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Abstract: This paper considers secure communication in the presence of an eavesdropper and a
malicious jammer. The jammer is assumed to be oblivious of the communication signals emitted by
the legitimate transmitter(s) but can employ any jamming strategy subject to a given power constraint
and shares her jamming signal with the eavesdropper. Four such models are considered: (i) the
Gaussian point-to-point wiretap channel; (ii) the Gaussian multiple-access wiretap channel; (iii) the
Gaussian broadcast wiretap channel; and (iv) the Gaussian symmetric interference wiretap channel.
The use of pre-shared randomness between the legitimate users is not allowed in our models. Inner
and outer bounds are derived for these four models. For (i), the secrecy capacity is obtained. For
(ii) and (iv) under a degraded setup, the optimal secrecy sum-rate is characterized. Finally, for
(iii), ranges of model parameter values for which the inner and outer bounds coincide are identified.

Keywords: Gaussian wiretap channel; Gaussian multiple-access wiretap channel; Gaussian broadcast
wiretap channel; jamming; secure communication

1. Introduction

Consider secure communication over wireless channels between legitimate parties in
the presence of an eavesdropper and a malicious jammer. The jammer is assumed to be
oblivious of the legitimate users’ communication but can employ any jamming strategy
subject to a given power constraint. Consequently, the main channel between the legitimate
users is arbitrarily varying [1]. Unlike most works that consider arbitrarily varying channels,
however, pre-shared randomness is not available to the legitimate users in our scenario.
Additionally, the jammer shares her jamming signal with the eavesdropper who can thus
perfectly cancel the effect of the jamming signal on her channel. In this paper, we study
the fundamental limits of secure communication rates in the presence of such a jammer-
aided eavesdropper over four Gaussian wiretap channel models: the Gaussian wiretap
channel [2], the Gaussian multiple-access wiretap channel [3], the Gaussian broadcast
wiretap channel [4], and the Gaussian symmetric interference wiretap channel.

1.1. Contributions
Our contributions are summarized as follows.

. For secure communication over Gaussian point-to-point, multiple-access, broadcast,
and symmetric interference wiretap channels in the presence of a jammer-aided
eavesdropper as described above, we determine inner and outer bounds on the secrecy
capacity region.

. We show that our bounds are tight for the point-to-point setting, tight for sum-rates
for the multiple-access and interference settings under degraded setups, and tight for
some ranges of model parameter values for the broadcast setting.
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Our main strategy to handle our multiuser settings is to reduce the problem to single-
user coding. Previous known techniques for such a reduction, such as rate-splitting [5] and
successive cancellation decoding [5] [Appendix C], that have been developed for multiple-
access settings without security constraints, do not easily apply to wiretap channel models.
These techniques consist in achieving the corner points of achievability regions that can be
described by polymatroids whose corner points have positive components. However, regions
described by polymatroids whose corner points have negative components, as in our wiretap
channel models, prevent the applications of these techniques. We overcome this roadblock
by proposing novel time-sharing strategies coupled with appropriate secret-key exchanges
between the legitimate users. As seen in the proofs of our results, eavesdropping and
arbitrary jamming are not easy to decouple in the secrecy analysis. In particular, the analysis
of the secrecy in our proposed model does not follow from a standard secrecy analysis in
the absence of jamming, as we need to consider (i) codewords uniformly distributed over
spheres, which we use to handle an arbitrarily varying main channel; and (ii) block-Markov
coding and specific time-sharing strategies (to allow the reduction of multiuser coding
to single-user coding) which create inter-dependencies between coding blocks. Note that
our achievability schemes also rely on point-to-point codes developed in [1]. One of the
benefits of reducing multiuser coding to point-to-point coding techniques is that despite
the fact that our setting involves multiple transmitters and an arbitrarily varying channel
between the legitimate users, pre-shared randomness among the legitimate users will not be
needed in our achievability schemes. Our strategy for the converse consists of reducing the
problem of determining a converse for our model to the problem of determining a converse
for a related model in the absence of a jammer.

1.2. Related Works

Related works that consider simultaneous eavesdropping and oblivious jamming
threats for the point-to-point discrete memoryless wiretap channel include [6-11]. The
proof techniques used in these references to obtain security, such as random binning
[12,13], resolvability/soft covering [10,14,15], or typicality arguments, are challenging to
apply to a Gaussian setting in the absence of shared randomness at the legitimate user.
Specifically, for the Gaussian point-to-point channel in the presence of an adversary
that arbitrarily jams [1], the only known coding mechanism to obtain reliability in the
absence of pre-shared randomness relies on codewords uniformly drawn on a unit
sphere [1], which are challenging to integrate with the above techniques to obtain
security because their components are not independent and identically distributed.

Another line of work [16] considers Gaussian channel models where the eavesdropper
channel can vary arbitrarily, but the main channel is not. The setting considered in the
present paper, where the main channel between the legitimate users is arbitrarily varying,
prevents the use of analyses similar to those in [16] for the same reasons described above.

Several other works have considered continuous channel models, including the Gaus-
sian MIMO wiretap channel [17], the Gaussian multiple-access wiretap channel [18], where
deviating users can be viewed as active adversary, and continuous point-to-point wire-
tap channels [19,20], where the adversary can choose between eavesdropping or jamming.
These references differ from the above-mentioned references on arbitrarily varying channels
as they assume a specific signaling strategy for the jammer.

Finally, note that for point-to-point channels, stronger jamming strategies that depend
on the signals of the legitimate transmitters have been studied in [21-23].

1.3. Organization of the Paper

The remainder of the paper is organized as follows. We describe the models in
Section 2. We present our results for the Gaussian point-to-point wiretap channel, the Gaus-
sian multiple-access wiretap channel, the Gaussian broadcast wiretap channel, and the
Gaussian symmetric interference wiretap channel in Sections 3-6, respectively. We discuss
in Section 4.2 a way to avoid, at least for some channel parameters, time-sharing for the
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multiple-access setting. We also discuss in Section 4.3 an extension of the multiple-access
setting to more than two transmitters. We detail the proofs for the multiple-access setting in
Sections 7 and 8. We end the paper with concluding remarks in Section 9.

2. Problem Statement
2.1. Notation

For a,b 2 R, define Ja,bK , [bac,dbe]\ N, ]a,b[, [a, blnfa, bg, ]la,b] , [a,b]lnfag,
and [a,b[, [a,blnfbg. The components of a vector, X", of size n 2 N, are denoted by
subscripts, i.e., X", (X1, X2,...,Xn). For x 2 R, define [x]", max(0, x). The notation
x |y describes a function that associates y to x when the domain and the image of

the function are clear from the context. The power set of a finite set S is denoted by 2°.
The convex hull of a set S is denoted by Conv(S). Unless specified otherwise, capital
letters designate random variables, whereas lowercase letters designate realizations of
associated random variables, e.g., x is a realization of the random variable X. For R 2 R4,

B'(‘)(R) denotes the ball of radius R centered in 0 in R" under the Euclidian norm.

2.2. Gaussian Multiuser Wiretap Channel in the Presence of a Jammer-Aided Eavesdropper

Consider the Gaussian memoryless wiretap channel model with two transmitters and
two legitimate receivers

v2, Parxn+ Pamoxn+ Paasn+ o, (1a)

Y2, Paaxt+ Pamxn+ Paast+ N, (1b)
p — p —

yALN h1Xg+ thg+ Ng, (1c)

where YI”, Y2n are the channel outputs observed by the legitimate receivers, and Z" is the
channel output observed by the eavesdropper. For | 2 f1,2g, XT is the signal emitted by

Transmitter | satisfying the power constraint kX“Ik2 , éiﬂl(xozi nG,, S" is an arbitrary

jamming sequence transmitted by the jammer that is oblivious of the communication of the
legitimate users and satisfies the power constraint kS"k? , a;ny SZi nL, and N" ,J\ll n ,J\;” are

sequences of independent and identically distributed Gaussian noise with variances s?, sf,
s%, rgspectively. The channel coefficients g11, 812, 813, €21, 822, 823, h1, hy are fixed and
known to all parties. Note that we assume that the jammer helps the eavesdropper by
sharing her jamming sequence, which allows the eavesdropper to perfectly cancel S" from

Z". Coding schemes and achievable rates are defined as follows.

