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Security Resource Investment Optimization for Critical Infrastructure
Systems: A Game-Theoretic Approach
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Abstract— Motivated by the problem of optimal security
resource deployment in critical infrastructure systems, we study
a non-zero-sum security game over the substations of a power
system in which the player payoffs depend upon the maturity of
the security resources at each substation according to NERC-
CIP standards. Extending previous work, we give a structural
characterization of the possible types of Nash equilibria in our
non-zero-sum additive security game model, present feasibility
conditions for equilibria of each type, and propose a novel algo-
rithm to compute an equilibrium. Utilizing our characterization
of the possible equilibria in additive security games, we propose
a method to obtain a suboptimal solution to the problem of
maximizing the expected outcome to the system operator by
varying the maturity of security resources deployed at each
substation and demonstrate the method by simulation.

I. INTRODUCTION

The pervasive introduction of cyber systems into critical
infrastructure domains has rendered the task of defense
against intrusion by malicious actors extraordinarily com-
plex. System operators must decide how to allocate their
limited security resources across elaborate cyber-physical
systems to reduce the impact of increasingly frequent and
larger scale intrusions into both the cyber and physical
layers. Recent high profile cyberattacks have caused major
disruptions to critical infrastructure in the oil and gas [18],
meat processing [2], and chemical distribution [3] industries.
Increased concern among experts about the scope of the
vulnerability of power grids in the U.S. to large-scale cyber
attacks [14] has highlighted the urgency with which new
security measures must be developed and deployed.

A security game is a type of resource allocation game
between attackers and defenders over a set of targets. Ap-
plications of game theory to security scenarios have been
extensively studied (e.g [5], [13], [15]) and successfully
deployed in the real world. For example, the United States
Federal Air Marshals Service, Coast Guard, and Trans-
portation Security Administration have implemented game-
theoretic models to defend critical infrastructure [9], [10] by
determining optimal security resource deployment strategies
such as assignment of a limited number of air marshals to
flights or law enforcement personnel to patrol routes. A zero-
sum security game model is proposed in [8] for contingency
analysis in power grids. Real world attack and defense
scenarios, however, are in general not necessarily zero-sum
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games [17] due to a variety of factors such as the diverse
incentives of attackers and defenders [19]. The present work
concerns simultaneous move one-shot two-player security
games of complete information between a single defender
(representing a system operator) and a single attacker. Under
the assumption that player utilities are additive over attacked
targets, [11] proposed an algorithm to compute a Nash
equilibrium in such a game in the case of a single attacker
resource and this work was later generalized to the case of
multiple attacker resources in [12]. The special case of zero-
sum additive security games under a restricted payoff model
was studied in [7] in which a structural characterization of the
Nash equilibria is given along with an algorithm to compute
the equilibrium strategies in such games in linear time.
Extending this approach to non-zero-sum security games, [6]
generalizes this structural characterization to non-zero-sum
games under the same restricted payoff model and gives a
quadratic time algorithm for equilibrium computation. In this
work, we further generalize the structural approach in [6], [7]
to the general payoff model studied in [12].

The contributions of our current work are as follows:
(1) The structural analysis [6], [7] of Nash equilibria in
additive security games is extended to a more general payoff
structure given in [12] and a characterization of the possible
types of equilibria in such games is presented along with
feasibility conditions for equilibria of each type. (2) Utilizing
our characterization of the possible types of equilibria, we
present a novel algorithm for computing an equilibrium and
its type. (3) Motivated by the non-zero-sum nature of real
security scenarios, we formulate a non-zero-sum additive
security game over the substations of a power system and
propose a method to vary the maturity of security resource
deployment at each substation to address the problem of
optimizing defender expected outcome at equilibrium.

The rest of the paper is organized as follows. In section II,
we present the problem formulation. In section III, we give
a structural characterization of possible types equilibria in
our additive security game model, and a suboptimal solution
to the optimization problem. Section IV presents simulation
of our approach. Finally, Section V presents our conclusions
and proposes several directions for future work.

