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The question of how soft polymers slide against
hard surfaces is of significant scientific interest, given
its practical implications. Specifically, such systems
commonly show interesting stick–slip dynamics,
wherein the interface moves intermittently despite
uniform remote loading. The year 2021 marked the
50th anniversary of the publication of a seminal
paper by Adolf Schallamach (Wear, 1971), which first
revealed an intimate link between stick–slip and
moving detachment waves, now called Schallamach
waves. We place Schallamach’s results in a broader
context and review subsequent investigations of
stick–slip, before discussing recent observations of
solitary Schallamach waves. This variant is not
observable in standard contacts so that a special
cylindrical contact must be used to quantify its
properties. The latter configuration also reveals the
occurrence of a dual wave—the so-called separation
pulse—that propagates in a direction opposite to
Schallamach waves. We show how the dual wave
and other, more general, Schallamach-type waves
can be described using continuum theory and
provide pointers for future research. In the process,
fundamental analogues of Schallamach-type waves
emerge in nanoscale mechanics and interface fracture.
The result is an ongoing application of lessons learnt
from Schallamach-type waves to better understand
these latter phenomena.

This article is part of the theme issue ‘Nanocracks in
nature and industry’.
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1. Introduction
The question ‘How does rubber slide?’ marks the title of a landmark paper by Adolf Schallamach
published 50 years ago [1]. This work investigated the basic mechanisms of sliding friction
when a soft compliant object, such as rubber, is slid against a much harder and practically rigid
object, such as glass. The question appears to be a humble one, and the 1971 paper was one of
the many pinnacles of a broad research programme on rubber friction at the Natural Rubber
Producers’ Research Association in the United Kingdom. Testament to its success is the fact that
this seemingly simple question has thrown up a rich variety of dynamic behaviour in response,
spanning length and time scales, and occurring in completely unexpected situations [2].

To fully appreciate this complexity, consider a simple configuration comprising two semi-
infinite solids that are in contact along the xy plane and under a remotely applied normal force N
in the z-direction. We assume that one solid is elastic (z≤ 0) and the other rigid (z> 0). If, at time
t= 0, the elastic solid is subject to a constant remote velocity V0 parallel to its contact plane,1 how
does motion at the interface occur? Note that we have posed the problem via an applied velocity
in lieu of an applied remote shear force to ensure that the solids will eventually slide against
each other. Elementary mechanics tells us that if V0 is constant, the shear force transmitted at the
interface will continuously increase from t= 0 until it reaches the static friction threshold Fs = μN,
determined by a coefficient of friction μ, presumed known for this pair of solids, and the normal
force N. Beyond this threshold, uniform sliding should ensue at constant interface shear force Fd,
the so-called dynamic friction force. This is the standard Coulomb model for friction [3].

Schallamach’s work dramatically exposed the shortcomings of this line of thought. Firstly,
it showed that the interface itself does not often move uniformly but instead only via the
propagation of localized wave-like detachment zones—now aptly named Schallamach waves in
his honour—that traverse the entire length of the contact interface. Detachment waves of this
nature can be best described by analogy with the motion of a ruck in a carpet [4]: if a carpet is
to be moved by distance �x, we could either translate the whole surface at once by �x or create
a localized slip zone of extent �x by surface buckling �x that then propagates along the carpet,
progressively causing it to slip. This buckling and detachment type mechanism is reminiscent of
that proposed by Bragg for explaining how dislocations mediate slip in crystals [5].

The most distinguishing properties of Schallamach waves are that they cause local interface
slip and that they propagate significantly more slowly than any known elastic waves, e.g.
Rayleigh and Stoneley waves. It is only now being appreciated that these waves are part of a
larger class of propagating detachment fronts that arise not only in frictional interactions but also
in nanoscale fracture [6], seismology [7,8] and even biological locomotion [9–11].

Schallamach’s work also established the importance of elastic deformation and adhesion in
determining the frictional response of an interface. The aforementioned Coulomb friction model
for the onset of steady sliding applies only to perfectly rigid solids. When one of the bodies is
allowed to deform, the interface dynamics can change significantly [12–14]. Likewise, when the
two bodies have significant interface adhesion, reattachment is easily effected following local
detachment, leading to trapped pockets that can then move and cause slip [15].

In this article, we revisit various facets of Schallamach waves, 50 years after they were
first reported. The first part of this article presents a topical review of Schallamach’s original
contributions and their continued impact (§2). Our experimental results are then presented in §3.
The solitary Schallamach wave is introduced, along with another detachment wave that moves
in the opposite direction—the ‘dual’ of the Schallamach wave, also termed the separation pulse.
By condensing and abstracting the basic features of the Schallamach wave and its dual, we show
how more general travelling waves can be grouped together as ‘Schallamach-type’ waves. This
potentially broadens the applicability of lessons learned from studying waves in one situation
to an entirely different domain. Section 4 presents the results from prior and ongoing theoretical
investigations of Schallamach-type waves at interfaces. Experimental observations have led to

1Note that we will henceforth use the same notation for the remote sliding velocity.
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Figure 1. Panels showing Schallamach waves in an adhesive contact. The two different experimental configurations used by
Schallamach comprise a spherical glass indenter sliding against a rubber flat (a) and a spherical rubber indenter sliding against
a glass flat (b). Note the direction of friction force F vis-á-vis wave propagation directionw. Three frames show the propagation
of multiple Schallamach waves, and sliding direction is as shown in (a). Adapted from Ref. [1].

the emergence of new theoretical ideas, even within the centuries-old framework of continuum
elasticity. We conclude our article with a brief discussion and an outlook for future work in this
domain.

2. Schallamach’s experiments and their primary significance
Schallamach’s original observations of detachment waves were made at a rubber–glass interface,
under two complementary geometries—a glass hemisphere slid at constant speed V0 against a
rubber flat and a rubber hemisphere slid against a glass flat. In either case, when the sliding
velocity was low but above a critical value V0 >VC

0 , the interface did not move uniformly at speed
V0, but instead slipped intermittently, see figure 1 reproduced from Schallamach’s paper [1].
Figure 1a,b shows a schematic of the two sliding geometries. The images on the right correspond
to experiments with a glass indenter/rubber flat and were obtained by directly observing the
interface through the transparent glass hemisphere and lit by a backlight source. The view here is
along the normal of the plane flat surface. The contact zone is grey, and the non-contacting zones
appear darker due to the lighting.

These frames show several creases or folds traversing from right to left within the contact
zone. Each crease is a single Schallamach wave and is composed of a local region of detachment
so that it appears dark in the image. The frames clearly show multiple waves within the contact
zone at any time instant. Well-defined individual waves, with larger detachment regions, occur
on the right side of the contact and become increasingly indistinguishable towards the left. The
result is an intermittent motion of the interface—each crease or wave causes a small amount of
slip, and a point on the interface remains stationary until a wave traverses it. This was deduced
by Schallamach as follows:

Dust particles fortuitously caught in the interface were seen to be buffetted by successive waves, and
to remain motionless in the intervals. . . A (single) wave of detachment is a fold in the rubber surface
with presumably large strains around its three curved parts. To propagate the wave, energy must be
supplied to cover the energy losses incurred when this strain configuration travels along the contact.