Definition 1. Letn,k 2 N. A 2"Ri 2nR2 n k code Cy, consists, for each block j 2 J1, kK, of

(i) R )
. Two message sets M [ J1,2"% K 1 2 f1,2g;

. Two stochastic encoders, el(j) : M(Ij) I B P nG)), | 2 f1,2g;

. Two decoders,gl(j) :R" ! M(lj), | 2 f1,2g;

where for any | 2 f1,2g, R, = %éjkzl Rf”
transmitter| 2 f1, 2g encodes with e(lj) a uniformly distributed message M(jI 2 M (ji to a codeword of
length n, which is sent to the legitimate receiver over the channel described by Equation (1a),
Equation (1b), Equation (1c) with the power constraint n L for the jamming signal S". Note that
all the power constraints at the transmitters and the jammer hold for a given transmission block of

length n, which is relevant when the power constraints hold within any time window corresponding to

, and operates as follows. For each block j 2 J1, kK,
)

n channel uses. Then, the legitimate receiver | 2 f1, 2g forms an estimate l‘hl(j) , glm(YI”) of the

(i) . (i) (i) (i) (i) n
message M. We define M , I‘hl , Mz 2K M, M, M, 2k S, (SM) 2y

andS , f(SM) iz : kSTK? nL, 8i 2 J1, kKe.
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Definition 2. A rate pair (Ry, Ry) is achievable, if there exists a sequence of 2"R1,2nR2 n k
codes such that

lim supP[M = M] = 0 (reliability), (2a)
nt¥ grs
lim iH(MjZk") R, + R (equivocation). (2b)
nl¥ nk

2.3. Special Case 1: The Gaussian Wiretap Channel in the Presence of a Jammer-Aided Eavesdropper

Assume that the two transmitters are colocated and the two receivers are colocated in
Section 2.2. More specifically, as depicted in Figure 1, the channel model of Section 2.2 becomes

Yo, X"+ s+ N, (3a)
p
", hX" + N7, (3b)
where s2 = sZ = 1. We term this model as Gaussian Wiretap channel with Jammer-Aided

1 z
eavesdropper (Gaussian WT-JA in short form). Note that this model recovers as a special

case the Gaussian wiretap channel [2].

Nn
M \J,l (7
yr, o xneste Ny Pl
Encoder @ L >"Receiver !

Eavesdropper

Jammer /@ 70 Yhxn o+ N
d p
[

Figure 1. The Gaussian wiretap channel in the presence of a jammer-aided eavesdropper.

2.4. Special Case 2: The Gaussian Multiple-Access Wiretap Channel in the Presence of a
Jammer-Aided Eavesdropper

Assume that the two receivers are colocated in Section 2.2. More specifically, as de-
picted in Figure 2, the channel model of Section 2.2 becomes

Y", ;(’; + X5 +ps“+ NT, (4a)
Z", " hiXP+ o hoXD+ ND, (4b)
where s% = s% = 1. We term the model as Gaussian Multiple-Access Wiretap channel with

Jammer-Aided eavesdropper (Gaussian MAC-WT-JA in short form) with the parameters
(G1, Gy, hy, hy, L, 5%,5%). This model recovers as special cases the model in [24] in the
absence of the security constraint (2b), and the Gaussian multiple-access wiretap channel [3].

Note that the model in [24] was introduced to study the presence of selfish transmitters

via cooperative game theory, and that, similarly, the Gaussian MAC-WT-JA can be used to
study the presence of selfish transmitters via coalitional game theory [25].
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Y ‘J/ Yn, X7+ X5 +S"+ N7 S

|=H Y
n n n n
Z ; h1X1+ th2+NZ

( Encoder 2}
T

M2 Eavesdropper

Jammer

Figure 2. The Gaussian multiple-access wiretap channel in the presence of a jammer-aided eavesdropper.

2.5. Special Case 3: The Gaussian Broadcast Wiretap Channel in the Presence of a
Jammer-Aided Eavesdropper

Assume that the two transmitters are colocated in Section 2.2. More specifically,
as depicted in Figure 3, the channel model of Section 2.2 becomes

p

Yi, X"+ TgiSt+ NT, (5a)

vo, x"+ Pgsne N, (5b)
p

z", ~ hXx"+ NY, (5¢)

where s% = 1. We term the model as Gaussian Broadcast Wiretap channel with Jammer-

Aided eavesdropper (Gaussian BC-WT-JA in short form). Note that this model recovers as
special cases the multi-receiver wiretap channel [26] and the model in [27] in the absence of
the security constraint (2b).

p M
1”, X"+ §15”+ N;‘
Receiver 1
/P
2n , Xn + p§25n+ Nn _____/[\____‘

O—s>2", ThX"+ N

p
é g Eavesdropper

SIn

Figure 3. The Gaussian broadcast wiretap channel in the presence of a jammer-aided eavesdropper.

2.6. Special Case 4: The Gaussian Symmetric Interference Wiretap Channel in the Presence of a
Jammer-Aided Eavesdropper

Consider the following special case of the channel model of Section 2.2
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Y7, X7+ X5+ S"+ NT, (6a)

YD, X7+ X5+ S"+ NJ, (6b)
p— p—

", 1X7+  haXJ+ N7, (6¢c)

where si = s% = s% = 1. We term the model as Gaussian Symmetric Interference Wiretap
channel with Jammer-Aided eavesdropper (Gaussian SI-WT-JA in short form). In the
absence of the security constraint (2b) and the jamming sequence, this model recovers a
special case of the Gaussian interference channel under strong interference [28].

3. The Gaussian Wiretap Channel in the Presence of a Jammer-Aided Eavesdropper
We present a capacity result for the Gaussian WT-JA model described in Section 2.3.

Theorem 1. The secrecy capacity of the Gaussian WT-JA is

8h i
< 1+(1+L) 16
c(L), 7 log T+hG

' o ifG L

+

if G > L. (7)

Observe that C(L) is non-zeroif andonlyif G> L and (1+ L) 1> h. WhenG> L,
Theorem 1 means that arbitrary oblivious jamming is no more harmful than Gaussian
jamming, i.e., when the jamming sequence is obtained from independent and identical
realizations of a zero-mean Gaussian random variable with variance equal to the power
constraint L.

The proof of Theorem 1 follows as a special case of the achievability and converse bounds
derived in the next section in Theorems 2 and 3, respectively, for the Gaussian MAC-WT-JA.

4. The Gaussian Multiple-Access Wiretap Channel in the Presence of a
Jammer-Aided Eavesdropper
4.1. Inner and Outer Bounds for the Gaussian MAC-WT-JA

We derive inner and outer bounds for the Gaussian MAC-WT-JA in Theorems 2 and 3.
Their proofs are provided in Sections 7 and 8, respectively.

Theorem 2 (Achievability). We consider three cases.
1. When Gy > L and G, L,
( .)
1+ G(1+4 + P) , 1
1+ G hy(1+ hipy)

RMAC

1
, R1,0):R max | 8
{A€, (R1,0):Ri max "log (®)

is achievable.
2. When G, > L and Gy L,

( L)
11+ G (1+4L + P 1
, (0,R3):R; max _log (1+4 ) 1
0

RMAC
2 PG 12 1+ G hy(1+ hipy)

(9)

is achievable.
3. When min(G1,Gy) > L,

0 1
[ C
RMAC ConngI\I/IAC[ RI\Z/IAC [ RII{IZAC(pll R })‘C (10)

L<P,G
L<P,G;
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is achievable, where

1+,P(1+ L) ?
RYAC(PL,P2),  (R1,Ra) iR Zé)g 1+ P h11(1(+ h PZ))21 ’
1 1+ Py(1+ L) * 7
Ra 5108 o pma+hp) T
11+ (P + P)(1+ 1) 1+ 1 2)
R + R2 - log 1+—PLhT+—1PLh227 . (11)
Theorem 3 (Partial Converse).
1. If max(G1,Gy) L, then no positive rate is achievable.

2. When min(G1,G;) > L and hy = hy, the sum-rate bound of RMl‘;C(Gl, G;) described
in Equation (11) is tight by choosing (P4, P,) = (Gy, G2). '

Observe that in the achievability scheme for R'}"AC, choosing a transmission power
smaller than G; for Transmitter 1 would result in a smaller region, since for a fixed P ,x
1+x(1+L+P ) ,

1+xhq(1+h;,P;)
decreasing when (1+ L + P,) s hi(1+ hyPy) 1. By exchanging the role of the transmit-

ters, we have the same observation for R A€,

l log is either negativewhen (1+L + P) } hy(1+hP) 1 ernon-

4.2. Discussion of Rate-Splitting

Rate-splitting [5] can be adapted to the Gaussian MAC-WT-JA to avoid time-sharing,
however, the entire region in Equation (11) cannot be achieved as splitting the power of
one user precludes reliable communication. Assuming that

[(X1X2;Y)  H(X1X2;Z) max[I(Xq;YjXa)  (Xg;Z), (X5 YiXe)  1(Xg; Z)], (12)

then one can split the power of Transmitter 1in (P; d) and d, where d 2 [0, P;], and define
the following functions from [0, P;] to R

l 1
R 1og1+(P1 d)(1+ L + d+ Pz) ’ (13a)
v 2 1+ h (P d)
1 1+ d(1+ L) 1 (13b)
Rv :[d! =log ,
2 7°°1+ hyd(1+ hy(P; d)+ hyP,) 1
1+ Py(1+ L +4d) !
Ry:d! = log 2 ) (13¢)

2 1+ h2P2(1+ hl(Pl d)) 1

Lemma 1. For any d 2 [0, P,], we have (Ry + Ry + R2)(d) = 1(X1X2;Y) 1(X1X2;2Z).
Moreover, for any point (Xg, yo) in

D(pY, P?) )
, (R1,R2) 2 RMAC(P, Py) 1Ry + Ry = %Iog 1+ T:;j?fléht) i , (14)
there exists dg 2 [0, P1] such that xg = (Ry + Ry)(dg) and yp = R2(dp).
Proof. Define
Y, U+ V+ X3+ Ny, (15a)

p— p—
Z, hl(U+ V) + h2X2+ Nz, (15b)
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where V, U, X3, Ny, Nz are independent zero-mean Gaussian random variables with
variancesd 2 [0,P;], P, 4, P,, (1+ L), 1, respectively. Additionally, define

1, 1+ (P, d)(1+ L +d+ Py !

