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Abstract— New methods are proposed to continue to the
development of a power system topology detection method
designed for robustness under load uncertainty. The method
maps load variation onto a space of measurements using
the topology-dependent network model, then separates the
mappings via convex optimization. Two new areas are explored.
Statistical methods are applied to extend the detector’s func-
tionality to cases where an exact load uncertainty set cannot
be established, and tested on the IEEE 9-bus system. The use
of Support Vector Classifiers allows a detector of specified
accuracy to be established when the load uncertainty sets are
not strictly separable. In the second half of the paper, the
original formulation is re-worked to allow its application to
larger power networks, and is demonstrated on the IEEE 68-
bus system. A placement rule is proposed for additional sensors.

I. INTRODUCTION

This paper seeks to develop a secondary protective scheme
to identify open circuit conditions independent of state
estimation. The method is designed for robustness against
load uncertainty, making it ideal for cases of high renewable
penetration where distribution level generation may vary.

State-estimation based methods include measurement
residual analysis as well as state vector augmentation [1].
Problems arise, however, in the case of bad or missing
measurement data, or where the state estimation process
does not converge. The missed detection of an opened line
can lead to cascading outages as in the Southwest Blackout
of 2011 [2]. State-estimation methods for fault identifi-
cation furthermore rely on Supervisory Control and Data
Acquisition (SCADA) system measurements. While widely
available, SCADA measurements are not time-synchronized,
and many do not record at regular intervals, or provide a
time-stamp of when the measurement was taken [3].

Phasor Measurement Unit (PMU) measurements by con-
trast, are both high speed at 30-120 phasor measurements
per second and time synchronized. While this provides an
advantage over the SCADA system, PMUs are expensive,
and as of 2017, only 2500 were operating in the North
American Grid [4]. A Multiple Model Based (MMB) ap-
proach to topology identification can help this problem, by
classifying a minimal set of PMU measurements to the
nearest model. A direct example is found in [5], where open-
circuit topology detection was performed using time-series
PMU data, classifying topology by finding the closest model
in a 2-norm sense.

For open circuits, slower dynamics allow the use of
phasor-domain analysis, simplifying the computational pro-
cess. A toplogy identification method based on phasor angles
was proposed in [6], comparing the measured angles at
several PMU points with the model for each topology and
taking the closest. Angles were also applied in [7], which
used a machine-learning methodology based on historical
data. The authors in [8] used the 2-norm between pha-
sor current measurements, then determined limits on load
variation beyond which the detector would be inaccurate.
Open circuit identification methods also find application in
islanding detection [9].

For an open circuit detector, two main concerns are isola-
bility, the ability to distinguish as many lines as possible, and
robustness, the capacity to correctly identify open circuits in
the presence of modeling error [10]. All the aforementioned
works achieve isolability, but only [8] discussed robustness.
The consideration of load uncertainty as the primary source
of modeling error is of particular interest as renewable
penetration increases at the distribution level, making the
load change with weather conditions.

This paper is a direct extension to prior work [11] that
sought to address this robustness issue for topology detection.
In that paper, load uncertainty was modeled as a current
injection at the load points. The possible values of this
injection exist within a set, called the load uncertainty set. A
convex set in the form of a hyperrecctangle was constructed
to contain the load uncertainty set. The hyperrecangles were
mapped onto the measurements via affine transformations,
defined by the circuit model of the network, and unique for
each open circuit topology. Set separability was checked by
solving the separating hyperplane problem for polygons [12].

The mappings of the load uncertainty set define the reach-
able set of outputs under each topology. Therefore, if the sets
intersect for two topologies, they cannot be distinguished
assuming the real load matches the load uncertainty set. An
algorithm was developed to find the maximum tolerable load
uncertainty for a given set of measurements and tested on
the IEEE 9-bus system using phasor measurements of each
generator current.