Strong interface adhesion between the two solids was necessary for waves to occur. Adhesion
hysteresis was identified as a source of energy loss, in addition to that needed for changing the
strain configuration in the vicinity of the propagating wave. Schallamach also noted that the wave
propagation direction w in the schematic of figure 1 is always against the direction of friction force
F on the rubber in either contact configuration (hemisphere or flat). This direction of propagation
has important significance that will be elaborated upon in later sections.
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Figure 2. Schematic comparing standard Hertzian non-adhesive contact (a) and an adhesive contact (b). In the former, the
rubber surface is nearly tangential to the indenter profile. In the latter, it is normal to the surface, due to intermolecular
attraction. Adapted from Ref. [17].

Finally, Schallamach also measured propagation speeds of individual waves, along with their
frequency (number of waves per second within the contact) and found that the latter was nearly
proportional to the imposed V0. Further, the wave speed he measured (∼0.01 m s−1) was much
lesser than typical elastic wave speeds (∼100 m s−1). This is after accounting for the fact that
the wave speed was ‘more difficult to assess’. Therefore, the possibility that these waves of
detachment were associated with any known elastic surface waves appeared remote at first sight.

3. Experimental observations of Schallamach waves
The most common configuration for observing Schallamach waves is the spherical geometry
described in the previous section. We first summarize experimental observations using such a
spherical indenter geometry and use them to explain why Schallamach waves must nucleate in
the first place. This is followed by a description of a more recent configuration presented by
Viswanathan et al. [16] that uses a cylindrical contact geometry to isolate single waves without
intervening edge effects.

(a) Spherical contacts: Why do Schallamach waves nucleate?
Before we discuss the formation of Schallamach waves, it is first important to consider the
mechanics of the spherical contact in some detail. Here and henceforth, we assume that the
indenting object is rigid and the indented object is elastically deformable. The latter is also
assumed to be semi-infinite (half-space) as an idealization. This situation is schematically
demonstrated in figure 2, reproduced from an early review article on Schallamach waves [17].
When a rigid hemisphere of radius R is pressed against an elastic surface with a load P, the latter
deforms, resulting in a contact radius of size a(P). It is well known that the depth of penetration
δ = a2/R depends on the load P via the Hertz contact relations [18]. In addition, the edges of the
contact zone are tangential to the spherical surface (figure 2b).
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Figure 3. Nucleation of a single Schallamach wave within the spherical contact geometry. The elastic polymer is solid at
constant remote velocityV0 to the left and initially remains stationary at the interface (frame 1). Buckling results in a pronounced
bulge on the free surface, with a corresponding surface depression between points A1 and A2 (frame 2). The bulge eventually
grows enough to reattach to the indenter at point B (frame 3). Wrinkles accompanying a nucleating Schallamachwave show an
initial wavelength λ0 (inset, frame 2), which doubles to λ1 � 2λ0 (inset, frame 3) just at the onset of wave propagation. The
inset locations are marked by white dashed lines in the corresponding frames. (online version in colour)

In the presence of interface adhesion, the contact zone is very different [19], see figure 2a.
Notably, the edge of the contact zone is now normal to the spherical indenter and its
geometry resembles that of a crack-tip [20]. This has two important consequences: firstly,
the contact radius a is now larger for the same force P, so that δ is also larger. Secondly,
and more importantly, the surface immediately outside the contact zone is depressed and
surrounded by a region that is raised. This is because rubber is essentially incompressible so
that a compressive strain in one region must be compensated by comparable tensile strain
nearby.

With this background, the reason why a Schallamach wave must nucleate can be clearly stated,
see figure 3, and also Ref. [16]. Here, the indenter is a glass lens, and the elastic substrate is
polydimethylsiloxane (PDMS). Since the indenter and the substrate form an adhesive contact, the
edge of this contact zone forms a crack-like interface, see frame 1 and corresponding side-view
schematic in figure 3. Upon application of a remote V0 to the elastic polymer, the tangential force
T increases monotonically, while adhesion causes the interface to remain stationary. However,
at a critical load, a region immediately ahead of the contact undergoes surface buckling causing
a bulge to form on the surface and a corresponding depression between the points A1 and A2
(frame 2). As T is increased further, the bulge grows and eventually makes contact with the
indenter at a second location B. This detached region between the two contact locations A1 and
B constitutes a nucleated Schallamach wave that then begins to propagate through the interface.
Since V0 is maintained constant, wave propagation is accompanied by a reduction in T and the
entire process repeats again to nucleate another wave. It is therefore clear from this sequence
that each wave is nucleated by a surface buckling instability. The result is intermittent motion
of the interface—commonly termed stick–slip—with some parts remaining stationary and others
(moving wave regions) slipping.

An analogous mechanism was also postulated by Schallamach:
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On applying a steadily increasing tangential stress, sliding begins when the compressive stress in
front of the contact area has become great enough for buckling.

It is evident from these observations that adhesion plays a key role not only in sustaining wave
motion but also in wave nucleation, both by changing the contact geometry (making buckling
more conducive) and by effecting reattachment. The existence of the critical (buckling) load
explains why Schallamach waves are only observed after a threshold velocity VC

0 is crossed.
Note that this type of constant velocity boundary loading has historically been the most common
configuration in friction experiments, as opposed to constant shear stress or force. The reason for
this is that the transition from static to dynamic motion is best observed in this situation [21,22].

Compression-driven buckling has an additional side effect—the occurrence of secondary
features such as wrinkles on the detached surface [23]. A half-space subject to compression
inevitably shows wrinkles, folds and creases at the surface [24–26]. Sample wrinkles are shown
in the insets to frames 2 and 3 of figure 3. The wrinkle pattern that forms first has an inherent
wavelength λ0 that is determined by the depth of the strained surface layer (inset, frame 2).
This wavelength doubles as the tangential load T is increased so that λ1 ∼ 2λ0 (inset, frame 3).
As the detached zone begins to propagate, wrinkles result in imperfect readhesion in its wake.
Consequently, the size of these pockets of imperfect readhesion is nearly equal to the final wrinkle
wavelength λ1.

The buckling-induced mechanism for Schallamach waves is qualitatively similar in most
situations, even in the presence of a lubricant [27]. However, the presence of an interfacial liquid
film changes the nature of the resulting stick–slip process quantitatively [28]. Firstly, the threshold
VC

0 is lowered, perhaps because the increased contact pressure due to fluid penetration inside
the contact enhances the propensity for buckling. Note that this possibility does not occur if the
indenter is rigid (as shown in figure 2) since then the contact remains dry with minimal fluid
ingress. Secondly, at much higher velocities, the picture appears to be fundamentally altered in
liquids such as water–glycerol that can wet and dewet from rubber surfaces [29]. Now sticking
and slipping occur not due to repeated buckling instabilities but due to a wetting-squeezing-
dewetting process. These ‘dewetting waves’ are not the same as Schallamach waves and will not
be considered further in this article. It is therefore safe to conclude that surface buckling is well
established as the underlying cause for the nucleation of Schallamach waves [30–32].

