding with
side information and distribution approximation implemented
with polar codes. The security constraints are handled with a
combination of universal hashing and distribution approxima-
tion implemented via two-universal hash functions and polar
codes, respectively. The main difficulty in our approach is to
combine universal hashing and source coding with side
information such that (i) non-symmetric and non-degraded
channels can be handled, and (ii) the analysis of the security of
the overall coding scheme is possible. (i) is performed via the
idea of block-Markov coding as introduced in [25] and [26]
with the following two important modifications to enable (ii):
(1) Each encoding block of the block-Markov construction is
constructed from L sub-blocks in which all the involved
random variables have the same joint distribution across all
sub-blocks. (2) The construction of each encoding block is
such that the encoder output distribution approaches a fixed
target distribution. In particular, these two points are key to
analyzing the security of universal hashing via the leftover
hash lemma [27], whose application in our analysis raises
several additional challenges. First, while the leftover hash
lemma proves a security guarantee on the output of a hash
function, in our coding scheme, we need to prove a security
guarantee on a message M that is not obtained as the output
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of a hash function. To circumvent this difficulty, we prove
the statistical equivalence between our coding scheme and
another coding scheme where the message M is obtained as
the output of a hash function. Second, because of the block-
Markov construction, a precise study of the inter-dependencies
between the encoding blocks is needed to evaluate the overall
leakage when considering all the blocks jointly.

In Section III, we formally describe the model con-
sidered in this paper. In Section IV, we state our main
results. In Section V, we describe our proposed coding
scheme. The analysis of our coding scheme is presented in
Sections VI, VII, VIIL In Section X, we present an extension of
our results to the case where uncertainty holds on the
legitimate user channel under a compound model [3], [22].
Finally, in Section X, we provide concluding remarks.

II. NOTATION

For a,b R,, define Ja,bK , [bac,dbe] n N. The
components of a vector X'V of size N are denoted with
superscripts, i.c., X'V, (X');5;; vk For any set A
J1, NK, let X"*N[A] be the components of XN whose indices
are in A. For two distributions pxy and gxy defined over X
x Y, define the variational distance between px and gx as
Vipx,qx) , | px(x) = gx(x)|, the Kullback-Leibler
divergence betweén px and gx as D(pxkgx), and the con-
ditional Kullback-Leibler divergence between py|x and gy|xas
Epy [D(pyixkgrix)] , px(x)D(py|x=xkqy|x=x).
Unless otherwise specified, Capltal letters denote random
variables, whereas lowercase letters designate realizations of
associated random variables, e.g., x is a realization of the
random variable X. Let 1{w} be the indicator function, which is
equal to 1 if the predicate w is true and 0 otherwise. For any x
R, define [x]*, max(0, x). Finally, GF(2") denotes a finite
field of order 2VV.

III. MODEL AND KNOWN RESULTS

Consider the finite alphabets X , {0, 1}, ¥, and (Zs)sms,
where S is a finite set. Consider also the conditional prob-
abilities (py z(s)| x)sms. A wiretap channel is defined as a
discrete memoryless channel with transition probability for
one channel use py z()|x(y, z(s)|x) where x X is the
channel input from the transmitter, y B Y is the channel output
observed by the legitimate receiver, z(s) B Zs is the channel
output observed by the eavesdropper, s S is arbitrary,
unknown to the legitimate users, and can potentially change for
each channel use. In the following, we omit the index s @ S
whenever |S| = 1. Moreover, when the codeword X!V is sent
over the channel, in addition to the channel output Z!'*V(s), s
SN the eavesdropper has access to X''N[S], (X!)ps,
where S @ J1, NK is chosen by the eavesdropper and such that
|S|, aN for some a &[0, 1].

Definition 1: For B B N, define B, J1, BK For b B B and
Ry > 0, define R, g Ro/B. A (2NR, N, B) code
has a rate R, operates over B encoding blocks, and consists
for each encoding Block b B B of

« A message set M ,, J1, 2NRy K

« A stochastic encoding function fi : Mp > XV, used

by the transmitter to encode a message Mp, uniformly
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distributed over My, into X};N , Jbo(Mp). The messages

M., (Mbp)ymp are assumed mutually independent.
o A deterministic decoding function used by the legitimate

receiver g, YN oM p to form M, an esti-
mate of Mp, given the channel outputs Y}):N. We write
Mg, (My)p

Definition 2: A rate R is achievable if there
sequence of (2NR, N, B) codes such that

exists a

N->og
P[Mi.p = Mi.pg] —— 0,
max [ Mug; 2 N(s), X N[A] =370,
sBS VB AR A

where A {(Ab)bB A, BJ1, NKand |A )= aN,@b B
B}, (Z1 N(sb) X1 [Ab]) corresponds to the random varl-
ables m Block b B l B for A = (A b)blB @A ands,@ sy
XUNIAL, (XN [Ab))pas, and Z5(s), (ZY N(Sb))b-BfOF
s="(sb)ms BS NE.
The supremum of such achievable rates is called secrecy
capacity and denoted by Cs.
Whena = 0and |S| = 1, our model recovers Wyner’s wiretap
channel [2]. Whena = O ands = (sp)pz @SY ? is unknown to
the legitimate users but all the components of sp, b @ B, are
identical, our model recovers a wiretap channel with a
compound model for the eavesdropper’s channel [21], [22]; the
general model, as introduced in [21], with compound models
for both the eavesdropper’s channel and the main channel is
treated in Section IX. When a = 0 and s = (sp)pmg B SV 2 is
unknown to the legitimate users, our model recovers a
wiretap channel with an arbitrarily varying eavesdropper’s
channel [23]. When a > 0 and |S| = 1, our model recovers a
special case of the wiretap channel of type II [18] when pz|x
= pz and py|x(v|x)= 1{y = x},B(x,y) B X x Y, a special
case of the wiretap channel of type II with noisy main
channel [19] when pz|x = pz, and a special case of the hybrid
Wyner’s/type 11 wiretap channel [20]. Specifically, the
difference between our model and the models in [18], [20], and
[19] is that, in our model, the eavesdropper observes a fraction a
of each codeword XI:Nb b B B, whereas in [18], [20], and
[19], the eavesdropper would be able to observe a fraction a of
all the codewords considered jointly, i.e., (XN )reg. While
the original type Il constraint of [18] is stronger than a
blockwise type II constraint, the latter constraint is relevant to
model side-channel attacks where the eavesdropper is able to
learn a bounded fraction of each codeword sent over the
channel.

We now review the best known achievable rates for special
cases of our model.

Theorem 1 [2], [28]: Suppose that |S| =
Then, the secrecy capacity is

1, and o« = 0.

I}}azcy [[(U;Y)- I(U; Z)1"

1ulslx

Theorem 2 [18]: Suppose that |S| = 1, pzix = pz, and
forany xBX, yBY, pyix(yvlx)= 1{y = x}. Then,
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Theorem 3 [19]: Suppose that |S| = 1, and pz|x = pz.
Then,

Cs= max [[(U;Y)- al(U;X)]*.
U-Xx-Y
U1=1X |

Theorem 4 [20]: Suppose that |S| = 1. Then,

Cs = max, ((U;Y)- al(U; X)- (1- a)I(U; Z)]*.
lulsIX
Theorem 5 [21], [22]: Consider the wiretap channel with
compound eavesdropper channel statistics, i.e., assume that

s= (sp)pe8 @SN B is unknown to the legitimate users but all the

components of sp, b B B, are identical. Assume also that o =
0. Then,

C 2 max min[[(U;Y)- I(U; Z(s))]*.
BsBs, U-X-(Y,Z(s)) sB s
[Ul=1X]

Moreover, for a degraded channel, i.e., when for all s @S,
X-Y- Z(s), we have
C, = maxmin/(X;Y|Z(s)).
Px s@S

Theorem 6 [23], [24]: Consider the wiretap channel with
arbitrarily varying eavesdropper channel, i.e., assume that s
SNB s unknown to the legitimate users. Assume also that o
= 0. Define S as the set of all the convex combinations
of elements of S. If there exists a best channel for the

eavesdropper, i.e., BS,8s @S, X- Z(s®)- Z(s), then

Cs 2 max min [[(U;Y)- I(U; Z(5))]*.
BaS, U-X~(Y,Z(5)) §BS
[UI<IX|

Moreover, if there exists a best channel for the eavesdropper
and for all § BS, X- Y- Z(5), then
Cs = maxmin I (X; Y| Z(5)).
PX B3

Note that [20], [21], [22], [23], and [24] prove the existence
of coding schemes that achieve the rates in Theorems 3-6
but do not provide explicit coding schemes. To the best of
our knowledge, no explicit coding schemes that achieve the
secrecy rates in Theorems 3-6 have been previously proposed.

More specifically, [12], [13], and [29] provided polar coding
schemes that achieve the strong secrecy capacity for Wyner’s
wiretap channel, i.e., Theorem 1, with the following caveats:
a pre-shared secret with negligible rate is required in [13]
and [29], no efficient method is known to construct the
codebooks in [12], and the existence of certain deterministic
maps is needed in [13], similar to [30, Theorem 3]. Note that a
main tool in [13] and [29] is block-Markov coding to support
non-degraded and non-symmetric channels. Using techniques
similar to [12], [13], and [29], including block-Markov coding,
and ideas for compound channels without security constraints
in [25] and [31], it is unclear to us how to extend exist-
ing polar coding schemes to the wiretap channel models of
Theorems 2-5 and Theorems 7, 8, 11 because of the uncer-
tainty on the eavesdropper’s observations.

