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7 ABSTRACT: The effects of atmospheric aging on single-particle nascent sea spray aerosol (nSSA)
8 physicochemical properties, such as morphology, composition, phase state, and water uptake, are
9 important to understanding their impacts on the Earth’s climate. The present study investigates these
10 properties by focusing on the aged SSA (size range of 0.1−0.6 μm) and comparing with a similar size
11 range nSSA, both generated at a peak of a phytoplankton bloom during a mesocosm study. The aged
12 SSAs were generated by exposing nSSA to OH radicals with exposures equivalent to 4−5 days of
13 atmospheric aging. Complementary filter-based thermal optical analysis, atomic force microscopy
14 (AFM), and AFM photothermal infrared spectroscopy were utilized. Both nSSA and aged SSA showed
15 an increase in the organic mass fraction with decreasing particle sizes. In addition, aging results in a
16 further increase of the organic mass fraction, which can be attributed to new particle formation and
17 oxidation of volatile organic compounds followed by condensation on pre-existing particles. The results
18 are consistent with single-particle measurements that showed a relative increase in the abundance of
19 aged SSA core−shells with significantly higher organic coating thickness, relative to nSSA. Increased
20 hygroscopicity was observed for aged SSA core−shells, which had more oxygenated organic species. Rounded nSSA and aged SSA
21 had similar hygroscopicity and no apparent changes in the composition. The observed changes in aged SSA physicochemical
22 properties showed a significant size-dependence and particle-to-particle variability. Overall, results showed that the atmospheric
23 aging can significantly influence the nSSA physicochemical properties, thus altering the SSA effects on the climate.
24 KEYWORDS: atomic force microscopy, aged sea spray aerosol, morphology, phase state, water uptake, composition,
25 particle-to-particle variability

26 ■ INTRODUCTION
27 Nascent sea spray aerosols (nSSA) are generated upon the
28 bursting of air bubbles at the ocean−air interface and represent
29 a significant fraction of natural aerosol mass concentration in
30 the atmosphere.1−4 During air bubble bursting, organic,
31 inorganic, and biological species from the seawater and sea
32 surface microlayer (SML) can be transferred into the
33 nSSA.1,3−15 Therefore, the chemical complexity of nSSA can
34 significantly vary due to the composition and biological activity
35 in the seawater and SML.3,4,14−23 Additionally, the differences
36 in formation mechanisms (i.e., film drops vs jet drops) of nSSA
37 at the ocean−air interface can further control their size-
38 dependent and particle-to-particle variability in chemical
39 complexity.5,14,16,24 nSSA can influence the Earth’s radiative
40 budget directly, via scattering and absorbing incoming solar
41 radiation, and indirectly by acting as cloud condensation nuclei
42 (CCN) or ice nuclei (IN).1,6,7,13,25−35 The surfaces of aerosols
43 can facilitate atmospheric aging with gaseous phase oxidants
44 (i.e., OH radicals and ozone).36−44 For example, studies
45 conducted on atmospherically relevant organic model systems

46showed that atmospheric aging can lead to the formation of
47new particles,2,45 oxidation of volatile and semi-volatile organic
48compounds from pre-existing particles,36−38,46−48 and con-
49densation of oxidized organics on pre-existing particles to form
50coatings.36,46−49 Thus, atmospheric aging can alter the nSSA’s
51physicochemical properties (i.e., morphology, composition,
52phase states, and water uptake) and influence on their direct
53and indirect aerosol effects on the climate.36−38,46,50

54The effects of aging on the physicochemical properties of
55aerosols have been studied previously using laboratory-
56generated model systems. For example, atmospheric organic
57aerosol proxies (e.g., alkanes and oxidized organic compounds)
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58 showed a formation of highly oxygenated organic compounds
59 with increasing atmospheric aging time (i.e., increasing OH
60 exposure).36,47,48,51 The morphology of aerosols can have a
61 significant impact on the rates of atmospheric aging.36 In
62 particular, core−shells can undergo the OH-initiated aging
63 process within days, compared to rounded particles where the
64 timescale can be weeks or even months.36,52 In addition, an
65 increase in hygroscopicity and water uptake efficiency of
66 aerosols have been observed due to the atmospheric aging,
67 which in turn impacts their phase state.36,43,47,53,54 The
68 changes in the phase state can change aerosol’s water content,
69 solute concentration, and viscosity that subsequently alter their
70 direct and indirect effects.1,2,11,42,55−58 However, to our
71 knowledge, no previous studies had investigated the effects
72 of atmospheric aging on physicochemical properties of single-
73 particle nSSA and their size-dependent particle-to-particle
74 variabilities.
75 Herein, we investigated the effects of atmospheric aging on
76 various physicochemical properties of nSSA (size range of 0.1−
77 0.6 μm) generated during a phytoplankton bloom from the Sea
78 Spray Chemistry And Particle Evolution (SeaSCAPE)
79 mesocosm study in 2019.1,2 Aged SSAs were generated by
80 exposing freshly generated nSSA to OH radicals, simulating
81 approximately 4−5 days of atmospheric aging. In addition, the
82 formation of new particles (i.e., secondary marine aerosols)
83 and condensation of oxidized organic compounds on existing
84 particles were observed. Filter-based thermal optical analyses
85 and ion chromatography were used to investigate the size-
86 dependent bulk-ensemble organic mass fraction in nSSA and
87 aged SSA, which provided ensemble-averaged composition
88 data for the aerosol population, with significant organic
89 enrichment observed for aged SSA. To better understand the
90 particle-to-particle variability in nSSA versus aged SSA organic
91 enrichment and their corresponding morphology, phase state,
92 and water uptake properties, single-particle atomic force
93 microscopy (AFM) and AFM−photothermal infrared spec-
94 troscopy (AFM−PTIR) analyses were employed. A significant
95 change of these properties was observed due to the
96 atmospheric aging, and results provide an important insight
97 on how the aging influences the physicochemical properties of
98 nSSA.