(b) Cylindrical versus spherical geometry
In contrast to the most commonly used spherical contact configuration discussed earlier, a second
cylindrical contact geometry is now considered, see figure 4. This geometry is inspired by the
need for observing Schallamach wave propagation in a nearly planar interface without any edge
effects. A fully flat configuration has its own challenges, especially with respect to aligning the
indenter and the substrate [33]. The use of a large radius cylindrical indenter compensates for this
since, at low load, contact is first initiated along the cylinder axis (line contact) [34].

The contact geometry we describe here is adapted from Ref. [16]. A cylindrical plano-convex
lens (Edmund Optics, radius 16.25 mm, length 25 mm) is used as the indenter and the substrate
is again PDMS (as in figure 3). The PDMS samples were produced by mixing a base (vinyl-
terminated PDMS) with a curing agent (methylhydrosiloxane-dimethylsiloxane copolymer) in
the ratio 10 : 1 by weight. The resulting mixture was cured for 12 hours at 60◦C in the form of
slab-like specimens [16]. The Poisson’s ratio and Young’s modulus of the final samples were 0.46
and 1 MPa, respectively. Constant remote V0 is effected via the same ball-screw mechanism as
mentioned earlier, and the contact is imaged using a high-speed camera (pco Dimax) attached to
a microscope system. Figure 4a presents a typical image obtained by viewing the backlit contact
through the transparent cylindrical indenter. The lighter (darker) regions correspond to interface
contact (detachment) just as mentioned earlier.

In both cases, the polymer sample had dimensions along the x, y, and z axes (figure 4)
of 70 mm × 22 mm × 25 mm, respectively, with the long dimension representing the sliding

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

17
 F

eb
ru

ar
y 

20
23

 



7

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A380:20210339

...............................................................

cylinder lens(a) (b)
LED 

backlight

adhesive
contact

contact
zonepolymer

no contact

high-speed
camera

A
A′

F
N

V0

250 µm

t = 0.0 sremote V0

Figure 4. Experimental schematic showing a typical cylindrical lens in adhesive contact leading to the formation of an
‘adhesive’ channel. (a) A typical configurationwith a backlit source and remote appliedmotion V0. (b) A sample image showing
the contact zone (light grey) and detached zones (dark grey). Note that the red, green and blue arrows represent the x, y and z
axes, respectively. (Online version in colour.)

direction. Before any experiment, the PDMS and lens are brought into contact along the x-axis
and maintained for a fixed time t= 60 s to standardize any possible contact ageing effects. Contact
alignment is also checked during this period by translating the camera/light source along the
x-axis. The PDMS is then slid relative to the lens using the linear stage at constant speeds
V0 = 10 µm s−1 to 20 mm s−1, for a distance of 30 mm. Concurrent with the in situ imaging, sliding
forces were measured using a piezoelectric dynamometer (Kistler).

(c) The solitary Schallamach wave and its opposite moving dual
One of the primary problems with the standard spherical indenter geometry used for studying
Schallamach waves is its inability to isolate single waves, as Schallamach himself noted:

The waves of detachment. . . tend to become thinner and to break up during their travel. . . various
fragments sometimes join so that individual waves gradually lose their identity. This is one of the
reasons why conditions become confused in the rear part of the contact.

This is clearly evident in the frames reproduced in figure 1 (right) and is primarily due to
the nature of the spherical indenter geometry. Despite this shortcoming, Schallamach used the
spherical geometry likely because it was (and perhaps remains!) the most commonly used contact
geometry by the tribology and contact mechanics community and thus has several analytical
solutions [18,35–37].

To isolate single waves and study their propagation dynamics, it is best to use the cylindrical
indenter geometry described in §3b. An ‘adhesive’ channel forms upon contact between the
indenter and the substrate, and the isolated waves can be individually imaged using high-speed
videography as described earlier. Frames from a high-speed sequence showing one such wave are
reproduced in figure 5. Note that in this sequence, the polymer/rubber is moved from left to right
at constant V0 far from the interface. A single Schallamach wave traverses the interface in the same
direction as V0. It is clear that the defining features of the Schallamach wave remain unchanged
from the spherical geometry. Firstly, the wave appears as a dark band within the interface due to
buckling-induced interface detachment and readhesion. Secondly, points on the interface remain
stationary until the wave appears; they then begin to move and are displaced by a fixed amount
�x. Finally, the wave is accompanied by compression wrinkles, just as we observed in the case of
the spherical contact geometry, compared with figure 3.

In light of these single-wave results, it is pertinent to revisit Schallamach’s observations about
‘imperfections’ in the spherical contact itself:
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remote V0

250 µm

t = 3.0 ms t = 7.0 ms t = 11.0 ms

250 µm250 µm

Figure 5. Evolution of a single Schallamach wave under remote applied V0 to the elastic polymer. The wave propagates from
left to right, in the same direction as V0 and causes slip in its wake. The interface is stationary before and after the wave has
passed. This is seen by following the motion of a dirt particle (black line) embedded on the polymer subsurface. The scale bar
and timestamp show that the wavespeed is much lesser than typical elastic wave speeds. Adapted from Ref. [54].

. . . secondary effects occur at times. . . where a relatively large portion of the contact becomes detached
from the main body and suddenly fuses with it again.

This statement refers to the rear end of the contact (taken in the sliding direction). Just as material
at the front end of the contact is subject to compression and surface buckling, the surface just
outside this rear end is subject to tension. One can consequently imagine a local ‘tensile neck’
causing detachment from the indenter surface, followed by readhesion. These are the ‘secondary
effects’ that Schallamach refers to. They have since been backed up by similar observations in
spherical contacts of various dimensions [2,17].

The equivalent of this seemingly innocuous observation in our cylindrical contact geometry of
figure 4 is dramatic. If a tensile neck does indeed form just outside the contact zone, resulting in a
locally detached zone within the interface, it must propagate in the opposite direction in the form
of another, very different, wave of detachment!

One such instance is illustrated by the set of frames taken from a high-speed sequence shown
in figure 6. Here again, the remote sliding direction V0 is from left to right, just as shown in
figure 5. However, a detachment wave is now seen to move in the opposite direction (right to
left), yet causing slip in the same direction as mentioned earlier. The latter fact may be ascertained
by the observation that a fortuitously trapped dirt particle within the contact is translated in
the direction of remote V0, as is to be expected. Furthermore, this wave of detachment is easily
distinguished from the Schallamach wave by a complete absence of compression-induced surface
wrinkles—it is nucleated by a tensile instability after all—resulting in perfect contact in its wake.
This detachment wave has been christened the separation or detachment pulse [34]. For the
purposes of this article, we also refer to this as the dual of the Schallamach wave since it differs
only in that it is tensile and propagates in the opposite direction to the latter.