A different approach than polar coding to obtain wiretap
codes for Wyner’s wiretap channel is provided in [15], [16],
and [32]. Specifically, these works construct wiretap codes

using (i) capacity-achieving channel codes (without security
constraint), and (ii) universal hashing [33], and have been
the first works to provide efficient codes that asymptotically
achieve optimal secrecy rates and strong secrecy for additive or
symmetric and degraded wiretap channels. Reference [34] sub-
sequently extended these constructions to any wiretap channels
as in Theorem 1.

It is also worth noting that [35] proposed wiretap channel
coding for Wyner’s model using source coding with side
information and universal hashing. It is, however, unclear to us
how to directly translate the scheme of [35] to an efficient code
construction without employing block-Markov coding for the
part of the coding scheme that involves source coding with side
information.

Our approach in this paper departs from the works
in [15], [16], [32], and [34] because, instead of relying
on channel codes, we rely on source codes to handle the
reliability constraint, which allows us to use a block-Markov
coding approach to handle non-symmetric and non-degraded
channels. Our approach also departs from existing polar coding
schemes, as our construction solely relies on polar coding
results for source coding with side information, does not
require the existence of certain maps, and does not require
a pre-shared key to ensure strong secrecy. In addition to
proposing the first explicit coding schemes that achieve the
secrecy rates in Theorems 3-6 and Theorems 7, 8, 11, our
coding approach also proves that all the models considered
in this paper can be treated under a unified framework
that only requires three primitives: (i) source coding with
side information, (ii) universal hashing, and (iii) distribution
approximation.

IV. STATEMENT OF MAIN RESULTS

Our main results are the following theorems.

Theorem 7: If all the components of sp, b B, are
identical, then the coding scheme of Section V achieves the
secrecy rate

+
max [(U;Y)- al(U;X)- (1- a)maxI(U;Z(s)) ,

U sBS
where the maximum is taken over U such thatBs BS, U - X -
(Y, Z(s)) and |U| < |X|.

Theorem 8: Assume that the components of sp, b B B, are
arbitrary. If there exists a best channel for the eavesdropper,
then the coding scheme of Section V achieves the secrecy rate

+
max [(U;Y)- al(U;X)- (1- a)max[(U;Z(s)) ,

U sBS
where the maximum is taken over U such that S, U-X-
(Y, Z(5)) and |U| < |X].

The proof of Theorem 7 is presented in two parts. First,
in Section VI, the initialization phase, i.e., Algorithms 1, 2,
is ignored and Theorem 7 is proved under the assumption
that the legitimate users have a pre-shared key whose rate
is negligible. Next, in Section VII, Theorem 7 is proved
without this assumption by considering the initialization phase
combined with Algorithms 3, 4. The proof of Theorem 8§
is similar to the one of Theorem 7 and is discussed in
Section VIII.
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Finally, from Theorems 7 and 8, we conclude that the
secrecy rates of Theorems 1-6 are achieved.

Note that we will also extend Theorem 7 to the case of a
compound main channel in Theorem 11.

V. CODING SCHEME

Our coding scheme consists of two phases: An initialization
phase presented in Section V-B, and the actual secure com-
munication phase presented in Section V-C. The initialization
phase allows the legitimate users to share a secret key which is
used in the second phase of the coding scheme. Both phases rely
on three primitives presented in Section V-A.

In this section, for s @ S, we consider an arbitrary joint
distribution quxyz(is) ,» quxpyzi)x with U] = |X] = 2
and such that U-X - (Y, Z(s)). Let K be a power of two,
let (UMK, X1:K) be distributed according to g ik yix

K qux, and define 4VK , U'KGg, vEK | x1K Gy,
10 Blog K . .

1 is the matrix defined in [36]. Define
also for 65 , 27K°, 6.1]0, 1/2], the sets
Vu, iBJ1, KK: H(A'| A7) > 1- 6k,

where Gg ,

Hu , B, KK: H(A|A%) > 6¢
Vuly, @B, KK: H(A | AV YK ) > 1 - 6,
Huly , i@J1, KK: H(A | A¥ Y EK) > 6,
Vy, @iBJ,KK: HVI Vi) > 1- 6k,
Vxiu, i8I KK: HV | vETghk) s 1 - sk

A. Primitives Used in the Coding Scheme

1) Primitive 1: Source coding (SC) with side information
for the source (U x Y, g y) [36]. Define the encoder f SC
/3¢, £55) with

FSCAK) A% K vy,
FCAYE) , AMK [Hy v\Vu )yl

Then, define gS€ as the successive cancellation decoder of [36]
such that if 41K, gSC(fSC(41VK), (SC(41K), Y 1K) then

()

Remark 1: We decompose fS€ in two parts f .IS'C and
fZSC because figC(Al’K) can be shown to be almost uniform
in divergence, e.g., [37, Lemma 8], which will be a useful
property in our coding scheme analysis. Note, however, that
the distribution of (ffgC(AIZK)kuSC(AI:K)) is not necessarily
close to a uniform distribution.

2) Primitive 2: Universal hashing (UH) [38]. Let ¢, d @ N
such that d < ¢, and define S , {0, 1}°\{0}. Then, define for
ses, Te{0, 1}, RE{0, 1}, ROm{0, 1}

P[A"K = 41K < Kébk.

FUH(R, RY, S7' (RKRO),
eS(T,d), (S T)a,

where is the multiplication in GF(2¢) and (-)s selects the d
most significant bits, such that

gUH(fUH(R R),d)= R.

By [16], F ,
hash functions.

3) Primitive 3: Distribution approximation (DA) for ¢ 4,
the distribution of A"X , U' G, where UK follows
qux , &, qu. Let THVUl be a sequence of uniformly
distributed bits over {0, 1}Vl Then, define 41X according to
the distribution p 41:x , ﬁ] P ai|4vi-1 With

{ggH}ss is a family of two-universal

1{a/ = T/} if jEVy
qu|A1:j—1(aj|a1:j_1) lf] V&

2)

paijaii(alla ),

We write 41K = fDA(T]:WU'). Moreover, we have

D(q 41:xkp 41:x) %) E§A1:1‘-1 D(q 47| 4151 KD 4| 41:i-1) i =1
g (1= H(A| A7) < Kok, (3)
JjBVu
where (a) holds by the chain rule, (b) holds by (2), (¢) holds

by the definition of Vy.
4) Variant of Primitive 3: Channel prefixing (CP) for the

distribution g yik 1k , oy gxu. Given UVK distributed
according to gy 1:x, define 71X according to the distribution
PULKpliK , Uik le pyiptu-tgtk with

Pyi Vl:j—IUI:K(Vj [vl-1y 1K)

1/2 if j B Vo
. . i 1yli=1,,1:K) ¢ - c (4)
qV_/lVlz/—lul:K(V] |V I ) lf] VXlU
We write V1K = fCP(U1:K) Moreover, we have
D(q:k pr:k kp gk pi:x )
7o) By prm Dl@piyyrmgikkp yyrmgi) j=1
g (1= HV [ VWUNR)) < Kfk, (5)

JBVx|u

where (a) holds by the chain rule, (b) holds by (4), (¢) holds
by the definition of Vx|u.

B. Coding Scheme: Phase I - Initialization

The legitimate users create a secret key with length /key,
which will be specified later in Section VII-B, with
Algorithms 1 and 2, which operate over By blocks of length N
, KL, where L,K B N, and K is a power of two. We define
Bo, J1, BoK and L , J1, LK. In each Block b @ By, the
encoder forms the key Key, with length / C , Ixey/Bo,
as described in Algorithm 1. The encoder uses iRe following

randomization sequences: RII‘)lllo , (R‘g“; )iaL, where R“;)“lo,

[ @ L, is a sequence of uniformly distributed bits over
{0, 1} Huir I-IVur |, R},“it is a sequence of uniformly distributed
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Algorithm 1 Initialization at the Transmitter
(RM")28,

Require: Randomization and

(R 55,
: for Block b & By do
for Sub-block /B L do
Define AH{ , fDA(Rloc)
Define U1 K Al KGK

1
2
3
4
5. Define V”< fC"(U K)
6
7
8

sequences

Define X;f .k Gr

end for

Transmit X}V, k X/'“over the channel

9: Let YlN , k Yll.k Z1 Nsp), k le;lK(sb,l) denote
me
the channel ouiputs

10:  Transmit with a channel code [39]
Dy, k f2SC(A ) gl Rlnlt fSC(AI )

where P I denotes modulo 2 additlon

11: - Define U™,k UK
mt

12:  Define Key,, , mlt( U N lkey)

13: end for

Algorithm 2 Initialization Phase at the Receiver
Require: (Ri;nit)bBo and (Rilr:ito)bg .
1: for Block b @ By do

2:  Form an estimate Dp of Dp
3:  for Sub-block /@ L do

4: Given (D, R;}nit( ) and Line 10 of Algorithm 1, form an
estimate of (flsc(A K) fzsC(A1 K)) and denote this

estimate by (Alb”f[VUw], Al [HU|Y\VU|Y])

5:  Form an estimate of 4} as
Ayt &AL o), 4 THu i \Vor], YiF)
6: Form Ubfl , Ag/:lKGK an estimate of UbllilK
7:  end for
Form U}, k UL an estimate of U; "N
laL

