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Viscoelastic flows are pervasive in a host of natural and industrial processes, where the
emergence of nonlinear and time-dependent dynamics regulates flow resistance, energy
consumption, and particulate dispersal. Polymeric stress induced by the advection and
stretching of suspended polymers feeds back on the underlying fluid flow, which
ultimately dictates the dynamics, instability, and transport properties of viscoelastic
fluids. However, direct experimental quantification of the stress field is challenging,
and a fundamental understanding of how Lagrangian flow structure regulates the
distribution of polymeric stress is lacking. In this work, we show that the topology of
the polymeric stress field precisely mirrors the Lagrangian stretching field, where the
latter depends solely on flow kinematics. We develop a general analytical expression that
directly relates the polymeric stress and stretching in weakly viscoelastic fluids for both
nonlinear and unsteady flows, which is also extended to special cases characterized
by strong kinematics. Furthermore, numerical simulations reveal a clear correlation
between the stress and stretching field topologies for unstable viscoelastic flows across
a broad range of geometries. Ultimately, our results establish a connection between
the Eulerian stress field and the Lagrangian structure of viscoelastic flows. This work
provides a simple framework to determine the topology of polymeric stress directly
from readily measurable flow field data and lays the foundation for directly linking the
polymeric stress to flow transport properties.

Lagrangian stretching | viscoelastic flow | polymeric stress | elastic instability

The stretching of long-chain polymers in flow imparts viscoelastic properties to
fluids, which impact diverse industrial, geophysical, and biological applications (1-4).
Viscoelasticity leads to increased flow resistance in enhanced oil recovery, polymer
processing, and microbial mining (5-7), and it enhances fluid and particulate transport
in targeted drug delivery and reproduction (8-10). Extensional flow components simul-
taneously stretch and advect polymeric chains, which creates large and inhomogeneously
distributed polymeric stress (11). Viscoelastic instabilities occur (12, 13) when elastic
stresses dominate viscous stresses and manifest symmetry breaking (14), time-dependent
flow (15), and enhanced mixing (16). The onset of these phenomena is captured by the
Weissenberg number (Wi), representing the ratio of elastic to viscous stress: Wi = Ay,
where A and y are the polymeric relaxation time and deformation rate, respectively.
Importantly, the topology of the polymeric stress field has been shown to regulate flow
structure, whereby streaks of high polymeric stress lead to separation and act as a barrier
to flow (17, 18). Determining the topology of the stress field and its relationship to flow
kinematics is fundamental to understanding and predicting dynamic flow patterns and,
ultimately, material transport in complex flows.

Direct optical measurements of the stress field and polymer deformation in viscoelastic
flows are challenging (19, 20). Flow-induced birefringence measurements can provide
spatially resolved stress fields, but they require highly specialized imaging instruments
(21,22). Furthermore, large stress-optical coefficients are difficult to achieve for polymeric
solutions (20, 23), and the linear stress-optical rule is not applicable at high stress (20, 24).
Individual polymer stretching measurements (25, 26) are possible, but they require single-
molecule imaging sensitivity, do not provide whole-field information, and are limited
to relatively slow flows. However, recognizing that the polymeric stress distribution
is inherently coupled to polymer advection and deformation through flow kinematics
suggests that a Lagrangian analysis of viscoelastic flows can provide direct insight into
the structure of the polymeric stress field.