The compressive versus tensile nature of the Schallamach wave and its dual, the separation
pulse, is sufficient to explain the corresponding propagation direction observed in figures 5
and 6, see Ref. [38]. For wave propagation at constant speed cw along the x-axis, the tangential
displacement ux has the form ux(x − cwt). Hence, the x-derivative of the displacement ∂ux/∂x and
the strain εxx can be written as follows:

εxx = ∂ux
∂x

= −c−1
w

∂ux
∂t

� −c−1
w

�x
T

, (3.1)

where �x is the slip per wave and T is duration of propagation. Since the sign of �x is the same as
V0, the strain εxx is negative (compressive) if the wave propagates in the same direction as V0 and
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remote V0

250 µm

t = 0.92 s t = 1.72 s t = 2.92 s

250 µm250 µm

Figure 6. Propagation of the dual of the Schallamach wave or the separation pulse. Remote sliding V0 occurs in the same
direction as mentioned earlier, but the detachment wave moves in the opposite direction. Despite this, slip occurs in the same
direction as the applied V0. Note that, just as with the Schallamach wave, this separation pulse also propagates at speeds much
lesser than elastic wave speeds. Adapted from Ref. [54].

is positive (tensile) if it propagates in the opposite direction. Therefore, for the case of Schallamach
waves, εxx < 0, and for separation pulses, εxx > 0, as is evident from the frames in figures 5 and 6.

(d) Interface dynamics from space–time diagrams
More quantitative information about interface dynamics accompanying wave motion is obtained
by means of space–time diagrams, which are commonly used in wave propagation studies to
obtain spatio-temporal information [39]. A space–time diagram is constructed by stacking a fixed
horizontal line in the image sequence as a function of time. Three such fixed lines, denoted
P1,P2,P3, and their corresponding space–time diagrams are presented in figure 7 for Schallamach
(top row) and separation waves (bottom row). In each case, the wave itself appears as a dark
diagonal band with a constant inclination angle (red dashed line). Based on these diagrams, we
can assert that both the Schallamach wave and its dual propagate at a constant speed through
the interface. The former is in the range cw ∼ 100–300 mm s−1, corresponding to a sliding velocity
V0 = 50–250µm s−1, and the latter is in the range ∼10 mm s−1 with V0 = 10–50µm s−1. Clearly,
cw �V0 in both cases, yet is much less than any elastic wave speed for the elastic material
(∼100 m s−1).

The differences between the two waves is easily seen in the sign of the slope in these diagrams.
The negative (positive) slope is due to the corresponding wave moving in the same (opposite)
direction as applied V0. In addition, the interface slip �x is also self-evident: for Schallamach
waves, this can be obtained by tracking the dark patch (top panel) in frame P1 of the space–time
diagram. The patch has slipped by a constant finite distance (between white dashed lines) due to
wave motion. Conversely, a dirt particle just below the surface may be tracked for the separation
pulse (frame P3, bottom row), which shows the resulting slip due to wave passage (again between
white dashed lines).

(e) Wave motion leading to stick–slip friction
Since the experiments described so far have been performed with a constant remote velocity
boundary condition, it is instructive to look at the corresponding time-dependent tangential force.
Forces for the Schallamach wave and the separation pulse are shown in figure 8a,b, respectively.
Time on the horizontal axis is non-dimensionalized by a characteristic sliding time t0 = L/V0,
with L being the length of the contact. Force on the vertical axis is non-dimensionalized by the
product of shear modulus G and nominal contact area A. It is clear at once that both force traces
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Figure 7. Space–time diagrams showing propagation of a Schallamachwave (a) and its dual (separation pulse (b)). The image
on the left shows locations of the horizontal lines P1, P2, P3, with corresponding space–time diagrams to the right in each
row. The wave appears as a dark band in all three diagrams with a constant slope (red dashed line) equal to the wave speed.
Interface slip distance, as indicated by the trajectory of the black line marker, is as shown between parallel white dashed lines.
Analogously, the separation pulse appears as a dark band in all three diagrams (bottom row) with constant slope (red dashed
line) equal to the wave speed. Interface slip distance, as indicated by a moving dirt particle near the interface, is marked by
parallel white dashed lines. (Online version in colour.)

can be termed as characterizing ‘stick–slip’ motion at the interface. At the start of sliding, both
traces increase from zero to a maximum value at which wave nucleation occurs. Ensuing wave
propagation triggers a sharp reduction in the tangential force. Once a single wave has traversed
the length of the contact, the process repeats; the attendant interface motion is thus intermittent,
mediated only by the propagation of single Schallamach waves or separation pulses. On the
contrary, the two traces have very different quantitative features, such as the frequency and
reduction magnitude per cycle, see figure 8.

It is indeed surprising that the tensile dual of the Schallamach wave had not been reported
for a very long time, even though signs of their nucleation were noted very early on by
both Schallamach and Barquins. In fact, tensile separation pulses have even been incorrectly
reported as Schallamach waves in the geophysics community [33]. The likely cause for this
is the widespread use of the spherical indenter geometry, which obscures observations of
single/solitary wave motion.

Together, these two waves are mechanically the only possibilities for moving detachment
waves at soft elastic interfaces characterized by adhesion. If the need for physical detachment
of the interface is relaxed, one other wave is also commonly observed—the so-called slip pulse
[40,41]. This peculiar wave is also nucleated in compression, so that by equation (3.1), it travels
in the same direction as a Schallamach wave but looks nothing like it. Given the absence of any
detachment, the existence of the slip pulse can only be ascertained using photoelastic techniques
to directly measure the interface shear stress [14,38].

Taken together, these three waves—the Schallamach wave, its dual the separation pulse and
the slip pulse—appear to be the sole mediators of stick–slip motion in low-velocity sliding. The
domains of occurrence of each of these waves in the V0 − a plane is shown in figure 9. The control
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Figure 8. Forces accompanying the propagation of a sequence of Schallamach waves (a) and separation pulses (b). Both
traces show oscillations and are therefore characteristic of what might be termed ‘stick–slip’ motion. Wave nucleation occurs
at the peak in each oscillation cycle, followed by a force reduction during propagation. The magnitude of the reduction as
well as the wave nucleation frequency differ between the Schallamach wave (left) and its dual (right). Note that force is non-
dimensionalized by the product of shearmodulus G times contact area A and time is non-dimensionalized by t0 = L/V0, where
L is the contact length and V0 is the sliding velocity as mentioned earlier. (Online version in colour.)
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Figure 9. A two-parameter phase diagram showing domains of occurrence of the three Schallamach-type waves discussed in
the article. Schallamach waves occur above a critical sliding velocity, and separation pulses occur at a low V0 and normal loads
while detachment-less slip pulses mediate motion at large normal loads. (Online version in colour.)

parameters in this ‘phase diagram’ are V0 and the normal load (equivalently contact width a).
At low V0 and a, stick–slip occurs via the propagation of separation pulses, while beyond a
certain velocity threshold VC

0 (vertical dashed line), Schallamach waves predominate. The likely
reason for this is the ease with which the corresponding nucleation events can occur. On the
contrary, with larger normal loads/contact widths above a threshold aC, both tensile detachment
and compressive buckling become infeasible so that the slip pulse is the primary cause for stick–
slip. It now appears fairly certain that these three waves are the sole mediators of low-velocity
stick–slip in deformable adhesive interfaces.