In this work, an alernative point based method is devel-
oped for topology detection, and the original algorithm is
expanded for larger power systems, and demonstrated on
the IEEE 68-bus test system. Rather than parameterize load
uncertainty as a convex set, the particular load current is



considered to be a point drawn from a random distribution.
This may be useful in the case where there is little data
available, but a variance has been established. It furthermore
allows the application of a support vector classifier (SVC)
to minimize misclassification in practical cases where the
reachable sets under two topologies do overlap.

The original algorithm in [11] is furthermore extended to
include voltage measurements, and to consider load points
at the generator terminal busses. A placement rule for new
measurements is developed to maximize sensitivity to a
particular change in topology while minimizing sensitivity
to load variation. With extra measurements in place, the
detector’s performance is assessed fitting the load uncertainty
set within a uniform hypercube, and a euclidean norm ball.

The rest of the paper is outlined as follows. Section II pro-
vides background on the formulation of the detector. Section
IIT develops the point-based statistical method for topology
detection, and aaplies it tomthe IEEE 9-bus system. Section
IV extends the original convex set-based algorithm to the 68
bus system with numerical results. Section V discusses the
remaining practical concerns for the implementation of the
extended method, and Section VI contains the conclusions
drawn from the work.

II. DETECTOR FORMULATION

The problem setup for the detector follows the previous
work in [11], but drops the assumption that there are no
loads at the generator terminals, allowing application to more
systems.

The power system model used for this problem assumes
the network to be in a quasi-steady state sinusoidal (QSSS)
state [13], so the generators are modeled as an ideal voltage
source behind an impedance, removing transient effects.
Loads are modeled as a nominal admittance, while load
uncertainty is considered as a uncertainty in injected current
at the load busses as shown in Figure 1.

The nominal currents are first solved from the ad-
mittance matrix for each of the contingent topologies
[14]. In the nine-bus case, the detected topologies are:
{00, 45, 46, 57,69, 78,89}, indexed in terms of the opened
line, with 00 representing the in-tact case.

The admittance matrix also defines the mapping between
the uncertain load currents, which will be called the Load
uncertainty Space, and the measured generator currents,
which will be used by the detector, and is therefore dubbed
the Decision Space:
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Here, {Ig,It,Il} are the currents at the generators, ter-
minals, and load busses respectively, E’ is a vector of the

Fig. 1.
redrawn to show the nominal load admitance and variation as a perubation
in load current. PMU data are assumed available at the generator terminal
buses 4, 7, and 9. Buses 5, 6, and 8 have nominal loads A, B, and C,
respectively.

One line diagram of the IEEE 9-bus test system [15]. The system is

internal EMFs, V;, and V} are the voltages at the terminal and
load busses, and {Y,, Yy, Yy, Yy} are the admittance matrix
entries between the generator busses, between the terminal
busses, from terminal to load, and between the load busses.
The superscript k represents that each of these quantities is
dependent on the topology of the network.

This formulation explicitly separates the nominal com-
ponents, caused by the EMF sources, and the uncertainty
components, caused by injection due to load variation. The
possible measurements are drawn from the set {I,, V;, Vi}.
In short-hand, the block admittance matrix is M, the vector
from the generator sources is LY, and the uncertainty
vector is ALF

Let AZ correspond to the real-valued uncertainty vector
containing all the rectangular components of the load cur-
rents: Al = [Re{AL} , Im{AL})

Then, since MF represents the admittance matrix in the
form from (1), this gives Ad, the change in the decision
space of real-valued measured variables as the following:

_ [RefMH)
T Im{M~*}

—Im{M~*}

k
Ad Re{M~"}

Al =FFAL.  (2)

Here, the topology-dependent matrix F* is the real-valued
inverse of M, and defines a linear mapping between load
uncertainty and measurement uncertainty.