The Lagrangian stretching field is a type of Lagrangian coherent structure (LCS) (27—
29) that has found numerous applications in geophysical flows (29), active and passive
particle transport (30, 31), and chemical reacting flows, but its use in non-Newtonian
flows has been limited (32). The stretching field quantifies the relative deformation of
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fluid elements in flow, but unlike the polymeric stress, it is
easily computed from readily measurable velocity fields (29).
Therefore, in this work, we determine the relationship between
the polymeric stress and the Lagrangian stretching field for a
broad range of viscoelastic fluid flows. In the limit of small
Weissenberg number (Wi <« 1), theoretical analysis yields a
general analytical expression that directly relates the trace of the
polymeric stress tensor to the stretching field, which applies even
in unsteady and nonlinear flows and is extended to special cases
(33) exhibiting strong kinematics (Wi >> 1). Further, numerical
simulations at large Weissenberg numbers (Wi 2 1) demonstrate
the strong correlation between the stretching and stress fields
in nontrivial geometries and highly time-dependent, chaotic
flows. Taken together, these results fundamentally establish
how the Lagrangian flow structure underpins the Eulerian
stress distribution in viscoelastic flows. They also provide a
framework to determine the polymeric stress field topology for
arbitrary flows, which will ultimately provide insights into the
onset of viscoelastic instabilities and their transport properties.

Results and Discussion

Lagrangian Stretching and Polymeric Stress Fields for Weakly
Viscoelastic Flows. In the limit of small Weissenberg number
(Wi « 1), we first derive an analytical relationship between
the trace of the polymeric stress tensor and the Lagrangian
stretching field for simple, linear flows. The Lagrangian stretching
field quantifies the relative elongation of a fluid element during
advection and deformation in flow over a fixed time interval (28).
To determine the stretching field, material lines in the velocity
field, wu, are first obtained by integrating ‘;,—’; = u(x, #). The
solution is denoted as the flow map, ® = x(#1, %0, %), which
provides a mapping between the initial, xg, and final positions
of fluid particles due to advection between times 7 and 7. The
Lagrangian history of fluid particle deformation is encoded in the
gradients of the flow map and represented by the right Cauchy—
Green strain tensor

Cr = (VO)TV®D, [1]

which is symmetric. The Lagrangian stretching field, S(x, ¢),
is defined as the square root of the largest eigenvalue of Cp
(28) and the corresponding eigenvector indicates the direction
of stretching (30). The stretching field is calculated analytically
for simple flow fields and numerically for simulated or measured
flows, where the time interval, Az = # — #, is chosen based
on the natural flow time scale. For viscoelastic flows, the local
polymeric stress at a particular time depends directly on the
accrued stretching of the polymeric chains over the course of
their relaxation time. Thus, to develop a correlation between the
polymeric stress and Lagrangian stretching fields, we examine S
over the time interval Az = X (unless specified otherwise), which

represents the relevant time scales for both polymer stretching
and relaxation.

In the case of Wi « 1, various models for viscoelastic fluids
converge to the second-order fluid model (34), and the polymeric
stress tensor is given as

T, = by + b2y 2) + oulry - r(h (2]

where &) is the polymeric contribution to the viscosity, and 4,
and b1 represent the first and second normal stress differences,
respectively. For the second-order fluid model, the polymeric
relaxation time can be given as A = —by/b1 (SI Appendix,
Table S1) (34). For weakly viscoelastic fluids, the stress tensor
is calculated using the Newtonian velocity field via Giesekus’s
theorem (34). y(1) = Vu + (Vu)T is the strain rate tensor,
and its higher-order derivatives are obtained from the following
relationship:

D
Voiny = 22 = (V0T 1yt 7, (V) [3]

where % = % + u - V is the material derivative. For linear

extensional, shear, and rotational flows, the trace of the stress
tensor, tr(‘rp), and the stretching field, S, were both calculated
analytically and are both spatially uniform due to constant Vu
and V@, respectively. The results are summarized in Table 1. In
the special case of uniform (rigid body) motion, for example, in
a rotational flow, the trace of the stress tensor is tr(7,) = 0 due
to a lack of fluid deformation. Likewise, § = 1 as it represents
the relative elongation of a fluid element, and the net stretching
is § — 1. For linear flows (Table 1), tr(r,) and § satisfy the
following equation for Wi < 1:

2(511 - 52)
A2
The stretching field has the form § = 1 + O(Wi). Therefore,

any power of S can be written as " = 1 + nO(Wi) to leading
order, which gives the general equation:

(611 — &)
)\2

u(ty) = (82 —1)% [4]

8
_ = Sn -1 2’
a(ey) = (5" 1) 51
where 7 # 0. The simplicity of this result suggests that the
stretching and stress fields are intrinsically linked.