(f) Similarities with elastic dislocations: Burgers vector and defect pinning
At this junction, it is instructive to take a step back and reconsider the basic defining feature of
a Schallamach-type wave, viz. that it propagates through the interface at a constant speed and
causes slip in its wake. Based on this minimal description alone, one would be hard pressed to

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

17
 F

eb
ru

ar
y 

20
23

 



12

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A380:20210339

...............................................................

time (ms)

sl
ip

 (µ
m

)

fr
eq

. (
H

z)

0
0

50

100

150

200

250

300

10

0

0 10
5
8
10
13

V0 (mm s–1)

V0 (mm s–1)

20

25 50 75 100 125 150

Figure 10. Analogies between solitary Schallamach-type waves and crystal dislocations. Time-dependent displacement curve
as recorded at a single-point location on the interface. This curve shows that the point remains stationary until a wave
approaches (∼13 ms), followingwhich slip occurs and reaches amaximumvalue∼250µm.This is identicalwithwhat happens
with a gliding crystal dislocation so that the effective slip may be identified with themagnitude of the Burgers vector. The inset
shows the frequency of wave generation plotted against V0, and the proportionality is again reminiscent of the plastic strain
rate relation due to dislocation motion. (Online version in colour.)

exclude crystal lattice dislocations from this set as well. Dislocations are also similarly nucleated,
propagate at finite speed and cause (plastic) slip in their wake.

For concreteness, consider the solitary Schallamach wave introduced in §3c. Three distinct
velocity scales are evident—the imposed (remote) sliding velocity V0, the local material velocity
�vp due to the wave and the velocity cw of propagation of the wave itself. Directions of V0 and
cw are fixed by the external loading. While cw is constant as the wave propagates through the
interface (see figure 7), the local material velocity �vp varies with time from zero (as the wave
approaches), to a maximum value and finally back to zero (as the wave departs). For example, for
the data in figure 7, instantaneous �vp is determined by the slope of the dirt particle curve at that
time and cw is the slope of the band (constant) and both are indeed distinct from V0.

Based on data such as that shown in figure 7, the relative displacement of material points on
the surface can be plotted as a function of time, see figure 10. This plot shows the displacement
of a single point under different remote V0 due to the propagation of a single Schallamach wave
at some corresponding speed cw. Three features are immediately obvious from these data: firstly,
that the surface is displaced in the form of a unit step displacement �b. We had earlier denoted this
slip distance as �x= |�b| that occurs in the direction of V0. Secondly, |�b| is independent of both
V0 and cw since curves for a range of values result in similar surface slip. This is understandable
within the buckling framework discussed in §3—the buckling threshold is independent of V0.
Finally, since the interface moves only via such slip events, the remote V0 has to be accommodated
by waves with a frequency n such that:

V0 = n|�b|. (3.2)

The constancy of |�b| in this equation implies that n∝V0. This is indeed the case, as supported
by the data presented in the inset graph to figure 10. With V0 ranging from 10−1 to 20 mm s−1, a
linear dependence between the wave generation frequency n and V0 is clearly established.

The situation summarized in figure 10 also applies equally well to the motion of dislocations
(via slip) on a crystal plane [42]. In this case, the displacement magnitude is given by the
dislocation Burgers vector (hence the notation �b above) and corresponds to the jump in figure 10.
One can hence define this as the ‘Burgers vector’ of a Schallamach wave. It is determined, for a
given contact geometry, by the substrate material properties—for the experimental configuration
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200 µm

A

B

C

Figure 11. Interaction between a solitary Schallamach wave and a large dirt particle A on the interface. The wave approaches
the particle and is bowed by it (at B), following which a residual detachment region is left behind (C) around the dirt particle.
This outcome is also analogous to that observed during dislocation-point defect interaction. Adapted from Ref. [16].

in §3, the mean |�b| = 255µm. In addition, equation (3.2) appears analogous to the Taylor–Orowan
equation for plastic strain rate due to dislocation motion.

The analogy with dislocations is further strengthened by an interesting phenomenon observed
during propagation of Schallamach waves past stationary dirt particles attached to the indenter,
see figure 11. Here, the wavefront approaches a static dirt particle A in the contact region and
gets ‘pinned’, causing a bend in the wave profile (point B). As the front moves away from the
particle, the wave regains its original profile, leaving a residual air pocket C around the particle.
This ‘bowing’ effect also occurs when dislocations move past static obstacles (e.g. solute particles),
leaving behind Orowan loops [42]. Under dilute solute particle concentration, the bent dislocation
line eventually relaxes and regains its shape.

4. How can we describe Schallamach-type waves?
We now turn our attention to continuum descriptions of Schallamach-type waves that occur at
the interface between two contacting solids. Unlike in fluids, waves at solid surfaces/interfaces
can occur in various forms/guises depending on the nature of the boundary conditions [43].
A primer for the propagation of surface waves in elastic media is presented in Appendix A. In this
section, we explore the predictions of an elastodynamic formulation for Schallamach-type wave
propagation.

(a) Mixed boundary value problem for Schallamach-type waves
In addition to the simple boundary conditions discussed in Appendix A, interface waves
often propagate under more complex, often mixed, boundary conditions. The occurrence of net
interface slip due to a wave further complicates this situation. Slip-less detachment waves were
analysed by Comninou and Dundurs and found to propagate with a range of velocities, all
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comparable with the Rayleigh wave speed [44,45]. Conversely, detachment-free frictional waves
have also been analysed using Coulomb friction boundary conditions. However, these are marred
by inconsistencies in enforcing the static to dynamic transition, so that a physically valid solution
does not presently exist for any combination of materials [46–48]. In addition, the biggest common
shortcoming of all these solutions is that they cannot account for interface slip in the wake of the
wave.

It is thus clear that none of these solutions can describe the primary features of Schallamach-
type waves—slow propagation velocity and net interface slip—with or without interface
detachment. The first feature, that the wave velocity cw 	 cT, cL, suggests the existence of another
velocity scale, likely due to a velocity-dependent friction law [21,22,49,50] and/or some type
of regularization [51,52]. Yet, introducing a velocity scale via a suitable interface friction law is
non-trivial. While this is possible with rather simplistic one-dimensional models [53], a general
description for moving detachment waves with adhesion has hitherto remained elusive.

A recently established elastodynamic framework for describing Schallamach-type detachment
waves has, however, shown significant promise [38]. We present a two-dimensional version of
the quasi three-dimensional framework presented in this work, and the sequence of algebraic
steps described may be reconstructed by taking recourse to Ref. [38]. Consider the elastic
material occupying the half-space z≤ 0. To mimic the physical conditions accompanying wave
propagation, this framework uses a mixed boundary condition formulation involving stationary
and detached zones on the contact interface z= 0. For a wave moving along the positive x-axis
with velocity cw, one can use co-moving coordinates η = k(x − cwt) to make the wave appear
stationary. The wave number k is related to both the wave width 2α and the parameters V0
(sliding speed), cw [38]. Assuming deformation to be restricted to the xz-plane, the relevant mixed
boundary conditions are as follows:

Detachment zone |η| < α

{
σzz = σzx = 0

u̇x(η), u̇z(η) 
= 0
(4.1)

and

Stationary/stick zone α < |η| < π

{
σzz(η), σzx(η) 
= 0

u̇x = u̇z = 0
, (4.2)

where σxz, σzz and u̇x, u̇z are the interface stresses and velocities, respectively. The unknowns here
are the stresses σxx, σxz in the sticking zone and the velocities u̇x, u̇z in the detached zone. To
obtain expressions for these unknowns, we begin with a commonly used ansatz for surface wave
solutions in the form of a dual series representation, see, for example, Ref. [44]. The boundary
conditions in equation (4.1) are then used to obtain coupled singular integral equations for the
interface velocities u̇x, u̇z using the procedure discussed in Ref. [38]. To address the slow velocity
scale issue, one exploits the fact that cw 	 cT, cL (elastic wave speeds) to perform a perturbation
expansion in powers of cw/cL and cw/cT. The result is that both Schallamach waves and the
oppositely moving separation pulse can be described within the same elastic framework. In the
limit ν → 0.5 (as with incompressible rubbers), u̇x(η), u̇z(η) can be shown to obey the following
singular integral equations:

τr

G
+ 2

π

[
sec2

(η

2

) ∫α

−α

u̇x(η′) cot
(

η − η′

2

)
dη′ + π tan(η/2)V0

cw

]
= 0 (4.3)

and
σr

G
+ 2

π

[
sec2

(η

2

) ∫α

−α

u̇z(η′) cot
(

η − η′

2

)
dη′

]
= 0, (4.4)

where σr, τr are the remote normal and shear stresses, G is the material’s shear modulus and
η = k(x − cwt) as described earlier.

Unlike most other analytical treatments of stick–slip waves, the boundary conditions equation
(4.1) and final integral equations (equation 4.3) imply that a description of Schallamach-type
waves does not need either an explicit friction law (e.g. Coulomb or rate/state) or a velocity
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scale. Further, since the boundary conditions in equation (4.1) are written in terms of velocities,
interface slip can be enforced by suitably setting the integration constant in the expressions for
the final displacements.

The unknowns in equation (4.3) can be obtained by inverting the singular integral equations,
resulting in expressions for the interface velocities and, upon integration, the displacements [38].
Of particular interest are the interface stresses, which can also be expressed in closed form using
expressions for the displacements and Hooke’s law:

σ

σr
= | tan(η/2)|

sin(α/2)
1√

tan2(η/2) − 1
(4.5)

and

τ

τr
= | tan(η/2)|

sin(α/2)
1√

tan2(η/2) − 1

−
(

V0

cw tan(α/2)

) (
2G
τr

) | tan(η/2)|
tan(η/2)

1√
tan2(η/2) − 1

(4.6)

and apply to both the Schallamach wave and its dual, by suitable change in the sign of the ratio
cw/V0.

The three main predictions of this theoretical treatment are as follows: firstly, equations 4.5 and
4.6 determine interface stresses accompanying both the Schallamach wave and its dual. In fact,
equation (4.5) shows a singularity near the detachment zone edge η → ±α, implying that some
adhesion mechanism is operative here [19]. This is noteworthy since the entire problem, from
the boundary conditions to the final integral equations, did not specify an adhesion law a priori.
Adhesion is hence a necessary condition for such wave propagation. Secondly, wave motion can
occur over a range of speeds cw/V0 as opposed to a single, characteristic speed. This shows that
slow-moving Schallamach-type waves can be described without having to introduce an explicit
velocity scale.

Finally, both stress components in equations (4.5) and (4.6) show square-root singular
behaviour near the detachment zone edges η → ±α. The normal stress component yields a stress
intensity factor that may be readily related to the work of adhesion. Conversely, the tangential
stress results in a (mode II-type) stress intensity factor for wave propagation:

Kw ∼
(

τr + 4G
π

)√
x (4.7)

in an appropriate singular limit. Here, x is the distance from the tip of the detachment zone as
measured within the stationary/stick zone. A more general method for computing stress intensity
factors such as equation (4.7) for the case ν 
= 0.5, where closed-form solutions are generally not
obtainable, is presented in Ref. [54]. The consequences of equation (4.7) are discussed further in
the next section.

(b) Predicting the onset of stick–slip
The occurrence of a stress singularity ahead of the detachment zone, equation (4.7), represents a
necessary condition for effecting wave motion. For a sufficient condition, reattachment of the
detached interface must be considered in more detail. However, for the present, we contrast
equation (4.7) with the analogous case of transition from static-to-dynamic friction outlined
recently [55]. According to this work, dynamic sliding occurs when

Kw ∼ τr
√
x (4.8)

reaches a critical value depending on the nature of the contact. The notation here is the same
as that in equation (4.7). While there has been much debate about the nature of shear cracks
in general adhesive contacts (see, for instance, Ref. [56] and references therein), we nonetheless
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Figure 12. QualitativephasediagramcomparingSchallamach-typedetachmentwaveswith shear cracks topredictwhen stick–
slip should occur at the expense of steady sliding. The lower (orange, d-wave) curve represents the equivalent stress intensity
factor for amoving detachmentwave (ν = 0.5), while the upper (blue) curve is for an equivalent shear crack of the same initial
extent. The shaded regions are labelled based on which phenomenon, stick–slip or steady sliding/crack growth, is expected to
occur. Adapted from Ref. [54]. (Online version in colour.)

explore the consequences of equation (4.7) by comparing it with equation (4.8), since the former
naturally emerges as the solution of a rigorous boundary value problem.

Based on these two equations, a phase diagram may be developed showing when stick–slip
motion via detachment waves (equation 4.7, lower, orange curve) should occur at the expense
of uniform sliding (equation 4.8, upper, blue curve), see figure 12. The dashed curve denotes a
limiting remote stress τ∗

r beyond which wave propagation does not occur. Likewise, �xC is the
critical detachment zone size below which wave propagation is not feasible.

The diagram is applicable to any material pair capable of forming adhesive contact (with
one material significantly stiffer than the other) and must be interpreted as follows. Consider
an adhesive interface that is loaded at constant remote V0 as described in §3. If a detachment
zone of size �x> �xc is nucleated, the total shear stress increases continuously since the interface
remains stationary. When it crosses the lower (orange) curve, the necessary condition for wave
motion is satisfied; however, the interface still remains stationary so that sliding does not yet
start. When remote τr then crosses the upper (blue) curve at the corresponding �x value, a
crack begins to propagate at which point the entire interface can slip, or, if readhesion occurs,
a single detachment wave propagates through the interface. If the latter possibility, the shear
stress can reduce significantly to any point within the orange (angle dashed) region for continued
propagation. The fact that wave motion occurs at constant speed cw implies that the shear stress
settles at a fixed value within this zone very soon after nucleation.

Conversely, if interface adhesion is not strong enough to effect reattachment, a single rupture
will likely propagate through the interface and cause in the manner discussed in Ref. [55]. Hence,
depending on the strength of adhesive interaction at the interface, either possibility—stick–slip
or steady sliding—can occur within the blue (cross-hatched) zone. Once we cross the wave
propagation threshold τ∗

r , detachment waves are no longer possible so that only steady sliding
results. The critical value �xc is likewise determined by the intersection between the threshold
line and the upper blue curve—below this nucleation width, wave propagation is no longer
feasible.