9:  Form Key, = lel( Uy, Ify) an estimate of Key,
10: end for

bits over RIM! | {0, 1}¥\{0}. The encoder also uses the local
randomness (RL‘}?);L, where R}fy, [ B L, is a sequence of
uniformly distributed bits over {0, 1} W |

Remark 2: In Line 10 of Algorithm 1, note that the channel
code [39] requires a uniformly distributed message. While
KaL Abl [HU|Y] is not a sequence of uniformly distributed
bits, D, is a sequence of uniformly distributed bits over
J1, 2EHuiy ik

High-level description of the initialization phase: The
initialization phase is depicted in Figure 1 and consists in Bo
communication blocks. All the communication blocks are
independent, and each Block 5 By will lead to the
exchange of a key Key, between the legitimate users, which
will be shown to be secret from the eavesdropper. Additionally,

{ Public transmission >

Db 5[-,
B
4104
Al:,z&
L]
.
( f{i:i() _| Universal
ALK o NELT [Laghing
i l
Ne—— I
J'TJI,:N I\eyb
Universal Channel
ITashing Prefixing
' Lo
Ke‘yh ‘X'I!::\' yrbl N

Encoder Decoder

Fig. 1. Initialization phase for Block b @ Bg. The encoder creates All;N s
which is made of L sub-blocks (Ab],:lK
creates Key, (by universal hashing), and the codeword X lth (via channel
prefixing), which is sent over the channel and whose noisy observation by the

legitimate receiver is ¥V ., The decoder creates an estimate of AN from
Yl:N

)iaL. Then, from A;:N , the encoder

apd an estimate of Dy, which is sent to him via a channel code,
as described in Line 10 of Algorithm 1. Finally, the decoder creates Key,,
an estimate of Keyy, from his estimate of All;N .

By is chosen such that the length of the keys (Key,)szs , is
sufficiently large to be used in the main coding scheme, which is
described in the next section and allows the exchange of a
secret message between the legitimate users. It will also be
shown that the initialization phase considered jointly with the
main coding scheme has a negligible effect on the overall
communication rate and the overall information leakage to
the eavesdropper.

Consider Block » @ Bg in Algorithm 1. As described in
Lines 3-4, the encoder creates ( U K ) ;mL such that the distri-
bution of (Ubl )iaL is close to the product distribution g 1:v.
Then, as described in Lines 5-6, channel preﬁxmg is performed
to create from (U bK[)nL the codewords (X!:K )[.L that are
sent over the channel, and whose noisy observations at the
legitimate receiver are (Y );7.}. Additionally, the key Key,
is formed from (U'K ) through universal hashing, as
described in Line 12. As shown later, secrecy of the key is
ensured via an appropriate choice of the hash function output
length. As described in Line 10, the encoder sends Dp to the
legitimate receiver using a regular channel code (without
security guarantees) - see also Remark 2.

Finally, as described in Lines 2-7 of Algorithm 2, upon
estimating Dp, the legitimate receiver forms an estimate of

I:IK)Z.L from (Ybl',K);.L Then, as described in Line 9 of
Algorithm 2, from the estimate of ( U 1: K )iaL, the legitimate
receiver creates an estimate of Keysp. o

C. Coding Scheme: Phase II - Secure Communication

The encoding scheme operates over B blocks of length
N , KL, where L, K N and K is a power of two.
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We define B , J1,BK and L , J1, LK. Encoding at the
transmitter and decoding at the receiver are described in
Algorithms 3 and 4, respectively. In each block b B B, the
transmitter encodes, as described in Algorithm 3, a message

Mjp uniformly distributed over J1, 2!sK and represented by a
binary sequence with length

M| if b= 1

My, )
M| | M1|-L|Vu)y| otherwise

Algorithms 3 and 4 depend on the parameter

r, M, (6)

which will be specified later.
In each block b @ B, as described in Algorithm 3, the

encoder uses the local randomness Rg , a binary randomization

sequence uniformly distributed over J1, 21} 1K The sequences
RPp, Ry ., are mutually independent. The length of the
sequences Rg - is defined for b@ B as |R |g L\Vy|-r.In
each block b g, the encoder also uses, as described in
Algorithm 3, R,, a binary randomization sequence with length
L|Vy|, uniformly distributed over R , {0, 1}21VuI\{0}. The
sequences Ri.3 , (Rp)ppg are mutually independent. More-
over, it is assumed that Mi.p, Ri.p, and Rgz p are mutually
independent.

Remark 3: In Algorithm 3, observe that T}ljl VUlL, b @ B,
is uniformly distributed over {0, 1}!VUIL because (M), kMOkaOb)
is uniformly distributed over {0, 1} WIL and independent
of Rp. Hence, the L random variables (Tg:}VUl)lL are

uniformly distributed over {0, 1} | and independent. When
the elements of sp are all equal to s, then, by construction, the
conditional probability p 1K g VU is the same for all

b, )
/ L, and the L pairs ({TZ'IVU l, Z;ZIK (s)))iaL are inde-
pendently and identically distributed according to the joint
distribution p vyl

ZyiKs)

Remark 4: In Algorithm 3, consider X};K [Ap,1], b @ B,
[BL, where for all IBIL, Ap,; BJ1, KK am’j |Ab1{z|L= aN
such that X"V[Ap] , koL 1:K[AA; 1 corresponds to the a N
symbols of the codewords emitted aj) the transmitter

that the eavesdropper has chosen to have access to. Similar to
Remark 3, the L triplets (T)'VV1, X1K [Ap11, Z\ K (s1,1)))ia
are independent, however, they are not necessarily identically
distributed because the components of sp,1 are arbitrary, and
because the sets (Ap,1)iaL are arbitrarily chosen by the
eavesdropper.

High-level description of the coding scheme: We depict in
Figure 2 how codewords are created at the transmitter. Note that
there exists an interdependence between two consecutive
encoding blocks since Mob, b @ )2, BK, used in Block b, is
obtained from Block » - 1, as described in Line 3 of
Algorithm 3.

Consider Block b B of Algorithm 3. The encoder

starts by creating T bl Vu IL via universal hashing applied on

the sequence created by 4/10,1’ the secret message Mjp, and the

local randomness R , as Mescribed in Line 4. Next, T’ EVulL

i broken down into L pieces with same length in Line 6,
from which the encoder creates L sub-blocks

Algorithm 3 Encoding

Require: Randomization sequences (Rp)pas, (Rogbg, and
messages (Mp)pas

1: Define M,

2: for Block b @ B do

3: Define MY, k f5€
L

4:  Define T;leUlL , f][erH(Mb, MOKRY)
5: for Sub-block /&L do |, |

6:  Consider the notation 7,,, Y, T,
7. Define )%, fPA 15V

8: Define Ullle , A},f( Gk

o:  Define V, X, s U ¥

ApK, ifb=1

(I-1)|V [+1|V |
U U

10.  Define ng,K , ViiKGk
11:  end for
12:  Transmit X ; N, k (X}f) over the channel
i
13 Let )N,k Ybff . Z3N(sp), k ZyK(sp,1) denote

mL iaL
the channel outputs

14: end for

15: Using a pre-shared secret, apply a one-time pad to
(A Dinepes, and (f5€(A"5 ), then transmit
the result with a channel code [39].”

Algorithm 4 Decoding

Require: (Ry)pa, (154} K ))imLme, (fSE(A" ) me
1: Define Alélg[VUw] , fISC(Alélg) for any / @ L '

2: for Block h@B fromb= Btob= 1do

3: for [BL do

4: Form an estimate of 4 1!,:1K as

Ayt &AL Vo) 54T Y i)
5:  end for
6: From Line 7 in Algorithm 3, determine an estimate of
ThIvuIL
b as

yIVUIL k AVKTy
, Ul
b 1ol b,[

7:  From Line 4 in Algorithm 3, form an estimate of
(MpkMOKR) as

LIVy L
(MpkMPKRS), Ry T bU|
8 From Line 3 in Algorithm 3 and Mjf, form
AVK [Vuy an estimate of f5C 4J:K
Vol /i B

9: end for

(A“ZK)IL, as described in Line 7. Then, from (AIZK])éL,the
codewords (X b, Mk, are obtained via channel prefixing, as
described in Lines 8-10. The codewords (X  1:X);z; are
sent over the channel and their noisy observafidns at the
legitimate receiver are denoted by (Y'X);5,. Note that the L
sub-blocks (41K ) are created such ‘that their distri-bution
is close to the pfoduct distribution g v. A crucial
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(Block b-1) | ( Block b )
ﬁ%:—q,f 2{“\
-Rb—l 1K Rb '”];:r\
My_y AL M, at
- ALK . * .
Mr.';—l E ( b—l,![ D\Y])feﬁ R A’Lﬁ :
R';)—l e R’ s
AL oA
Na— ——
HE i
b b
Channel Channel
Prefixing Prefixing
l —
TN 1N
X, Xy

Fig. 2. InBlock 5@ 8, AV is made of L sub-blocks (4"} )5y, which are

constructed from Ry, (randomness for universal hashing), M}, (secret message),
Mg (a part of A;_Al’ from Block » - 1), and Ri? (local randomness). The
construction of Mg in Line 3 of Algorithm 3 creates a dependency between

Block b @J2, BK and Block b-1. In Block b B B, the codeword XI}:N, to be

sent over the channel, is then obtain via channel prefixing from Alb’N .

