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Abstract— Motivated by the problem of optimal security
resource deployment in critical infrastructure systems, we study
a non-zero-sum security game over the substations of a power
system in which the player payoffs depend upon the maturity of
the security resources at each substation according to NERC-
CIP standards. Extending previous work, we give a structural
characterization of the possible types of Nash equilibria in our
non-zero-sum additive security game model, present feasibility
conditions for equilibria of each type, and propose a novel algo-
rithm to compute an equilibrium. Utilizing our characterization
of the possible equilibria in additive security games, we propose
a method to obtain a suboptimal solution to the problem of
maximizing the expected outcome to the system operator by
varying the maturity of security resources deployed at each
substation and demonstrate the method by simulation.

I. INTRODUCTION

The pervasive introduction of cyber systems into critical

infrastructure domains has rendered the task of defense

against intrusion by malicious actors extraordinarily com-

plex. System operators must decide how to allocate their

limited security resources across elaborate cyber-physical

systems to reduce the impact of increasingly frequent and

larger scale intrusions into both the cyber and physical

layers. Recent high profile cyberattacks have caused major

disruptions to critical infrastructure in the oil and gas [18],

meat processing [2], and chemical distribution [3] industries.

Increased concern among experts about the scope of the

vulnerability of power grids in the U.S. to large-scale cyber

attacks [14] has highlighted the urgency with which new

security measures must be developed and deployed.

A security game is a type of resource allocation game

between attackers and defenders over a set of targets. Ap-

plications of game theory to security scenarios have been

extensively studied (e.g [5], [13], [15]) and successfully

deployed in the real world. For example, the United States

Federal Air Marshals Service, Coast Guard, and Trans-

portation Security Administration have implemented game-

theoretic models to defend critical infrastructure [9], [10] by

determining optimal security resource deployment strategies

such as assignment of a limited number of air marshals to

flights or law enforcement personnel to patrol routes. A zero-

sum security game model is proposed in [8] for contingency

analysis in power grids. Real world attack and defense

scenarios, however, are in general not necessarily zero-sum
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games [17] due to a variety of factors such as the diverse

incentives of attackers and defenders [19]. The present work

concerns simultaneous move one-shot two-player security

games of complete information between a single defender

(representing a system operator) and a single attacker. Under

the assumption that player utilities are additive over attacked

targets, [11] proposed an algorithm to compute a Nash

equilibrium in such a game in the case of a single attacker

resource and this work was later generalized to the case of

multiple attacker resources in [12]. The special case of zero-

sum additive security games under a restricted payoff model

was studied in [7] in which a structural characterization of the

Nash equilibria is given along with an algorithm to compute

the equilibrium strategies in such games in linear time.

Extending this approach to non-zero-sum security games, [6]

generalizes this structural characterization to non-zero-sum

games under the same restricted payoff model and gives a

quadratic time algorithm for equilibrium computation. In this

work, we further generalize the structural approach in [6], [7]

to the general payoff model studied in [12].

The contributions of our current work are as follows:

(1) The structural analysis [6], [7] of Nash equilibria in

additive security games is extended to a more general payoff

structure given in [12] and a characterization of the possible

types of equilibria in such games is presented along with

feasibility conditions for equilibria of each type. (2) Utilizing

our characterization of the possible types of equilibria, we

present a novel algorithm for computing an equilibrium and

its type. (3) Motivated by the non-zero-sum nature of real

security scenarios, we formulate a non-zero-sum additive

security game over the substations of a power system and

propose a method to vary the maturity of security resource

deployment at each substation to address the problem of

optimizing defender expected outcome at equilibrium.

The rest of the paper is organized as follows. In section II,

we present the problem formulation. In section III, we give

a structural characterization of possible types equilibria in

our additive security game model, and a suboptimal solution

to the optimization problem. Section IV presents simulation

of our approach. Finally, Section V presents our conclusions

and proposes several directions for future work.

II. PRELIMINARIES

A. Additive Security Games

We define a two player game between an attacker and

defender over a target set T = {1, . . . ,m}. The attacker will

attack 1 ≤ ka < m targets and the defender will defend
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1 ≤ kd < m targets. We assume that at most one resource

is allocated to a target, an assumption introduced in [12]. If

a target is defended, we say the target is ‘covered’, and if a

target is not defended we shall say this target is ‘uncovered’.