To define a set of load uncertaintys, a hypperectangle, R,
was generated in terms of hyperplanes, such that AY € R
implies that A* A¢ < b. The load uncertainty hypperrectangle
translates to the decision space via an affine transformation:

D* = F*R+d},, 3)

Where d¥_, is the nominal measurement under topology
k. This mapping makes one polygon, D, for every topology,
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Fig. 2. Conceptual illustration of the mapping between the uncertain load
current variation, and the corresponding points in decision space based on
measured values. The Load Uncertainty Set belongs to a convex feasible
set that may or may not be known. Three mappings are applied to place
the sampled load variation onto different topologies. Pairs 0-1 and 0-2 are
strictly separable, while pair 1-2 has overlap, and necessitates a detector
with some error rate.

k. If the D* do not overlap, then each possible measurement
vector belongs to a unique topology, and an error-free
detector can be established with guaranteed robustness for
any uncertainty within R.

Choosing to represent the load uncertainty as a hyper-
rectangle means that it is a convex set, and under affine
transformation, remains convex. As such, the separability of
DF can be checked by solving the separating hyperplane
problem for polyhedra [12]. Further details on the algorithm
are contained in [11].

ITII. DISCRETE POINT DETECTION APPROACH

In this section, point-based methods are developed for
robust open circuit topology detection and applied to the
IEEE 9-bus system.

A. Point-Based Problem

Considering the load uncertainty set to be a set of points,
the problem of topology detection is the classify the mapped
points according to what topology they originated from.
Applying the mapping in (2), a single load point, A¢ maps
to a single decision space point d, as d* = FFAl +dk, |
mapping using the matrix F, then adding the nominal.
The new problem is to define a detector that discriminates
between these mapped sets, which may overlap.

To achieve this, a separating hyperplane is drawn between
the points sampled from each topology, or as close as
possible if the feasible sets in two distinct topologies overlap.
Figure 2 demonstrates this mapping process, as well as the
use of the separating hyperplanes.

For the case where the samples from each topology are
not strictly separable, some level of mis-classification must
be allowed. In this case, a support vector classifier [12] is
applied to the problem , trading off the sum least squares

distance of each mis-classified point to the hyperplane with
the size of the slab containing all mis-classified points. This
slab width parameter is an important aspect of robustness:
a larger region means the classified sets are more separated.
Because the problem is scalarized multi-criterion, adjusting
the scalar weighting factor  allows several candidate detec-
tors to be explored.

(4) expresses this problem for all topology pairs a and b,
where D, is the set of points in topology a and Dy is the
set of points in topology b.

minimize ||z||a + ’)’Z(U[Z] + vli])

subject to
2IDgli] —e¢>1—wuli], Vi (4)
2T Dyli] — ¢ < —(1 —vli]), Vi
ur=0,v>0
forall abek, a#bd

Here, the variables are u, v, 2z and c¢. z is a six-vector
for the 9-bus system since there are six generator current
components in the decision space and c is a scalar. The
u and v vectors each have a single element for each point
sampled, so their size is equal to the number of samples used.
The parameters are D, and Dy, and are sets of randomly or
non-randomly sampled points from the two topologies. The
problem is solved between each topology, pair, dictated by
the last statement in the problem.

B. Application to 9-bus System

For the 9-bus system case, PMU generator current mea-
surements are taken at the high side terminals of each
generator. By superposition, each measured generator current
can be separated in to the nominal component without the
load current uncertainty, I 5mm and a uncertainty component
caused exclusively by the load current uncertainty, Al,. As
in[11], this simplifies the detector formulation somewhat,
since the 9-bus system has 3 generators and 3 loads, meaning
the load uncertainty space and decision space are both 6-
dimensional.

To verify the operation of the method, the hyperrectan-
glular load uncertainty found in [11] of 0.21 pu at all load
current components was first checked. To do this, instead of
experessing the hyperrectangles as facets, the vertices were
taken as a set of discrete points. Mapped to the decision
space, then, if the hyperrectangles do not overlap, the sets
of vertices should be strictly separable.