99 ■ MATERIALS AND METHODS
100 Nascent and Aged SSA Generation and Collection for
101 Offline Single-Particle Studies. Nascent SSA (nSSA) were
102 generated throughout a phytoplankton bloom from a wave-
103 simulation channel facility which contained filtered seawater
104 from the southern coast of California, during the Sea Spray
105 Chemistry And Particle Evolution (SeaSCAPE) 2019 study.1,2

106 A micro-orifice uniform deposit impactor (MOUDI; MSP,
107 Inc., model 110) at a flow rate of 30 L/min was used to deposit
108 individual submicrometer nSSA onto hydrophobically coated
109 (Rain-X) silicon substrates (Ted Pella, Inc.) at ∼80% relative
110 humidity (RH).1 The MOUDI stages 7, 8, and 9 were used
111 that correspond to 50% cutoff aerodynamic diameter range of
112 0.32−0.60, 0.18−0.32, and 0.10−0.18 μm, respectively.
113 Additional details of the nSSA generation and deposition can
114 be found elsewhere.1 For the purpose of comparison, both
115 nSSA and aged SSA were collected on the same sampling day
116 (peak of the bloom, August 2nd) over the same size range.
117 A potential aerosol mass oxidation flow reactor (PAM-OFR,
118 Aerodyne Inc) was used to produce hydroxyl (OH) radicals,
119 which can simulate aging of aerosols with atmospheric time-

120equivalent aging from a fraction of a day to several weeks.2,59,60

121Here, by using the PAM-OFR, aged SSA were generated by
122exposing nSSA to OH radicals (average concentration of ∼5.9
123× 1011 molecules/cm3, aerosol residence time of ∼2 min),
124which corresponds to 4−5 days of atmospheric aging.2,59

125Before aging, nSSA stream was passed through a denuder
126(CARULITE-200, Ozone Solutions) to remove ozone (O3)
127from the wave-channel headspace.2 Additional details of the
128aged SSA generation using the PAM-OFR can be found
129elsewhere.2 The PAM-OFR sampled nSSA from a headspace of
130the wave-channel to generate aged SSA.1,2 However, in
131addition to aged SSA, new particle formation (i.e., secondary
132marine aerosols, SMA, typical particle diameter < 100 nm) was
133also observed, likely as a result of oxidation and condensation
134of volatile organic compounds from the wave-channel
135headspace.2 In the present work, atomic force microscopy
136(AFM) single-particle analysis was limited to particle sizes
137above 100 nm, thus largely excluding SMA particles that were
138<100 nm in size. In addition, we note that the composition of
139aged SSA studied here may be somewhat influenced by
140condensation of oxidized volatile or semi-volatile organic
141compounds onto pre-existing particles in PAM-OFR. The
142generated aged SSA were deposited onto hydrophobically
143coated silicon substrates using MOUDI (MSP, Inc., model
144125R, flow rate 10 L/m) stages of 7, 8, and 9 at ∼20% RH. All
145samples were stored in clean Petri dishes and kept inside a
146laminar flow hood (NuAire, Inc., NU-425-400) at ambient
147temperature (20−25 °C), 20−25% relative humidity range,
148and pressure for 2−4 months prior to AFM and AFM−PTIR
149experiments.
150AFM Imaging to Determine the Morphologies and
151Organic Volume Fraction of Aged SSA Core−Shell at
15220% RH. Particle locations for single-particle imaging and
153analysis were selected in a completely random and unbiased
154manner.1 A molecular force probe 3D AFM (Asylum Research,
155Santa Barbara, CA) was used for imaging individual substrate-
156deposited aged SSA at ambient temperature (20−25 °C) as
157described in prior studies.1,11,55,61 A custom-made humidity
158cell was used to control RH with a range of 20−80%.11 Prior to
159the AFM measurements at a particular RH, at least 10 min of
160equilibrium time was allocated to ensure that aged SSA are in
161thermodynamic equilibrium with surrounding water
162vapor.11,55,61 Silicon nitride AFM tips (MikroMasch, model
163CSC37, typical tip radius of curvature of ∼10 nm, nominal
164spring constant of 0.5−0.9 N/m) were used for imaging and
165force spectroscopy measurements.11,55,61 AFM AC (intermit-
166tent contact) mode imaging was used to collect 3D height and
167phase images of individual aged SSAs to determine their
168morphology and volume-equivalent diameter and quantify the
169organic volume fraction (OVF) and corresponding organic
170coating thickness (OCT) for core−shell aged SSA, as
171described in prior studies.11,55,61 The OVF is defined as the
172ratio of the shell volume (assumed predominantly organic) to
173the total particle volume, while the OCT represents the
174projected thickness of organic coating around the inorganic
175core.1,11,61,62 By assuming the core is predominantly inorganic
176and the shell primarily organic, the single-particle OVF
177represents the amount of organic present in the particle
178relative to the total particle volume.1,11,61 For the morpho-
179logical analysis, approximately 100 individual aged SSAs were
180investigated, while for the OVF and OCT analyses, 10 or more
181individual aged SSA core−shell within each size range were
182investigated. The relative abundance of identified morpho-
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183 logical categories (rounded, core−shell, prism-like, rod−shell,
184 and aggregate) and OVF and OCT values were recorded as an
185 average and one standard deviation at three volume-equivalent
186 diameter ranges of 0.10−0.18, 0.18−0.32, and 0.32−0.60 μm.
187 The observed aged SSA morphology, OVF, and OCT were
188 compared with nSSA sample collected on same sampling day
189 over the same three size ranges.1