Let aut > 0 denote the payoff to the attacker when he attacks

the uncovered target t, and let act > 0 denote his payoff when

he attacks the covered target t. Similarly, let but > 0 and bct >
0 denote the payoffs to the defender when target t is attacked

and is uncovered and covered, respectively. We assume the

payoffs satisfy Δa(t) = aut − act > 0,Δd(t) = bct − but > 0.
That is, when a target is attacked, it is better for the defender

that the target is defended, and better for the attacker that

it is exposed. Let sa1 , . . . , s
a

(m
ka
)

be the pure strategies of the

attacker and let sd1, . . . , s
d

(m
kd
)

be the pure strategies of the

defender. We assume that the payoff matrices A and B, for

the attacker and defender respectively, satisfy the following

additive property:

Aij=
∑

t∈sai ∩sdj

act +
∑

t∈sai \sdj

aut , Bij=
∑

t∈sai ∩sdj

bct +
∑

t∈sai \sdj

but . (1)

This security game formulation coincides with the security

games considered in [12]. By convention we assume the

attacker is the row player. Suppose p and q are mixed

strategies for the attacker and defender respectively. Using

(1), we can write the expected payoffs as

va = pTAq =

m∑
t=1

[αta
c
tβt + αta

u
t (1− βt)]

vd = pTBq =

m∑
t=1

[αtb
c
tβt + αtb

u
t (1− βt)]

(2)

Where α = [α1, . . . , αm]T and β = [β1, . . . , βm]T are the

attack and defense probability vectors (respectively) given

by αi =
∑

i∈Sa
t
pt and βi =

∑
i∈Sd

t
qt We consider α and

β to be mixed-strategy actions of the players and arrive at

the following formulation of Nash equilibrium:

Definition 1. A pair (α∗, β∗) is a Nash Equilibrium of
a security game (X ,Y, A,B) if and only if any feasible
deviation from α∗ (β∗) does not lead to a better payoff for
the attacker (defender). That is va ≤ v∗a (vd ≤ v∗d).

Note that αi, βi ∈ [0, 1] (p, q are probability vectors) and

m∑
i=1

αi = ka and

m∑
i=1

βi = kd (3)

We have that va, vd : Rm × R
m → R are linear functions

of α and β. We shall use the notation ∇αva|α∗,β∗ to denote

the partial derivative of va with respect to α computed at

(α∗, β∗). We denote the standard basis for Rm by e1, . . . , em.

B. Problem Formulation: Optimization of Defender Ex-
pected Utility

We shall examine the following problem: Consider a

power network with m substations 1, . . . ,m. The system

operator will prevent the simultaneous loss of kd substa-

tions, and an attacker will choose to attack ka substations.

TABLE I: Definition of the sets I1, . . . , I9.

β∗
i

α∗
i = 0 ∈ (0, 1) = 1

= 0 i ∈ I1 i ∈ I2 i ∈ I3

∈ (0, 1) i ∈ I4 i ∈ I5 i ∈ I6

= 1 i ∈ I7 i ∈ I8 i ∈ I9

Associated to each substation are d security domains given

by the NERC-CIP standards [1] and the Department of

Energy Cybersecurity Capability Maturity Model (C2M2).

Each domain at a substation is scored from 0 to 3 according

to the maturity of the cybersecurity resources deployed at the

substation. The summation of the scores from each domain

at a substation give the Maturity Indicator Level (MIL) of

the substation. Examples of security domains selected from

the NERC-CIP standards include Personnel and Training,

Password Protection, Physical Security, Recovery Plans for

Cyber Systems, Information Protection, and Systems Se-

curity Management [1][16]. We formulate a non-zero-sum

security game over the set of substations of the power system

in which the payoffs to players for attacks on uncovered

targets are given by aui = Ii −MILi and bui = Ii +MILi.

where Ii is a quantity representing the impact to the grid

of the loss of substation i (without loss of generality, we

assume Ii > 3d). Intuitively, the payoff to the defender when

an uncovered target is attacked increases as the maturity of

the cybersecurity resources is increased and the payoff to the

attacker in such an instance is decreased. We formulate the

following optimization problem:

maximize v∗2(a
c, au, bc, bu)

subject to aui ∈ [albi , a
ub
i ], bui ∈ [blbi , b

ub
i ]

for given bounds albi ≤ aub, blbi ≤ bubi .