II. PRELIMINARIES
A. Additive Security Games

We define a two player game between an attacker and
defender over a target set 7' = {1, ..., m}. The attacker will
attack 1 < k, < m targets and the defender will defend
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1 < kg < m targets. We assume that at most one resource
is allocated to a target, an assumption introduced in [12]. If
a target is defended, we say the target is ‘covered’, and if a
target is not defended we shall say this target is ‘uncovered’.
Let ai* > 0 denote the payoff to the attacker when he attacks
the uncovered target ¢, and let ay > 0 denote his payoff when
he attacks the covered target ¢. Similarly, let b} > 0 and by >
0 denote the payoffs to the defender when target ¢ is attacked
and is uncovered and covered, respectively. We assume the
payoffs satisfy A, (t) = ajf —af > 0,A4(t) = by — b} > 0.
That is, when a target is attacked, it is better for the defender
that the target is defended, and better for the attacker that

it is exposed. Let s{, ..., s‘(‘;n) be the pure strategies of the

’8((i£" be the pure strategies of the

defender. We assume that the payoff matrices A and B, for
the attacker and defender respectively, satisfy the following
additive property:

A=Y af+ Y af, By=»_ b+ > b (D)

tEs?ﬂs;{ tEs?\s_‘f tEsfﬁs_‘f tEsf\s?

attacker and let s{,...

This security game formulation coincides with the security
games considered in [12]. By convention we assume the
attacker is the row player. Suppose p and ¢ are mixed
strategies for the attacker and defender respectively. Using
(1), we can write the expected payoffs as
va =p' Ag = Z [arayBe + aray' (1 — Br)]
t’r:nl (2)
va =p' Bg = Z [aeebf Be + by (1 — By)]
t=1
Where o = [a1,...,a,]T and 8 = [B1,...,Bm]|" are the
attack and defense probability vectors (respectively) given
by a; = Ziesg p; and f3; = Ziesgl q: We consider o and
[ to be mixed-strategy actions of the players and arrive at
the following formulation of Nash equilibrium:

Definition 1. A pair («*,5*) is a Nash Equilibrium of
a security game (X,Y, A, B) if and only if any feasible
deviation from o* (8*) does not lead to a better payoff for
the attacker (defender). That is v, < v} (vg < V).

Note that «;, 8; € [0, 1] (p, ¢ are probability vectors) and

iai:ka and Zm:@-:
i=1 i=1

We have that v,,v4 : R™ x R™ — R are linear functions
of a and 3. We shall use the notation V,v4|q+ g+ to denote
the partial derivative of v, with respect to a computed at
(a*, B*). We denote the standard basis for R by e, . ..

kq 3)

76m-

B. Problem Formulation: Optimization of Defender Ex-
pected Utility

We shall examine the following problem: Consider a
power network with m substations 1,...,m. The system
operator will prevent the simultaneous loss of k,; substa-
tions, and an attacker will choose to attack k, substations.

TABLE I: Definition of the sets I, ..., Io.
ai =0 | €(0,1) | =1
Bi
=0 1e€ly | 1€ly | €13
€(0,1) |iely | iely |ielg
=1 1€l | 1elg | 1€y

Associated to each substation are d security domains given
by the NERC-CIP standards [1] and the Department of
Energy Cybersecurity Capability Maturity Model (C2M2).
Each domain at a substation is scored from 0O to 3 according
to the maturity of the cybersecurity resources deployed at the
substation. The summation of the scores from each domain
at a substation give the Maturity Indicator Level (MIL) of
the substation. Examples of security domains selected from
the NERC-CIP standards include Personnel and Training,
Password Protection, Physical Security, Recovery Plans for
Cyber Systems, Information Protection, and Systems Se-
curity Management [1][16]. We formulate a non-zero-sum
security game over the set of substations of the power system
in which the payoffs to players for attacks on uncovered
targets are given by a} = I; —MIL; and b} = I; + MIL,.
where [; is a quantity representing the impact to the grid
of the loss of substation ¢ (without loss of generality, we
assume I; > 3d). Intuitively, the payoff to the defender when
an uncovered target is attacked increases as the maturity of
the cybersecurity resources is increased and the payoff to the
attacker in such an instance is decreased. We formulate the
following optimization problem:
maximize v3(a® a®, b 0")
a’,ap’), by € b}, by

10" 17

< b,

subject to a € |
for given bounds a® < a?, blb

III. RESULTS

In this section, we extend the structural analysis of equilib-
ria in [7], [6] to the more general utility framework presented
in the previous section by giving a characterization of the
equilibria in terms of necessary structural properties. We
classify the possible equilibria into two types and present
an algorithm to compute an equilibrium in terms of target
attack/defense probability, its type, and the expected outcome
of the game at equilibrium. Finally, we present a procedure
to obtain a suboptimal solution to the problem of optimizing
the defender expected outcome at equilibrium.