Ry iVl JLK FLK LK V1K
. Tb~1 Ah,l Lb,l Vb,l Xh,l
Jfb °
° . Ld . Ld
—_— . —_— * . —_— Ld
ﬂf’ ° . . . .
b iVl L quk grE Lpur Lgrx
R, b, b1, b1, b1, b1,
———— e ——
Universal  Distribution DPolarisation Channel Polarization
1lashing Approximation  Tine 8 Prefixing Tine 10
Line 1 Lines ¢-7 Tinc 9
Fig. 3. Summary of the steps in Algorithm 3 to obtain the code-

word X };N , k(X 117:1/< ) from Rp (randomness for universal hashing),

Mjp, (secret message), M% (a part of Block b-1), and Rob (local randomness).
Line 7 (distribution approximation) describes the creation of the L sub-blocks

(A}l):f )imL from T};l VU”‘, and ensures that their distribution is close to
the ‘product distribution ¢ 1.x, which will be a crucial fact to analyze the
information leakage of the coding scheme.

point to ensure this property comes from the uniformity of
MO, ig., the uniformity of AK [\gL_/1| ;§], [ B L, which follows
from Line 7 and the property Viu|y Vy. Finally, as
described in Line 15, using a pre-shared secret (obtained from
the initialization phase in Section V-B), the encoder
applies a one-time pad to (4"X[Hy|y\Vu|r 1)L ses, and
(4 ”i [Vuiv1)aL, and sends the result to the legitimate receiver
witﬁ' a channel code [39]. This step is done for technical
reasons: (AL:K [Huy\Vu\y 1)iaL,pms are not uniformly distrib-
uted and cou1]d not be included in the definition of M ,(b [ B, as
our analysis relies on the uniformity of M°, b @ B. How-ever,
as shown later, the length of (A"K[Hy |y \Vuy 1)iaL,bas is
negligible compared to NB such thdt'the overall commu-
nication rate is not affected. It will also be shown that this
has a negligible effect on the overall information leakage to
the eavesdropper.
In a given block b B B, we depict in Figure 3 a summary of
the different phases in Algorithm 3 through which the

encoder output is obtained from the local randomness RO,
the secret message M, the randomness Rp used for universal
hashing, and M é Note that Ry needs to be shared between the
legitimate users but does not need to be secret from the
eavesdropper, and can be recycled over several blocks so that
the exchange of necessary randomness for universal hashing
between the legitimate users does not affect the overall
communication rate.

At the decoder, the legitimate receiver first estimates
(A%);L from (A1:I<1[HU|y])1L and (Ylf)lL, as described in
Lings 2-4 of Algoritlf”fm 4 for Block B. Then, from this esti-mate
of (41K )iag,, the legitimate receiver forms an estimate of M

p and M g, as described in Lines 6-7 of Algorithm 4 for
Block B. Next, to estimate the message Mp-1 and M° Bl
the legitimate receiver uses the estimate of M ,p along with
(AYK [Hyy\Vuiy1)me, and (YHK ), as described in
Lines"2-7 of Algorithm 4 for Biock B - 1. Hence, the
legitimate receiver can estimate all the messages (Mp)pzs
starting from the last block and iterating through the previous
blocks via the loop in Line 2 of Algorithm 4.

Note that in the analysis of the coding scheme secrecy rate,
one needs to account for (i) the one-time pad in Line 15 of
Algorithm 3, (ii) the transmission of the randomness (Rp)1:5
that is used in Algorithms 3 and 4, and (ii7) the initialization
phase (Algorithms 1 and 2). We will show that (i), (ii), and
(iii) are done with a negligible impact on the secrecy rate in
Sections VI-C, VI-G, and VII-C, respectively.

VI. PROOF OF THEOREM 7 WITH A PRE-SHARED KEY

In this section, we prove Theorem 7 when the legitimate
users have access to a pre-shared secret key whose rate is
negligible. Hence, we ignore in this section the initialization
phase, i.e., Algorithms 1, 2. We also assume in this section
that all the components of sy, b @ B, are identical and equal to
s. To simplify notation, we write s instead of sp, b & B.

A. Characterization of the Distribution Induced by the
Encoder

Let Py XNyl 21N ) denote the distribution induced by
the encoding scheme described in Algorithm 3. Lemma 1
gives an approximation of p ;1:v y1:v y1:v z1:v ) in terms of the

b b b b

distribution gy xy 7(s) defined in Section V-A. This result will
be useful in our subsequent analysis.
Lemma 1: For b A B, we have

D(gyv v yiin z1:v ) kp UZ:NXII;N),;:NZII;N(S)) < 2LKék,

where GUUN YUN YN ZEN () N AUXYZ(s)-
Proof: See Appendix A. [ ]

B. Reliability
We now show that the receiver is able to recover the
original message with a vanishing error probability. Define
Mi.p , (Mp)pag. Define for b @ B, AI:NH K/mL AI‘K,Ié,}:N
, bleAI:K, Albz'][\/’ 1:LK’ Ep-1 , {AI:N - Abl:N}’ an% E4
, {(YI:NI AI:N) - (YI:N’ Abl:N)}' For b B,

consider a coupling [40, Lemma 3.6] between p SV AN and
b b
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GylN 1N such that P[E4,] = V(pybl:NAg:N,qu:NALI’:N). For

b @ B, consider (A;:N, Yb]:N, Ag:N, Yb”v) distributed accord-
ing to this coupling, then

P M]:B = MI:B
< P Mp= MpbaB
g P UV VUL g,
1:N _ l:N
(%) P 4 7 A" bgB
< P AN = APN|ES nE; + P[E4, BE)]
bEB
g) P A"K = AMK|EC nEC

bl bEBbLI A b

aL '
KLéxk+ 2In22LKéx + P

(@ P[EAb] + PlEp] <

AN = 4N b+1 b+1
bEB
(e) vV o
< (KL6k + 21In2 2LKG6k)(B- b+ 1)
bRB v
=(KLék+ 2In2 2LK6k)B(B+ 1)/2, (7)

where (a) holds by Line 7 in Algorithm 4, (b) holds by
Line 6 in Algorithm 4, (c) holds by the union bound, (d)
holds because P AMK = AlKlEC nES < Kég

b
by (I)Vand because P[E4] = V(pleAlN,qYl NAIN)
2In2 2LKéx by Lemma 1 and Plnskers 1nequa11ty,

(e) holds by induction.

C. Pre-Shared Key Rate

The coding scheme described in Algorithms 3 and 4 invo-
lves a one-time pad to securely transmit (}2'SC(Ab1;K))[L,bB,

and (f] SC(4 }glf ))iaL, which requires a pre-shared key with
length lotp, LB|Hu|y\Vu|y|+ L|Vyy| and rate

lorp _ [Huiyl- Vol - [Vurrl
NB ~ K KB
[Huiy |- [Vuy| 1
S ——x ——*+ 73
= 6(K)+ 1/B,
where §(K ) is such that limgse 6(K) = 0 since limg e
|[Huiy|/K = H(U|Y) [36], and limkse |VUiy|/K =

H(U|Y)[30], [41].

D. Blockwise Security Analysis

We prove in this section that security holds in each block
b B B individually. We use a series of lemmas to obtain this
result and determine acceptable values for the parameter r
defined in (6). For (X, Z) distributed according to pxz,
defined over the finite alphabet X x Z, recall that the -smooth
min-entropy of X given Z is defined as [27]

pz(z)
max min  minlog ————;
VXZ(X,Z)

Ho(pxzlpz),
pxzlp rxzBB (pxz)z@Supplpz) xBX

where Supp(pz) , {z B Z : pz(z) > 0} and B(pxz) ,
{rxz : X xZ - [0,1]) : V(pxz,rxz) < }. We will also
need the following version of the leftover hash lemma.

Lemma 2 [27]: Let T and Z be distributed according to pr
7z over T x Z. Consider F : R x {0, 1} > {0, 1}, where the
first input, denoted by R, is uniformly distributed over R to
indicate that F is chosen uniformly at random in a family
of two-universal hash functions. Then, for any & [0, 1],

v 00000
V(PF(R,T),R,z, PUPURPZ) S 2+ 2r~Helpr2Ipz), (8)

where pu, and pu, are the uniform distribution over {0, 1}
and R, respectively.

We now would like to use Lemma 2 to make (MbkM%)
almost independent from the eavesdropper channel obser-
vations. However, in the encoding scheme described in
Algorithm 3, (MbkM% ) is not defined as the output of a
two-universal hash function as required in Lemma 2. To over-
come this challenge, we show in the following lemma that
the distribution p induced by the encoder in Algorithm 3
also describes a process for which (MbkM0 ) is defined as

(MpkMO) UH(Tl WulL 1) where 7 is dofined in (6). For
convenience, we wrlte in the following F(Rp, T 1|VUlL)

UH(T1 |VU|L I”)

RLem?na 3: Fix b @ B. To simplify notation, we write T,
instead of T1 lvu 1L , Zp(s) instead of Z1 N(s), Xp instead of
Xl N and Zb(s) znstead of ZIN(S) We also define M, ,
(MbkMg) such that Tp , }g_l (MpkR,9. Next, define

’

)

with qr, the uniform distribution over {0, 1yvolL, q R, the
uniform distribution over R, and By, Btp, Brs, q g

(mp|ty, ry), A{mp= F(rp, tp)}. Then, we have

9,1, X, Zy(s)Ry + P X% Zo(s)1 59 B9 R W17 ,Ry»

Pin T, x,Zy(s)Ry = 4 MyTyXp Zp(s) Ry
Proof: See Appendix B. |

Let A, @J1, NK such that |A |3 aN and con-
sider X}*N[Ap], the aN symbols that the eavesdropper has
chosen to have access to in Block b B. We study, by
combining Lemmas 2, 3, the independence between (R,
ZI:N(sg, XUN1Ap]), ie., all the knowledge at the eaves-
dropper in Block » @ B, and (MpkM ) as follows.