190 Because the total number of individual particles that can be
191 practically studied with AFM is limited, we utilized a statistical
192 probability distribution analysis to assess the statistical
193 significance of the AFM-based morphology and phase state
194 measurements.1 The detailed description about the approach
195 can be found elsewhere.1,63,64 Briefly, the probability
196 distributions associated with the likelihood of sampling one
197 of the five morphologies, or one of the three phase states, were
198 generated using a self-coded Monte Carlo-like simulation
199 method for a “true” population of 10,000 particles.1,63−65 The
200 average with one standard deviation for the fraction of particles
201 from each morphological type or phase states were obtained by
202 fitting the probability distribution plots with the Gaussian
203 function.1 The results were recorded for nSSA and aged SSA
204 samples as a function of RH and volume-equivalent diameter
205 range.
206 AFM Measurements of Aged SSA Water Uptake and
207 Phase State at RH Range of 20−80%. The analysis of 3D
208 growth factor (GF) at 80% RH was employed to quantify the
209 water uptake properties of aged SSA on a single-particle
210 basis.1,66−68 The GF is defined as the ratio of the volume-
211 equivalent diameter of an individual SSA at 80% RH over the
212 corresponding volume-equivalent diameter recorded at 20%
213 RH, where higher values would indicate the presence of more
214 hygroscopic components.1,66−68 The GF measurements were
215 performed on approximately 10 individual core−shell and
216 rounded aged SSA at their highest relative occurrence size
217 range of 0.32−0.60 and 0.10−0.18 μm, respectively, and the
218 values were reported as an average and one standard deviation.
219 The AFM force spectroscopy was employed to identify the
220 phase state at 20 and 60% RH under ambient temperature
221 (20−25 °C) and pressure for aged SSA with the most
222 abundant morphologies (i.e., core−shell, rounded) using a
223 previously reported method.1,11,55,57 The RH values were
224 selected as a benchmark based on sucrose that shows solid to
225 semisolid and semisolid to liquid phase transitions at ∼20 and
226 60% RH, respectively.1,11,55,57 A maximum force of 20 nN and
227 scan rate of 1 Hz were used.1,11 At least five force plots were
228 collected by probing at the shell region of core−shell and at
229 approximately the center of the rounded aged SSA.1 The
230 collected force plots were then used to quantify the viscoelastic
231 response distance (VRD, nm) and the relative indentation
232 depth (RID, the ratio of the indentation distance over the
233 particle height) for an individual particle.11,55 The single-
234 particle phase state identification was conducted using an
235 established framework from VRD and RID measurements, as
236 described in prior studies.1,11,55,57 The VRD values measured
237 on aged SSA in the semisolid phase state were reported as an
238 average and one standard deviation. Approximately 10 or more
239 individual aged SSAs for each morphology were investigated.
240 The VRD values and relative abundance (i.e., an average and
241 one standard deviation for fraction of particles) of phase states
242 for the shell of core−shell SSA and rounded particles were
243 recorded at three volume-equivalent diameter ranges of 0.10−
244 0.18, 0.18−0.32, and 0.32−0.60 μm. The observations on

245phase states and water uptake of aged SSA were compared with
246the nSSA results reported previously.1

247AFM−PTIR Measurements of Aged SSA Composition
248at ∼20−30% RH. AFM−PTIR spectroscopic measurements
249were collected using a commercial AFM-IR microscope
250(nanoIR2, Bruker) with a tunable mid-IR quantum cascade
251laser (QCL MIRcat-QT, Daylight solutions). Images and
252spectra were collected at ∼20−30% RH and ambient
253temperature (23−26 °C) and pressure on individual aged
254SSA deposited on silicon substrates placed on MOUDI stages
2557, 8, and 9. Analysis was conducted using silicon nitride probes
256with a chromium-gold coating (HQ: NSC19/CR-AU,
257MikroMasch, typical tip radius of curvature 35 nm, and a
258nominal spring constant range of 0.05−2.3 N/m). AFM
259imaging was conducted in the tapping mode at a scan rate of
2600.5 Hz. AFM−PTIR spectra were collected with a nominal
261spatial resolution below 35 nm and a spectral resolution of 5
262cm−1, co-averaging over 128 laser pulses per wavenumber.1 A
263reference spectrum was taken on the substrate and subtracted
264from all corresponding spectra obtained on individual particles.
265For core−shell-aged SSA, spectra were taken at the core and
266shell particle regions, while for rounded aged SSA spectra were
267taken at an approximate center of each particle. Even
268accounting for differences in morphology, the large diversity
269of spectra between the aged SSA is reflected in large variances
270between particles. The PTIR results collected on aged SSA
271were compared with the nSSA results, which were recorded in
272a prior study.1