R, (d), I(U;Y) 1(U;ZjVX,)= —lo ) 16a

u(d) ( ) N jVX,) 5 g T+ hi(Pr ) (16a)
. 1 1+ d(1+ L) !

R I(V;YjUX I(V;Z) = =I 1

V(). HVEYIUXG) V3 2) = Slog g Bt S o (16b)

1

. . 1 1+ Pp(1+ L + d)
Ra(d), 1(Xz;YjuU 1(X2;ZjV) = Z| . 16
2(d) 10 YIU) 1Xa ZV) = Jlog o i e (16c)
By the chain rule, we have, for any d 2 [0,Py], (Ry + Ry + Ry)(d) = [(X1X2;Y)

I(X1X2; Z). Finally, since (Ry + Ry)(0) = I(X1;Y) 1(X1;ZjX2) and (Ry + Ry)(P;) =
I(X1;YjX2) 1(X1;2Z), by continuity of d | (Ry + Ry)(d), there exists dy 2 [0, P;] such
that xo = (Ry + Ry)(do) and yo = R2(do) for any point (xo, yo) in D{P ,P ) O

As remarked in [29], a potential issue is that Ry(dg) or Ry(dp) can be negative in
Lemma 1. We have the following achievability result.

Proposition 1. Let (xg, yo) 2 D(P4, P,) and dp be as in Lemma 1. Then, (xg, yo) can be achieved
without time-sharing if Ry (dg) 0and Ry(do) 0and min(do, P do);> L. (xo,Y0) 2 D(P,P
) canalsp be achieved without time-sharing if similar conditions (obtained by exchanging the role of
the two transmitters) are satisfied when splitting the power of Transmitter 2.

Proof idea: Transmitter 1 is split into two virtual users that transmit at rate Ry (d) with
power d and at rate Ry (d) with power P;  d. Encoding for User 2 and the two virtual users
is similar to Case 1 in the proof of Theorem 2. The receiver adopts a minimum distance
decoding rule as in Theorem 2 to first decode the message associated with the virtual user
that transmits at rate Ry, then to decode the message associated with User 2, and finally, to
decode the message associated with the virtual user that transmits at rate Ry. A similar
procedure can be performed if one decides to split the power of Transmitter 2.

An illustration of Proposition 1 is depicted in Figure 4. Note that for some model
parameters, the set of points achievable with Proposition 1 can be empty and, unfortu-
nately, it does not seem easy to obtain a simple analytical characterization of the rate pairs
achievable with Proposition 1.

0.6

CIRIE (D )

Rate-splitting

o 0.2+

Ry (hits/channel use)
=
[

0.1+

0 . . s . . s
0 0.1 0.2 0.3 0.4 0.5 0.6

R, (bits/channel usc)

Figure 4. The shaded area represents R1’>’2'AC( P, P,), where (P, P, L, hy,hy) = (4,3.3,1.5,0.12,0.11).

The solid segments represent the rate pairs achievable with Proposition 1.
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4.3, Extension to More Than Two Transmitters

We extend our result for the MAC-WT-JA to the case of an arbitrary number of
transmitters. The problem is more involved than the case of two transmitters and requires
new time-sharing strategies that leverage extended polymatroid properties.

Consider the model of Section 2.4 with L transmitters instead of two transmitters.
We let L , J1, LK denote the set of transmitters. More specifically, the channel model of
Section 2.4 becomes

Y a XI” + Sy 1\1”, (17a)
2L 0
z" a h|X|”+ NZ”, (17b)
2L
where 521 = sé = 1. We term the model as Gaussian MAC-WT-JA with parameters

((G1)iz1, (M2, L, 83, 55). When the channel gains (h)),,, are all equal to h 2 [0, 1], we
refer to this model as the degraded MAC-WT-JA with parameters ((G,)|, h,L, 5,5, %
Given L 2 R+ and (G|),;., we defineh, , (1+ L) 1, L(L), fl 2L :G > Lg,
andL ¢(L), LnL(L). The following achievability resultis proven in Appendix B.

Theorem 4. Assume thatforalll 2 L(L), hy > h;. The following region is achievable for the
Gaussian MAC-WT-JA with parameters ((G),2, (h;)20, L, 1, 1)

[

R = (Ry)j2L : 812 L°(L), Ry= 0and 8T L(L), |
(P)
:8|2L(LI),I|%EPIG | R }Iog 1+ h. Pt + .
! 2 1+ (é|2T h|P|)(1+ é|2Tch|P|) 1 ’

where for any (P,);,, and T L, we use the notation Pr , 3,7 P.,
We immediately obtain the following corollary.

Corollary 1. The following region is achievable for the degraded Gaussian MAC-WT-JA with
parameters ((G),., h, L, 1,1)

[

R = (Ry);. : 812 LS(L), R;= 0and 8T L(L),)
(P21 +
. 1 1+ h P
:812L(L),L<P G | 1 LPT
Rt 7108 T3 e 1+ hPro) 1 (19)

Note that the achievability strategy used in the proof of Theorem 4 is different than the
achievability strategy used in the proof of Theorem 2. While Theorem 4 gains in generality by
considering an arbitrary number of users, it requires the assumption 81 2 L(L), hy > hy,
which is not needed in Theorem 2. We also have the following optimality result, which is
proven in Appendix C.

Theorem 5. The maximal secrecy sum-rate R , &, R| achievable for the degraded Gaussian
MAC-WT-JA with parameters ((G;);2., h,L,1,1) is
n ! # +
1 1+ h L G L(L)

Zlo 20
5 log 6T (20)

Note that the optimal secrecy sum-rate is positive if and onlyif hy > handL(L) =
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5. The Gaussian Broadcast Wiretap Channel in the Presence of a
Jammer-Aided Eavesdropper

Theorems 6 and 7 provide inner and outer bounds, respectively, for the Gaussian

BC-WT-JA.

Theorem 6 (Achievability). We have the following inner bounds.

1.

Wheng,L GandgiL < G,

8 2 0 < 13,9
< 1 1+ Zrgl A =
1L
REC Ri,0) :Ry 4_ log@ : 5 21
, :( 1,0) : Ry , log 1+ hG ; (21)
is achievable.
Wheng,L Gandg,L < G,
8 2 0 G 13,9
< 1 1+ g A
2L
RBC 0,R;):R; 4_log@ : 5 22
, :( , R2) 1 Ry , fog 1+ hG ; (22)
is achievable.

When max(giL, goL) < G, and, without loss of generality, 521 + gL s? + gL (ex-
change the role of the receivers if 521 + gqL > 522 + gol),

0 1

Conv@REC[ REC| [ REC(a)A, (23)

a2] max(gy,82)LG 1,1]

is achievable where we have defined for a 2 [0, 1]

8 2 0 13,
2 (1 a)G
6 B sZig,L  C7
RBC Ri, Ry):R b ___SitB1r
(a), :>( 1, R2) 1Ry plog @; h(T a)Gh 5’
2 0 13,9
1 1+ (1 a)GC:-G;ZZ*'g LA
Ry 4 5 log@ T+ _ ha =5 . (24)
h(l a)G+FT !

Note that RB(a = 0) = RBC and RBC(a = 1) = RBE. The achievability scheme of

Theorem 6 is similar to the proof of Theorem 2 and [27] [Theorem 3].

Theorem 7 (Partial converse).

1.
2.

If G min(giL, g,L), then no positive rate is achievable;

When g,L Gand g;L < G, the achievability region R Bclin Theorem 6 is tight; 3.
When g, L Gandg;,L < G, the achievability region R Bczin Theorem 6 is tight; 4.
When G > max(giL, g>L), the following region is an outer bound

[ RBC(a), (25)

a2[0,1]
where RBC(a) has been defined in Theorem 6.

The proof of Theorem 7 is similar to the proof of Theorem 3 using [26] in place

of [30]. Observe that the gap between the inner and outer bounds of Theorems 6 and 7
when G > max(g;L, g2L) comes from the fact that our achievability scheme is limited to
a 2] max(gy, g2)LG 1, 1][ fog.
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6. The Symmetric Interference Wiretap Channel in the Presence of a
Jammer-Aided Eavesdropper

By the symmetry in Equation (6a) and Equation (6b), a code for the Gaussian MAC-
WT-JA allows Receiveri 2 f1,2g to securely recover the message of Transmitter i. Hence,
from the achievability result for the Gaussian MAC-WT-JA, we have the following achiev-
ability result for the Gaussian SI-WT-JA.

Theorem 8 (Achievability). We consider three cases.

1. WhenG;> L andG, L, RS! . RM‘}C is achievable; 2.
When G, > L andG; L, RS! s RM‘;C is achievable; 3.
When min(Gy1,G;) > L, RS', RMAC js achievable;

where RMAC RMAC ‘and RMAC are defined in Theorem 2.

Next, by the symmetry in Equations (6a) and (6b), we have that any code for the
Gaussian SI-WT-JA allows Receiver i 2 f1, 2g to securely recover the messages from both
transmitters, meaning that an outer bound for the Gaussian SI-WT-JA can be obtained
by considering an outer bound for a Gaussian MAC-WT-JA. Hence, from the partial
converse for the Gaussian MAC-WT-JA, we obtain the following partial converse for the
Gaussian SI-WT-JA.