III. RESULTS

In this section, we extend the structural analysis of equilib-

ria in [7], [6] to the more general utility framework presented

in the previous section by giving a characterization of the

equilibria in terms of necessary structural properties. We

classify the possible equilibria into two types and present

an algorithm to compute an equilibrium in terms of target

attack/defense probability, its type, and the expected outcome

of the game at equilibrium. Finally, we present a procedure

to obtain a suboptimal solution to the problem of optimizing

the defender expected outcome at equilibrium.

A. Structural Properties of Equilibria

For any (α∗, β∗), let I1, . . . , I9 denote the partition of T
defined by Table I. Note that for any i, j ∈ T we have

(ei − ej)
T∇αva|(α∗,β∗) = aui − β∗

i Δa(i)− (auj − β∗
jΔa(j)),

(ei − ej)
T∇βvd|(α∗,β∗) = α∗

iΔd(i)− α∗
jΔd(j).

Our analysis is based upon the observation that if (α∗, β∗) is

an equilibrium and the attacker (resp. defender) can deviate
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by shifting probability from target j to target i, then (ei −
ej)

T∇αva|(α∗,β∗) ≤ 0 (resp. (ei − ej)
T∇βvd|(α∗,β∗) ≤ 0).

Lemma 1. If I4 ∪ I7 �= ∅ then I2 ∪ I3 ∪ I5 ∪ I6 = ∅.

Proof. Suppose i ∈ I4 ∪ I7. Then α∗
i = 0 and β∗

i ∈ (0, 1].
As ka ≥ 1 there exists j so that αj > 0. We must have

βj = 1 for all j such that αj > 0 (else the defender has a

feasible deviation increasing their payoff).

This yields the following theorem.

Theorem 1. An equilibrium (α∗, β∗) is of precisely one of
the following two types:

• Type I: ∀i ∈ T , i ∈ T \ (I4 ∪ I7)
• Type II: ∀i ∈ T , i ∈ I1 ∪ I4 ∪ I7 ∪ I8 ∪ I9, I4 ∪ I7 �= ∅

Lemma 2. Suppose (α∗, β∗) is an equilibrium.
(i) There exists a constant c1 so that ∀i ∈ I2 ∪ I5 ∪ I8

aui − β∗
i Δa(i) = c1. Furthermore, for all i ∈ I2 we

have c1 = aui and for all i ∈ I8 we have c1 = aci .
(ii) There exists a constant c2 so that ∀i ∈ I5 ∪ I6

α∗
iΔd(i) = c2. Furthermore, for i ∈ I6 we have

c2 = Δd(i).

Proof. For i, j ∈ I2 ∪ I5 ∪ I8 we must have (ei −
ej)

T∇αva|(α∗,β∗) = 0 which implies aui − β∗
i Δa(i) =

auj −β∗
jΔa(j). The remaining assertions follow from similar

arguments and the definitions of the sets I1, . . . , I9.

We make the following assumption:

Assumption 1. The parameters ac1, . . . , a
c
m, au1 , . . . , a

u
m are

distinct and the parameters Δd(1), . . . ,Δd(m) are distinct.

Under this assumption, we obtain the following structural

results regarding equilibria of Type I.