Lemma 4: Fix b B B. We adopt the same notation as in
Lemma 3 and also write Xp[Ap] instead of X]b:N[Ab] for
convenience. We have for any y B]0, 1|

- Z -
V(prRb b(S)Xb[Ab]’ prprZb(S)Xb[Ab])

< 21-LY 4 r=H(Ty| Zs(s) Xp[Ap])+NS((K, L)

(10)
v___
where §(V(K, L), (K~'+ 1) 2LV-T.
Proof: See Appendix C. |
Next, using Lemma 1, we lower bound the conditional
entropy in (10) in the following lemma.
Lemma 5: Fix b B B. We adopt the same notation as in
Lemmas 3, 4. We have
H Tp| Zp(s)Xp[Ab]

> N[(1- a)H(U|Z(s)) + aH(U|X)- 6§ (K, L),
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v \Y
with 5(2)4](, L), 2 2In?2 ZNSK(log(lX|2maxsS |Z, 1) -
N-'log( 2In2" ZNbox))+N-'Hp(Nb6k )+ N6k +o(1), and
Hy(-) the binary entropy.

Proof: See Appendix D. [ ]
By combing Lemma 4 and Lemma 5 we obtain the follow-
ing result.

Lemma 6: Fix b @ B. We adopt the same notation as in
Lemma 5. We have for any y B]0, 1]

- A -
V(prRb b(S)Xb[A;,]IprpRth(S)Xb[Ab])
< ol-LV 2r—N[(1—a)H(U|Z(s))+o(H(U|X)—6(3)(K,L)],

where §G/(K, L), §()(K, L)+ §*(K, L), with §(V(K, L)

defined in Lemma 4 and §'* (L, K) defined in Lemma 5.
Finally, we obtain security in a given block as follows.
Lemma 7: Fix bR B and & > 0. We choose

r, N (1-a)min H(U|Z(s))+aH(U| X)-6C)(K, L)-€

sBS
with §)(K, L) defined in Lemma 6. Then, for L large enough
I MyM®; Zp(s)Xp[Ap] Ry < 6(K, L, €),

b v N
where 541K, 1,€), (217 + " TVE)log
Proof: We adopt the same notation as in the previous
lemmas. By definition of » and by Lemma 6, we have

2-NE,
an

1-LY
V(P Ry 7y () X 1Ap 1> PMyP Ry Z(5) X3 [Ap1) S 2 +

We thus have

I(MbMéEZb(S)Xb[Ab]Rb)
= I(Mp; Zb(s)Xb[Ab]Rb)

(a)

= f(v(prRhZ},(s)Xb[Ab]'prpRth(S)Xb[Ab]))

h [

¢ e ), (12)

where (a) holds by [42, Lemma 2.7] with f X =

x log(2" /x), (b) holds for L large enough since f is increas-
ing for small enough values. [ ]

E. Analysis of Security Over All Blocks Jointly

We obtain security over all blocks jointly from Lemma 7
as follows.
Lemma 8: For convenience, we define for i, B,

Zvils) » (Z)N(s)pmnice X1:6lAD , (XEN AR e, ik
Ri:j , (Rb)payi jx, and Mi:j , (Mbp)payi, jx- We have

max max I (M1:5; Z1:5(s)X1:8[A1R1:8) < 2BS™(L, K, §),
sBS ABA

where 6(*(L, K, €) is defined in Lemma 7.

Proof:  For convenience, define for i B, L; ,
(Zi(s), Xi[Ail, Ri) and L1, (Z1:(s), X1:i[A], Ri:i). Then,
B-1
I(Mi.g; Li:8) = I(MI:B}LHllLl:[)
i=0
B-1
(@)

I(Mi.is1; Lis1| L)
i=0

B-1

< I(Mis1Lii; Liv1) i=0
B-1

= I(Mi+1; Li+1)
i=0

+I(My:iL1i; Liv1 | Mis1)

(b)
< BS(K, L€
B-1
+ I(M1:i M, I1:i; List Miv1) i=0

B-1

© sk, L,¢€)+ I(M2,\; Livi Mis1)
i=0
B-1

d

WpsKk, L&)+  I(M; Lisi| Mis1)
i=0
B-1

< B6W(K,L,€)+  I(MiuiMC; List)
i=0

< 2BsK, L, €), (13)

where (a) holds by the chain rule and since we have
I(Mis2:8; List|L1:i Mi:is1) € 1(Mis2:8; Li:iv1 M1:is1) = 0,
(b) holds by Lemma 7, (¢) holds by the chain rule and because
(M., L1:i) - ]\ﬁl - (Li+1, Mi+1) forms a Markov chain,
(d) holds by independence between M and M;+1, (e) holds
by Lemma 7. The lemma holds since (ﬁ) holds for any s @ S

and any A @ A. -

F. Secrecy Rate
The rate of the transmitted messages is

pe8 | Mol (a) ¥+ (B - 1)(r-L|Vu|rl)

BN BN
Vol
° N K

@) [(U;Y)- al(U; X) - (1 - a)maxI (U; Z(s))
6K, L) - £+ of1), e

where (a) holds by (6), (b) holds by the choice of r in
Lemma 7 and because lim |Vy|y|/K = H(U|Y) by [41].
K >oo

G. Randomness Amortization

The randomness (Rp)i:3  in the coding scheme of
Section V-C needs to be shared between the legitimate users.
This can be done with negligible impact on the overall
communication rate similar to [16] using an hybrid argument
by repeating the coding scheme of Section V-C with the same
randomness (Rp)1:B.

VII. PROOF OF THEOREM 7 WITHOUT PRE-SHARED KEY

The coding scheme of Section V-C requires a pre-shared
secret key between the legitimate users. We now consider the
initialization phase, described in Algorithms 1, 2, to generate
such a key with negligible impact on the overall communi-
cation rate. We study the reliability and the secrecy of the
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generated key in Sections VII-A and VII-B, respectively, the
impact of the initialization phase on the overall communication
rate in Section VII-C, and the joint secrecy of the initialization
phase and the coding scheme of Section V-C in Section VII-D.
We adopt the same notation as in Section VI.

A. Key Reliability

Similar to Lemma 1, we have the following result.
Lemma 9: For b B By, the distribution p induced by the
encoder of Algorithm 1 is approximated as follows.

D(qyuv xt:nyin z1n () kp Ui:NXIb:Nylb:NZIb:N(S)) < 2LKék.
Then, we have
P (Key,)oes, = (Key,)ses,

P[(U%;N)bso = (U )oes,]
BoL( 2In2 2Kékx + 2Kbk),

IN

IA

where the last inequality holds similar to (7).

B. Key Secrecy
We first show secrecy in a given Block b @B ; Let A ;B

J1, NK such that |Ap| = aN and consider Xbl:N[A;,], the aN

symbols that the eavesdropper has chosen to have access to in
Block b B Bo. Define pyy,, the uniform distribution over

{0, l}lﬁek We have

Key . . D
VD™, Ririt 2, ) X491 Dy RO PUkeyP Rigi 2y 15) 51851 5RO

P ini© | P

L —-H 0
@,y 2f<8y oo Ube(s}Xb[Ab]DbR " Zb(.v)Xb[Ab]Dme‘;

(S it [V
@) 2 . 2_LV + zlkey HU},|Z},(S) X},[Ab]DbR R +Nob (K,L)

(14

where (a) holds by Lemma 2, (b) holds by Lemma 14 with y

@]0, 1[ as in the proof of Lemma 4 with 6(1/(K, L) defined in
Lemma 4.

Lemma 10: For b & By, wehave
H Up| Zn(s) Xp[Ap] Dp R
> N[I(U;Y)-al(U; X)-(1-a)I(U; Z(s))-6/(K, L)),

v '
where 6(5‘),(1(, L),2 2In2 27V6K(log(|X|2maxsS |Z,|)-

N-llog(" 2In2" ZN3x)) + o(1).
Proof: We have

(

H Up| Zb(s) Xp[Ap] Dy R?"
= H Up|Zs(s) XplAb] - I DyRI;Up| Zo(s) X5[As]
> H Up|Zp(s) Xp[Ap] -L(|Hu v |+ |Huir\Vuirl)
&) H Up| Zb(s) Xp[As]-NH(U|Y) - o(KL)
S N1 = @) H(U|Z(s))+ NaH(U|X)-NH(U|Y)
- N6§CNK, L),

where (a) holds because limg > |Hy v |/K = H(U|Y) [36],
and limgse |Vuiy|/K = H(U|Y) [30], [41], (b) holds
similar to the proof of Lemma 5. ]

Next, we choose
ey » NU(U;Y)= al(U; X) - (1 - a)max! (U; Z(s))
- 8K, L)~ 8K, L) €]
with £ > 0. By (14) and Lemma 10, we obtain for b & By,

. . " s D
V(pKeyb RN Z,(5) X3 [Ap1 Dy RO PUxeyPRipit 7, (') X, A} mego)

<2.27LY 4+ 2-NE,

15)
Lemma 11: We have for L large enough
I Key”; Zo(s) X [Ap] Dy RMRIC < 6(4)(K, L, §),

log |Ks| - H(Key,) < §™(K, L, ),

with Ky , {0, l}llgey and (K, L, €) defined in Lemma 7.
Proof: The first inequality holds as the proof of Lemma 7

by using (15) in place of (11). The second inequality holds

by [42, Lemma 2.7] and (15). [ |

By mutual independence of all the By blocks of the initial-
ization phase, we obtain from Lemma 11 the following result.