Theorem 9 (Partial converse).

1. If max(Gy1, Gy) L, then no positive rate is achievable.

2. When min(Gy,G;) > L and hy = h,, the sum-rate achieved in R>' is tight by choosing
(Pl: Pz) = (Gq, Gy).

7. Proof of Theorem 2

To prove Theorem 2, it is sufficient to prove the achievability of the dominant face

D(F(’l, P,) )
1. 1+ (P + 1+1) 17
, (Ry,Ry) 2 RMAC(PI, Pz) :Ri+ Ry = " log ( 1 ) 2 )
1,2

! (26)
2 1+ plh + chz

of RN 2C€(Py, P,) to prove the achievability of RM2¢(P 4, P,) when min(Gy,G;) > L and
where (P;, P,) 2]L, G1]1L, G;]. The achievability of R'V'Aic, i 2 f1,2g, when G; > L
and G, , Lis obtained similarly by having Transmitteri, "3 i send Gaussian noise.

Observe that the rate constraints in R; M4 (P , P ), can be expressed as

Ri [1(X1;YiX2)  1(X1;2)]%, (27a)
Ry [1(X2;YjX1) 1(X2;2Z)]%, (27b)
Ri+ Ry [1(X1X2;Y) 1(X1X2;2Z)]7, (27¢)
where
Y, X1+ X3+ Ny, (283)
p— p —
Z, h1X1+ h2X2+ Nz, (28b)

and X1, X2, Ny, Nz are independent zero-mean Gaussian random variables with variances
P, Py, (1+ L), 1, respectively. As remarked in [29], the set function T ! I(Xt1;YjXt<)
I(X+;Z) is submodular but not necessarily non-decreasing, where 8T f1,2g, X 1,
(Xt)t21 . This is the main reason why achieving the corner points of R'\{'Ié‘c(Pl, P,) by
means of point-to-point codes via the successive decoding method [5] [Appendix C] does
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not easily translate to our setting. Before we provide our solution, we summarize our proof
strategy in the three cases below. Figure 5 illustrates these cases.

Rz RZ
A 92 A
“{Ca
C,
» Ry 0 > R1
Case 1 | Case 2.a
Case 2.b | Case 3
Rz RZ
4 e, Y
=
1 ~fCa
L
Co
C c,
0 -\. > Rl ) » » Rl
El \“0 El
Figure 5. Region Ry (P4, P,).
Case 1: Assume
[(X1X2;Y)  1(X1X2;Z) max[I(Xq;YjXa) (X1;Z), 1(X2;YjX1) (X Z)]. (29)
The corner points of ert/lec are given by
Ci, (X1 YjX2)  H(Xy;Z), H(X2;Y)  1(X2;ZjX1)), (30a)
Co o (X1 Y)  H(Xy;ZjXa), H(X2;YjXe)  1(Xg; Z)). (30b)

We will achieve each corner point with point-to-point coding techniques and perform
time-sharing to achieve D(P,, P,). Specifically, to achieve C;, i 2 f1, 2g, the encoders will
be designed such that the decoder can first estimate the codeword sent by Transmitter
i, 3 i(byconsideringthe codewords of Transmitter i as noise), which is in turn used to
estimate the codeword sent by Transmitter i. This approach is similar to the successive
decoding method [5] [Appendix C] for a multiple-access channel in the absence of a
security constraint.

Case 2.a: Assume

[(X1X2;Y)  H(X1X2;Z) 1(X1;YjX2)  1(X1;Z), (31a)
[(X1X2;Y)  H(X1X2;Z) < 1(X2;YjX1) 1(Xg; Z). (31b)

Hence,

€, (X1 Y)  1(X1;ZjX2), 1(X2; YjX1)  1(X2;Z)) (32)
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has a negative x-coordinate and the method of Case 1 cannot be directly applied here. Now,
the corner points of R,MAC are

Gy, (HX1;YjX2)  HX1;Z), 1(X2;Y) (X2 ZjXq)), (33a)
Cou (0, 1(X1X2;Y)  1(X1X2;Z))). (33b)

The idea to achieve C; is, as in Case 1, a successive decoding approach by decomposing the
sumrate I (X1X2;Y) [(X1X3;Z) asthesumofl(Xy;Y) 1(X32;ZjX1), which represents the
secret message rate for Transmitter 2, and | (X1; YjX2) [(X1;Z), which represents the secret
message rate for Transmitter 1. However, C, cannot be decomposed in a similar manner
and thus cannot be achieved with the same method. Instead, to achieve any point
in D(P4, P,), we rely on a strategy over several transmission blocks. First, in an appropriate

number of transmission blocks, the transmitters can send secret messages with rates C; as
in Case 1. Part of the secret messages of Transmitter 1, with a rate equal to the absolute
value of the x-coordinate of the point €,, is dedicated to the exchange of a secret key
between Transmitter 1 and the legitimate receiver. Then, for the remaining transmission
blocks, Transmitter 2 transmits a secret message with rate | (X1X2;Y) 1(X1X3; Z), while
Transmitter 1 uses the previously generated secret key to produce a jamming signal, which
can be canceled out by the legitimate receiver but not by the eavesdropper who does not
know the secret key.

Case 2.b: Assume

[(X1X2;Y)  H(X1X2;Z) 1(X2;YjX1) 1(X2;Z), (34a)
[(X1X2;Y)  H(X1X2;Z) < I(Xg;YjX2)  H(Xg; Z). (34b)

This case is handled as Case 2.a by exchanging the role of the two transmitters.
Case 3: Assume

[(X1X2;Y)  H(X1X2;Z) < min[I(Xg;YjX2)  1(Xy;Z), (X2; YjX1)  1(X2;Z)].  (35)
Hence,
€, (X3 YjXa)  HX1;Z), 1(X2;Y)  1(X2;ZjX1)), (36a)
€, (H(X1;Y)  H(X1;ZjXa), H{X2;YiXe)  1(Xg;Z)), (36b)

have a negative y-component and a negative x-component, respectively, and the strategy
of Case 1 or Case 2 cannot be directly applied here. The corner points of the region are

Ci, (H{(X1X2;Y)  1(X1Xz;2Z),0), (37a)
Cy, (0, 1(X1X2;Y)  1(X1X2;2Z)). (37b)

These corner points do not seem to be easily achievable using the method for Case 1. We
will first show that it is possible to achieve a point R 2 D(P;, P,), where R has strictly
positive components. All the other pointsin D(P 4, P will then be achieved as in Case 2 by
doing the substitutions C; Rand G, R in Case 2.a and Case 2.b, respectively.

Note that it is sufficient to consider the case

min[1(X1;YjX2) 1(X1;Z), 1(X2; YjX1) 1(Xz;Z)] O. (38)

Indeed, fori 2 fl,2gandi, 3 i, when I(Xi;YjX}) I(Xi;Z) > 0and I(X};Yin)
I(X-i;Z) 0, we have R- = 0 and R;j 1(X1X2;Y)  H(X1X2;Z) (X YjX-)
(X5 2j%;) = dlog HEUE -

asin Case 1.

T . These cases correspond to Theorem 1 and can be treated
(A}
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7.1. Case 1

We show the achievability of C,. The achievability of C, is obtained by exchanging
the role of the transmitters.

Codebook construction: For Transmitter i 2 f1,2g, construct a codebook C(rl) with
d2"Ried2"Rie codewords drawn independently and uniformly on the sphere of radius P np;
in R". The codewords are labeled x"(m;, m;), where m; 2 JL2"RiK g 2 11, 2"RiK. We define

Cn, (C(nl), CLZ)) and choose ford > 0

Ri, HX1;Y) 1(X1;ZjX2) 4, (39a)
R, 1(X1;ZjX2) 4, (39b)
Ry, 1(X2;YjX1) 1(X2;Z) d, (39¢)
R,, 1(X2:2) d. (39d)

Encoding at Transmitteri 2 f1, 2g: Given (m;, ng;), transmit x?(mi, ra;). In the remain-
der of the paper, we use the term randomization sequence for rg;.