273Bulk Measurements of nSSA and Aged SSA Size-
274Dependent Organic and Inorganic Mass Fractions. For
275these measurements, nSSA and aged SSA samples were
276collected simultaneously during the peak of the phytoplankton
277bloom using five stage SIOUTAS Personal Cascade Impactors
278(PCIS, SKC model 225−370; 50% aerodynamic diameter
279range cutoff for each stage).1 The top four stages consisted of
280pre-baked 25 mm Al foil disks (0.25−0.50, 0.50−1.0, 1.0−2.5,
281and >2.5 μm) and the last stage a pre-baked 37 mm quartz
282fiber filter (QFF, PALL Life Sciences, <0.25 μm). The nSSA
283were collected directly from the wave flume and aged SSA by
284first oxidizing in the PAM-OFR using the conditions described
285above prior to collection.1,2 Flow rates of 9 L/min and ∼75−
28695% RH were maintained, and all samples were stored frozen
287at −20 °C until the analysis. Organic carbon (OC) was
288measured via a thermal optical analyzer (Sunset Laboratories,
289Forest Grove, OR) and common inorganic ions were separated
290and quantified via high-performance ion exchange chromatog-
291raphy with conductivity detection (Dionex ICS5000, Sunny-
292vale, CA).12,69,70 A stainless-steel punch was used to sub
293sample substrates, which were subsequently extracted in 4 mL
294of ultrapure water (>18.2 MΩ·cm, Thermo Barnstead Easy
295Pure II) and filtered (0.45 μm polypropylene, Whatman).
296Inorganic mass was estimated as the sea salt using the
297measured mass of sodium converted to the mass of the sea salt
298via a sodium/sea salt ratio of 3.26, as described previously.71

299■ RESULTS AND DISCUSSION
300Impact of Atmospheric Aging on Bulk Organic
301Enrichment in nSSA. The bulk ensemble-averaged method
302that was previously reported was used to investigate the size-
303 f1dependent organic enrichment in SSA samples.1,61 Figure 1A,B
304shows the size-dependent bulk organic and inorganic mass
305fractions in nSSA and aged SSA, respectively. Both samples
306showed an increase in the organic mass fraction with
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307decreasing particle size, consistent with previous mesocosms
308and laboratory studies on nSSA.1,2,61 The relative uncertainty
309in the organic mass fraction measurement for the smallest size
310range nSSA and aged SSA were estimated to be 30−34 and
311∼30%, respectively. In addition, atmospheric aging increases
312the organic mass fraction in aged SSA across all sizes. Aged
313SSA with sizes below 0.25 μm showed the highest (∼30%)
314increase of organic mass fraction relative to nSSA of similar
315sizes. The overall relative increase in the organic mass fraction
316can be attributed to the oxidation of volatile organic
317compounds in PAM-OFR followed by condensation on pre-
318existing particle or new particle formation.1,2,36,38,39,72 An
319increase in the organic mass fraction and possible changes in
320the composition of organic compounds in aged SSA as a result
321of atmospheric aging are expected to influence their physical−
322chemical properties, such as water uptake and phase
323state.3,39,43,44,50,72 For example, studies have shown that
324aging can result in an increase of oxygenated functional groups
325(e.g., hydroxyls and carbonyls) on parent particles, which in
326turn increases their hygroscopicity.39,72,73 Noteworthy, the
327size-dependent bulk organic enrichment in aged SSA relative
328to nSSA provides an ensemble-averaged value of an entire
329population of aerosols within a particular size range; however,
330it does not fully explain the origin of such enrichment nor
331provide an assessment on a possible particle-to-particle
332variability in the organic enrichment. Thus, single-particle
333measurements were next utilized to further assess the effects of
334aging on the nSSA composition and morphology and then
335supplemented with single-particle phase state and water uptake
336measurements.
337Impact of Atmospheric Aging on Size-Dependent
338Morphological Distribution of nSSA. AFM single-particle
339 f2imaging at ∼20% RH was used to investigate substrate-

Figure 1. Organic (yellow) and inorganic (cyan) mass fractions
versus particle size for (A) nascent and (B) aged SSA samples. The
width of each bar indicates the SIOUTAS Personal Cascade Impactor
cutoff size range at 74−96% RH. BDL indicates the measured organic
mass fraction was below the detection limit. Organic and inorganic
mass fractions for nascent SSA were adapted from Kaluarachchi et al.,
2022.1 Copyright 2022 American Chemical Society.

Figure 2. (A) Selected illustrative AFM 3D height images of six observed morphological categories (prism-like, core−shell, rounded, rod, rod−
shell, and aggregate) for nascent and aged SSA samples. The maximum height range is 200 nm for each image. (B) Average and one standard
deviation of fraction of particles (%) from six morphological categories for nascent (left) and aged (right) SSA for a total number of particles (N)
100 within the volume-equivalent diameter range of 0.10−0.60 μm. The term “none” indicates the absence of a particular morphology type (i.e., no
rod−shells for nascent SSA, and no rods for aged SSA). Statistically significant differences of morphological categories are highlighted by green
areas. AFM 3D-height image of rod and rounded SSA, and histogram for nascent SSA was adapted from Kaluarachchi et al., 2022.1 Copyright 2022
American Chemical Society.
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f2 340 deposited aged SSA morphologies. Figure 2A shows
341 representative AFM 3D height images of five main aged SSA
342 morphological categories identified here (prism-like, core−
343 shell, rounded, rod−shell, and aggregate) within a volume-
344 equivalent diameter range of 0.10−0.60 μm. The catego-
345 rization of morphologies was conducted qualitatively using
346 AFM 3D height and phase images, as described previ-
347 ously.1,12,55,57,61 The aged SSA morphologies were compared
348 with nSSA morphologies (prism-like, core−shell, rounded, rod,
349 and aggregate) reported previously for the same sampling day.1