This condition can be checked using (4), whereas, if no
points are misclassified, then vectors u and v are the zero-
vector. Hence, if the problem with v and v set to zero,
or the robust classifier problem [12] is feasible, then the
hyperrectangles are strictly separable.

For the IEEE 9-bus system, using the vertices was slightly
faster than the original formulation considered in [11], taking
5.49 seconds as opposed to 5.68 to check separability. Both
algorithms were implemented in MATLAB on a 3 GHz



8 core processor using the CVX toolbox for disciplined
convex programming [16] However, the size of the problem
grows exponentially with the number of loads as the load
uncertainty set grows in dimension, whereas the original
facet formulation grows linearly. Therefore, considering the
sets as a collection of vertices is only useful for small systems
or as verification.

The more interesting use case for this method occurs when
the load variation is not exactly known, but a sample dataset
has been collected. For this purpose, several samples of
10,000 load points were generated in the load uncertainty
case under two cases. First a uniform in each current com-
ponent. Setting the limit of the uniform variation past 0.21
pu induces points outside the tolerable set, with the error
rate determined by how far the variation extends beyond that
limit. These points are mapped into each of the 7 potential
topologies, then separated using 4. Varying the scalarizing
parameter v trades off detector accuracy on this 70,000 point
set with the slab length, or robustness of the detector, in units
of measured generator current per-unit.

Table I shows the results under 0.24 pu of uniform vari-
ation in all components. For this random sample, 16 points
are found inseparable under any detector. Each separation
problem contains two samples of 10,000 points, and there
are 21 pairs, so there are 420,000 total scalar constraints in
the problem in the form of (4). The percentage of non-zero
entries in the u and v vectora provides the error rate is. While
a higher gamma always corresponds to better accuracy, the
smaller magnitude of z means the slab width, or separation,
is small, corresponding to overfitting on the provided sample,
and potentially worse real-world performance.

TABLE I
DETECTORS FOR UNIFORM 0.24 PU LOAD VARIATION

gamma 10000 10 1 0.5
Mean Slab Width (pu) | 0.2862 | 0.2943 | 0.3201 0.3438
Errors 16 33 170 338
Error Rate (%) 0.0038 | 0.0078 | 0.0402 0.08
gamma 0.05 0.01 0.005 0.001
Mean Slab Width (pu) | 0.4553 | 0.4783 | 0.4909 | 0.5353
Errors 2635 11783 | 22587 100664
Error Rate (%) 0.6234 | 2.7876 | 5.3437 | 23.8152

The second distribution was gaussian. In a practical sense,
the guassian distribution has the desirable property that
points will be concentrated around the center, with rare
outliers. The rate of outliers is controlled by the covariance
of the multivariate distribution. These points were generated
according to the following probability distribution:
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Here, the probability density « for a particular load vari-
ation A/ follows a standard multi-variate gaussian distribu-
tion in six dimensions, with covariance matrix . For this
experiment, 10,000 points were sampled in load uncertainty
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Fig. 3. Error rate vs detector robustness for several levels of uniform
gaussian load variation. In this case, the optimum detector is at the bottom
right, as more slab width and few errors are both desirable. Notably, when
the uniform deviation is two standard deviations for the uncertainty, the
error rate can be made arbitrarily small for the 10,000 point sample used.

space using the conservative assumption that the load current
components are uncorrelated, reducing X to a diagonal
matrix.

An optimal trade off curve was established by varying
~ under several levels of uniform noise. Since the absolute
limit on the hyperrectangular load uncertainty set is 0.21 pu
for perfect detection [11], setting the standard deviation to
0.21 pu means each boundary has a 31.74 percent chance
to be broken. Then, setting 0.21 a multiple of the standard
deviation pushes errors further out on the normal distribution.
The problem (4) was solved with 0.21 pu equal to one
standard deviation up to five standard deviations.