Decoding: The receiver performs minimum distance decoding to first estimate (m 4, ra,)
and then to estimate (m», r3,), i.e., given y", it determines (M, 1) , fi(y",0), and
(M2, @2), f2(y", %) (M1, 1)) where fori 2 f1,2g

g(mi, mi)  ifky®  x o x](m;, mi)k? < ky" x x"(m? e®)k?
fity", x), N for (m0 mf) = (m;, i) . (40)
"0 if no such (mj, i) 2 J1,2"RiK J1, 2"RiRexists
h i
Definee(Cn,s"), P (Nay, M) = (M1, M2)jCn . We now prove that Ec, [sup,, €(Cn, s")]

+1(M MZ;Z”j?l” I 0. We will thus conclude by Markov’s inequality that
there exists a sequence of realizations (Cn)n1 of (Cn)n1 such that bothssup nefCn,s )
1 n and
" I(M1Mj>;Z jCn) can be made arbitrarily close to zeroasn ! ¥.
Average probability of error: We have
h i
e(Cn,s") P (N, M12) = (M1, M) or (15, B1,) = (011, 1) jCo (41a)

el(cnl Snl Xn(MZI MZ))"’ ez(cnlsnlo)l (41b)

where fori 2 f1,2g

ei(cn, s", x) aaPhkx"(m; my) 4+ s"4 x4 N° x”g o’ mo)k2

’ ni» nR;
—d2nRigd2nRig
e

i € Y P08
mi e .
ks" + x+ N”Ig(2 for some (m°, qnoe)i= (m;, mig .i (42)
Next, we have
Ec, [e1(Cn, 8", xJ (M2, M12))] Ec, [e1(Cn, ", x" (M2, MB)jc™,2 14 PlcM 72 ¢] (43a)
nt¥ o, (43b)

where, in Equation (43a), C represents all the sets of unit norm vectors scaled by pn_F’l' that
satisfy the two conditions of Lemma A1l (in Appendix A), Equation (43b) holds because

Pict? 2.c] "'¥ 1bylemmaAl, and Ec, [e1(Cn,s", %" (M2, #12))iG! 2 ¢] "' 0
by e _ P
Theorem A1l (in Appendix A) usingthat Ry + Ry < I(Xq;Y) = leog 1+ 1+L+P2 and by
interpreting the signal of Transmitter 2 as noise. Then,
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Ec, [e2(Cn,s",0)] Ec,les(Cn,s",0)jCc'? 2 c14, Pl 7 €] (44a)
nt¥ oo (44b)

. . . p___
where, in Equation (44a), G represents all the sets of unit norm vectors scaled by * AP, that

satisfy the two conditions of Lemma A1, Equation (44b) holds because P[C(zz) X *C]

n!¥l 1 by Lemma Al, and Ec,

n 2
[ez(Cnes”,O)jC(z) 2 (] , Py I 0 by Theorem Al using that
Ry+ Ry < I(X3;YjX1) = Llog 1+ 1+L - Hence, by Equations (41b), (43b) and (44b), we

have

Ec, [e(Cn,s™] "' %1 0. (45)

Equivocation: We first study the average error probability of decoding (re;, ra;) given
(z", m;, my) with the following procedure. Given (z", m,, m;), determine ni; , y,(z",0),
and my, yi(z", hyxJ(my, my)) where

8 p_ P
M ifkz" x  hix?(mj, @)k < kz" x  hix?(m;, @®)k?

yi(z", x), S for e? = re; . (46)
"0 if no such m; 2 J1, 2"RiKexists
h i
We define e(Cn), P (M1, My) = (M4, M,)jCn and fori 2 f1,2g,
1 hp_ P 0y.2
ei(Cn, x) , a P k hixT(mj, )+ x+ N hixT(m;, m)k
d2nkie o
i
kx + N”kl2 for some moe-=I mie. (47)

Then, with the same notation as in Equations (43) and (44), we have

Ec_ [e(Cn)] Ec, [eCn, 0)] + Ec. [exCa, h1x; (M3, M8)] e
Ecn[e1€Cn,0)jC(1)nz C] +1P[C(1) 2c

+ Ec, [ea(Cn,” hox(My, 1))iC?) 2 cj+ PIC?) 7 G, (48b)

o > (48c)

where Equation (48c) holds because P[C(nl) 2 C]l n¥ 1 and P[(;(Z) 2 9] nt¥

1 by Lemma Al, E¢ [gl(Cn,O)ij]l) 2 Cl n'¥ 0 by Theorem A1l using thatR;

. " _ (2 Ly
< 1(X1;ZjX2) =1,log(1+ hiP), and Ec, [&e(G, Rixi(M1,M1Bjc®) 2 ¢,1 "' ¥ oby
Theorem Al using that Ry < 1(X;Z) = .llog 1+ 1+szPz and by interpreting!the signal
of Transmitter 1 as noise. v

Define M, (Ml, M,), M, (M_Il, M>). Let the superscript T denote the transpose
operation and define X , [P ng(X7)T P nz(X5)T]T 2 R2", such that

Z" = GX+ NJ, (49)

with G, [In, In] 2 R"2" and I, the identity matrix with dimension n. Let K denote
the covariance matrix of X. Note that, by independence between X”1 and an’ we have
Kph Xn On
171
On Kph;x"
2
i 2 f1,2g. Then, fori 2 f1, 2g, since X'i‘ is chosen uniformly at random over a sphere of

Ky = , where0,, 0 I, and Kph_x . is the covariance matrix of P h')g",i

radius  nP;, the off-diagonal elements of Kph,xn are all equal to 0 by symmetry, and the
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diagonal elements are all equal (also by symmetry) and sum to nh;P,. Hence, Kph-xn =
hiP,ln, i 2 f1,2g, and

heP I
K = 7 On
X On  haPyln (50)
Then, we have
I(M;Z"jCn) = (MM;Z"jCn)  I(NB;Z"jMChp) (51a)
= I(MM;Z"jCn) H(MjCn)+ H(MjZ"MCn) (51b)
1(X;Z"jCn) H(Mj@)+ H(MjZ" MCn) (51c)
1(X;Z")  H(Mj@)+ H(MjZ"MCn) (51d) =
h(z") h(N;) H(MjCn) + H(MJZ"MCp) (51e)
L 10giGKxGT+ Inj  H(MjG)+ H(MjZ MCp) (51) =
2
"log(1+ hiP + hoP)  H(MjGn)+ H(MjZMCy) (51g)
2
= nl(X1X2;Z) H(MjCn)+ H(MjZ"MCn) (51h)
ni(X1Xz;2) n(1(X1X2;Z) 2d)+ O(nEc, [e(Cn)]) (51i)
= 2dn+ o(n), (51j)

where Equation (51b) holds by independence between M and Ng; Equation (51c) holds
because (M, M) (X,C,) Z" forms a Markov chain; Equation (51d) holds because
Cn X Z" formsa Markov chain; Equation (51f) holds because h(N) = lzlog((Zpe)”)
and because h(z") % I?,C_.g((Zpe)”jGKxGT + Inj) by Equation (49) and the maximal dif-
ferential entropy lemma (e.g., [31]) [Eq. (2.6)]; Equation (51g) holds by Equation (50);
in Equation (51i), we used the definition of Ry + R, and the uniformity of M to obtain
the second term, and Fano’s inequality to obtain the third term; Equation (51j) holds
by Equation (48c).

Note that the idea of considering a fictitious decoder at the eavesdropper to use Fano’s
inequality in Equation (51i) is a standard technique that already appeared in [32].

7.2. Case 2

We only consider Case 2.a; Case 2.b is handled by exchanging the role of the transmit-
ters. Let R, (Ry,R2) 2 D(P,,P). Thereexistsa 2 [0,1[ suchthatR = (1 a)C; + a€,.
The corner point C, is achievable by Case 1, however, recall that since the first compo-
nent of €, is negative, it thus cannot be achieved as in Case 1, and one cannot perform
time-sharing between C, and €, to achieve R. Instead, we achieve R as follows. We define
k,k® 2 Nsuchthatk®k= (1 a) ! 1+ e e> 0, thisis possible by density of Q in R.
We realize a first transmission Ty as in Case 1 of a pair of confidential messages of length
nkC,. Part of these confidential messages is dedicated to exchange a secret key of length
nk (1(X1;ZjX2) 1(X1;Y)) > 0between Transmitter 1 and the receiver, which is possible
because (1 a)C; + a@, = R has positive components. We then realize a second transmis-
sion T, of a pair of confidential messages of length nkc(0, 1(X2; YjX1) 1(X2;Z)) assisted
with the secret key that is shared between Transmitter 1 and the receiver. Hence, the overall
transmission rate of confidential messages is —kogl + LODQZ, which is arbitrarily close to
R by choosing a sufficiently small e. We nowkéxplain ROW transmission T, is performed.
We repeat k times the following coding scheme.

Codebook construction: Perform the same codebook construction as in Case 1 for
Transmitter 2. For Transmitter 1, construct a codebook with d2"R1ed2"R1e codewords
drawn independently and uniformly on the sphere of radius = nP; in R". The codewords
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are labeled x](m1, 1), where m; 2 J1,2"R1K, My 2 J1,2"RiK. We define the rates R ,
|(X1;Y) d, Rl, |(X1;ZjX2) |(X1;Y) d,and Rl, ﬁ1+ R1= |(X1;ZjX2) 2d.

Encoding at Transmitters: Encoding for Transmitter 2 is as in Case 1. Given (mq, M),
Transmitter 1 forms x;‘(ml, rh1), where rhy is seen as a secret key known at the receiver and
that has been shared through transmission T described above. In the following, we define my
e (my, mg).°

Decoding and average probability of error: As in Case 1, using minimum distance
decoding, one can show that on average over the codebooks, the receiver can reconstruct
xg(rﬁl, m1) with a vanishing average probability of error because rth; is known at the
receiver and because R1 < 1(X1;Y). The receiver can then reconstruct x’Z1 asin Case 1.

Equivocation: The equivocation computation for transmission T, is as in Case 1 by
remarking that it is possible on average over the codebooks to reconstruct with vanishing
average probability of error first x",given (z", m;) and then x" given (z", x" )by using that Ry
€ 1(Xq1;ZjX3).