350 Overall, both nSSA and aged SSA samples had particles with
351 core−shell, prism-like, rounded, and aggregate morphologies.
352 However, the rod morphology was only observed for nSSA,
353 while the rod−shell morphology was only observed for aged
354 SSA. As will be shown in the next section using AFM−PTIR,
355 the rod particles were predominantly inorganic sulfates, while
356 the rod−shell had inorganic sulfate rods with a predominantly
357 organic shell. Therefore, it is likely that the organic shell in the
358 rod−shell was formed from the condensation of volatile
359 organic compounds onto pre-existing rods during the aging
360 process of nSSA.
361 Figure 2B shows the relative distribution of main
362 morphological categories for nSSA versus aged SSA over the
363 same volume-equivalent size range of 0.10−0.60 μm. The
364 relative distribution of each morphological type was assessed
365 by performing statistical probability distribution analysis, as
366 shown in prior studies.1 From this analysis, we established
367 statistically significant differences in the relative abundance of
368 four main morphological categories�rounded, core−shell,
369 rod, and rod−shell. Specifically, due to atmospheric aging, the
370 relative abundance of rounded and rod SSA decreased from 48
371 to 20% and from 11% to none, respectively. In contrast, the
372 relative abundance of core−shell and rod−shell SSA increased
373 from 17 to 49% and from none to 5%, respectively. While the
374 exact origin for the observed morphological changes remains
375 unknown, it is likely originating from a combination of several
376 factors. First, organic compounds in nSSA likely became more
377 oxygenated and some more volatile, which could explain an
378 observed decrease in the relative abundance of rounded SSA
379 that are predominantly organic.1,39,47,72,74 Second, semi-volatile
380 or low-volatility organic compounds can condense onto pre-
381 existing particles, leading to the formation of more core−shell
382 particles (i.e., condensation onto prisms or core−shells) or
383 formation of rod−shells (i .e. , condensation onto
384 rods).39,47,74−77 Third, the formation of more oxygenated
385 organic compounds in aged SSA likely decreases their viscosity,
386 which in turn can facilitate a more defined phase separation of
387 organic and inorganic compounds within substrate-deposited
388 particles, that can be more readily observed with AFM.46,61,72

389 Overall, our single-particle results clearly demonstrate that the
390 atmospheric aging leads to changes in the relative abundance
391 of SSA morphologies with a significant increase in the core−
392 shells.

f3 393 Figure 3A,B shows the size-dependent relative distribution
394 of morphological categories of nSSA and aged SSA within
395 three selected volume-equivalent diameter ranges of 0.10−
396 0.18, 0.18−0.32, and 0.32−0.60 μm, respectively. The
397 statistical probability distribution analysis to assess the
398 significance in the distribution of morphological types across
399 the size ranges was conducted as described in prior studies.1

400 For both sample types, as the particle size decreases, a
401 significant increase in the relative abundance of rounded
402 particles and a concurrent but smaller decrease of core−shells

403was observed.1 Additionally, for each size range, aged SSA had
404a higher abundance of core−shell particles as compared to
405nSSA. Moreover, for both samples, a prism-like morphology
406was predominantly observed at the largest size range. The
407relative abundances of rod and rod−shell particles were varying
408with respect to the particle size but without an apparent trend.
409 f4t1Figure 4 and Table 1 show the AFM-based single particle
410size-dependent organic volume fraction (OVF) and corre-
411sponding organic coating thickness (OCT) measurements for
412core−shell-aged SSA. Additionally, Figure 4 shows the size-
413dependent OVF values recorded for nSSA core−shells.1 Based
414on the average OVF results, the corresponding average and
415one standard deviation of OCT were calculated for aged SSA
416core−shells, and the results were compared with previously
417recorded data for nSSA.1 Overall, as the particle size decreases,
418the average core−shell OVF for nSSA increased from 0.18 ±
4190.06 to 0.47 ± 0.09, while that for aged SSA increased from
4200.31 ± 0.21 to 0.57 ± 0.25.1 As the OCT values do not display
421any clear size dependency, the average value over the entire
422studied size range of 0.1−0.6 μm can be used to assess the
423effect of aging on the shell thickness. Specifically, the average
424and one standard deviation of core−shell OCT for nSSA was
42516 ± 6 nm, while that for aged SSA was 24 ± 13 nm.
426As will be demonstrated in the next section using AFM−
427PTIR spectroscopy, the core and shell regions of core−shell-
428aged SSA and nSSA are predominantly enriched with inorganic

Figure 3. Relative distribution of the observed morphological
categories (prism-like, core−shell, rounded, rod, rod−shell, and
aggregate) of (A) nascent vs (B) aged SSA for a total number of
particles (N) of 100, at three selected volume-equivalent diameter
ranges of 0.10−0.18, 0.18−0.32, and 0.32−0.60 μm. The term “none”
indicates absence of a particular morphology type within a specific
subpopulation of SSA. Arrows are for illustrative purposes only and
show changes in the morphological distribution from nascent to aged
SSA within a particular volume-equivalent diameter range. Statisti-
cally-significant differences between nascent and aged SSA for size-
dependent morphological categories are highlighted by green areas.
The relative distribution of the morphological categories for nascent
SSA was adapted from Kaluarachchi et al., 2022.1 Copyright 2022
American Chemical Society.
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429 and organic compounds, respectively.1 Therefore, the larger
430 OVF and OCT values are indicative of a relatively higher
431 organic content in the core−shell particles.1,2,18,61 For both
432 nSSA and aged SSA core−shells, a significant increase of the
433 average OVF with the decreasing particle size was observed,
434 which indicates significant organic enrichment in smaller
435 particles.1 In addition, compared to nSSA, aged SSA core−
436 shells showed a significantly higher OVF and OCT values for
437 all sizes, which indicates substantial organic enrichment as a
438 result of atmospheric aging. Collectively, the observed bulk
439 organic mass fraction enrichment in the smaller aged SSA
440 (Figure 1 and corresponding discussion above) could be
441 therefore attributed to a combination of an increase in OVF for