A. Structural Properties of Equilibria

For any (o, %), let Iy, ..., Iy denote the partition of T'
defined by Table I. Note that for any ¢,j € T" we have

(ei =€) Vaval(ar,pv) = ai' = B Da(d) = (@ — B} Au()))
(€i = €5)" Vvl (a,54) = 0 Aa(i) — 05 Aa(j).

Our analysis is based upon the observation that if (a*, *) is
an equilibrium and the attacker (resp. defender) can deviate
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by shifting probability from target j to target ¢, then (e; —
ej)TVaUa|(a*,B*) < 0 (resp. (61‘ — e‘j)TVﬂvd\(m’B*) <0).

Lemma 1. If I, U I; # () then I, U I3 U I5 U Ig = ().

Proof. Suppose i € I, U I7. Then af = 0 and 3; € (0, 1].
As k, > 1 there exists j so that «; > 0. We must have
B; = 1 for all j such that a;; > 0 (else the defender has a
feasible deviation increasing their payoff). O

This yields the following theorem.

Theorem 1. An equilibrium (o, 3*) is of precisely one of
the following two types:

e Type LYi €T, ie€T\ (I4UI7)

o Dypell: VieT, iec LUILUI;UIgUly, 14U I7 #@

Lemma 2. Suppose (a*, *) is an equilibrium.

(i) There exists a constant ¢1 so that Vi € 1o U I5 U Ig
al — BFA,(i) = c1. Furthermore, for all i € Iy we
have ¢ = ai' and for all i € Ig we have ¢; = aj.

(ii) There exists a constant co so that Vi € I5 U I
aiAy(i) = co. Furthermore, for i € I we have
Co = Ad(Z)

Proof. For i,j € Iy U Is U Is we must have (e; —
;)" Vaval(as,g+y = 0 which implies al — 57 A,(i) =
aj — B7Aq(j). The remaining assertions follow from similar
arguments and the definitions of the sets Iy, ..., Io. ]

We make the following assumption:

Assumption 1. The parameters ag, ..., as,,af,...,ay are

distinct and the parameters Ay(1), ..., Aq(m) are distinct.

Under this assumption, we obtain the following structural
results regarding equilibria of Type L.

Lemma 3. Suppose (a*, 3*) is an equilibrium.
(i) Ad(l) < Ad(j) < Ad(k) fOV i€ I3, RS Ig, k € Iy
(i) afAa(i) < afAa(j) < apAa(k) fori € I, j € I,
ke Ig
(iii) Ad(2> > Ad(j) fori € IsUlg, j € Ig and Ad(k‘) <
Ad(g) fOF ke Ig,f e Is.
(iv) aif <a¥ <ap and af <ay fori €Iy, j € I, k € I,
l e 15 U 16 U Ig.
(v) aj =B Aa(i) < aff =B Au(j) for (i, ) € I x I3, I5 %
Ig, Is x Iy with strict inequality for j € I3 U Ig
(vi) ai <af fori€lyand j € IaUl3 Ul UlgUlgU Iy
(vii) ai < af fori € IUIsUlg, j € Iy and aj, < aj for
kels e ls.

Proof. We prove the left inequality in (¢). Every other
assertion follows from similar arguments and the fact that
Ay (1), Aq(i) > 0 for all ¢ € T. Suppose that i € I3 and j €
Is. We must have (e; —e;)V 04| (a=,p+) = Da(i) —Aa(j) <
0 and therefore Ag(i) < Ag4(j) by Assumption 1. O

B. Equilibrium Computation

Under Assumption 1, by Lemma 2 it follows that at
most one of I and Ig is nonempty, and Io, I, I3 contain
at most one element. When these sets are nonempty, write