Lemma 12: Define Key , (Key,)png, and K Kfo.
Let Z"™Y(s) denote all the knowledge of the eavesdropper
related to the initialization phase, i.e., Zinit(g) (Zy(s),
X»[As], Db, Rigit, Riréit}bgo. Then, for K large enough

maxmax [ Key; Z"Y(s) < B§™(K, L,¢),
sBS ABA

log |K| - H(Key) < Bo6™(K, L, &).

C. Impact of the Initialization Phase on the Overall
Communication Rate

The initialization phase requires pNBo channel uses, for
some fixed p @ N, to generate the secret key and transmit
(Dp, R;}“it, R;“i“);,go. We choose By such that

loTp
ZD ’
key

Bo =

where lotp = o(NB) represents the key length necessary to
perform the one-time pad that appears in Algorithms 1, 2.
Hence, the impact of the initialization phase on the overall
communication is

pNBy < pN 1+ lom

lkey

- HO(NB) _
P lkey/N

o(NB). (16)

We deduce from (16) that the communication rate of the
coding scheme of Section V-C and the initialization phase
(considered jointly) is the same as the communication rate of
the coding scheme of Section V-C alone.

D. Security of Algorithms 3, 4 and the Initialization Phase
When Considered Jointly

Let Motp be the sequence that needs to be secretly transmit-
ted with a one-time pad in Algorithm 3. Let C, Morp@Key be
the encrypted version of Mortp using Key, obtained in the
initialization phase. Let Zg(s) , (Z1.p(s), X1.8[A]l, R1:B)
denote all the observations of the eavesdropper related to the
coding scheme of Section V-C, excluding C. Let ZMit(s),
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defined as in Lemma 12, denote all the observations of the

eavesdropper related to the initialization phase. The following

lemma shows that strong secrecy holds for the coding scheme

of Section V-C and the initialization phase considered jointly.
Lemma 13: We have

max I (Mi.p; CZg(s)Z™(s)) < 2(B+Bo)§(K, L, §),
sAS ,ABA

where §(*)(K, L, §) is defined in Lemma 7.
Proof: We have

I(M:5; CZg(s)Z™(s))

W 1 (My.3; Zg(s)) + I(Mi.5; C| Zg(s)Z™(s))
I(My.5; Zg(s)) + I1(My.p Zg(s)Z™"(s); C)
I(My.g; Zg(s)) + 1(C; Mi:3Zp(s))

+ 1(C; Z™(s)| M8 Zs(s)),

IN

an

where (a) holds by the chain rule and because /(Mji.g;
Zmito)| Zg(s)) < I(Mi.g Zg(s); Z™(s)) = 0. Next, we have

I1(C; Mi:sgfs))
log |K] -
log K| -
log [K] -
log K| -

7N

H(ClMl:BZ(S))

H (Key B Motp | Mot M1:88%s))
H(Key| Mot M1:8Zg(s))
H(Key).

1 IA

(18)
We also have
1(C; Z™Ys)| M.5 &(s))

< I(CMotp; Z™(s)| M1.s &s)) =

I(KeyMote; Z™(s)| M1.5g(s2)

&) 1 (Key; Z™(s)| MoTe M. &(s))

< I(KeyMoteMi:ag(s); Z™(s))

(=C) I(KCy; Zinit(S)), (19)

where (b) holds by the chain rule and because I(M ypp;
Zmit(s)|Mi.sg(s)) < I(MoreMi.gg(%); Z™(s)) = 0,

(c) holds by the chain rule and because I(MOTPMl BZB (s);
Znit(s)|Key) < I(MorpMi:ss(s); Z™(s)Key)=0. By co-
mbining (17), (18), and (19), we obtain I(Ml_ CZB (s)

Znit(s)) < I(Mi.; Zg(s)) + I(Key; ZMi'(s)) + log |K| -
H(Key). Finally, we obtain the lemma with Lemmas 8 and 12.

[ |
VIII. PROOF OF THEOREM 8

We assume in the following that there exists a best channel
for the eavesdropper [23], i.e., Bs? @S, Bs @S, X - Z(s?)-
Z(s). Similar to the proof of Theorem 7, we proceed in two
steps. We first ignore the initialization phase and assume that
the legitimate users have access to a secret key to perform the
one-time pad in Algorithms 3, 4. We only show blockwise
security as the remainder of the proof is similar to the proofin
Section VI. We also omit the second step that consists in
analyzing the initialization phase jointly with Algorithms 3, 4,
as it is similar to the analysis in Section VII.

127

A. Blockwise Security Analysis

We adopt the same notation as in Section VI. We have the
following inequality, whose proof is identical to the proof of
Lemma 1. For b @ B, we have

D(qyv xt:ny1in z1:N 5, kP UL:NXII;NY};NZII;N(SZ;)) < 2Nék,

(20)

vazl}%ez(s‘jfﬁ quexe[ defined | gy YWading )(20) in place

of Lemma 1, we have for any y @]0, 1]

V(p My Ry Zp (s6) Xp [Ap)? P W PRy Zy(s5) Xp[Ap1)

< ol-LV L 5 ZF—H(T};|Zb(sb)Xb[Ah])+N5(U(K,L)I

e2y)

where 6(1(K, L) is defined in Lemma 4. We then have
HTb|Zb(Sb)Xb[Ab]

S H (U1 Zo(sp)Xo1Ab]) -N6P/ (K, L)
> H Up| Zb(s®)Zb(s5) Xp[As] ~-N6® (K, L)
&) HUp| Zp(s®) Xp[As]-N6P/ (K, L)

© Na - a)H(U|Z(s%) + NaH(U|X)-N6™(K, L),
(22)

where (a) holds as in the proof of Lemma 5 with 6(2/(K, L)
defined in Lemma 5, (b) holds because (Up, Xp) = Zp(s®) -

Zp(sp) forms a Markov chain, (¢) holds as in the proof of
Lemma 5. Finally, from (21) and (22), we can conclude as

in Section VI-D that blockwise security holds.

IX. EXTENSION TO UNCERTAINTY
ON THE MAIN CHANNEL

Assume now that uncertainty on the main channel also
holds according to a compound model, i.e., the channel of
Section III is now defined by the conditional probabilities
(Py(t)z(s)| x)sms, a1, Where T is a finite set. Assume also that
for all channel uses s @ S and ¢ @ T are fixed. We extend
Theorem 7 to this setting in Section IX-C using
new polar coding schemes for source coding with compound
side information and for compound channel coding described
in Sections IX-A and IX-B, respectively.

A. Source Coding With Compound Side Information

[43] provides a polar coding scheme with optimal rate
for lossless source coding with compound side information.
However, for our purposes, we modify the coding scheme
in [43] to ensure near uniformity of the encoder output.

Consider a compound source (U x Y;);ms, (pij. )jws s
where U , {0,1} and J , J1,JK Let (¢;);p N with
o, 1 and define for j & J , T} , I ¢ and
N, , NT;, where N is a power of two. Consider for

]
j By, U,y (UEN, (Y))1N) 011 7 g distributed

accordmg to the p/roduct d1str1but10n Py JYI N, . For jo@J,

1:N
we also use the notat1on Y f = (Y

jOt Ka ] .J2 JK
to indicate that Y i is made of t; blocks of length N;-i.

)zlJl
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Define for t BJ1, TyK, AII:N , Ui‘NGN and for 6y, 2°V°,
8 @]0, 1/2[, and j @J define the sets

v, ., iBll, NK: H(A |1A1”"1)> -6,
Huly, , iBJ1, NK: H(A | A% (Y;)"N) > 6n, vy,

, QB NK:H(AilA”‘]l(Yl,-)“N)> 11— 6N
11 1

We also use the notation Ui (U}:N"l)tjllf K J

12, JK, to indicate that UV is made of t; blocks of length
Nj-1. The encoding is described in Algorithm 5. By the
successive cancellation decoder for polar source coding with
side information [36], Decoder 1 with [e//(U"M ), E9] =
AVNIH Iy ] and YN can compute a good estimate Ul

of pi¥! 'Now, assume that when L n,J - 1K Yor
any Decoder / B J1, LK, there is a function gl(“ such that
UII:NL , gVt ut:e), Ep, )GIZNL) is a good estimate of
UUNL, Then, Algorithms 6 and 7 show that any decoder
[@J1, L+ 1K can form a good estimate UIZ:N“' of Ul*Ni+1

from [e(2+1)(U1iNi1), O, y Vet

The encoding and decoding algorithms for source cod-ing
with  compound side information are described in
Algorithms 5, 6, 7, and yield the following result.

Theorem 9: The algorithms 5, 6, 7 perform source cod-ing

with compound side information on sequences with
length Ty N with optimal rate max gy H(U|Y;) and encod-
ing/decoding complexity TyN O(log N).