Lemma 3. Suppose (α∗, β∗) is an equilibrium.
(i) Δd(i) < Δd(j) < Δd(k) for i ∈ I3, j ∈ I6, k ∈ I9

(ii) α∗
iΔd(i) ≤ α∗

jΔd(j) ≤ α∗
kΔd(k) for i ∈ I2, j ∈ I5,

k ∈ I8
(iii) Δd(i) > Δd(j) for i ∈ I5 ∪ I8, j ∈ I6 and Δd(k) <

Δd(�) for k ∈ I3, � ∈ I8.
(iv) aui < auj < auk and auj < au� for i ∈ I1, j ∈ I2, k ∈ I3,

� ∈ I5 ∪ I6 ∪ I9.
(v) aui −β∗

i Δa(i) ≤ auj −β∗
jΔa(j) for (i, j) ∈ I2×I3, I5×

I6, I8 × I9 with strict inequality for j ∈ I3 ∪ I9
(vi) aui < auj for i ∈ I1 and j ∈ I2 ∪ I3 ∪ I5 ∪ I6 ∪ I8 ∪ I9

(vii) aci < acj for i ∈ I2 ∪ I5 ∪ I8, j ∈ I9 and ack < ac� for
k ∈ I5 � ∈ I8.

Proof. We prove the left inequality in (i). Every other

assertion follows from similar arguments and the fact that

Δa(i),Δd(i) > 0 for all i ∈ T . Suppose that i ∈ I3 and j ∈
I6. We must have (ei−ej)∇βvd|(α∗,β∗) = Δd(i)−Δd(j) ≤
0 and therefore Δd(i) < Δd(j) by Assumption 1.

B. Equilibrium Computation

Under Assumption 1, by Lemma 2 it follows that at

most one of I2 and I8 is nonempty, and I2, I6, I8 contain

at most one element. When these sets are nonempty, write

I2 = {j[2]}, I6 = {j[6]}, I8 = {j[8]}. Label the possible

cases as follows: When I6 = ∅, the equilibrium is of type I.A

and otherwise is of type I.B. In both cases, define subtypes

i,ii, and iii corresponding to the cases in which I2, I8 = ∅;

I2 �= ∅, I8 = ∅; and I2 = ∅, I8 �= ∅ respectively. Order the

set of targets such that aui < auj for i < j. Define parameters

r = |I1|, s = |I3|, t = |I9|. For each possible value of

the parameters, we check the feasibility of an equilibrium

constructed according to the necessary structural properties

given in the previous subsection. We now give the details of

the construction for each subtype of type I equilibrium in

terms of a, b, ka, kd, r, s, t. By Lemma 3 (vi), in every case

and for any r we set I1 = {1, . . . , r}.

Type I.A.i: By Lemma 2(ii), Lemma 3(i), we have that

I3 = {j1, . . . , js} where j1, . . . , js are the targets of least

Δd(i) in T \ I1. From Lemma 3(vii), we have I9 =
{�1, . . . , �t} where �1, . . . , �t are the t targets of greatest

acj in T \ (I1 ∪ I3). Note t ≤ ka − s. Finally, we set

I5 = T \ (I1 ∪ I3 ∪ I9). We have αi = c2/Δd(i) and

βi = (aui − c1)/Δa(i) for all i ∈ I5 where

c1 =
t− kd +

∑
j∈I5

au
j

Δa(j)∑
j∈I5

1
Δa(j)

and c2 =
ka − s− t∑
j∈I5

1
Δd(j)

(4)

Type I.A.ii: By Lemma 3(iv) we set I2 = {r+1} = {j[2]}.

Then, by Lemma 2(ii), Lemma 3(i) we set I3 = {j1, . . . , js}
where j1, . . . js are the s targets of least Δd(i) in T \(I1∪I2).
By Lemma 3(viii) we set I9 = {�1, . . . , �t} where �1, . . . , �t
are the t targets of largest acj in T \ (I1 ∪ I2 ∪ I3). Note

t ≤ ka − s. Finally I5 = T \ (I1 ∪ I2 ∪ I3 ∪ I9). Now, for

each i ∈ I5 we have

αi =
ka−s−t−αj[2]

Δd(i)
∑
j∈I5

1
Δd(i)

and βi =
aui − au

j[2]

Δa(i)
. (5)

Type I.A.iii: By Lemma 3(i)(iii) we set I3 = {j1, . . . , js}
where j1, . . . , js are the s targets of least Δd(i) in T \I1. By

Lemma 3(vii) we set I9 = {�1, . . . , �t} where �1, . . . , �t are

the t targets of greatest acj in T \ (I1 ∪ I3) and I8 = {j[8]}
where j[8] is the target of greatest acj in T \ (I1 ∪ I3 ∪ I9).
Finally I5 = T \ (I1 ∪ I3 ∪ I8 ∪ I9). Now, for each i ∈ I5
we have