Finally, to conclude that R is achievable, we need to show that the secrecy constraint is
satisfied for the joint transmissions T; and T,. We use the superscript (T; ) to denote random

variables associated with transmission T;, i 2 f1, 2g. Define M(T1) | MiTl)n l\o/lim, MéTl) )

°

the confidential messages sent during transmission T; excluding |\/|1(T1), defined as all the
confidential messages sent during transmission T; and used during transmission T,. We

define m(T2) |~ MQTZ) as the confidential messages sent during transmission T,. We

define M(T) I‘diTi), MéTi) as the randomization sequences used by both transmitters

in Transmission T;, i 2 f1,2g. We also define X(T) as all the channel inputs from both
transmitters in Transmission T,, i 2 f1, 2g, and Z{Ti) as all the channel outputs observed by

the eavesdropper in Transmission i 2 f1,2g. Finally, we define M(Tv.T2) | Mm(T1) m(T2) |

(T T2) M) @) z(TeT2) 0 z2(T1) z(T2) x(TeT2) 0 x(Ta) x(Ta) Cr(]Tl'TZ)

’

C(nTl), CLTZ) . We have

JT2). ,T2): ~(T1,T2)
|(|V|(T1 TZ),Z(Tl Tz)JCnl 21y
= I(M(Tl’TZ)I‘ﬂ(Tl’TZ);Z(Tl’TZ)jCLTl’TZ)) I(I\ﬂ(Tl’TZ);Z(Tl'TZ)jM(Tl’TZ)CLTl’TZ)) (52a)
= |(|V|(T1VT2)M(T1,T2);Z(Tlsz)jC(nTl'TZ)) H(I\R(Tl’TZ)jC(nTl’TZ))

+ H(m(TliTz)jz(TLTz)M(Tlsz)CgerZ)) (52b)
I(X(Tl’TZ);Z(Tl’TZ)jC(Tl’nTZ)) H(M(Te,Tz)jC(TLnTz))

+ H(M(TI:TZ)jZ(TerZ)M(TerZ)CLTl’TZ)) (52¢)
|(X(T1,T2);2(T1,Tz)) H(M(Te,Tz)jC(TlerZ)).,_ H(M(Te,Tz)jz(T1,Tz)M(T1,T2)C(T1'r;r2)) (52d)

0 . ,T2) i (T1,T2) ,T2)i7(T1,T T1,T2) (T2, T2)

n(k+ k%) 1(X1X2;Z)  H(M@ET2jctTTly o (v (@eT2)jz(TeTa) p(TeTa) e Ta)) (52e)
3nd(k + k%) + H(M@T2)jz(T0.T2) p (T T2) ¢ (T T2)y (52f)

3nd(k+ K°)+ O nE_r, 1, [e(€™™)] (52g)

where Equation (52b) holds because we defined M{Tt:T2) such that M{T:T2) is indepen-
dent from M(T1:T2) Equation (52c) holds because (M(T1:T2), g (T1.T2)) C(nTl’TZ), x(T1.T2)
2(T1.T2) forms a Markov chain, Equation (52d) holds because ¢!™/™2)  x(T1.T2)  z(T1.T2)

forms a Markov chain, Equation (52e) holds similar to Equation (51h), Equation (52f)
holds because by definition Ry + R, 1(X1X3;Z) 3d, Equation (52g) holds by Fano’s
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T1’TZ)) defined as the probability of error to reconstruct M (T T2) given

inequality with e(Crg

z(M.T2) M(TuT2) ysing minimum distance decoding as in Case 1. Then, define
e(l)(CﬁTl’TZ)) as the error probability to reconstruct M(72) from 2(T2), M(T2)  using min-
imum distance decoding, and @(2)(Cf1T1’T2)) as the error probability to reconstruct (™)
from z(T1), M(T) M@(T2)  using minimum distance decoding. As in the analysis of Case 1

and by observing that I\7I(1T1) is included in M(™2) we have

Tq,T T4,T T1,T
£ r,ry[8(C TN E @ n [T+ E g )[R (53a)
n't¥ oo, (53b)
We conclude from Equations (52g) and (53b)
(M0 T2, z(TeT2)jelTeT2)y = 3ng(k+ K0) + o(n). (54)

7.3. Case 3

We have 1(X1;ZjX2) 1(X4;Y) > Oand I(Xz;ZjX;) 1(X2;Y) > 0 as depicted in
Figure 5. Assume |(X1X2;Y) 1(X1X2;Z) > 0, otherwise R'\g’i\c(Pl, P,) = f(0,0)g. We
will use the following lemma. '

Lemma 2. Defineh, , (1+ L) 1. Wehave

Lo Xy ZjX2)  H(X1;Y) (X1 YiXe)  1(Xy; 2)
or I(X2; ZjX1)  H(X2;Y) H(X2;YjXe) 1(Xz;Z). 2.
h1< h|_ orh2< h|_.

3. Assume I(X1;ZjX2)  H(Xg;Y)  H(X1;YjX2)  1(X1;Z).  There exists m,m® 2 N,
such that

mO(H(X1; YiXa)  1(X1;2)) m(1(X1;ZjX2)  1{X1;Y)), (55a)
m(1(X2; YiX1)  1(X2;2)) > mO(1(X2;ZjX1)  1{Xa;Y)). (55b)

Proof. (i) Assume that

H(X1; ZjX2)  1(X1;Y) > 1(X1;YjX2) (X415 2), (56a)
H(X2; ZjX1)  1(X2;Y) > 1(X2; YjX1)  1(X2; 2). (56b)

Then,

I(X1;ZjX2)  H(Xg;Y)+ 1(X2; ZjX1)  1(X2;Y)

> 1(X1; YiX2) X1, Z) + 1(X2;YjXe)  1(X2; 2), (57)
which contradicts the fact that 1(X1;ZjX2) 1(X1;Y) < 1(X2;YjXy)  1(Xz;Z) and
I(X2;ZjX1)  1(X2;Y) < H(X1;YjXz)  1(X1;2).

(ii) By contradiction, if hy hy and hy hy, then I(X1X2;Y) [(X1X2;Z) 0. (iii)
Choosem 2 N such that

[(X1;ZjX2) (X3 Y) mP(I(X1X2;Y)  1(X1X2; 2)). (58)
Then, there exists m2 N andr 2 [0,1(X1;ZjX2) [(Xq1;Y)[ such that

mO(1(X1; YiXa)  1(X1;2)) = m(I(X1;ZjX2)  1(X1;Y)) + r. (59)
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Then, we have

m(1(X2;YjX1)  1(X2;Z))

= m(1(X1;ZiX2) (X1 V) + m(I(X1X2;Y)  1(X1X2;2Z)) (60a)
= mO(1(X1; YjX2)  1(X1;Z)) + m(I(X1X2;Y)  1(X1Xp;2Z)) r (60b)
= mO(I(Xp; ZjX1)  H(X2;Y))+ (m+ mO)(I(X1X2;¥)  1(X1X2;Z)) r (60c)
> mO(1(X2; ZjX1)  1(X2;Y)) + m(1(X1X2;Y)  1(X1X2;2Z)) (60d)
> mO(I(Xz; ZjX1)  1(X2;Y)), (60e)

where Equation (60b) holds by Equation (59), and Equation (60d) holds because r <
(X1;ZiX2)  H(X1;Y) mO(I(X1X2;Y)  1(X1X2;2)). O

By (i) in Lemma 2, assume without loss of generality that I1(X1; ZjX2) 1(Xg;Y)
I(X1;YjX2) 1(X1;Z) by exchanging the role of the transmitters if necessary. We let m, m ¢
be as in (iii) of Lemma 2. D(R , P ) is achieved in four steps.

Step 1. During a first transmission Ty, Transmitter 2 transmits a confidential message
of length nm®(I1(X5;ZjX1) 1(X2;Y)) to the receiver. This is possible with a point-to-point
wiretap code; as in Case 1, when Transmitter 1 remains silent and when h| > h,. If, on the
other hand, h| hy, then by (ii) in Lemma 2, hy > h; and Transmitter 2 can transmit
a confidential message of length nm{(1(X;; ZjX4) 1(X3;Y)) as follows. Transmitter 1
transmits a confidential message of length nk(I(X1; ZjX2) 1(X1;Y)), where k 2 N is
such that nk(1(X2; YjX1) 1(X2;Z)) nm (1(X3; ZjX1)  1(X2;Y)). Using this secret key
shared by Transmitter 1 and the receiver, Transmitter 2 can transmit a confidential message
of length nk(1(X3;YjX1) [1(X2;Z)) asin Case 2. Note that Step 1 is operated in a fixed
number of blocks of length n.

Step 2. As in Case 2, the transmitters achieve transmission T, of confidential messages
of length (nm®(I1(X1;YjX2) 1(X1;Z)),0) by using the secret key exchanged during Tg
between Transmitter 2 and the receiver. Then, as in Case 2 and because m{1(X1;YjX3)
1(X1;Z)) m(1(X1; ZjX2) 1(Xq;Y)) 0 by (iii) in Lemma 2, the transmitters achieve a
transmission T, of confidential messages of length (0, nm(1(X3;YjX1) 1(X3;2Z))) usinga
secret key of length nm(1(Xy;ZjX3) [1(X1;Y)) exchanged between Transmitter 1 and the
receiver during T;. Hence, after T; and T,, the transmitters achieved the transmis-
sion of confidential messages of length (nm{(1(X1;YjX2) [1(X1;Z)) nm(I1(Xy;ZjX3)
1(X1;Y)), nm(1(X2;YjX1) 1(Xz;2Z))).