Extension to Nonlinear Flows with Weakly Viscoelastic Fluids.
The simple linear flows explored above provide important
insights into the relationship between homogeneous polymer
stress and stretching fields, but whether such relationships (Eq. 5)
hold for topologically complex flows with spatially varying
velocity gradients remains to be determined. Therefore, we
derive tr(7,) and S for a series of spatially nonlinear flows at

Analytical polymeric stress and stretching fields for small Weissenberg number (Wi < 1) linear flows

Stretching field (S)

Table 1.

Flow type Velocity field (u) Stress field (tr(zp))
Extensional flow Uu=¢ex, Vv=-—¢ u(zp) = W\Wiz
Simpleshearflow wu=j7y, v=0 u(p) = W\%z
Rotational flow u=-Qy, v==Qx t(rp) =0

§2 =e?Vi =14 2Wi+ 2Wi? + HO.T.

1,2
§2 =1+ 3Wi? + Wi (1 + %Wiz) =1+ Wi+ JWi? + HO.T.
§2=1

Weissenberg numbers (Wi) for extensional and shear flows are defined as Wi = é4 and Wi = 74, respectively. Stretching fields (S) are determined exactly and also shown in terms of the

Taylor expansion up to O(Wi2) with the remaining terms indicated by H.0.T.
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Wi « 1. In a Poiseuille flow through a channel of height 2H
with center-line flow speed Uy and velocity field components,

u=Up[l — (y/H)* and v = 0, tr(,) and S are given by
8(611 — b2)

_ =2
tr(T,) = " 7Wit, (6]
$2 =1+ 22Wi + 25Wi (1 + 2 wi2) /2
=1+2yWi+ 2)*Wi? + H.O.T,, (7]

where Wi = UpA/H and y =
quadratic extensional flow with # = €1xy and v = —%6'1 y*. The
resulting stress and stretching were found to be

lyl/H. Next, we consider a

2(b11 — b
tr(7,) = %(iz + 47°)Wi?, (8]
S =1+ (#+47) " Wi

L) io, 2 2y — 2
+o @4t + [ L2 ) w2+ Ho.T,
2{(x 7’) ( T
[9]

where Wi = €1LA, x = x/L,, y = y/L;, and L, is the
characteristic length scale of flow. The two quadratic flow fields
examined above exhibit spatially nonuniform stretching and
stress fields. However, the relationship between tr(7,) and §
derived in Eq. 5 for linear flows also holds for nonlinear flows. As
further validation, we consider the quartic extensional velocity
field . = %ézxzyz and v = —%E'nya and analytically derive
tr(7,) and S:

2(511—52)<4z 10,4

tr(z,) = 2 Xy + 357 + 9}/ )Wiz, [10]

9
X (xy+10x2y4+y)

1/2
2=1+ 10, 4 1 / .
= xy +?xy + =y Wi

+§ 1 =655 +5855+ 5 wiZ + H.O.T.,
AW
[11]

where Wi = e'zL?A. Strikingly, the expression established in
Eq. 5 also holds for the quartic extensional flow.

Extension to Weakly Unsteady Viscoelastic Flows. To expand
the applicability of the relationship between polymeric stress and
stretching, we next extend our analysis to time-dependent flows.
Viscoelastic flows are fully characterized not just by Wibutalso by
the dimensionless Deborah number (De = A/ T). The latter is a
measure of unsteadiness and corresponds to the ratio of polymeric
relaxation time (A) to the characteristic time scale of the flow
(T) (35). For weakly viscoelastic (Wi < 1) and weakly unsteady
(De « 1) flows, we consider a time-dependent perturbation to a
velocity field, u = ug[1 + De «(#)], where ug is a steady linear or
nonlinear flow (e.g., explored in the previous sections), and o(#)
is an arbitrary time-dependent function. Under these conditions,
the ordered fluid model (Eq. 2) is still applicable (34, 36), and
we find that the instantaneous stress and stretching fields (i.e.,
t = 1y) satisfy the following relationship (S Appendix):

8 (511 — 52)
) =2

& (0)(S"—1)% [12]

PNAS 2023 Vol. 120 No.5 2211347120

where

1 + Dea(z) T 1]

&(“):[HD—M
and B(%) = )IL 0= (x(t)a’t.