αi =
ka−s−t−αj[8]

Δd(i)
∑
j∈I5

1
Δd(j)

and βi =
aui − ac

j[8]

Δa(i)
. (6)

The constructions for Type I.B are similar to those just

outlined for type I.A, but take into account the inequalities

in Lemma 3 involving I6. For reasons of space, we have

omitted these calculations here. We now derive feasibility

conditions for each subtype of type I equilibrium. As noted

in [12], (α∗, β∗) is a Nash Equilibrium if and only if there

exist constants c1 and c2 such that for all i ∈ T , α∗
i > 0 =⇒

β∗
i a

c
i + (1 − β∗

i )a
u
i ≤ c1 and α∗

i < 1 =⇒ β∗
i a

c
i + (1 −

β∗
i )a

u
i ≥ c1 as well as β∗

i > 0 =⇒ α∗
iΔd(i) ≥ c2 and

β∗
i < 1 =⇒ α∗

iΔd(i) ≤ c2 (i.e. both players are playing a

best response). Based upon this observation, for any Type I
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TABLE II: Feasibility conditions for Type I equilibria

I.A.i
• ∀i ∈ I5 0 < αi, βi < 1

I.A.ii
• ∃0 < αj[2] < mini∈I5{αiΔd(i)/Δd(j

[2])}
such that ∀i ∈ I5 0 < αi, βi < 1

• ∀i ∈ I5 ∪ I9 ac
j[2]

< aci

I.A.iii
• ∃maxi∈I5{αiΔd(i)/Δd(j

[8])} < αj[8] < 1
such that ∀i ∈ I5 0 < αi, βi < 1

I.B.i
• ∃0 < βj[6] < 1 so that ∀i ∈ I5, βj[6] ≤

au

j[6]
−au

i +βiΔa(i)

Δa(j[6])
and 0 < αi, βi < 1

I.B.ii
• For all i ∈ I5, 0 < αi, βi < 1
• 0 < αj[2] ≤ mini∈I5{αiΔd(i)/Δd(j

[2])}
• 0 < βj[6] ≤ mini∈I5

{
au

j[6]
−au

i +βiΔa(i)

Δa(j[6])

}

I.B.iii
• For all i ∈ I5 0 < αi, βi < 1

• 0 < βj[6] ≤ mini∈I5

{
au

j[6]
−au

i +βiΔa(i)

Δa(j[6])

}
• maxi∈I5{αiΔd(i)/Δd(j

[8])} ≤ αj[8] < 1

equilibrium we have

c1 ≥ max

{
max
i∈I3

aui ,max
i∈I9

aci , βj[6]a
c
j[6]+(1−βj[6])a

u
j[6]

}
,

c1 ≤ min
i∈I1

aui ,

(7)

c2 ≥ max

{
max
i∈I3

Δd(i), αj[2]Δd(j
[2])

}
,

c2 ≤ min

{
min
i∈I9

Δd(i), αj[8]Δd(j
[8])

}
.

(8)

A given Γ(r, s, t,type) is feasible if it satisfies (7) and (8)

as well as the additional conditions required by Lemma 3

given in Table II. A Type I equilibrium (when it exists)

can be computed by simply checking the feasibility of

Γ(r, s, t,type) for all possible values of the parameters.

We now consider how to compute a Type II equilibrium.

First note that by arguments exactly similar to those in the

proof of Lemma 3 we have aci < acj for i ∈ I1 ∪ I4 ∪ I7
and j ∈ I9. By Lemma 2, Assumption 1 and (3), I8 =
∅. By the aforementioned observation about c1, there must

exist a constant c1 such that aci ≤ c1 ≤ acj for i ∈ I9
and j ∈ I7. By Assumption 1, we have I7 = ∅. Thus, in

a Type II equilibrium, all targets belong to I1, I4 and I9.