Step 3. The transmitters repeat T; and T, t times, where t is arbitrary, since
m(1(X2;YjX1) 1(X2;Z))  mO(1(X2;ZjX1) 1(X2;Y)) > 0 by (iii) in Lemma 2. Af-
ter these t repetitions, the rate pair achieved is arbitrarily close to

1 0
m+ m
m(1(X2; YiX1)  1(X2;2))  m°(1(X2;ZjX1)  1(Xa;Y))) (61)

E:

(mP(1(X1; YiX2)  1(X1;2Z))  m(1(X1;ZjX2)  1(X1;Y)),

provided that t is large enough since Step 1 only requires a fixed number of transmission
blocks. Observe thatR 2 D(P4, P,).

Step 4. Any point of D(P4, P,) can then be achieved as in Case 2 by doing the substi-
tutions C; RandC, R in Case 2.a and Case 2.b, respectively.

The proof that secrecy holds over the joint transmissions is similar to Case 2 and
thus omitted.

8. Proof of Theorem 3

We first show that determining a converse for our model reduces to determining a
converse for a similar model when the jammer is inactive, i.e., when L = 0.
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Lemma 3. Let O , f(R1, R2):R1 B1, Ry By, Ri+ Ry Bjgg bean outer bound, i.e., aset that
contains all possibly achievable rate pairs, for the Gaussian MAC-WT-JA with parameters (G1, Go,
h1,h2,0,52 + L, §?). Thep,

( ( ( )
B ifGy> L B ifG,> L
(R1, R2) 1 Ry ! ! ,» R 2 2 , R1+ Ry Byt
0 ifG2 L 0 ifG L

is an outer bound for the Gaussian MAC-WT-JA with parameters (G1, Gy, h1, hy, L, sZY, szz).

Proof. Consider any encoders and decoder for the Gaussian MAC-WT-JA with the pa-
rameters (G1, Gy, hq, hy, L, 53, sz2 ) that achieve the rate pair (R1, R2). Note that by [24] [The-
orem 2.3], for any | 2 f1,2g such that G; L, we must have R; = 0, since an outer
bound for the model in [24] is also an outer bound for the Gaussian MAC-WT-JA, which
has the additional security constraint (2b). Then, to derive an outer bound, it is suf-
ficient to consider a specific jamming strategy and study the best achievable rates for
this jamming strategy, since the boundaries of the capacity region correspond to the
best (from the jammer’s point of view) jamming strategies and any other jamming strat-
egy can only enlarge the set of achievable rates. We assume that in each transmission
block, the jamming sequence is S™ with the components independent and identically dis-
tributed according to a zero-mean Gaussian random variable with the variance L? < L.
The average probability of error at the legitimate receiver is thus upper-bounded by
supg,s P[M = M]+ kP[kS"k? > nL] "'¥ 0 where we used the notation of Defini-

tion 1 and the fact that kP[kS"k? > nL]"'¥ 1 0since L° < L. Hence, since the
se-crecy constraint is independent of L, we obtain the reliability and secrecy
constraints for a Gaussian MAC-WT-JA with parameters (Gl,YGz, hy, hzz 0,52 + L9, 5s2),
0 C meaning that
(R4,R2) 2 O , where O is an outer bound for the Gaussian MAC-WT-JA with parameters
(G1, G2, hy, hy, O, s$ + L9, s% ). Finally, we conclude the proof by choosing L° arbitrarily close
toL. O

We now obtain Theorem 3 as follows. (i) holds from Lemma 3. (ii) holds from Lemma
1+x(1+L) 1

is non-decreasing when
1+xh

3 and [33] [Theorem 6] by remarking that x | log
(1+ L) > handnegativewhen (1+ L) 1 h.

9. Concluding Remarks

In this paper, we defined Gaussian wiretap channels in the presence of an eaves-
dropper aided by a jammer. The jamming signal is power-constrained and assumed to
be oblivious of the legitimate users’ communication but is not restricted to be Gaussian.
We studied several models in this framework, namely point-to-point, multiple-
access, broadcast, and symmetric interference settings. We derived inner and outer
bounds for these settings, and identified conditions for these bounds to coincide. We
stress that no shared randomness among the legitimate users is required in our coding
schemes.

Our achievability scheme for the Gaussian MAC-WT-JA relies on novel time-sharing
strategies and an extension of successive decoding for multiple-access channels to multiple-
access wiretap channels via secret-key exchanges. An open problem remains to provide a
scheme that avoids time-sharing. Section 4.2 provides such a scheme for some rate pairs
and channel parameters; however, it might not be possible to achieve the entire region of
Theorem 2 by solely relying on point-to-point codes, in which case the design of multi-
transmitter codes for arbitrarily varying multiple-access channels would be necessary.

Finally, beyond proving the existence of achievability schemes for our models, finding
explicit coding schemes largely remains an open problem. We note that [34] investigates
this problem for short communication blocklengths over point-to-point channels via a
practical approach that relies on deep learning. Another open problem is to achieve the
same regions as that derived in this paper under strong and semantic security guarantees.
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Appendix A. Supporting Results

Lemma A1l ([1]). Lete> 0O, h 2]8pe, 1[,K > 2e,R 2 [2e,K],and N , e"R. Let X7, ..., X} be

independent random variables uniformly distributed on the unit sphere. With probability arbitrarily

closetooneasn! ¥, wehave

n R+, ogfl a)
1

2. ﬁljfi : thjn,Xri‘ij a,th”,ju”ij b, forsomej = igj e "¢ for any unit vector u" 2
R", a,b2 [0,1] suchthata h,a?+ b%> 1+ h e 2R,

1. jfj: hXj”,u“i agj e 2] for any unit vector u" 2 R", a > 0.

Theorem A1 ([1,24]). Consider a channel whose output is definedasY" = X" + V" + s", where X"

is the input such that kX"kZ n, V" represents noise (to be defined next), and s" is a state

unknown to the encoder and decoder such that ks"k? nL, L < 1. Lets, d > 0. Consider a

codebook Cn made of N , en(3log(1+(L+s?) ) d) codewords (x", ..., XE ) that satisfy the two

conditions of Lemma A1, and define the average probability of error e(Cn) of a minimum distance

decoder as e(Cn), 4 &N, P[kxi” + 5"+ V" )j(“k2 ks" + V"k2, for some j = i].

1. (From [1]). If V™ is a vector with i.i.d. zero-mean Gaussian coordinates with variance s2,
thenlimpiy e(Cn) = 0.

2. (From [24]). If V" , W™+ U, where W" is a vector with i.i.d. zero-mean Gaussian
coordinates with variance a2 and U is independently distributed uniformly at random on a
sphere with radius  nb2 such that a2 + b2 = s2, thenlimn1y e(Cn) = O.

Appendix B. Proof of Theorem 4
We first recall some definitions and results on polymatroids.
Definition A1 ([35]). Let f : 2M I R. P(f), (Ri)izm 2 RM :Rs f(S),85 M

associated with the function f is an extended polymatroid if f is submodular, i.e., 85, T
M, f(S[ T)+ f(S\T) f(S)+ f(T).

Property Al ([29] [Property 1]). Define g : 2L(8) 1 R, T I I(X7;YjXt<) 1(X7;Z),
whereY , &2 (1) X1+ Ny, Z, an () = WX + Nz, with (X;)120(1), Ny, Nz independent
zero-mean Gaussian random variables with variances (P|)|2L(L), (1+ L), 1, respectively.

n (0]
C(L), (R)ize) 2 RIMMWI 8T L(L), RT g(T) (A1)

associated with g is an extended polymatroid.

Property A2 ([35]). Define the dominant face D(L) of C(L) as

n (0]
D(L), (Ry)i2i(r) 2 C(L) :Ry(r) = g(L(L)) . (A2)

For p 2 Sym(jL(L)j), where Sym(jL(L)j) is the symmetric group on L(L), for
i,j 2 L(L), define pii (p(K))iayijk- D(L) is the convex hull of the vertices
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n o
vV o, (Co(iy)izin,jLyjk P 2 Sym(jL(L)j) , where for p 2 Sym(jL(L)j), for

i 2J1,jL(L)iK, Cp(j) = g fp'itig g fpirtititlig

Define D+ (L) , D(L)\ R’+L(L“. By Property A2, for any R 2 D. (L), for any
Vo= (V))i2i(L) 2 V, there exists ay 2 [0,1], such thatdy,y ay = 1andR = dy,yv avV.
As remarked in [29], g is, in general, not non-decreasing; hence, some V. 2 V might
have negative components and the successive decoding method [5] [Appendix C]
cannot be applied to the multiple-access wiretap channel. We show in the following how to
overcome this issue. For1 2 L(L), defineR , dyoyv ay1fV < 0gV,andR ,
(R)21(L)- Our coding scheme opérates in three steps, the idea of which is described
below.

Step 1. For | 2 L(L), asecret message of length nR Iis exchanged between Transmit-
ter | and the receiver.

Step 2. For all V. 2 V, secret messages of length n(ay1fV, > 0gV|) 2 (1) are ex-
changed between the transmitters and the receiver, provided that secret sequences of
length nR are shared between the transmitters and the receiver, which is ensured by
Step 1. The overall length of secret communication is n(ay,y a\/_lfVI > OgVI)|2L(L),
i.,e, n(R+ R ).