In the special case " of fluid motions with constant stretch history
(MWCSH) (33, 37-39)—for example, linear and Poiseuille
flows—the stress tensor can be obtained using the first three
kinematic tensors (y(l),y(z), and y(3)) (40). For Wi < 1,
the leading-order term (i.e., O(Wi)) of the stretching field
still dominates. Thus, for weakly modulated MWCSH flows
(De « 1), the relationship between the stress and stretching
fields at Wi < 1 is described by Eq. 12 (replace g, with g,),
where specifically (S7 Appendix)

A.(bll_bz)

[{1 + Dea (1)} + M{l + Dea(to)}De{(t())]
[1+ Dep(n))* ’

&(n) =

[14]
¢(t) = ra’(%), and b3 and &), are the constants associated
with the third-order kinematic tensors. We note that in the
limit of De — 0, g,,(n) — 1 and Eq. 12 converges to
Eq. 5 for steady flows. Furthermore, the stress fields obtained for
flows undergoing MWCSH are applicable for all Wi. For strong
kinematics (Wi > 1), the highest-order (i.e., O(Wi?)) term of
the stretching field dominates in shear flows. Therefore, the
relationship between the stress and stretching fields at Wi > 1
for weakly modulated (De < 1) homogeneous (simple shear)
and nonhomogeneous (Poiseuille) shear flows is:

(b1 — b2)

= 2 (10)S% [15]

tr(Ty) =
In contrast, the linear extensional flow at Wi 2 1 and De < 1

satisfies a different relationship (S Appendix):

(b11 — b2)

& (0)(In(S))*. [16]

tr(7,) = 8
The stress field grows quadratically with Wi for both the shear
and extensional flows (S Appendix). However, the stretching
field at a large Wi grows linearly with Wi for shear flows, whereas
it grows exponentially for linear extensional flow, leading to the
slower growth of tr(7,) with S in the extensional flow than in
the shear flows.

Thus, tr(t,) and § are related by compact analytical expres-
sions for different steady (Eq. 5) and weakly unsteady (Eq. 12)
flows of the ordered fluid model at Wi <« 1 and MWCSH
flows at Wi < 1. Further, the analysis of flows undergoing
MWCSH uncovers exact relationships between tr(7,) and
S at Wi> 1 for shear (Eq. 15) and extensional (Eq. 16)
flows (SI Appendix). These results clearly illustrate a deep-
seated quantitative relationship between the polymeric stress and
Lagrangian stretching history, which links the topologies of these
fields. However, in general, for flows having mixed kinematics,
such exact expressions at Wi > 1 are not accessible. Hence, we
use numerical simulations to further explore the relationship
between the stress and stretching fields in complex geometries at
large Wi.