The resulting tradeoff curves in Figure 3 show that if
the absolute set boundary is two standard deviations for
the uncertainty, the detector can be made highly accurate
without sacrificing too much in the way of slab width. In
particular, even where the limit for perfect detection is only
one standard deviation, finding a point that actually gets
misclassified is fairly rare, close to 1 percent, while at two
standard deviations the error rate can be pushed near zero.
This provides an important link between the set boundary
established in [11], and real world systems, whereas if
two standard deviations of the real variation is tolerable as
hypercube, strong detector performance can be assured.

IV. EXTENSION TO LARGER SYSTEMS

In this section, the-set based topology detection method
described in [11] is generalized to large power networks,
and a rule for sensor placement is proposed.

For an open circuit detector to work, it must be able to
both detect all possible open circuit conditions, as well as
identify the particular line that has been opened. Achieving
detectability and identifiability without load uncertainty is a
necessary prerequisite to the robust detector design.



Suppose S is the set of all possible open-circuit topologies,
and the topologies are considered in pairs, k,m € S. Then,
detectability can be defined as follows:

||p9wm_pfwm||26>o7 VkeS (6)

Here, pi,, represents the nominal (no load change)
measurement vector under topology i, and O is the in-tact
case. Idenfitiability imposes the further requirement that all
topology pairs are distinguishable by at least e:

||p:?om_p'lfwm||26>07Vk’mES (7)

In a perfect system, any epsilon greater than zero is
sufficient to establish identifiability, however, in practice,
it is desirable to have as large an epsilon as possible to
provide a margin against measurement and modeling error. In
terms of load uncertainty, raising the identifiability means the
decision space is more sensitive to topology change, allowing
a greater amoung of uncertainty to be tolerated.

For a specified level of identifiability, €, it is desirable
to find the minimal set of additional sensors added to the
system. Suppose there are P existing scalar measurements
in the system. An additional PMU adds a real component,
a and and imaginary measurement component b , and there
are N possible sensors. The goal is to raise the identifiability
between all possible topology pairs, k and m. Adding mea-
surements cannot decrease the identifiability, so only those
pairs that violate the inequality for € need to be considered.
Allowing this set to be S;4en, the following linear program
provides an optimal placement rule:

minimize o1 +0s+...+0N
subject to :
P N
Yo =0+ ) aillaf —ai)? + (0 — 01" = €
i=1 i=1
for all pairs k,m € Sigen, k #m
®)

Here, the objective is the sum of the placement variable o;,
for each sensor, which is relaxed from a binary variable to
the range [0,1], making the problem a linear program rather
than a mixed-integer program. Given a set of o; values, the
placement solution is obtained by rounding each to zero or
one, then checking the placement against the target value for
€.

To test the performance of this placement method with
the original convex algorithm in [11], it was applied to the
IEEE 68 Bus system, shown in Figure 4. Notably, the 68
bus 16 machine system has 35 load points, and will require
more measurements so both the load uncertainty and decision
spaces are much higher dimension than for the 9 bus system.

For the 68 bus system, some of the lines are not n-1
secure, whereas the system is not stable under their removal
[17]. Without these, there are 50 open circuit topologies

@ -PMU Voltage Measurement
B -PMU Current Injection Measurement

Fig. 4. One Line Diagram of IEEE 68 Bus Test System [18]. The
measurements placed for this study are indicated on their corresponding
bus, while inter-area tie lines are indicated with a thicker connecting line.
The initial measurements were the generator currents (blue squares), with
six voltage measurements added.

left to detect. To begin, as in the 9-bus case, PMU current
measurements were placed at the terminal busses of each
generator. In this case, the detectability ¢ was 0.1036, while
identifiability was 0.0898. With voltage measurements added
at every bus, detectability only increases to 0.1465, and
identifiabiltiy to 0.1233.