(c) Exploiting the dislocation analogy
An alternative theoretical development to the one discussed so far in this section is to exploit
the dislocation analogy presented in §3f. This can be used, for instance, to compute the shear
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force necessary for Schallamach wave propagation to occur using force expressions for elastic
dislocations [42]. The shear force Fs required to move the wave must be balanced by the adhesion
hysteresis in detachment and reattachment at the interface. By using this balance principle, we
obtain the relevant critical shear force as follows:

Fcs = aLc�W

|�b|
(4.9)

where �W is the adhesion hysteresis and Lc and a are the contact length and width, respectively.
Using |�b| = 255µm, 2a= 1 mm, Lc = 2.5 cm for the data presented in §3, and �W � 10 mJ m−2 for
PDMS [57], Fcs is estimated to be 0.5 mN. This is the minimum force needed to propagate a single
wave through the contact region. The wave pulse can thus travel through the interface at a much
lower stress than that needed for nucleation, Fc � 1.6 N for the data in figure 8. This explains
the steep tangential force reduction after wave propagation begins—as the interface relaxes, the
tangential force continues to decrease until it either equals Fcs or the wave exits the contact region.

Note that as mentioned earlier, we have explicitly discussed a solitary Schallamach wave, but
these considerations nonetheless apply to other Schallamach-type waves as well.

5. Discussion
Having presented both experimental and theoretical results on Schallamach waves and their
properties, we now discuss several potential extensions and some unexpected implications of
these findings.

(a) Noteworthy siblings of the Schallamach wave
We have so far studied the underlying causes for nucleation—tensile necking, compressive
buckling and compression-induced slip—of Schallamach-type waves. Given the generality of
these mechanisms, one would not be hard pressed to expect similar waves at any deformable
adhesive interface. One such example that has received some attention in the past is composite
interfaces [15,58]. Here, adhesion is externally induced (via a thin binder layer), and relative
deformation between adjacent layers of the composite can nucleate Schallamach-type waves at
the interface. Consequently, the intriguing possibility of these interfaces being toughened by such
wave propagation events has been discussed extensively [59,60].

In this context, we draw attention to three analogous waves in the world of soft-bodied
locomotion [9–11,61]. These organisms do not possess specialized limbs for effecting motion, so
must rely on elastic deformations of their entire body structures to locomote [62]. They do so by
propagating Schallamach-type waves along the length of the zone of contact between their body
and the ground.

Direct waves—analogous to slip pulses—are compressive and used by some polychaete
worms (e.g. Arenicola) to effect motion within distinct ‘slip’ segments propagating from the tail
to the head [63]. The equivalent of the separation or detachment pulse is the retrograde wave,
which occurs in some Nemertines such as Rhynchodemus. Here, a local tensile detachment zone
is formed and propagates from the organism’s head to its posterior end. Finally, the equivalent
of the Schallamach wave is looping locomotion, seen in some Planaria. Here, a detachment loop
is formed at the rear end due to elastic buckling of body segments; the loop is then propagated
towards the head, effecting slip as it moves [61].

The fact that these mechanical equivalents in biology are the only three waves that have
hitherto been recorded in the context of locomotion begs the question of whether the three
Schallamach-type waves are the only ones capable of mediating stick–slip motion at interfaces.
The answer, as discussed in figure 9 earlier, appears to be in the affirmative, at least for low V0
and normal loads. It is noteworthy that these biological analogues have also been considered as
conceptual models, by one of the originators of the dislocation concept, Egon Orowan, to explain
glide motion in metallic crystals [64].

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

17
 F

eb
ru

ar
y 

20
23

 



18

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A380:20210339

...............................................................

(b) Viscoelastic and nonlinear effects on wave propagation
Viscoelastic effects can have a significant influence on surface wave motion, yet incorporating
them within the elastic framework of §4a remains quite challenging. In fact, even the elementary
case of Rayleigh waves becomes remarkably complicated by the introduction of the simplest of
linear viscoelastic constitutive relations [65]. Waves corresponding to other more complicated
boundary conditions appear to be hopelessly intractable at present, barring a couple of grossly
simplified examples [41,46,53]. This problem does warrant attention, given its importance
from an experimental point of view—Schallamach wave properties are influenced by the
materials’ loss and storage moduli [31,66] as well as other rate-dependent properties [67,68].
Consequently, rubber friction does obey the Williams–Landel–Ferry relation typically associated
with viscoelastic materials [69].

(c) Other nanoscale models for Schallamach-type waves
While interface dynamics accompanying Schallamach waves is certainly describable at the
continuum scale as discussed in §4, a number of interesting phenomena arise when a general
microscopic picture of interface friction is considered. Such a description for polymers was,
unsurprisingly, put forth by Schallamach himself in a lesser known paper from 1963 [70]. This
article focused on the dynamics of individual bonds at the interface and did not consider
collective effects between several bonds at once. The latter is the subject of a well-known model
propounded by Prandtl and Tomlinson in the late 1920s [71,72].

Subsequently, several microscopic models have emerged, each treating bonds between the
sliding bodies at the interface in a statistical manner. For instance, the simplest model consists
of a network of horizontal and vertical springs that interconnect a set of rigid sliders driven by an
external force. Models such as these show travelling solitary wave solutions that, at first glance,
are remarkably reminiscent of Schallamach-type waves [73]. However, a closer look reveals that
they do not explicitly account for large interface detachment, nor do they result in interface
slip. Yet, these models have found much favour within the community, likely because they
are more easily amenable to incorporating viscous damping/dissipation effects and that their
reduced dimensionality (most are quasi one-dimensional) allows easier multi-scale analyses and
numerical solution [74]. Complexity in this approach may be introduced by altering the nature of
the springs (thereby the interaction) between the rigid sliders to more closely represent molecular
interactions [75,76]. Unfortunately, just as with the continuum models of §4, this often comes at
the expense of tractability. Evaluating the consequences of these models constitutes an active area
of research.

The generality of this microscopic approach reveals a fundamental kinship between the
Prandtl–Tomlinson approach and two other famous discrete models—the Frenkel–Kontorova
(FK) and Burridge–Knopoff (BK) models—that have their origins in crystal physics and tectonic
fault dynamics [12,77]. Unlike the continuum elastic theories described in §4, statistical models
of the FK/BK type are inherently nonlinear. They consequently show very rich dynamics, such
as travelling topological defects (kinks), localized breathers and even discrete effects [13,78,79].
Whether these solutions share similarities with Schallamach-type waves will only be revealed by
additional experiments. We believe that the solitary Schallamach wave will play a key role in this
regard.

The microscopic approach described in this section certainly has its merits, in that it can be
applied to systems as diverse as tectonic faults and crystal lattices. Coupled with the experimental
observations and the continuum-scale descriptions discussed in the previous section, interesting
analogies between Schallamach-type waves and other travelling wave phenomena in these
diverse systems begin to emerge.

Likewise, the addition of nonlinearity—both material and geometric—to the governing
equations results in the emergence of novel wave properties [39]. When the governing wave
equations are dispersive and nonlinear, the possibility of the two effects exactly balancing results
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in the propagation of special particle-like waves called solitons [80]. In addition to the linear
elastic waves discussed earlier, solitons can also retain their shape while propagating over long
distances. However, the importance of nonlinear effects has not yet been firmly established and
warrants additional detailed experiments.