Numerical Simulations of Stress and Stretching for Strongly
Viscoelastic Flows. Beyond the exact analytical correspondence
between stress and stretching for weakly unsteady viscoelastic
flows (Egs. 12, 15, and 16), strong nonlinearities yield complex
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and time-dependent flow structures that emerge at a large
Weissenberg number (13, 17, 18). To illustrate the persistent
concordance between the polymeric stress and stretching field
topologies, viscoelastic flows are numerically simulated through
various geometries at large Weissenberg numbers (Wi 2 1), and
the polymeric stress and stretching fields are obtained numerically
(Materials and Methods). At a large Weissenberg number, the
Lagrangian stretching field mirrors the stress field topology across
four different benchmark geometries (Fig. 1). For Wi > Wi,
strong flow asymmetries develop in the hyperbolic base flow of
the cross-slot geometry (Fig. 1 A(i)) (24, 41) as well as in the
flow past a confined cylinder (Fig. 1 C(i)) (42). Despite the
otherwise creeping flow conditions, viscoelasticity leads to flow
separation in the corners upstream of an isolated constriction
(Fig. 1 D(i)) (43) as well as an unsteady asymmetric eddy in
the flow over a cavity (Fig. 1 B(i)). For all four geometries, the
stretching field (Fig. 1(iii)) has a strong correlation with the
topology of the stress field (Fig. 1(ii)) and S/ Appendix, Fig. S6,
which are characterized by thin streaks with high values of §
and tr(7,), respectively. These features indicate regions where
polymers have experienced significant deformation—and thus,
stress—due to the integrated effects of shear and extensional

N

[

flow over the past Az = A. Our observations persist in three-
dimensional flows (S7 Appendix, Fig. S7) and are independent
of the rheological model (87 Appendix, Fig. S8). The (attractive
or unstable) stretching manifolds were extracted from the ridges
of the maximal stretching for different integration times (Az =
A, 2X; Fig. 1(iii) and SI Appendix, Fig. S5) and superimposed on
the stress field (Fig. 1(ii)). In line with their known behavior as
strong transport barriers, these material lines act as separatrices
between regions with disparate flow characteristics, including
asymmetric flows (Fig. 1 A and C) and separated eddies (Fig. 1
B and D). While the magnitude of stretching increases with
the integration time (87 Appendix, Fig. S5), the position of the
stretching manifolds exhibits minimal change for Az > A, and
they remain coincident with streaks of the stress fields (Fig. 1,
Row (ii)).

Beyond comparing their respective topologies, numerical sim-
ulations of viscoelastic flows enable us to further investigate the
relationship between the magnitude of the stress and stretching
fields. As an illustrative example, we consider the spatial average
of the stress, (tr(,)), and stretching, (S), over a fixed region
of space (Fig. 2) within the constriction flow (Fig. 1 D(iii)),
green box. For small Weissenberg number, the predicted scaling

Fig. 1.  Flow field (Row i), trace of the polymeric stress tensor (Row ii), and stretching field (Row iii) for viscoelastic flows in different geometries at large
Weissenberg numbers (Wi > 1): (Column A) cross-slot geometry at Wi = 4, (Column B) flow over a cavity at Wi = 1.25, (Column C) cylinder confined in a channel
at Wi = 2.5, and (Column D) flow through an isolated constriction at Wi = 0.75. Wi = iU;,/Lc, where Uj, is the inlet velocity of the geometry. The characteristic
length scale, L¢, for the geometries is the upstream channel width (A and D), the channel width at the cavity (B), and the cylinder diameter (C). The velocity U is
normalized by Uj,, and the stress zp is normalized by o Uj,/Lc, where ng is the zero-shear rate viscosity of the viscoelastic fluid. Black and magenta lines (Row
ii) are the stretching manifolds (ridge of maximal stretching) obtained from stretching fields (Row iii and S/ Appendlix, Fig. S5) for integration time intervals of
At = 2and At = 24, respectively. The stretching fields shown (Row iii) correspond to At = 4. No-slip boundaries are highlighted by red lines, whereas inlets and
outlets are indicated by green and yellow, respectively (Row /). Geometries shown are a small portion of larger simulation domains, which ensured sufficient

entrance and exit lengths.
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Fig. 2. Mean stress increases with mean stretching (At = ) for a

viscoelastic flow through an isolated constriction (Fig. 1D) at different Wi.
The region 1.25W x W upstream of the constriction (Fig. 1 D(iii)), green box,
where W is the upstream width of the channel, is used to calculate the spatial
average of stress and stretching. The stress zp is normalized by ngUj,/Lc
corresponding to Wi = 0.75.

