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Abstract 
The presence of droplets suspended in a liquid or gas is known to play an essential role in fields 
ranging from materials to atmospheric science.  Often, the dispersed phase is stabilized by 
surface active compounds and surfactants, resulting in complex chemical composition and 
material properties at the fluid-fluid interface.  In this talk, recent advancements in use of 
microscale flow fields will be highlighted for measuring properties of aqueous multiphase, 
interface-rich systems. Systems studied will include atmospheric aerosol droplets and liquid-
liquid emulsions. Microfluidic contractions, traps, and wells are used to measure surface-bulk 
partitioning and temperature-dependent liquid-liquid phase separation of aqueous droplets, 
towards better understanding of suspensions of aerosol droplets in our atmosphere. Advanced 
measurements of droplet shape deformations and coalescence will also be presented for both 
water-in-fuel and oil-in-water emulsions, for improved treatment and separation of emulsions. 
Dynamic interfacial tensions measurements were performed using a microfluidic tensiometer, 
demonstrating a dependence on if the surfactant approaches the interface from inside 
(dispersed) versus outside (continuous), implying phase dependent surfactant transport to 
curved interfaces at the microscale. Droplet coalescence and film drainage experiments are 
also performed in a microfluidic Stokes trap across a range of viscosity ratios and surfactant 
concentrations. Results are used to explore the influence of interfacial mobility and Marangoni 
stresses on film stability with soluble surfactants. 
Keywords 
Droplet microphysics, Phase separation, Surfactant transport, Dynamic interfacial tension, 
Interfacial rheology, Droplet coalescence  
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Figure 1. Schematic of possible aerosol particle chemical phase partitioning (not to scale), 
including liquid-liquid phase-separation (LLPS) into water-rich (‗aqueous‘) and water-poor 
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(‗organic‘) phases. Adapted with permission from [1]. Copyright 2017 American Chemical 
Society. 

 
 

 
Figure 2. Hysteresis of deliquescence/ efflorescence curves for ammonium sulfate salt. 
Deliquescence (water uptake) follows the lower curve, and occurs during relative humidity (RH) 
changes from a low RH to a high RH value.  Efflorescence (water loss) follows the upper curve, 
and occurs during RH changes from high RH to low RH, and. Figure reprinted from [2], with 
permission from Elsevier; ‗this work‘ refers to that from Tsai and Kuo [2]. 

 
 
 

Figure 3. (left) Change in droplet volume of ammonium sulfate solution with time.  (middle, right) 
Change in mass fraction of water and % RH, corresponding to the water activity within the 
droplet phase, as a function of fractional droplet volume during drying.  Adapted with permission 
from [3]. Copyright 2018 American Chemical Society.  
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Figure 4. RH of phase transitions at different organic to inorganic ratios and at different 
temperatures for ammonium sulfate + 3-methylglutaric acid aqueous droplets. The phase 
transition refers is LLPS for OIR 1:10 and 1:1 and efflorescence for OIR 10:1. Reprinted with 
permission from [4]. Copyright 2020 American Chemical Society. 

 
 

 
 

Figure 5. Microscopy images of phase transitions in time observed for (a) NaCl + MgCl2 + 
Na2SO4 aqueous droplet, and (b, c) in 3-methylglutaric acid + NaCl + MgCl2 + Na2SO4 aqueous 
droplet.  Scale bar is 50 μm. Reprinted with permission from [5]. Copyright 2019 American 
Chemical Society. 
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Figure 6. Example of interfacial tension between an oil and aqueous methanol solutions, 
measured using pendant drop (―bulk‖) and microfluidic method, showing good agreement 
between the two methods for simple surfactant-free mixtures.  For more information, see ref [6]. 

 
 

 
Figure 7. Microfluidic measurements of interfacial tensions of aqueous ammonium sulfate and 
(left) methylglyoxal (MG) and (right) methylglyoxal (MG) + formaldehyde (F) solutions. Adapted 
with permission from ref [7]. Copyright 2016, American Chemical Society. 
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Figure 8. Microfluidic measurements and modeled values of interfacial tensions of (left) 2-
methyltetrols and (right) IEPOX-OS, without and with ammonium sulfate (AS). Reprinted with 
permission from ref [8]. Copyright 2019, American Chemical Society. 

