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Abstract

The presence of droplets suspended in a liquid or gas is known to play an essential role in fields
ranging from materials to atmospheric science. Often, the dispersed phase is stabilized by
surface active compounds and surfactants, resulting in complex chemical composition and
material properties at the fluid-fluid interface. In this talk, recent advancements in use of
microscale flow fields will be highlighted for measuring properties of aqueous multiphase,
interface-rich systems. Systems studied will include atmospheri> aerosol droplets and liquid-
liquid emulsions. Microfluidic contractions, traps, and wells are u.=d to measure surface-bulk
partitioning and temperature-dependent liquid-liquid phase s.p<-auon of aqueous droplets,
towards better understanding of suspensions of aerosol drople.~ ir our atmosphere. Advanced
measurements of droplet shape deformations and coalesce nce will also be presented for both
water-in-fuel and oil-in-water emulsions, for improved tre atn.z:it and separation of emulsions.
Dynamic interfacial tensions measurements were perf- mc " using a microfluidic tensiometer,
demonstrating a dependence on if the surfactant aprroaches the interface from inside
(dispersed) versus outside (continuous), implying p'ias> dependent surfactant transport to
curved interfaces at the microscale. Droplet cosie-.cence and film drainage experiments are
also performed in a microfluidic Stokes trap arrc <s a range of viscosity ratios and surfactant
concentrations. Results are used to explor~. “he influence of interfacial mobility and Marangoni
stresses on film stability with soluble surfe “tar s.
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Figure 1. Schematic of possible aerosol particle chemical phase partitioning (not to scale),
including liquid-liquid phase-separation (LLPS) into water-rich (aqueous’) and water-poor



(organic’) phases. Adapted
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with permission from [1]. Copyright 2017 American Chemical
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Figure 2. Hysteresis of deliquescence/ effloresc:nce curves for ammonium sulfate salt.
Deliquescence (water uptake) follows the lower cu ¢, and occurs during relative humidity (RH)

changes from a low RH to a high RH value

~hiorescence (water loss) follows the upper curve,

and occurs during RH changes from hig* R'1 to low RH, and. Figure reprinted from [2], with
permission from Elsevier; this work’ refers tc *hat from Tsai and Kuo [2].
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Figure 3. (left) Change in droplet volume of ammonium sulfate solution with time. (middle, right)
Change in mass fraction of water and % RH, corresponding to the water activity within the
droplet phase, as a function of fractional droplet volume during drying. Adapted with permission
from [3]. Copyright 2018 American Chemical Society.
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Figure 4. RH of phase transitions at different orgaruc to inorganic ratios and at different
temperatures for ammonium sulfate + 3-methylgluta.ic acid aqueous droplets. The phase
transition refers is LLPS for OIR 1:10 and 1:1 and e”Jorecence for OIR 10:1. Reprinted with
permission from [4]. Copyright 2020 American Ch :r.ical Society.
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Figure 5. Microscopy images of phase transitions in time observed for (a) NaCl + MgCl, +
Na,SO, aqueous droplet, and (b, c) in 3-methylglutaric acid + NaCl + MgCl, + Na,SO, aqueous
droplet. Scale bar is 50 ym. Reprinted with permission from [5]. Copyright 2019 American
Chemical Society.
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Figure 6. Example of interfacial tension between an oil ...7 aqueous methanol solutions,

measured using pendant drop (-bulk”) and microfluidic 1~etkod, showing good agreement