t(zp,) ~ (8" — 1)® (Eq. 5) is recovered as Wi — 0 (Fig. 2,
blue), similar to the scaling between the local values of stress and
stretching fields (SI Appendix, Fig. S10). At large Wi, (tr(7,))
and (S) exhibita linear scaling (Fig. 2, red), which we hypothesize
is due to the highly mixed flow kinematics upstream of the
constriction (SI Appendix, Fig. S1): In this regime, the slope
of the curve of tr(7,) vs S increases with S for shear deformation
(Eq. 15) but decreases for extensional deformation (i.e., for
S > ¢) (Eq. 16). In this example, the quantitative relationship
between the stress and stretching fields is obtained along with
their topological resemblance. However, the scaling exponent is

A

not universal (87 Appendix, Fig. S10), and developing a robust
general predictive framework for relating tr(7, ) and S will require
further investigation.

Extension to Complex Geometries. Intricate flow geometries—
for example, in porous media (8)—increase the complexity of
instabilities leading to multistable and strongly time-dependent
flow structures (17, 18, 44). Here, we compare the polymeric
stress field and Lagrangian stretching field for topologically
complex and unsteady flows stemming from multiple cylinders
(18, 44) and constrictions (17). The addition of a second cylinder
in a steady channel flow leads to two transitions with increasing
Wi (18, 44): At the first transition, the elastic wake downstream
of the first cylinder bifurcates, yielding two symmetric eddies
(Fig. 3 A(i)) encircled by streaks of high stress (Fig. 3 A(ii)). At
the second transition, the stress topology becomes asymmetric
(Fig. 3 B(ii)), and the flow is diverted to one side of the
cylinders (Fig. 3 B(i)). Subsequent to each transition, ridges of
S (Fig. 3 A(iii) and B(iii)) coincide with regions of high tr(z,)
(Fig. 3 A(ii) and B(ii)), whereby the stretching manifolds isolate
the regions of vortical and quiescent flow from the bulk. Finally,
viscoelastic instability in flow through a series of interconnected
pores and throats leads to fluctuating flow patterns (Fig. 3 C(i))
and SI Appendix, Fig. S9, (17). Flow separation in the high-stress
throat (Fig. 3 C(ii)) causes eddy formation in different regions
of the pores, corresponding to four distinct flow patterns (Fig. 3
C(i)). For large Wi, advection of the stressed polymers spans
multiple pores, and consequently, the Lagrangian stretching
field exhibits a richer topology (Fig. 3 C(iii)). However, the
LCSs expected to dominate the dynamics are the strongest local
stretching lines (29), which indeed correspond to ridges in the
stress field (Fig. 3 C(ii)). The secondary ridges and finer structures
in the stretching field of unsteady flows (Fig. 3 C(iii)) emerge
due to mixed kinematics (S/ Appendix, Fig. S2), and they are

Fig. 3.  Instantaneous flow field (Row /), trace of the polymeric stress tensor (Row i), and stretching field (Row iii) arising from viscoelastic instabilities in
flows with two cylinders aligned in the streamwise direction in a channel with moderate and large Weissenberg number, Wi = 1.88 (Column A) and Wi = 3.12
(Column B), and in a corrugated channel with Wi = 1.68 (Column C) (S/ Appendix, Fig. S9). Wi = AU;,/Lc, where L is the cylinder diameter in (A) and (B) and the
pore half-width in (C). The velocity U and stress zp are normalized by U;, and characteristic shear stress (ngUj,/Lc), respectively. Black and magenta lines (Row
ii) represent the stretching manifolds (ridge of maximal stretching) obtained from stretching fields (S/ Appendix, Fig. S5, Row iii) for integration time intervals of
At = A and At = 2), respectively. The stretching fields shown (Row iii) correspond to At = A. No-slip boundaries are highlighted by red lines, whereas inlets
and outlets are green and yellow, respectively (Row /). Geometries shown are a small portion of larger simulation domains, which ensured sufficient entrance

and exit lengths.
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further refined with increasing integration time (A#; ST Appendix,
Fig. S5). However, the maximum attractive (unstable) material
lines (strongest ridges), which control the flow states, remain
nearly unchanged (Fig. 3 C(ii)).