 
Figure 9. Ice nucleation site density per unit mass of Snomax® in aqueous droplets using a 
microfluidic platform (―This Work‖), along with comparison to literature data obtained from others 
(see ref [9] for more information). Reprinted with permission from ref [9], open access Creative 
Common CC BY license. 
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Figure 10. Time required to reach a dynamic interfacial tension IFT value of 15 mN/m millimeter-
sized water droplet in surfactant-containing fuel as a function of droplet size, using a pendant 
drop method.  For the same chemical composition, less time is needed as the droplet size 
decreases.  Adapted with permission from ref [10]. Copyright 2018 American Chemical Society. 

 
Figure 11. Dynamic interfacial tension measurements using (left) pendant drop and (right) 
microfluidic for water – fuel interface, in the presence of a fuel-phase surfactant. Droplet size 
dependent kinetics are evident, with the microfluidic approach reaching an IFT of 5 mN/m much 
faster than the pendant drop method for the same chemical system. Adapted with permission 
from ref [10]. Copyright 2018 American Chemical Society. 
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Figure 12. Dynamic interfacial tension of 
both water-in-oil (w/o) and oil-in-water (o/w) 
droplets using (left) pendant drop and (right) 
microfluidic platform. Note that some 
surface-active additives are already present 
in the complex oil mix used here, and ―No 
surfactant‖ simple refers to a case where no 
additional surfactant was added. Figure 
adapted from Refs. [11] and [12], with 
permission from the Royal Society of 
Chemistry. 

 
 

 
Figure 13.   Dynamic interfacial tension using pendant drop tensiometry for water – fuel systems 
contain (A) mono-olein and (B) PIBSI surfactants. Solid black lines are fits to either the (A) late 
or (B) early time solutions to the Ward and Tordai equation [43]. Panel (A) uses results from 
Ref. [10]. Reproduced from Ref. [13] with permission from the Royal Society of Chemistry.  
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Figure 14. (A) Magnitude of the interfacial dilatational modulus for water – fuel interface, at 
varied fuel phase surfactant concentrations, as a function of frequency. (B) Characteristic 
frequency of surfactant exchange with the subphase obtained from the fits to the data in (A), as 
a function of surfactant concentration. Reproduced from Ref. [13] with permission from the 
Royal Society of Chemistry. 
 

 
Figure 15. (a) Distance between the two approaching droplets for (a) water in light mineral oil 
(w/o) and (b) light mineral oil in water (o/w), with a water-soluble surfactant. For the same 
chemical system, the film drainage time is less than a second for the w/o and did not 
coalescence for the o/w.  In general, the dynamics after droplet impact depend on a range of 
factors, including droplet size, viscosity ratio, surfactant type, concentration, and phase, and 
velocities and angles of impact. Reprinted from Ref. [14]. 

 
 

 

 
Figure 16.   (left) Film drainage time during water droplet coalescence in a microfluidic platform, 
as a function of trapped droplet radius, for continuous phases of light mineral oil (closed 
triangles) and heavy mineral oil (open triangles) with an oil phase SPAN 80 surfactant. (right) 
Degree of droplet rotation (equal to angle of coalescence minus angle of impact) as a function 
of the velocity of the incoming droplet. Reproduced with permission from ref [15]. Copyright 
2020 American Chemical Society. 
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Figure 17. Characterization of film drainage times for two coalescing water droplets in light or 
heavy mineral oil. (A, B) Film drainage time normalized by mean radius, as a function of droplet 
velocity at various concentrations of SPAN 80 in (A) light and (B) heavy mineral oil. (C,D) 
Dimensionless film drainage time as a function of capillary number at various concentrations of 
SPAN 80 in (C) light and (D) heavy mineral oil. Reproduced with permission from refs [15] and 
[16]. Copyright 2020 and 2022 American Chemical Society. 
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Figure 18. Beyond coalescence, droplets can also experience other dynamics, such as (A) 
bounce-off or (B) flocculation, depending on factors such as impact velocity and surfactant 
concentration.  Here the center-to-center distance between water droplets as a function of time 
in light mineral oil + SPAN 80 systems demonstrate of two non-coalescing events.  Reproduced 
with permission from ref [15]. Copyright 2020 American Chemical Society. 

 
 

 

 
Figure 19. Film drainage time between two water droplets scaled by velocity and mean drop 
radius as a function of oil phase SPAN 80 concentration with light (blue circles) and heavy (red 
squares) mineral oils in the continuous phase. Adapted with permission from ref [15]. Copyright 
2020 American Chemical Society. 
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