By (3) and the fact that αi > 0 implies i ∈ I9 and thus

αi = 1 in a Type II equilibrium, we set I9 = {m − ka +
1, . . . ,m}. Note that a Type II equilibrium is feasible only

when kd > ka, as I4 must be nonempty. Now, we must have

max
i∈I9

aci ≤ c1 ≤ βja
c
j+(1−βj)a

u
j for all j ∈ I4. For each i =

1, . . . ,m − ka, let εi = min{1, (auj −maxi∈I9 a
c
i )/Δa(i)}.

Note that we must have
∑

i∈I4
βi = kd − ka. There exists a

feasible assignment of the remaining βi, i = 1, . . . ,m− kd
if

∑
1≤i≤m−kd,εi>0 εi ≥ kd − ka. When this condition is

satisfied, a Type II equilibrium exists and can be computed

using this construction.

C. Optimization of Defender Expected Utility

We now outline a procedure to, given an initial state as

input, increase vd for each subtype of Type I equilibrium

while preserving the type. Note that in a Type II equilibrium

there are no successful attacks and thus the defender expected

utility is optimized by maximal increase of bci for i ∈
I9. For a given r, s, t and type let v5d(r, s, t,type) de-

note the quantity c2
∑

i∈I5

[
bui

Δd(i)
+

au
i −c1
Δa(i)

]
where c1, c2, I5

are constructed with parameters r, s, t and the construc-

tion in the previous subsection for type. Similarly, let

v3,9d (r, s, t,type) denote
∑

i∈I3
bui +

∑
i∈I9

bci where I3 and

I9 are constructed according to r, s, t,type. By Lemma 3,

the expression (2) for vd, and the definitions of the sets

I1, . . . , I9, we have that v5(r, s, t,type) is the contribution

to vd by targets in I5 and v3,9d (r, s, t,type) is the contri-

bution to vd by targets in I3 and I9 for Type I equilibria.

When r, s, t,type are clear from context, abbreviate these

quantities by v5d and v3,9d .

By Lemma 3, a perturbation of aui , b
u
i , i = 1, . . . ,m which

does not change the parameters r, s, t or subtype of Type I

equilibrium must not violate the following inequalities:

(a) max
i∈I3

Δd(i) < min
i∈I6

Δd(i) (b) max
i∈I6

Δd(i) < min
i∈I9

Δd(i)

(c) αj[2]Δd(j
[2])≤min

i∈I5
αiΔd(i)

(d) max
i∈I5

αiΔd(i) ≤ αj[8]Δd(j
[8])

(e) Δd(j
[6]) < min

i∈I5∪I8
Δd(i) (f) max

i∈I3
Δd(i) < Δd(j

[8])

(g) max
i∈I1

aui < au
j[2]

< min
i∈I3

aui (h) au
j[2]

< min
i∈I5∪I6∪I9

aui

(i) max
i∈I

(aui − βiΔa(i)) ≤ min
j∈J

(aui − βiΔa(i)) for (I, J) ∈
{(I2, I3), (I5, I6), (I8, I9)}.

(j) max
i∈I1

aui < min
i∈I5∪I6∪I8∪I9

aui

(k) max
i∈I2∪I5∪I8

aci < min
i∈I9

aci (l) max
i∈I5

aci < min
i∈I8

aci

Perturbations must also preserve (7) and (8), and we

shall require the preservation of Δa(t),Δd(t) > 0 and

Assumption 1. For each type of equilibrium, we give a

procedure to perturb the bui such that the sets I1, . . . , I9 do

not change. For each type the procedure will consist of a

preprocessing phase in which bui for i ∈ T \I5 are perturbed

followed by a second phase in which we perturb the bui for

i ∈ I5.

In a Type I.A.i, we have that c1 and c2 are given by (4)

and vI.A.i
d = v3,9d +v5d. Note that c2 is an increasing function

of Δd(i) for each i ∈ I5, and we have

∂c1
∂aui

=
c1 − aci

(Δa(i))2
∑

j∈I5
1

Δa(j)

> 0, (9)
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for i ∈ I5 so c1 is a decreasing function of bui for i ∈ I5.