(d) Exploiting the fracture and dislocation analogies for Schallamach waves
The wave–dislocation analogy raises the intriguing possibility of using Schallamach-type waves
as a model to study dynamic dislocation behaviour. For instance, one can contrive the use
of interacting Schallamach waves to study time-dependent nanoscale phenomena such as
dislocation coalescence. The existence of opposite moving detachment waves can then be used
to ‘simulate’ pairs of like and unlike dislocations. Currently, questions such as these have only
been treated using energetics [81] or large-scale molecular dynamics simulations with significant
experimental uncertainty.

Just as with the dislocation picture, the close fracture correspondence presented in §4b
affords the possibility of using Schallamach-type waves to study fracture problems and the
transition from stick–slip to steady sliding. For instance, how do moving rupture fronts interact
with crack pairs? One can also envisage the mechanical/frictional equivalent of the well-
known Rice–Thomson model of dislocation emission from crack tips [82]. If a moving rupture
front delineating stationary and slipped zones propagates through the interface, can it become
diffuse by interacting with a Schallamach wave? How does this behaviour change between the
Schallamach wave and its dual? Finally, the length scale �xc introduced in figure 12 places bounds
on the smallest Schallamach-type waves that may be observed in any system. For elastomers, we
find that �xc ∼ 100 nm, which raises the question of whether nanoscale Schallamach waves can
exist in any system. If so, detailed observations of their propagation properties could help explain
stick–slip phenomena in a much wider variety of systems.

We believe that these fascinating questions can significantly enhance our understanding of
nanoscale phenomena using insights from seemingly unrelated Schallamach-type waves. We end
by quoting Schallach once more [1]:

The discussion of our experimental observations has been mostly conjecture, but may nevertheless
suggest new approaches to the study of rubber friction.

Little did Schallamach expect that his insights have helped open doors to linking several
disparate fields together. We have every reason to believe that the legacy of Schallamach’s
discovery will endure for another 50 years.

6. Summary and future outlook
As we said at the beginning of this article, Schallamach’s humble question has opened far-
reaching links between rubber friction and phenomena in domains as diverse as biological
locomotion, nanoscale mechanics and interface fracture. Let us first attempt a summary of the
salient features. We have seen how Schallamach waves nucleate due to a surface buckling
instability, and how they subsequently propagate through the interface at speeds much lower
than any elastic wave speed. Schallamach’s observations, followed by several others, were all
made using a spherical indenter geometry. Changing from this geometry to a cylindrical one has
allowed the isolation of single or solitary Schallamach waves. Not only do these waves offer
a clear quantitative picture of propagation dynamics, they also reveal remarkable similarities
with propagating waves in other systems, e.g. biological locomotion. A second major advantage
of the cylindrical geometry is that it enables observation of another slow-moving detachment
wave—the separation pulse or the dual of the Schallamach wave. Together, the Schallamach
wave and its dual represent the only two possible mechanisms for waves of detachment at
soft adhesive interfaces. A final detachment-less wave is also observed—the slip pulse—which
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completed our trio of Schallamach-type waves. We noted that there are exact analogues of
these Schallamach-type waves in biological locomotion. On the basis of the two key features
of Schallamach-type waves, viz. that they move at slow speed and result in constant slip in
their wake, we explored possible continuum theories for explaining their propagation. The
failure of conventional elastodynamic models to explain both key features was remedied—for
the Schallamach wave and its dual at least—by the use of a model-free mixed boundary value
problem framework. This approach has helped bridge the gap between theory and experiment,
but left several questions unanswered. Primarily among these is the role of viscoelasticity—that
appears to completely obliterate any signs of a closed-form solution. There remains much to be
done here to explain the role of key phenomena such as the observed Williams–Landel–Ferry
relationship in rubber friction as well as the origin of contact relaxation effects.

Moving onto smaller scales, we deliberated on the rather intimate link between
friction phenomena in general and nanoscale mechanics. Two noteworthy examples are the
correspondence between Schallamach-type waves and interface crack pairs, and the dislocation
analogy. This then raises the natural question of whether Schallamach-type waves can be used to
study the dynamics of nanoscale mechanics and fracture phenomena. It is presently a standard
practice to treat these problems using energetics, so that even rudimentary understanding of their
time dependence has remained elusive. Little did Schallamach know that the waves that are now
named after him could be the bridge that connects such diverse areas. There is much yet to be
unearthed in this matter, and we hope that a reader of this article will fire the first shots.
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Appendix A. A primer on elastic surface waves
The dynamic behaviour of isotropic linear elastic materials is determined by two characteristic
material velocities—the shear cT and longitudinal cL wave speeds. The displacement field �u in an
elastic body is determined as a suitable linear combination of an irrotational component �uL and
an incompressible component �uT, each obeying a linear wave equation [43]

∂�uL
∂t2

= c2
L∇2�uL ∇ × �uL = 0

and
∂�uT
∂t2

= c2
T∇2�uT ∇ · �uT = 0

⎫⎪⎪⎬
⎪⎪⎭ (A 1)

These equations must be electronic supplementary material, supplemented by boundary
conditions (BCs) and initial conditions pertinent to the particular physical problem. The BCs
could include specification of either the stresses/displacements or both on part of or the entire
surface of the elastic body. Unlike surface waves, longitudinal and transverse waves described by
�uL, �uT travel in the bulk of the material (infinite space). Notably, �uL, �uT waves are non-dispersive—
their propagation speed does not depend on the wavelength. Specifically, linear, non-dispersive
waves can propagate without changing their shape whatsoever [39]. Partial differential equations
such as equation (A 1) govern only wave propagation and say nothing about how or why they
must nucleate in the first place. For the elastic polymer in the experiments of §3, the wave speeds
cL, cT ∼ 100 m s−1.
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The waves that can then propagate at or near an interface or free surface are determined
by specific boundary conditions. The simplest surface wave is the Rayleigh wave and it occurs
on a stress-free surface of an elastic solid [84]. Consider a semi-infinite elastic solid z≤ 0 with
the z= 0 plane as its bounding surface. These waves are exponentially damped into the solid
z< 0 and propagate on the surface z= 0 at a fixed velocity cR < cT < cL, that is determined by
the material’s Poisson’s ratio. Rayleigh waves are well-known free surface waves that usually
accompany earthquakes; they arrive after the first acoustic signals (since cR < cT, cL) and are
non-dispersive.

By contrast, when two elastic materials are brought into contact, a Rayleigh wave cannot
propagate at the interface, because the surface is no longer stress-free. On the contrary, if the two
solids have continuous displacements and stresses at the interface (so-called ‘welded contact’), a
Stoneley wave can propagate instead [85]. The existence of Stoneley waves is tied to the elastic
properties of the two contacting materials. However, when they do exist, these waves propagate
at a fixed velocity, which is a function of the two sets of elastic properties. Just like Rayleigh waves,
Stoneley waves are also non-dispersive.

If the ‘welded’ contact described above is replaced by a frictionless contact (σxz = σyz = 0),
then an Achenbach–Epstein (AE) wave or generalized Rayleigh wave can propagate instead of
Stoneley waves [86]. The requisite boundary conditions now involve continuous displacements
across the interface, equal normal forces and zero tangential forces on both bodies. The existence
of AE waves at an interface between two solids depends on the elastic properties of the two
materials. Like both Rayleigh and Stoneley waves, AE waves also propagate at a fixed velocity,
dependent on the two sets of material elastic properties, and are non-dispersive.
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