These values are a bit low for the purposed of robust
detection. After some observation, three lines were identified:
1-27, 3-18 and 31-38, that have near-zero current values in
the nominal case. Openint these lines causes only a small
change in power flow, making their topology change difficult
to detect. Table II summarizes the increase in potential
epsilon values:

TABLE II
DETECTABILITY AND ISOLABILITY OF THE 68 BUS SYSTEM

Case All Lines | 3 Lines Not Considered
Detectability e (pu) 0.1036 0.1772
Identifiability € (pu) 0.0868 0.1592
All Sensors Detectability e (pu) 0.1465 0.2521
All Sensors Identifiability € (pu) 0.1233 0.2291
Size of Tolerable Hypercube (pu) 0.01 0.15

Given this benefit, for the purpose of design, the three
topologies are not considered, and are left to be handled
separately, for example, by direct current measurement.
This leaves 46 total open circuits and the nominal, or 47
topologies to be detected. The problem 7 was solved for
an identifiability of 0.22, near the maximum, with o values
greater than 0.3 rounded to 1. The eight sensors identified
in red in Figure 4 represent this placement solution.

In terms of performance, the 22 sensor scheme in Figure
4 completes the algorithm described in [11] with a time of
247 seconds, tolerating 0.15 pu of load variation at all points.
Since a hyperectangle was used, this value comes in the sense



of an infinity more, so all components of all load currents
can change by 0.15 pu, and a perfect detector can still be
established. By comparison, changing the uncertain set to
a 2-norm ball causes the algorithm to take 358 seconds to
run, and finds 0.28 pu of load uncertainty to be tolerable. In
this case, however, the uncertain set allows large variation in
one component only if the others are comparatively close to
nominal.

Once the hyperplanes have been established, checking the
topology of a given measurement takes an average of 817
ws. This is considerably slower than the 9 bus system at
161 us [11], but is still about 20 times faster than a single
60Hz cycle, meaning the detector is more than fast enough
for on-line operation.

V. DISCUSSION

The statistical methods demonstrated establish a useful
connection between the set-based uncertainty limit and the
variance of the load, namely, that the limit should be at least
two standard deviations for good performance. Measurement
noise can be added to the method by adding an additional
random factor to the points post-mapping. One issue is the
problem size, since each topology pair must be separated, and
each point adds a scalar variable to the SVC problem. This
makes detailed Monte-Carlo type analysis computationally
costly.

The extended method applied to the 68 bus system faces a
few barriers to practical implementation. Foremost, lines with
little power flow in the nominal case are nearly unobservable,
since the power flow in the network changes only slightly
with them removed. A direct measurement of the line current
solves the issue, since it will be zero with the line removed,
however, it wouldn’t be feasible to add PMU measurements
for every line current.

As far as finding the tolerable load uncertainty, the high di-
mensionality of the 68-bus system, at 44 scalar measurements
and 70 scalar uncertain parameters causes a long desgin
time at 4-6 minutes, compared to 5.66 seconds for the 9-bus
system, with 6 scalar measurement and 6 parameters. This
means the detector design is presently too slow to keep up
with the load forecast in real time, but the online operation
remains fast at 817 us to check the current topology.

As may be expected. the suggested placement rule often
selects measurements on the end-points of line i or j, when
trying to separate topology i and j. It may also be desirable
to find a single measurement that best separates two or more
distinct pairs, in which case the average of the objectives can
be applied.

VI. CONCLUSIONS

The extended methods in this work extend the original
multiple model based detector to operate on larger test
systems and in scenarios where strict separation of the
decision-space reachable sets is not possible.

Considering load uncertainty as a random distribution
rather than a set opens new types of analysis for the topology
detector and provides a meaningful connection between

known variance and hard set limits. A re-formulation allows
the original convex techniques to apply to power systems
of arbitrary size, though the 68 bus system highlights the
increasing cost in terms of design time as the convex
problems grow in size.

Future work in this are may include methods to handle
lines with low power flow, and hence weak detectability. In
addition, in place of a hyperrectangle, uncertain distribution
or norm ball, a practical approach would be to wrap a
confidence ellipsoid around real load data or an accurate load
model, then perform separation.
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