I, = {1}, Is = {419}, Is = {j®}. Label the possible
cases as follows: When Ig = (), the equilibrium is of type LA
and otherwise is of type I.B. In both cases, define subtypes
i,ii, and iii corresponding to the cases in which I, Is = ();
I, # 0, Is = 0; and Iy = (), Is # 0 respectively. Order the
set of targets such that a;' < aj for ¢ < j. Define parameters
r = |L|, s = |I3|, t = |Iy|. For each possible value of
the parameters, we check the feasibility of an equilibrium
constructed according to the necessary structural properties
given in the previous subsection. We now give the details of
the construction for each subtype of type I equilibrium in
terms of a, b, ks, kq, 7, s,t. By Lemma 3 (vi), in every case
and for any r we set I; = {1,...,7}.

Type L.A.i: By Lemma 2(ii), Lemma 3(i), we have that
Is = {j1,...,js} where ji,...,js are the targets of least
Ag4(i) in T\ I;. From Lemma 3(vii), we have Iy =
{¢1,...,0;} where ¢q,... {; are the t targets of greatest
aj in T\ (Iy U I3). Note t < k, — s. Finally, we set
Is = T\ (I U I3 UIy). We have «o; = co/Ag4(i) and
Bi = (a¥ — ¢1)/A4 (i) for all ¢ € I5 where

ay
- t_kd+zjel5ﬁj(j)

ke —s—t
c1 = —_

and ¢y = > T
J€EIs Aq(F)

“4)

1
ZJ'GIS Aa(d)

Type LA.ii: By Lemma 3(iv) we set I, = {r +1} = {j[I}.
Then, by Lemma 2(ii), Lemma 3(i) we set I3 = {j1,...,Js}
where ji, ... js are the s targets of least Ay(7) in T\ ([;UI5).
By Lemma 3(viii) we set Iy = {{1,...,¢;} where ¢1,... ¢,
are the t targets of largest af in T\ (I; U I> U I3). Note
t <kqg—s. Finally Is =T\ (I; U Iy UI5U Iy). Now, for
each ¢ € I5 we have

ka—s—t—ajp] 45 ait — a?m] 5)
Q= e and f; = ——=—
Aq(i) 3 A;(Z_) Aq(i)
JEls
Type LA.iii: By Lemma 3(i)(iii) we set I3 = {j1,...,Js}

where j1,. .., J, are the s targets of least Ay(7) in T'\ I;. By
Lemma 3(vii) we set Ig = {{1,...,¢;} where ¢1,... ¢, are
the ¢ targets of greatest af in 7'\ (I3 U I3) and Iy = {5180y
where ;8! is the target of greatest aj in T\ (I; U I3 U Iy).
Finally Is = T\ (I; U I3 U Ig U Ig). Now, for each i € Iy
we have

u
i

Aq(i)

B k‘a—s—t—ozj[s]
TA) Y s
J;s Aa(f)

c
— Qs

and j3; = (6)

Q;

The constructions for Type I.B are similar to those just
outlined for type LA, but take into account the inequalities
in Lemma 3 involving Ig. For reasons of space, we have
omitted these calculations here. We now derive feasibility
conditions for each subtype of type I equilibrium. As noted
in [12], (a*, 8*) is a Nash Equilibrium if and only if there
exist constants ¢; and ¢y such that forall7 € T', of > 0 =
Braf+ (1 -8 )a} <ciand of <1 = ffaf+ (1 -
BF)al > ¢y as well as B > 0 = afAy(i) > cp and
Br <1 = afA4(i) < ¢z (ie. both players are playing a
best response). Based upon this observation, for any Type I
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TABLE II: Feasibility conditions for Type I equilibria

LA
. V’i6150<a7;,ﬁi<1

LA.ii

o 30 < ajiz < minger, {a;Ag(i )/Aa(5P)}
such that Vi € I5 0< B <1

o Vie IsUly a ) < ag

LA.ii
. 3maxiejs{aiAd(i)/Ad(j[s])} < Q8] <1
such that Vi € I5 0 < o, 5; < 1

I.B.i
o 10 < ﬂj[s] < 1 so that Vi € I5, ﬂj[s] <
a;[s] —a?‘t‘ﬂtAa (1)