442smaller core−shell particles and increased abundance of
443smaller predominantly organic rounded particles. Additionally,
444the observed increase of bulk organic mass fraction of aged
445SSA relative to nSSA (Figure 1) is likely due to a significant
446increase in the abundance of core−shell particles with a higher
447organic content.
448Changes in Single-Particle nSSA Composition due to
449 f5Atmospheric Aging. Figure 5A,B shows the AFM−PTIR
450spectra collected on nSSA and aged SSA core−shell particles at
451the core and shell regions. The core of nSSA core−shell
452particles are comprised IR inactive compounds, such as NaCl
453or contain nitrates [νas(NO3

−): 1400, 1380 cm−1], while the
454shells are enriched with aliphatic-rich compounds [δ(CH2,
455CH3): 1450, 1370 cm−1].1 A small shoulder at δ(CH2): 1450
456cm−1 and modes around ν(C−O, C−C): 1150 and 1050 cm−1

457are evident in spectra from the nSSA core, suggesting a thin
458layer of organic coating.1 The aged SSA core−shells are
459spectrally distinct relative to nSSA core−shells. The core of the
460aged SSA core−shell is largely IR inactive from 800 to 1800
461cm−1. The shell of aged SSA core−shell is more functionalized
462in comparison to the nascent shells, as indicated by the larger
463vibrational mode around 1600 cm−1, a broad mode that could
464have overlapping contributions from νas(COO−), ν(C�O), or
465even amides.78,79 Thus, based on the PTIR spectral
466comparison, the shell region of aged SSA is enriched with
467more oxygenated organic compounds relative to nSSA and
468provides a confirmation of the hypothesis that following OH
469oxidation, oxygenated gases partition to the surface of existing
470particles whereby the organic fraction increases with aging.
471Figure 5C,D shows the PTIR spectra collected on nSSA and
472aged SSA-rounded particles at the approximate center of
473individual particles. For both sample types, there are two
474similar large modes at 1415−1435 cm−1 corresponding to
475aliphatic-rich compounds [δ(CH2, CH3) and oxygenated

Figure 4. Averaged organic volume fraction measured using AFM at
∼20% RH for core−shell individual SSA from nascent (blue) and
aged (brown) samples at three selected volume-equivalent diameter
ranges of 0.10−0.18, 0.18−0.32, and 0.32−0.60 μm. Each color bar
height and error bar represent the average and one standard deviation,
respectively. The OVF for nascent SSA were adapted from
Kaluarachchi et al., 2022.1 Copyright 2022 American Chemical
Society.

Table 1. Summary of Core−Shell and Rounded Aged SSA Properties for Three Selected Volume-Equivalent Diameter Ranges
of 0.10−0.18, 0.18−0.32, and 0.32−0.60 μm During the Phytoplankton Bloom Including an Averaged and One Standard
Deviation for Fraction of Particles at Solid, Semisolid, and Liquid Phase States at 20 and 60% RH, VRD for the Semisolid Shell
of Core−shell and Semisolid Rounded Particles, OVF, and Corresponding OCT for Core−shell Particles, Volume-Equivalent
GF, and Hygroscopicity Parameter (κMix)

aData range reported by probing shell region of core−shell, and the center of rounded aged SSA at the semisolid phase state. Statistically significant
differences for a particular property are highlighted by green areas.
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476 functional groups ν(COO−)] and around 1600 cm−1 that
477 could have overlapping contributions from νas(COO−), ν(C�
478 O), or even amides.78,79 While relative intensities of these two
479 main modes somewhat differ which may indicate variability of
480 different functional groups, the presence of two modes for both
481 samples suggests similar functional groups are present for both
482 samples. Additionally, the PTIR spectra for rounded aged SSA
483 appear to be spectrally similar to the shell region of core−shell-
484 aged SSA, suggesting the presence of similar functional groups
485 for these samples. We note, due to large chemical diversity
486 within SSA, combined single-particle PTIR spectra show a
487 large variance. Thus, spectral results presented herein
488 demonstrate the presence (or potential absence) of a particular
489 functional group within SSA.1

f6 490 Figure 6A,B shows the AFM 3D height image and zoomed
491 in the region for the aged SSA rod−shell particles, where
492 AFM−PTIR spectra were taken. PTIR spectra shown in Figure
493 6C reveals that the rod is inorganic sulfate, similar to rod
494 particles observed on the nSSA sample,1 as evidenced by the
495 νas(SO4

2−) mode at 1170 cm−1.80 The shell region of rod−
496 shells is organically rich with a distinct mode of ν(C�O) at
497 1700 cm−1.81,82 Hyperspectral maps of the particle (Figure
498 6D) show the spatial distribution of absorbances within 100
499 cm−1 integrated spectral bins. The rod-shaped core of the
500 particle only has absorbances consistent with the sulfate
501 (1100−1200 cm−1), while the shell is more intensely absorbing
502 in spectral maps for other spectral regions such as δ(CH3,