Note that the encoding is different than in [43] as the
encoder output is split into £ and E°, however, the decoder is
equivalent to the one in [43]. Consequently, the probability of
error in the reconstruction of the source asymptotically
vanishes by [43]. Additionally, remark that the rate of EPis
negligible compared to N, because for any J,
|Huiy\Vuiy;| = |Huiy, | = [Vuy,| = o(N) by [36] and
[29, Lemma 7]. Hence, the coding scheme rate is the same
as in [43] but now can also be used to ensure a near uniform
encoder output by one-time padding E° with a sequence of |E°|
uniformly distributed bits shared by the encoder and decoder.
Note that it generalizes the polar coding schemes for source
coding with nearly uniform output [44] in [37] and [45].

B. Compound Channel Coding From Source Coding

We now propose a capacity-achieving compound channel
coding scheme from source coding with compound side infor-
mation via a technique similar to the one in [26] used to obtain
channel coding from source coding with side information.

Consider a compound channel X, (py;|x);us, (Y;) s »
where X , {0,1} and J , J1, JK Consider an arbitrary
distribution px on X and define for j & J , PXY; . PXPY,|X.
Consider for j B/ , (X", Y/,liN ) distributed according to the

product distribution pyi.vyiv. Define VEV XN Gy and
]

for 6w , 2‘N6, 8 210, 1/2[, and j @J , define the sets
Vy, B, NK:HV V) > 1- 6y,

Hx|y, , i8I, NK: HVI VY EN) > 6y

Algorithm 5 Encoding

Require: Assume that the sequence to compress is U/
1: Define the function e(! : UM > ANV y ]
2:for j= 1toJ-1do

32 Define fU): UM > (47N Vv, Do, 7

4:  Define the function e/*!) which maps U'Ni+1 to

. 1:N; : 1:N; : 1:N;
/U™ ), (U, )BT Diest -1k f
M,
j+1

(if the two sequences have different lengths, then the
shorter sequence is padded with zeros)
5: end for
6: Define E, e//(UN)
7: For j @J , define EO/,, (AN [Hu v \Vury, D, 7 x> and
E°, (Ec}) JB -
8: return (E, EY)

Algorithm 6 Decoder jo @J1, LK
Require: (E, E%) and Y;O:NL”
1:N, L 1:N, 1:N,
1: Form (.]/O/IL , gi-o)(e(L)(U1 L), E(}O, on,lL)’ where
e(L)(U%'NL) is obtained from e(L*1)(U1:Ni+1)
2: for Block ¢ = 2 to Block t = ¢;,1 do

3 Form UN: gty m st
I:N

(L INL ( 4:
0
) : L
(Mf,t-I{{NE./o’ Y./‘oJ ) N
end f ’ ’
. L+1 L .
5: return Ujo , (Ujo/[ )imt, e, ks, an estimate of
LfliNru

Algorithm 7 Decoder L + 1

Require: (E, E°) and Yz:ﬁ“l
1: With the successive cancellation decoder for source coding

with side information [36], form U L; l,L,“ , from

SO, B, Y

L
L+l L+, 14
2: for Block ¢ = ¢, , - 1to Block 7= 1do
3:  Form an estimate f(L)(U}:NL) of f(L)(Ui:NL) with

Mt

1:N, 1:N, 1:N
P et wtiitymet ot L
4:  With the successive cancellation decoder for source

coding with side information [36], form U\ from

FIUEN), B Y
5: end for
1:Nz+1

) 1:NL
6: return U, (UL )i, ek

Vxiy, , i BIL NK: H(VI [Py i) > 1 - gy
I
Let (tj) oy N’ with #1 , 1 and define forj@J,T;,
ij: ti and N; , NT;. We use the same notation
as in Section IX-A. Let |E| be the length of the output £ in
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the encoder of source coding with compound side information
described in Algorithm 5. By Euclidean division, there exist g
N and » B J1, Ty - 1K such that |E| = Tyq + r. For¢
J1, 7K, consider an arbitrary set A; B Vx such that |A/| = ¢
+ 1, and, for t @ Jr + 1, T/K, consider an arbltrary set A; @ Vx
such that |A;| = ¢. Hence, 20 1AL = |E).
The encoding and decoding algorithms for compound chan-nel
coding are described in Algorithms 8 and 9, and yield the

following result, whose proof is similar to [46]. Note that
other capacity-achieving polar coding schemes had also been
proposed for compound symmetric channels in [25] and [31].
Theorem 10: Algorithms 8 and 9 perform compound chan-nel

coding over B blocks of length T;N with optimal
rate maxp, min ;g I(X;Y;) and encoding/decoding com-
plexity O(BT N log N).

Algorithm 8 Encoder

Require: Eo , (Eo,)imn,7 x> Where Eos, ¢ BJ1, T/K, is a
sequence of |A;| uniformly distributed bits (local random-
ness). Messages (Mb,t)pm)1, BK 21,7 » Where Mp:, b
J1, BK,t B J1, TyK, is a sequence of |Vx\A/| uniformly
distributed bits

1: for Block b= 1 to Block b= B do

for Sub-block # = 1 to Sub-block t = T, do

. I:N : N
3: Define Vb/t according to jzlpVJthl/ 1 with

»

1:j-1
pVJIVl/l(Vb[IVJ )
gl{vb/t = M/} if j B Vx\A
, _Uvj, = Ef ) if jAA,
E pyipm vy, Vi) i j B VS
Send Xlljiv ,
end for
Define (Ep, E%) as the output of the encoder described
in Algorithm 5 (for the compound source (pxy ) ms)
I:N, :
applied to X"/, (le;],v)tu,rx
7. Break down Eb into Ty sequences (Eb,t)my1, 1 x> Such
that | Ep:| = |Asl, t BJ1, T/K.
8: end for
9: Do a one-time pad with (Eg)b“IBK and Ep to ensure
uniformity (similar to Algorithm 3) and send it to the
receiver via channel codes [39] for each py;|x, j BJ

A

Vb1 :tN G over the channel.

Remark 5:
with respect to j & J

We do not write the dependence of the estimates
in Algorithm 9 to simplify notation.

C. Extension to Compound Uncertainty on the Main Channel

Using the preliminary results of Section IX-A and IX-B,
an immediate extension of Theorem 7 is as follows.

Theorem 11: Assume that in the coding scheme of Section V
the primitive source coding with side information is replaced
by source coding with compound side information from
Section IX-A. Assume also that instead of channel coding in
Lines 10 and 15 of Algorithm 1 and 3, respectively, we
use compound channel coding from Section IX-B. Then,
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Algorithm 9 Decoder j @J

Require: Channel output

y1BNI estimate Ep of Ep, and

estimate (E9)yay1, gk of (E9 bR, B
1: for Block b = B'to Block b = 1 do
2: Use (E, EO) with Decoder j in Algorithms 6, 7 to

create an estimate Xl N (XY )i, 7y of Xl N

(Xb,t )ZEJI,TJK'

3:  for Sub-block 7 = 1 to Sub-block t = T, do

4 Form an estimate VgtN, X1 NGy of V1 N

5: Form an estimate M;,t , v K’[VX\A,] of Mp,;
6 Form an estimate Ep-1,;, V' N[A/] of Ep-1,
7:  end for b
8: Form Ep-1, (Eb_l,;),”,”( an estimate of Ep-1
9: end for

10: return (Mp,:)paB,ieu1, 7K

the following secrecy rate is achieved

max min/(U; Y(t))-al(U; X)-(1-a)max (U, Z(s))+
T SES

where the maximum is over random variables U such that
Br@T,Bs @S, U-X - (Y(t), Z(s)), and |U| < |X|.

X. CONCLUDING REMARKS

We constructed explicit wiretap codes that achieve the best
known single-letter achievable rates, previously obtained non-
constructively, when uncertainty holds on the eavesdropper
channel under a (i) noisy blockwise type II, (ii) compound, or
(iii) arbitrarily varying model. Our construction solely relies
on three primitives: source coding with side information,
universal hashing, and distribution approximation. We also
extended our result to the case where uncertainty holds on
the legitimate user channel under a compound model. This
extension can thus be applied to the problem of secret sharing
from correlated randomness. Specifically, it can directly be
applied to the case of a discrete channel model as in [47,
Section II], and adapted to the case of a discrete source model
with a single dealer, as in [48] and [49], for arbitrary access
structures. The case of Gaussian channels or sources, e.g., [47]
and [50], is, however, more challenging as quantization may
be needed. The case of rate-limited communication for source
models is also more challenging as vector quantization is
needed and requires other proof techniques [51].