2. GO and 0 < o, B; < 1

LB.ii
o Foralli e I5, 0 < o, B; < 1

o 0 < aj < mingep, {aZAd( )/ Aq(5P)}
a. (6] — @i +B,A (2)
Aq(glo]

j12

° O < Bj[ﬁ]

< min;ey,

I.B.iii
o Forallz€I5O<a,,ﬂl<1

a1 —a; +B1A (2)
e U< ﬁj[s] [6 }

ALY
o max;er, {0 Ag(i)/Aq(5¥)} < aji < 1

< min;e g

equilibrium we have

€1 > max< maxa, maxa C o1+ (1—B61)a”
' {7613 el 276 7[6] ( BJH) AN
¢1 < mina},
icly
(N

¢y > max {max Ag(i),
icls

a2 Ad(jm)} ;

()
ajs) Ad(j[s])} ~

¢ < min {mm Ay(i), a
i€l

A given I'(r, s, t, t ype) is feasible if it satisfies (7) and (8)
as well as the additional conditions required by Lemma 3
given in Table II. A Type I equilibrium (when it exists)
can be computed by simply checking the feasibility of
T(r,s,t, type) for all possible values of the parameters.
We now consider how to compute a Type II equilibrium.
First note that by arguments exactly similar to those in the
proof of Lemma 3 we have af < a fori e I UlyUI;
and j € Ig. By Lemma 2, Assumptlon 1 and (3), Is =
(). By the aforementioned observation about c;, there must
exist a constant c¢; such that af < ¢; < aj for 1 € Ig
and j € I;. By Assumption 1, we have I; = (). Thus, in
a Type II equilibrium, all targets belong to Iy, and Iy.
By (3) and the fact that a; > 0 implies ¢ € Ig and thus
a; = 1 in a Type II equilibrium, we set Iy = {m — k, +
1,...,m}. Note that a Type II equilibrium is feasible only
when kg > k,, as I, must be nonempty. Now, we must have

rréa}xac <1 < Bjal+(1-p;)a} forall j € Iy. Foreach i =
7
L...,m — kg, let ¢ = min{1, (a} — max;er, a7)/Aq(i)}.

Note that we must have ), ; B; = k4 — k,. There exists a
feasible assignment of the remaining 5;, i = 1,...,m — kg
if D cicm_kye50€ = ka — kq. When this condition is
satisfied, a Type II equilibrium exists and can be computed
using this construction.

C. Optimization of Defender Expected Utility

We now outline a procedure to, given an initial state as
input, increase vy for each subtype of Type I equilibrium
while preserving the type. Note that in a Type II equilibrium
there are no successful attacks and thus the defender expected
utility is optimized by maximal increase of b for i €

Iy. For a given r,s,t and type let v;(r s,t,type) de-
note the quantity c3 ) ;. [Al;(l) + 2 = (5)1

are constructed with parameters r,s,t and the construc-
tion in the previous subsection for type. Similarly, let
vg’g(r, s,t,type) denote D, b+ ;b where I3 and
Iy are constructed according to r, s, ¢, type. By Lemma 3,
the expression (2) for vy, and the definitions of the sets
Iy, ..., Iy, we have that v°(r, s,t, type) is the contribution
to vy by targets in Iz and vg’g(r,s,t,type) is the contri-
bution to vy by targets in I3 and Ig for Type I equilibria.
When r, s, t, type are clear from context, abbreviate these
quantities by v5 and vZ’g.

By Lemma 3, a perturbation of a, bj,7 = 1,...,m which
does not change the parameters 7, s,t or subtype of Type 1
equilibrium must not violate the following inequalities:

(2) max Ag(i) < min Aq(i) (b) max Aq(i) < min Aqg(i)
© oy Aa(j )<H11[n04zAd( i)

(d) xgz}xafAd() j 84 (™)

(e) Ag(jl° ® maxAd(i) < Ag(5)

where c1, co, I5

)< er}nn Ad()

(g) maxa; < a ; <minag (h) a 2 <. min af
el iels i€lsUlgUlg
(i) meax( Bl a(7)) < rrgn( — Bilg(3)) for (I,J) €
J
{(127[3) (s, 1s), (I3, 19)}.