503CH2): 1330, 1470 cm−1, νas(COO−): 1570 cm−1, ν(C�C):
5041595 cm−1, and ν(C�O): 1700 cm−1. It is likely that the rod−
505shell particles were formed due to the condensation of semi-
506volatile or low volatility oxygenated organic compounds on
507pre-existing rod particles during the heterogeneous aging
508process in PAM-OFR.81−83 Furthermore, the PTIR spectra for
509the shell region of core−shell- and rod−shell-aged SSA and
510rounded aged SSA appear to be comparable, suggesting the
511presence of similar organic functional groups. Formation of
512more oxygenated organic species in aged SSA core−shells
513relative to nSSA core−shells could potentially influence
514particle phase state and hygroscopicity as discussed below.
515Influence of Atmospheric Aging on Phase State and
516Water Uptake of Rounded and Core−Shell nSSA. Phase
517state identification on the highest abundance morphologies
518(i.e., core−shell and rounded) of aged SSA were performed at
51920 and 60% RH using the AFM force spectroscopy (i.e., force
520profiles).1,11,55,57 At least five repeated force profiles were
521collected by probing at the shell region of each core−shell and
522at an approximate particle center for each rounded particle.
523The measurements over the core of aged SSA core−shell
524particles were not reported because it is solid with possibly a
525thin organic layer, as shown in our prior studies.1 The force
526profiles were then used to quantify VRD (nm, viscoelastic
527response distance) and RID (ratio of the indentation depth
528over the particle height) for an individual particle at a
529particular RH and determine phase states using previously
530established frameworks based on these measurements.1,11,55,57

531Previous studies showed that the VRD values can be related to
532the viscoelastic nature of particles, where higher values
533generally correspond to lower viscocity.1,11,57 Table 1 shows
534the VRD values measured on semisolid particles within three

Figure 5. PTIR spectra for (A) nascent and (B) aged core−shell SSA,
(C) nascent and (D) aged rounded SSA within the volume-equivalent
diameter range of 0.10−0.60 μm. Spectra were taken at core and shell
regions for core−shell SSA, and at approximately particle center for
rounded SSA. Solid lines show the averaged spectra (number of
individual core−shell SSA ≥ 10, and number of individual rounded
SSA ≥ 10) and shaded lines represent the 95% confidence interval.
The spectra for nascent SSA were adapted from Kaluarachchi et al.,
2022.1 Copyright 2022 American Chemical Society.

Figure 6. (A) AFM 3D height image and (B) zoomed in region of the
aged rod−shell particle with (C) AFM−PTIR spectra measured over
the rod (black line) and shell (blue line) regions and (D)
hyperspectral maps recorded over the rod−shell particle shown over
1100−1700 wavenumber range with 100 cm−1 windows.
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535 selected volume-equivalent diameter ranges of 0.10−0.18,
536 0.18−0.32, and 0.32−0.60 μm. A statistical probability
537 distribution analysis on solid, semisolid, and liquid phase
538 states for the shell region of core−shell and rounded aged SSA
539 were performed, as described in previous studies.1 Because no
540 apparent size-dependent phase state was observed for core−
541 shells and rounded aged SSA, the phase state results for each
542 particle type were combined over a wider volume-equivalent
543 diameter range of 0.1−0.6 μm.

f7 544 Figure 7A,B shows the relative distributions of solid,
545 semisolid, and liquid phase states for the shell region of aged
546 SSA versus nSSA core−shells. At 20% RH, nSSA had either
547 solid or semisolid shells, while aged SSA had only semisolid
548 shells. Furthermore, the VRD values measured on aged SSA
549 semisolid shells were greater than that for nSSA, which is likely
550 indicative of lower shell viscosity as a result of atmospheric
551 aging.1 The results were consistent with the presence of more
552 oxygenated organic compounds, as evident by the PTIR
553 measurements discussed above. As RH increased to 60%, aged
554 SSA shells became hydrated and a significant fraction of shells
555 were liquid, while nSSA shells were only semisolid.1

556 Collectively, due to the aging, the phase state of shells shifted
557 toward a more semisolid state (likely with lower viscosity)
558 within the considered RH range.
559 Figure 7C,D shows the relative distributions of solid,
560 semisolid, and liquid phase states for rounded aged SSA
561 versus nSSA. Specifically, at 20% RH, rounded nSSAs were
562 either solid or semisolid, while rounded aged SSA were only
563 semisolid.1 However, the VRD values measured on semisolid-
564 rounded nSSA versus aged SSA did not show a significant
565 variability, which was consistent with the presence of similar
566 functional groups for each sample, as evident by the PTIR
567 measurements discussed above. As RH increased to 60%,
568 rounded aged SSA only showed a semisolid phase state, while
569 the majority of nSSA rounded was semisolid with a small
570 fraction as a liquid.1

571 The 3D growth factor (GF) and corresponding hygro-
572 scopicity parameter (κmix) of core−shell and rounded aged SSA
573 were determined at 80% RH using a previously reported
574 approach, and the corresponding average and one standard

575deviation values are reported in Table 1.1,11,67,68,84 The
576measurements were performed on the core−shell and rounded
577aged SSA at the highest relative occurrence size ranges of
5780.32−0.60 and 0.10−0.18 μm, respectively. Specifically, the GF
579(range 1.2−1.7) and κmix (average 0.5 ± 0.4) values for aged
580SSA core−shells were higher compared to the GF (range 1.2−
5811.4) and κmix (average 0.3 ± 0.2) values of nSSA core−shells
582for similar sizes as reported by us previously.1 An increase in
583hygroscopicity and water uptake observed on the aged SSA
584core−shells relative to nSSA core−shells is consistent with the
585AFM−PTIR spectral data and AFM phase state measurements,
586which showed formation of more oxygenated organics and
587increasing the relative abundance of liquid shells as a result of
588aging. In contrast, there is no apparent difference in the nSSA-
589rounded particle GF (range 1.0−1.2) and κmix (average 0.1 ±
5900.1) values and aged SSA-rounded particle GF (range 1.0−1.2)
591and κmix (average 0.1 ± 0.1) values. These results are
592consistent with AFM−PTIR measurements described above,
593where spectra for these two samples suggest the presence of
594similar functional groups.