between the two methods for simple surfactant-free mixtui.s. For more information, see ref [6].
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Figure 7. Microfluidic measurements of interfacial tensions of aqueous ammonium sulfate and
(left) methylglyoxal (MG) and (right) methylglyoxal (MG) + formaldehyde (F) solutions. Adapted
with permission from ref [7]. Copyright 2016, American Chemical Society.
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Figure 8. Microfluidic measurements and modeled values of interfacial tensions of (left) 2-
methyltetrols and (right) IEPOX-0OS, without and with ammoniun. sulfate (AS). Reprinted with
permission from ref [8]. Copyright 2019, American Chemical Sorie. "
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Figure 9. Ice nucleation <*=~ ‘~nsity per unit mass of Snomax® in aqueous droplets using a
microfluidic platform ( Fh s W ork”), along with comparison to literature data obtained from others
(see ref [9] for more intc 'mation). Reprinted with permission from ref [9], open access Creative
Common CC BY license
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Figure 10. Time required to reach a dynamic interfacial tensirc:. '+ 7 value of 15 mN/m millimeter-
sized water droplet in surfactant-containing fuel as a functi n ¢’ droplet size, using a pendant
drop method. For the same chemical composition, les. time is needed as the droplet size
decreases. Adapted with permission from ref [10]. Copyright 2018 American Chemical Society.
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Figure 11. Dynamic iniz.facial tension measurements using (left) pendant drop and (right)
microfluidic for water — fuel interface, in the presence of a fuel-phase surfactant. Droplet size
dependent kinetics are evident, with the microfluidic approach reaching an IFT of 5 mN/m much
faster than the pendant drop method for the same chemical system. Adapted with permission
from ref [10]. Copyright 2018 American Chemical Society.
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Figure 12. Dynamic interfacial tension of
both water-in-oil (w/0) and oil-in-water (o/w)
droplets using (left) pendant drop and (right)
microfluidic  platform. Note that some
surface-active additives are already present
in the complex oil mix used here, and -No
surfactant” simple refers to a case where no
additional surfactant was added. Figure
adapted from Refs. [11] and [12], with
permission from the Royal Society of
Chemistry.
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Figure 13. Dynamic interfacial tc 1sio,. using pendant drop tensiometry for water — fuel systems
contain (A) mono-olein and (B) 2IB I surfactants. Solid black lines are fits to either the (A) late
or (B) early time solutions to .“e ‘Nard and Tordai equation [43]. Panel (A) uses results from
Ref. [10]. Reproduced from 1™=f.  13] with permission from the Royal Society of Chemistry.
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Figure 14. (A) Magnitude of the interfacial dilatational modulus for water — fuel interface, at
varied fuel phase surfactant concentrations, as a function of frequency. (B) Characteristic
frequency of surfactant exchange with the subphase obtained from the fits to the data in (A), as
a function of surfactant concentration. Reproduced from Ref. [13] with permission from the
Royal Society of Chemistry.
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Figure 15. (a) Distance between the two approachking droplets for (a) water in light mineral oil
(w/o) and (b) light mineral oil in water (o/w), witt, ¢ water-soluble surfactant. For the same
chemical system, the film drainage time is ess than a second for the w/o and did not
coalescence for the o/w. In general, the 4yn amics after droplet impact depend on a range of
factors, including droplet size, viscosity r.*,, surfactant type, concentration, and phase, and
velocities and angles of impact. Reprirted fron. Ref. [14].
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Figure 16. (left) Film drainage time during water droplet coalescence in a microfluidic platform,

as a function of trapped droplet radius, for continuous phases of light mineral oil (closed
triangles) and heavy mineral oil (open triangles) with an oil phase SPAN 80 surfactant. (right)
Degree of droplet rotation (equal to angle of coalescence minus angle of impact) as a function
of the velocity of the incoming droplet. Reproduced with permission from ref [15]. Copyright
2020 American Chemical Society.
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Figure 17. Characterization of film dre'~age times for two coalescing water droplets in light or
heavy mineral oil. (A, B) Film dra:age time normalized by mean radius, as a function of droplet
velocity at various concentraticns ¢f SPAN 80 in (A) light and (B) heavy mineral oil. (C,D)
Dimensionless film drainage tn.~e us a function of capillary number at various concentrations of
SPAN 80 in (C) light and (D, he avy mineral oil. Reproduced with permission from refs [15] and
[16]. Copyright 2020 and 202> American Chemical Society.
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Figure 18. Beyond coalescence, droplets can also experience other dynamics, such as (A)
bounce-off or (B) flocculation, depending on factors such as impact velocity and surfactant
concentration. Here the center-to-center distance between water droplets as a function of time
in light mineral oil + SPAN 80 systems demonstrate of two non-coalescing events. Reproduced
with permission from ref [15]. Copyright 2020 American Chemical Society.
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Figure 19. Film drainage time between i.:-'0 water droplets scaled by velocity and mean drop
radius as a function of oil phase SPAN 80 c.centration with light (blue circles) and heavy (red
squares) mineral oils in the continuous | hase. Adapted with permission from ref [15]. Copyright
2020 American Chemical Society.
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