We have that v5d(r, s, t, I.A.i) is given by

ka − s− t∑
j∈I5

1
Δd(j)

⎛
⎝kd − t+

∑
j∈I5

buj
Δd(j)

⎞
⎠ . (10)

Note that for i ∈ I5, ∂v5d/∂b
u
i is given by

c2
(Δd(i))2

(
bci − v5

d

ka−s−t

)
, so v5d is an increasing function of

any bui such that bci > v5d/(ka − s − t) (refer to such a bui
as type a) and a decreasing function of any bui such that

bci < v5d/(ka − s− t) (refer to such a bui as type b).
In a Type I.A.ii equilibrium, c1 is simply au

j[2]
, vI.A.ii

d =

v3,9d + v5d + αj[2]b
u
j[2]

, and by (5) we see c2 is an increasing

function of Δd(i) for i ∈ I5. We have that v5d(r, s, t, I.A.ii)
is given by

ka−s− t− αj[2]∑
j∈I5

1
Δd(j)

(
kd − t+

∑
i∈I5

bui
Δd(i)

)
. (11)

For any i ∈ I5, inspection of ∂v5d/∂b
u
i for gives that v5d

is an increasing function of bui for any i such that bci >
v5d/(ka − s − t − αj[2]) (type a), and a decreasing function

o bui such that bci < v5d/(ka − s− t− αj[[2] (type b).

In a Type I.A.iii equilibrium, c1 = ac
j[8]

, vI.A.iii
d = v3,9d +

v5d + αj[8]b
c
j[8]

and by (6) c2 is again an increasing function

of Δd(i) for i ∈ I5. Now, v5d(r, s, t, I.A.iii) is given by

ka−s− t− αj[8]∑
j∈I5

1
Δd(j)

(
kd − t− 1 +

∑
i∈I5

bui
Δd(i)

)
. (12)

For each i ∈ I5, we again inspect ∂v5d/∂b
u
i to determine

that v5d is an increasing function of bui for any i such that

bci > v5d/(ka−s−t−αj[8]) (type a), and a decreasing function

o bui such that bci < v5d/(ka − s − t − αj[[8]) (type b). We

execute the following procedure for a Type I.A equilibrium:

I.A Phase 1: To accommodate the perturbation of bui of

both types a and b in Phase 2, we seek to both reduce the

lower bound and increase the upper bound of (7) and (8).

Note that in a Type I.A.ii, we have maxi∈I3 a
u
i ≤ c1 = au

j[2]

by (7) and au
j[2]

< mini∈I3 a
u
i by (g), so s = 0. Similarly, in

a Type I.A.iii, maxi∈I3 a
u
i ≤ ac

j[8]
and ac

j[8]
< aui for i ∈ I3

so s = 0. In Type I.A.i we select the least feasible αj[2] and

increase bu
j[2]

to a maximal extent. In Type I.A.iii we select

the greatest feasible αj[8] and increase bj[2] to a maximal

feasible extent. In any type I.A, we decrease bui for i ∈ I1
and I9 to a maximal feasible extent. For a Type I.A.i, we

may have s > 0 and in this case we also increase bui for

i ∈ I3 maximally.

I.A Phase 2: For each i of type a we compute the maximal

feasible increase of bui (if any) and the corresponding value

of v5d resulting from the increase. For each i of type b, we

compute the maximal feasible decrease of bui (if any) and the

corresponding value of v5d resulting from the decrease. We

select the i resulting in the greatest increase of v5d and execute

the corresponding perturbation. We repeat this process for as

long as there exist feasible perturbations among the targets

of type a and b. As each perturbation increases v5d, the

procedure terminates after a finite number of steps.

For any Type I.B equilibrium, we have c2 = Δd(j
[6]).

Note that (9) also holds in a Type I.B.i equilibrium, so c1 is

a decreasing function of bui for i ∈ I5. For a Type I.B.i, we

have vI.B.i
d = v3,9d + v5d + bu

j[6]
− βj[6]Δd(j

[6]).We have that

v5d(r, s, t, I.B.i) is given by

Δd(j
[6])

⎛
⎝kd − t− βj[6] +

∑
j∈I5

buj
Δd(j)

⎞
⎠ . (13)

In a Type I.B.ii equilibrium, c1 = au
j[2]

and so

v5d(r, s, t, I.B.ii) is given by

Δd(j
[6])

(
kd − t− βj[6] +

∑
i∈I5

bui
Δd(i)

)
. (14)

We have vI.B.ii
d = v3,9d +v5d+αj[2]b

u
j[2]

+bu
j[6]

−βj[6]Δd(j
[6]).