595■ SUMMARY AND IMPLICATIONS
596Atmospheric aging can alter various physicochemical proper-
597ties of the SSA.36−39,74,85,86 The current study investigated the
598effects of atmospheric aging of nSSA (i.e., oxidation with OH
599radicals corresponds to 4−5 days of atmospheric aging) on
600their size-dependent morphology, composition, water uptake,
601phase state, and particle-to-particle variability of these
602properties, for submicron nSSA and aged SSA collected during
603a mesocosm study. As is evident by filter-based measurements,
604both nSSA and aged SSA showed an increase in the organic
605mass fraction with decreasing particle size. In addition, aging
606further increased the organic mass fraction in aged SSA. These
607results can be rationalized with complementary single-particle
608measurements presented here, which showed a relative
609increase in the abundance of aged SSA core−shells with
610significantly higher organic coating thickness, compared to
611nSSA. Additionally, as is evident by PTIR spectra, aged SSA
612core−shells contained relatively more oxygenated organic
613species than nSSA. We also noticed a significant particle-to-

Figure 7. Relative distributions of solid, semisolid, and liquid phase states for (A,B) shell region of nascent and aged SSA core−shell at 20 and 60%
RH, respectively (C,D) nascent and aged SSA rounded at 20 and 60% RH, respectively. SSA are within the volume-equivalent diameter range of
0.10−0.60 μm. Arrows are for illustrative purposes only. The phase state information for nascent SSA were adapted from Kaluarachchi et al., 2022.1

Copyright 2022 American Chemical Society.
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614 particle variability in the aged SSA organic content and
615 composition. Aged SSA morphology, organic content, and
616 composition can influence their direct and indirect aerosol
617 effects (e.g., scattering, water uptake, CCN, and IN
618 efficiency).13,26,87,88 For example, prior studies showed core−
619 shells can undergo atmospheric aging within days, while
620 rounded particles can take up to weeks or months.36,52 The
621 organic coating thickness of core−shells can further control the
622 diffusion time scale of gas phase molecules in the atmosphere,
623 that is, thicker coating can significantly increase the diffusion
624 time into the particle.36,89 Moreover, as demonstrated in the
625 current study, aged SSA morphology and organic content can
626 modify their hygroscopicity by the presence of water-soluble or
627 insoluble compounds.1,11,46,55,62 In particular, higher hygro-
628 scopicity and more efficient water uptake properties were
629 observed for aged SSA core−shells, which had more
630 oxygenated organic species relative to nSSA core−shells,
631 while rounded aged SSA and rounded nSSA had similar
632 water uptake properties and no apparent changes in the
633 composition. The aged SSA morphology and composition-
634 induced water uptake can modify their sizes and affect the
635 direct and indirect aerosol properties.1−3,11,26,27,68,90

636 Atmospheric aging increased the abundance of core−shells
637 at the semisolid or liquid phase state, while nSSA core−shells
638 were primarily solid or semisolid (RH range of 20−60%). The
639 results can be compared with prior reports conducted on aged
640 SSA model systems. For example, a study conducted on model
641 organic aerosols showed a significant enhancement of the
642 particle hygroscopicity upon exposure to OH radicals that were
643 initially hydrophobic.43,46,49 Another study showed that the
644 atmospheric aging of model aerosol particles can potentially
645 increase the particle hygroscopicity, thus the formation of more
646 semisolid or liquid particles even at dry RH conditions, which
647 agreed with our observations from the current study.74,91

648 Particle phase state and hygroscopicity can control their
649 indirect aerosol effects, where liquid droplets can be better
650 CCN wh i l e s o l i d p a r t i c l e s c a n b e b e t t e r
651 IN.1,3,11,26,27,55,58,68,92,93 Thus, aged SSA in the liquid phase
652 state can likely show an enhanced CCN ability compared to
653 nSSA at the solid phase state.36−39,72 Furthermore, the particle
654 phase state can alter the bulk diffusion of small molecules (e.g.,
655 water, nonvolatile organic species), and characteristic time for
656 their mass-transport and mixing by molecular diffusion in the
657 aged SSA.74,85,86,89 For example, diffusion time required for
658 small molecules in a solid particle is much higher (∼years)
659 than that of a semisolid (∼seconds).76,89,94−96 As demon-
660 strated in the current study, the VRD values measured on
661 shells of aged SSA core−shells were shifted toward relatively
662 higher values, which likely indicated that the aged SSA shells
663 were becoming less viscous due to the aging.
664 Overall, our results illustrate that atmospheric aging results
665 in significant changes in SSA morphology, composition, phase
666 state, and water uptake properties. Significantly, these changes
667 are not the same for the entire SSA population but rather show
668 a significant particle-to-particle variability and size-dependency.
669 These findings highlight the importance of single-particle
670 methods that are complementary to bulk ensemble-average
671 approaches and support the premise that future studies aiming
672 to better understand and model the effects of atmospheric
673 aging of SSA should account for possible aerosol size effects
674 and particle-to-particle variability.
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