Step 3. Repeat t times Step 2. It is possible to do so because secret sequences of
length at least nR were exchanged between the transmitters and the receiver in Step 2.
The overall rate of secret sequences exchanged between the transmitters and the receiver
is thus R, provided that t is large enough, since Step 1 only requires the transmission of a
finite number of blocks.

The coding schemes and their analyses to realize Steps 1 and 2 are described in
Appendix B.1 and Appendix B.2, respectively. In the remainder of the section, Y and Z
are defined as in Property A1 with (X;),, (L) zero-mean Gaussian random variables with
variances (P} 21 (1)-

Appendix B.1. Proof of Step 1

The proof of Step 1 directly follows from the point-to-point setting, i.e., Theorem 1,
appliedtoeach| 2 L(L) since we assumed h;< hy.

Appendix B.2. Proof of Step 2

We fix V.2 V. The following procedure must be reiterated for each V.2 V by applying
a permutation p 2 Sym(jL(L)j) on the labeling of the transmitters. For convenience, we
relabel the transmitter from 1tojL(L)j and redefineL(L) asJ1,jL(L)jK. We show how
to exchange secret messages with rate (11°VI > 0gV|) 12L(L) between the transmitters and
the receiver, when they have access to pre-shared secrets (obtained from Step 1) with rate
( 1fV, < 08V )iac(L)- Definel , fl 2 L(L):Y Ogandl®, L(L)nl. Wealso use the
notation Xy (1) , (Xi)i21(L), X"“(L) o (XThizuqy, andfori, j2 L(L), Xijj,  (Xi)iy,jk-

Codebook construction: For Transmitter i 2 1€, construct a codebook C(r:) with
d2"Ried2"Rie codewords drawn independently and uniformly on the sphere of radius nP;
in R". The codewords are labeled x"(m;, @), where m; 2 J1,2"RiK, m; 2 J1,2"RK. We
choose the ratesas Ry , 1(X;; YjX1:i 1)  HXi; ZjXiva:jinj)  d R, WX ZiXiv1:ji(n)j)

d. For Transmitter i 2 |, construct a codebook C(ni) with d2"Ried2"Rie codewords
drawn independently and uniformly on the sphere of radius = nP; in R". The code-
words are labeled xM"(m;, ij), where m; 2 J1, 2nRiK m; 2 J1, 2"RiK. We define the rates
Ri o KX YiXei 1) do Ri o H(Xi5 ZiXiensguqy) MXi5YiXei 1) d,and Ry, Ri+
Ri = H(Xi; ZjXis1:5u();)  2d. Define Cn , (C(ni))iZL(L)-

Encoding at the transmitters: For Transmitteri 2 | ¢, given (m;, rgi), transmitxin(mi, i)

For Transmitter i 2 |, given (M, m;), transmit xn(m;, m;), where m; is assumed to be
known at the receiver by the transmissions in Step 1. In the following, we define fori 2 I,
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m; , (m;, ;). By convention, define fori 2 I, m;, . Also definem , (mi)ia (),
@, (mi)izi(L)- Inthe following, we refer to ra as randomization sequence.

Decoding: The receiver performs minimum distance decoding, i.e., given yn, deter-
mine starting fromi= 1toi= jL(L)j, (mi, rei), fi(y", éj 1x"(m“J,nan)) where

Smo ) Tk x x(m @)k < Ky x xS, ed)k?

fioy"x) b for (m%, %) = (mj, ) . (A3)
"0 if no such (mj, m;) 2 J1, 2"RiK J1, 2"RiRexists
h i
Define i, (rMi)izi(), ®, (m®i)iai()- Let e(Cn,s"), P M= MjCn , we now
prove that on average on Cn, we have E¢ [supsn e(Cn,s")] + 1I(M Z"jCn) " H¥) 0.

We will thus conclude that there exists a sequence of realizations (Cn) of (Cn) such that
both sup , e(Cn,s") and |(M;Z"jC,) can be made arbitrarily closetozeroasn! ¥.
SAverage probanbility of error: We have

h i
e(Cn,s") P Mb Mor MR Me, (Ada)
() |
jLLj )
= a & cns", QA f‘n(Mj,eMj) , (A 4b)
i2L(L) j=i+l
where fori 2 L(L)
ei(cn, s", x) ¥l nR aaPhkx"(m; mi) + s"+ x4+ N x”%mol mo)k2
—d2nRiedan ; . Y
e e i € Y i i i
mi ey .
ks" + x+ N”Ig(2 for some (m°, gnoe)i= (mj, mig .i (A5)

Assume that the receiver has reconstructed (mj, @;j)j2;1,ix, fori 2 L(L). Assume first that
i+ 12 |c. Using minimum distance decoding, on average over the codebooks, we show
that the receiver can reconstruct xj, ;. We have

" () '#
jLLj )
ECn & Chn, Sn, a ?(n(Mj,eMJ')
j=i+l
" I
L] ' oy i
Ecn o Cn,s", @ an('V'j, M;) ciha C +p ) 72 G (A 6a)
j=i+l
nt¥ o, (A6b)

where in Equation (A6a) C, represents all the sets of unit norm vectors scaled by pnP_i
that satisfy the two conditions of Lemma A1 (in Appendix A), Equation (A6b) holds because
P[c‘h” 2 c] nt¥, i 1 by Lemma Al and
Ec, & Cn,s" ,aJ (L)J n(MJ, ;) jC(n') 2 Ci nt¥ 0 by Theorem A1 (in Appendix A)
us-
ing the definition of Rj + R; and by interpreting the signal of transmittersinJi+ 1,jL(L)jK
as noise.

Similarly, wheni+ 12 |, using minimum distance decoding, on average over the
codebooks, the receiver can reconstruct x; (mj+1, Mi+1) with a vanishing average proba-
bility of error because i, is known at the receiver and by definition of Rj.1, hence,

Ec, [e(Cn,s™] "' 41 0. (A7)
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Equivocation: We first study the average error probability of decoding @ given (z", m)
with the following procedure. Fromi = jL(L)j toi = 1, given (z", m), determine mig ;i
n éjl-(l-)j

! j=i+l

q — .
z hjxj”(mj,r@j) ,wWherefori2 L(L)
8 . H n P n 2 n P n 0)(.2
sMmi  if kz X hix(m;, m;)k < kz X hix"(m;, )k
yi : (2", x) ! N for m{ = ny; . (A8)
“ 0 ifnosuchm; 2 J1,2"RiKexists
h i
We defineg(Cn), P M= MCn . We have

g(c n) = é Cnl 'é hJXJn(MJl MJ) ’ (A9)

where fori 2 L(L)

1 0 P ( n P ( 0y1.2
gi(Cn, X) , dZ“RieaPhk hx “migmi) + x4, N " hixg, mi, m°)k
a; .
[
kx + N"kz2 for some m°e=I mie. (A10)
h q i

Similar to the justifications for obtaining Equation (A6b), Ec | @i(Cn,éji 1

-1 E‘X’J-‘(Mj, l;))

vanishestozeroasn ! ¥ by interpreting the signal of transmittersin J1,i 1K as noise and by
using the definition of R;. We thus obtain

nly¥

Ec, [e(Cn)] o (A11)
Let the sclilperscript T denote the transpose operation and define X , [Iohl(an)T
p I . S
ha(X5)T ... hjL(L,j(x;ﬁL(L)J)TF 2 RMLLIL syuch that
Z" = GX+ N3, (A12)

with G, [In, In,...,In] 2 RPN and 1, the identity matrix with dimension n. Let Ky
denote the covariance matrix of X. Similar to Equation (50), we have

Ky = diag(hlPlln,...,hjL(L)ijL(L)jIn). (A13)
Then, we have
[(M; Z"jCn) 1(X;Z") H(M€n)+ H(MJE"MCp) (Al4a)
1120ng|< G'+ Inj H(Mj€n)+ H(Mj@"MCn) (Al4b)
0 1
n o . .
= —10g@1y  § ph A ®(Mjcn) + &H(MZ"Mcn) (A 14¢)
2 12L(L)
n(Xy s Z) n(H(Xgy; Z2)  2jL(L)jd) + O(nEc [e(€n)]) (Al4d)=
2jL(L)jd + o(n), (Al4e)

where Equation (Al14a) holds similar to Equation (51d), Equation (A14b) holds similar to
Equation (51f), Equation (Al4c) holds by Equation (A13), in Equation (A14d), we used the
definition of 4, () R and the uniformity of M to obtain the second term, and Fano’s
inequality to obtain the third term, Equation (A14e) holds by Equation (A11).
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The proof of joint secrecy for Step 1 and the repetitions of Step 2 is similar to the proof
of Theorem 2.

Appendix C. Proof of Theorem 5

The proof that Equation (20) is an upper bound on the secrecy sum-rate is similar to
the case L = 2in Theorem 3.

Remark that from the statement of Corollary 1, it is unclear whether the sum-rate of
Theorem 5 is achievable. However, by inspecting the proof of Theorem 4, observe that
we achieve a pointin D+ (L), D(L)\ R’;L(L”, where D (L) is defined in Equation (A2).
Hence, the sum-rate of Theorem 5 is indeed achievable.
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