At large Wi, despite the excellent agreement between the stress
field and stretching field in the regions of high stress, subtle
differences also persist in other regions (Fig. 3 C(ii) and (iii)).
The regions where streaks of high polymeric stress form are largely
shear-dominated (S Appendix, Figs. S1 and S2), as they act as
barriers to flow crossing and exist between regions of strong
extensional or vortical flow (17). The theoretical analysis of
MWCSH flows has shown that there exists a direct relationship
between the stress and stretching for both homogeneous and
nonhomogeneous shear flows at Wi> 1 (Eq. 15). Taken
together, these results illustrate the origin of the strong correlation
between the stress and stretching fields in the regions of high
stress. In contrast, mixed-kinematics regions away from high-
stress zones (SI Appendix, Figs. S1 and S2) include extensional
flow components with a different stress-stretching scaling at
Wi > 1 (Egs. 15 and 16). Detailed numerical analysis supports
this observation and indicates decreased correlation between the
stress and stretching fields as mixed kinematics emerge in strong

flows (Wi 2 O(1); SI Appendix, Figs. S3 and S4).

Conclusions

Knowledge of the stress field is essential to elucidate the emergent
flow patterns and transport properties in viscoelastic flows. The
work presented here applies concepts from Lagrangian coherent
structures to gain insights into the often Eulerian framework of
viscoelastic fluid mechanics, thus bringing together two disparate
fields of continuum analysis. In doing so, we show that the
stretching field, which depends only on the flow kinematics, is a
powerful indicator of the topology of the underlying polymeric
stress field. For small Wi, we analytically derived a general
relationship between the trace of polymeric stress tensor and
the Lagrangian stretching field, and for unstable flows at large
Wi, numerical simulations show a strong correlation between
the stress topology and manifolds of the stretching field. The
extension of these results to three dimensions provides copious
opportunities for future investigations. An important outcome
of this work is the potential to determine the stress field topology
directly from conventional experimental velocimetry data for
arbitrary viscoelastic materials and flow geometries. LCSs that
underlie turbulent and chaotic flows are known to regulate
material transport, and anomalous transport effects often arise
from unstable polymeric flows (8, 45). The concepts established
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here show intriguing links between polymeric stress and stretch-
ing kinematics, which could prove useful in investigating the
dynamics and transport for a range of applications from mixing
to natural flows (2, 8, 16, 46).

Materials and Methods

Polymeric Stress in Simulations. The polymeric stress tensor is calculated
using the FENE-P constitutive model, which captures fluid elasticity and shear-
thinning behaviors as well as the finite stretching of the polymeric chains (47):

AV a D /1

where np is the polymeric contribution to the zero-shear rate viscosity of the
A
fluid. = is given by:

vV D‘l'p

Tp = Dt —7p-Vu—VuT .7, [18]

and the nonlinear function f is
2 A
L + Wtr(’rp)

) =—p3

/ [19]

wherea = [2/(12 — 3),and L is the maximum extensibility of the polymeric
chains. Numerical simulations are implemented using OpenFOAM (48) and
RheoTool (49). The log-conformation method is used to solve for the logarithm
of the conformation tensor (@) (49, 50), and then, the polymeric stress tensor is
determined using

T = Z—p(fe@ —al). [20]

Stretching Field in Simulations. The stretching field (S) is also calculated
numerically from the simulated velocity field: Four auxiliary points centered
around each primary grid point define a fluid element. The flow map (®)
is obtained by numerically integrating the auxiliary point in time, and the
deformation-gradient tensor (V@) on each primary grid point is computed by
central differencing of the auxiliary points (51).
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