() maxa < min ay

€, ' i€lsUlgUIsUT,
(k)  max af < minaf
1€lUlsUlg i€lg

Perturbations must also preserve (7) and (8), and we
shall require the preservation of A,(t), A4(t) > 0 and
Assumption 1. For each type of equilibrium, we give a
procedure to perturb the b} such that the sets I1,..., Iy do
not change. For each type the procedure will consist of a
preprocessing phase in which b¥ for i € T'\ I5 are perturbed
followed by a second phase in which we perturb the b for
1 € Is.

In a Type I.A.i, we have that ¢; and ¢y are given by (4)
and v}47 = v%? 493, Note that ¢ is an increasing function
of Ad( ) for each 1 € I, and we have

(I) max a§ < minaf
i€ls iclg

dcy ¢ —aj
a-u = - L > 07 (9)
da (Ay(7))? Zjels Aal(j)

4645

Authorized licensed use limited to: lowa State University Library. Downloaded on February 17,2023 at 23:43:47 UTC from IEEE Xplore. Restrictions apply.



for i € I5 so ¢y is a decreasing function of b} for ¢ € I5.
We have that v)(r, s, t, [.A.i) is given by

ky, — s —
—_ —t+ (10)
I E :
Yjen ) v A
Note that for ¢ € Is, Ov)/0b' is given by
5
(Adc(zi))"‘ (bg — kii%) , SO vg is an increasing function of

any b such that b¢ > v3/(k, — s —t) (refer to such a b}
as type a) and a decreasing function of any b} such that
b < v5/(kq — s —t) (refer to such a bY as type b).
In a Type L.A.ii equilibrium, ¢; is simply a s Uk
o4+ vd + Qi b“ , and by (5) we see cs is an increasing
functlon of Ad( ) for i € I5. We have that v)(r, s, t, I.A.ii)
is given by

Adii _

ko—s

—t— e
1

<kd—t+ZA ()>. (a1

For any i € I, inspection of Qv3/0by for gives that v
is an increasing function of b} for any ¢ such that b§ >
05/(ka — s —t — 121) (type a), and a decreasing function
o b¥ such that b§ < v3/(kq —s —1t — o o) (type b).
Ina Type L A.iii equilibrium, ¢; = aj[ ’ (IiA i — vg’g +
vy + Q; bC i and by (6) ¢y is again an increasing function

of Ad( ) for i € I5. Now, v)(r, s, t,1.A.iii) is given by

ko—s —t — s <
J
—— kg —t—1+ E
1 ﬁ
Zjels Aaly) i€ls

b
For each i € I5, we again inspect 9v5/0b¥ to determine
that v is an increasing function of bY for any 7 such that
by > v/ (ka—s—t—ays) (type a), and a decreasmg function
o b such that b§ < vd/( — s —t—ajg) (type b). We
execute the following procedure for a Type I.A equilibrium:

LA Phase 1: To accommodate the perturbation of b} of
both types a and b in Phase 2, we seek to both reduce the
lower bound and increase the upper bound of (7) and (8).
Note that in a Type L. A.ii, we have max;cr, ai < ¢ = a¥y
by (7) and aJ < min;er, af by (g), so s = 0. Similarly, in
a Type LA.iil, max;cr, a} § aSs and afy < af for i € I3
so s = 0. In Type L.A.i we select the least feasible a2 and
increase b, to a maximal extent. In Type L. A.iii we select
the greatest feasible o and increase b,z to a maximal
feasible extent. In any type L.A, we decrease b} for i € I;
and Iy to a maximal feasible extent. For a Type [.A.i, we
may have s > 0 and in this case we also increase b}' for
1 € I3 maximally.

L.A Phase 2: For each i of type a we compute the maximal
feasible increase of b (if any) and the corresponding value
of v resulting from the increase. For each i of type b, we
compute the maximal feasible decrease of b;' (if any) and the
corresponding value of v5 resulting from the decrease. We
select the 7 resulting in the greatest increase of v7 and execute
the corresponding perturbation. We repeat this process for as
long as there exist feasible perturbations among the targets

ZJEIS Aq(G)

of type a and b. As each perturbation increases v5, the

procedure terminates after a finite number of steps.