Similarly, in a Type I.B.iii we have c1 = ac
j[8]

and thus

v5d(r, s, t, I.B.iii) is given by

Δd(j
[6])

(
kd − t− 1− βj[6] +

∑
i∈I5

bui
Δd(i)

)
. (15)

We have vI.B.iii
d = v3,9d +v5d+αj[8]b

c
j[8]

+bu
j[6]

−βj[6]Δd(j
[6]).

Clearly, for any Type I.B equilibrium, v5d is an increasing

function of bui for i ∈ I5. We execute the following procedure

for a Type I.B equilibrium:

I.B Phase 1: As c1 and v5d are decreasing and increasing

functions of bui for i ∈ I5 respectively, we seek to reduce

the lower bound of (7) as much as possible. Accordingly, for

type I.B.i, we choose the least feasible βj[6] and increase bui
for i ∈ I3 as much as possible without violating (a)-(l). As

v5d increases with c2 = Δd(j
[6]), we then increase the upper

bound of (8) by decreasing bui for i ∈ I9 maximally without

violating (a)-(l) and then decrease bu
j[6]

to the maximum

feasible extent.

I.B Phase 2: For each i ∈ I5, compute the maximal

feasible increase of bui and the corresponding value of

v5d when bui is increased by this increment. Select the i
corresponding to the greatest increase in v5d and execute the

maximal increment of bi. Repeat until no increment of bui
for i ∈ I5 is feasible.

IV. SIMULATION AND DISCUSSION

In this section we present an example case study on a

15-substation power system. The initial state of the system

used in our simulation is specified by Table III. We assume

that each substation in the system has six security domains

that the initial maturity indicator level of each substation is

nonzero. To demonstrate our algorithm, we have generated

values for the impact associated with the loss of each

substation as well as payoffs to the players when an attack

is launched on a covered target. In practice, such quantities

are computed by taking into account physical parameters of

the grid, such as the impact of loss-of-substation induced

cascades [4]. Figure 1 depicts the result of the algorithm
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TABLE III: 15-bus system with 6 security domains exhibiting a Type I.A.i equilibrium with ka=4, kd=10; vd ≈ 242.07

Substation 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

I ≈ 24.993 30.008 37.580 25.721 37.599 35.668 21.879 23.976 28.809 26.972 32.218 26.507 34.399 29.516 34.011

MILinitial 6 1 11 11 5 7 1 7 1 7 3 1 8 9 16

ac ≈ 3.0130 1.8306 5.9220 0.9003 6.5156 8.7267 2.6624 2.9456 3.8905 8.8047 10.1046 8.3042 2.6379 4.1097 1.4826

bc ≈ 55.058 78.030 90.750 86.859 100.277 98.641 78.238 67.144 76.697 69.017 72.235 50.586 78.045 72.114 68.364

Fig. 1: Initial and final values of bui for the example given in Table III (left) and the path of the defender expected outcome

vd when the our method is applied to the example in Table III (right). In the final state, vd ≈ 249.38

proposed in the previous section applied to the case study.

The procedure identifies a Type I.A.i equilibrium in the game

specified by the initial system state and perturbs the values

of bui from their initial positions shown in green in Figure 1

to the final values shown in red.

V. CONCLUSION AND FUTURE WORK

In this work, we have formulated the interaction between a

resource-constrained attacker and defender of a power system

as a non-zero-sum additive security game. In this model,

we investigated the problem of maximizing the expected

outcome to the defender at equilibrium by varying the

maturity of the security resources deployed in the system.

We propose the following directions for future work: (a)

Extension of our structural approach to scenarios of incom-

plete information, dynamic attack scenarios, and non-additive

games. (b) Further study of how the expected outcome to the

defender varies as payoff perturbation violates the feasibility

conditions of each equilibrium type. (c) Application of

our approach to additional critical infrastructure domains

for which security resource maturity standards have been

developed.
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