We anticipate that our code construction can be generalized
to the broadcast channel with confidential messages and the
multiple access wiretap channel when uncertainty holds on
the eavesdropper’s channel according to a compound model,
using a distributed version of the leftover hash lemma akin to
[52]. Such results would generalize known constructions
based on polar codes, e.g., [11], [29], and [53], that require a
seed for strong secrecy and assume perfect knowledge of the
eavesdropper’s channel statistics. An open problem is to pro-
vide explicit coding schemes to handle an arbitrarily varying
main channel as, for instance, in the models in [23], [24], [54],
and [55].
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APPENDIX A PROOF OF LEMMA 1
Let @B and / @ L. By (3), we have

D(qu:KkpAIb:[[() < Kék, (23)

we can indeed apply (3) because the bits 4'X[vy] are
uniformly distributed, which is a consequence of fhie definition
of A1 K[vy] in Line 7 of Algorithm 3 using the fact that the
bits T WUIL — - p=1 g kMP® kR® ) are uniformly distributed

since the bits (Mb kM0 kR0 ) are lfmformly distributed. Next,
we have

D(q 1k yrxkp IKVIK)
bl bl

@ Eq 1.6 Dlgy: KlUIKka] KlUlK) + D(qyrxkp Ui K)

@ Eg1.x DIqyx !l yrxkp ;ll<|U]K)+ Kéxk

bl

(c)

< 2 Kbk, 24)
where (a) holds by the chain rule for relative entropy [56],
(b) holds by (23) because D(q1:xkp 1d<) = D(q y:xkp 4 K) by
invertibility of Gk, (c) holds by (5). Tilen

D(q1:N xt:N y 1N 71:N S)kpUl:NXl:Nyl:NZI:N(S))

(a)
S D(q: KXlKleZIK(?)kpUlKXIblfylbgleK(S))
1Bl
(b)
= lL[D(qu:KXl:K kp U{bll(leli)
VA U
+ E[D(qyrk ™ vk () 1K xrk Kpylik 71k )1 0plik ik )]
e - -
= D(qyy1:x xr:xkp U})f{lell()
1AL
(d)

< 2Kbéx = 2LK 6k,
AL

where (a) holds because the random variables (UglK,

XK, YK, 2% (s)) across the different sub-blocks / Bl L are
by construction (see Algorithm 3 and

independent
Remark 3), (b) holds by the chain rule for rela-

tive entropy [56] and the expectation is over ¢ 15 1k
, (¢) holds becausel} IKZIK(SMUIKXIK = meZlK(S)lXuk =

qyl:K 7K (g)| x1:K = qle LK (5) | UK YUK (d) holds by (24)
because DHquleKkpUl}]KX})K) = D(qUIKVIKkpUIKV
by invertibility of Gk.

APPENDIX B PROOF OF LEMMA 3

For any (mp, tp, xb, zb(s), r»), we have
P ity Ty X Zo (s) Ry (05 T, Xb, Z0(5), 7b)

(a) ]

L s zois) 1y (X0, 25(5) | 1) a7, (0 B) P R 5 ()
x 0 PRo(r)p 110 ity ry (16175, 105, T)

b _ _

L) b v zy(s)1 10, 26(5) 1 16)27 [R] ™!

Uep=r}," (i krg )}

o=y (kg )y

I 2-r+lVylL

= DXy Zois)| (X6 2(s) | 16)27 1V 1 E | R
X0 Urp ty = (mpkry)}

X
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€ sy zois) 168, 20(5) 1 16)27 1V VLRIV AL F (1, 1) = 1}

(d) .
=4 ity 1 x5 2o (s) Ry (s T, X1, Z6(S), 1),

where (a) holds because Pl XZRy = PXyZp\T°P 3 PRy D
M, R and R, Cis 1ndependent of (Mp, Rp), (b) holds by

unlforrnlty of Mp, Rp, R¢, and by definition of 7p, (c) holds
because (F(rp, tp) = mbfy H=> (o l{ry th= (mp, 1 )¥=1)

(because E° @ 2 {0, 1HVUlL=-r quch tflat rp tp = (1 pkr©)) and
(F(rb, tv) = 1ih) H=> ( o Lrp 1= (mprg} =),
(d) holds by definition of . > b

APPENDIX C PROOF OF LEMMA 4
We have

V(prRbe(s)Xh[Ab]' PM,,PRbe(s)Xb[Ab])

()
2 NG F (R, Ty) Ry Z5(5) X A8) 4 1,0 B 3(5)X51A5)

@ 2+ ol ~He prZb(S)Xb[Ab] |pzb(S)Xb[Ab]

() 5 p-LY o or-H(Ty| Zyls) X,[Ap))+LEON(K, L) <
ar27t’ +

=T XFTAT RN RS T
2Tt F T TR TAT ) KT,

where (a) holds by Lemma 3 and the definition of ¢, (b)
holds by Lemmas 2 and 3, (¢) holds by Lemma 14 below,
which can ianed be applied by Remark 4, with , 27%",
80Nk, L), ~ 2LV-Tlqg(2!Vvl+ 3), (d) holds by choosing
sk, L), (K-'+ 1) 20VT > 6(0)(K L)/K.

Lemma 14 [57] : Let pyL . , px,z, be a prob-
ability distribution over X L x Z L. IJ”V any § > 0,

H (pyLzilpz) > H(XL|ZL) - L6, where
L62
27 2logZ(IX1+3) .
Remark 6: An argument similar to [58, Lemma 10] to lower
bound the min-entropy would require adding an extra round of

reconciliation to the coding scheme as in [59]. Lemma 14
appears to be a simpler alternative here.

APPENDIX D PROOF OF LEMMA 5
We first introduce some notation for convenience. Define
for any | @ J1, KK, Ap[1] , (AYK[I]);sr and Ap ,

(Abl ). For b B B, consider (U{;}f, leli, Zlbf(s))/m

distributed according to uIN NN ) i=1 QU XZ(s)
and define for / @ L, Abl , UblKGK Next, define
for any |/ J1, KK, Ap[l] , (Ab, [11)iar and
Ap (4% ). Define Us[Ap] ,  (U)i%[Ab11)iaL,
UblAgl , (ULKTAS Do, Us , (UFE Jise, XblAb]
(X)FTA, 1 )ime,  XolAS, (XERTAS Do, X,
(XEK )i, Zo(s)Ab) . (ZJK (s)[Abi)iacs Zb(s)IAg])
(ZYEE(s)AE Diees Zo(s), (ZJK(s))iac. Then, we have

H(Ap[VUll Zb(s)Xb[Ab]) = H(As[VU]| Zb(s)Xb[Ab])
= H(Ap[VUlZb(s)Xb[Ab]) - H(As[VUlZb(s)Xb[Ab])
+ H(Zp(s)Xb[Ab]) - H(Zb(s)Xb[Ab])

N s cra L 2
2 2In22L x log v
21n§ 3LK5K
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v
> -2 ZWLWKlog(lxlzmaxlz 1),
sBS

v
- log( 2In2 2LKék)), -6, (25)

where the first inequality holds by [42, Lemma 2.7]

applied  twice  because for N  large  gpough,
V(G 4,1V Zy(5) X [A 1 P A IV Zy(5) X [Ab]) < 2In2
v Pl44,1vi12,(5)X, 18,1 KP 44 1V1 2, (5) X5 [An1) <

2In2 D(quzNXLNyl:NZl:N(S)kpUbl;NXl}:NYl}:NZl::N(S)) <

v W2 2LKb8x where we have used Pinsker’s inequality,
the chain rule for divergence, positivity of the divergence,
and Lemma 1. Then, we have

H Ty | Zp(s)Xp[Ab]

Wy Ap[VUll Zb(s)Xb[Ab]

S 1 (Alvil| Zo(s) X 1As)) - 6°
H (Ap[Hull Zb(s)Xb[Ab])

- H (Ap[Hu\VUll 4s[VU]1Z(s)Xs[Ab]) - 67
> H(As[Hull Zb(s)Xs[Ab)) - L|HU\VU| - 67
© H (4b[HU| Zb(5) Xb[Ab]) - o(LK)~ &°
= H(Ap[HUlUs| Zp(s)Xp[Ab])

o H (Up| Ap[HU1Zb(s)Xb[Ab]) - o(LK) - §°

> H(Ap[HulUs| Zb(s)Xb[Ab])
- Hy(LK6k)- (LK)*6k - o(LK) - 6°
2 H(Up|Zp(s)Xp[As])
- Hy(LK6k)- (LK)*6k - o(LK) - 67
1 Us| Zb(s)IAS1 X6 1As)
- Hp(LK6k)- (LK)*6kx - o(LK)- 6%, (26)
where (a) holds by definition of Ax[Vu], (b) holds by (25),
(c) holds because limg s |Hu|/K = H(U) by [36], and
limgse |Vu|/K = H(U) by [30], [41], (d) holds by Fano’s
inequality since the error probability in the reconstruction of
Up from Ap[Hu] is upper-bounded by LKk by the result
for source coding with side information from [36],
reviewed in (1), and the union bound, (e) holds because

Ub=(Zp(s)[AS], Xp[Ab])-Zb(s)[Ap] forms a Markov chain.
Next, we have

H(Up| Zs(s)[A;1 X5 [Ab])
= H(Ub[AS]| Zo(s)IAS1Xb[AB])
+ H(Us[Ap]| Up[A;1Z(s)AL1 X5 [Ab])
© H (UL IAL1| Zb(s)1AS])
+ H(Up[Ap] Xb[Ab]| Us[AL1Zb(s)[A%])
- H(Xp[Ap]| Up[A51Zs(s)[A5])
© H(ULAS | Zb(s)IAS) + H(Us[Ap] X5[Ab])
-H(Xp[As])

= H(Up[A®11 Zo(s)IAs)) + H(Ub[Ab]| X5[As])

) N(1 - a)H(U | Z(s) + NaH(U|X),

where (a) holds because Xp[Ap] is independent of
(UblAS], Zb(s)[A5]), (b) holds because (Up[Ap], X»[Ab])

@7

is independent of (Ub[AZ], Zb(s)[A;;]) and Xp[Ap] is
independent of(Us[A§], Zs(s)[Ag]), (c) holds because

qul:N xI:N l:N{S) = l]'V=1 quxZ(s)- We obtain the lemma
from (26) and (27).
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