For any Type LB equilibrium, we have c; = Ay4(j09).
Note that (9) also holds in a Type I.B.i equilibrium, so ¢; is
a decreasing function of by for i € I5. For a Type 1.B.i, we
have vl-B-1 = vd P pul 4 blie) — B; 61 Aq(71°1). We have that
v (r,s,t,1.B.q) is given by

Ag() | kg =t — By + Z (13)
jels
In a Type LB.i equilibrium, ¢; = a¥, and so

vy (r, s,t, [.B.ii) is given by

b¥
Aq(5") (kd —t— B+ Y x b) .14
icls att

We have v} = ¢ +vd+a 1Y) + 6% — Bt Ag(519).
Similarly, in a Type [.B.iii we have ¢; = a;f[gl and thus

vy (r, s,t, [.B.iii) is given by

Aa(j) (kd —t=1-Bm+ Y *
i€ls

b
dm) -
= vz’g—i—vg—l—a][g be —l—bjla —Bjie Aa(51).

Clearly, for any Type I.B equlhbnum vd is an increasing
function of b} for i € Is. We execute the following procedure
for a Type I.B equilibrium:

LB Phase 1: As c; and vj are decreasing and increasing
functions of b} for ¢ € I5 respectively, we seek to reduce
the lower bound of (7) as much as possible. Accordingly, for
type L.B.i, we choose the least feasible 3, and increase b;'
for i € I3 as much as p0551ble without VlOlatlIlg (a)-(1). As
v5 increases with c¢o = Ay(j1%), we then increase the upper
bound of (8) by decreasing b} for 7 € Iy maximally without
violating (a)-(I) and then decrease b}‘[ﬁl to the maximum
feasible extent.

LB Phase 2: For each 7 € I5, compute the maximal
feasible increase of b;' and the corresponding value of
vy when bY is increased by this increment. Select the i
corresponding to the greatest increase in v} and execute the
maximal increment of b;. Repeat until no increment of b}
for i € I5 is feasible.

We have vl Bt =

IV. SIMULATION AND DISCUSSION

In this section we present an example case study on a
15-substation power system. The initial state of the system
used in our simulation is specified by Table III. We assume
that each substation in the system has six security domains
that the initial maturity indicator level of each substation is
nonzero. To demonstrate our algorithm, we have generated
values for the impact associated with the loss of each
substation as well as payoffs to the players when an attack
is launched on a covered target. In practice, such quantities
are computed by taking into account physical parameters of
the grid, such as the impact of loss-of-substation induced
cascades [4]. Figure 1 depicts the result of the algorithm
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TABLE III: 15-bus system with 6 security domains exhibiting a Type L.A.i equilibrium with k,=4, k4=10; vg ~ 242.07

Substation 1 2 3 4 5 6 7 3 9 10 11 12 13 14 15
T~ 24.993 | 30.008 | 37.580 | 25.721 | 37.599 | 35.668 | 21.879 | 23.976 | 28.809 | 26.972 | 32.218 | 26.507 | 34.399 | 29.516 | 34.011

MIL ™l 6 1 11 11 5 7 1 7 1 7 3 1 8 9 16
at ~ 3.0130 | 1.8306 | 5.9220 | 0.9003 | 6.5156 | 8.7267 | 2.6624 | 2.9456 | 3.8905 | 8.8047 | 10.1046 | 8.3042 | 2.6379 | 4.1097 | 1.4826
b° ~ 55.058 | 78.030 | 90.750 | 86.859 | 100.277 | 98.641 | 78.238 | 67.144 | 76.697 | 69.017 | 72.235 | 50.586 | 78.045 | 72.114 | 68.364

Fig. 1: Initial and final values of b for the example given in Table III (left) and the path of the defender expected outcome
vg when the our method is applied to the example in Table III (right). In the final state, vy ~ 249.38

@ Initial I:::J

% Final b!

250

Substation

proposed in the previous section applied to the case study.
The procedure identifies a Type I.A.i equilibrium in the game
specified by the initial system state and perturbs the values
of b} from their initial positions shown in green in Figure 1
to the final values shown in red.

V. CONCLUSION AND FUTURE WORK

In this work, we have formulated the interaction between a
resource-constrained attacker and defender of a power system
as a non-zero-sum additive security game. In this model,
we investigated the problem of maximizing the expected
outcome to the defender at equilibrium by varying the
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