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Abstract We prove that every finite family of convex sets in the plane satisfying the
(4,3)-property can be pierced by 9 points. This improves the bound of 13 proved by
Gyarfés, Kleitman, and T6th in 2001.

1 Introduction

For positive integers p > ¢, a family of sets ¢ is said to satisfy the (p,q)-property if
for every p sets, some ¢ have a point in common. We say that € can be pierced by
m points if there exists a set of size at most m intersecting every element in €. The
piercing number 7(%’) of € is the minimum m so that ¢ can be pierced by m points.

In 1957 Hadwiger and Debrunner [2] conjectured that for every given positive
integers p > g > d, there exists a (smallest) constant HD,(p,q) such that every fi-
nite family € of convex sets in RY satisfying the (p,q)-property has 7(%’) < c. This
conjecture was proved by Alon and Kleitman in 1992 [1].

In general, the bounds on HD,(p,q) given by Alon and Kleitman’s proof are far
from optimal. The first case where HD,(p,q) is not known is when d =2, p =4, and
q = 3. In this case, the bound in HD,(p,q) given by the Alon-Kleitman proof is 343,
while there is no known example of a family of convex sets in the plane that satisfy
the (4,3)-property and cannot be pierced by 3 points. We note that improvements on
general upper bounds on HD,(p,q) were made in [4].

In 2001, Gyarfas, Kleitman, and Téth [5] proved that HD,(4,3) < 13, and since
then this bound has seen no improvement. In this paper we prove that HD,(4,3) <9:

Theorem 1 If % is a finite family of convex sets in R? such that for any 4 sets, 3 have
a point in common, then T(€) < 9.
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The main tools in the proof are the following two theorems, and a geometrical anal-
ysis.

Let A"~! ¢ R” denote the n — 1-dimensional simplex with vertex set ey,...,e,.
The following version of the KKM was proven in [?].

Theorem 2 Let Ay, ..., A, be open sets such that for every face  C{1,...,n}, UjA; D
comv{e; | i € I}. Then N}_A; # 0.

We note that Theorem 2 stated for closed sets Ay, ...,A, is the original KKM
Theorem, which was proved in [6].

A matching in a family of sets .% is a subset of pairwise disjoint sets in .%. The
matching number v(.%) is the maximum size of a matching in .%.

Let L1, L, be two homeomorphic copies of the real line. A 2-interval is a union
I, UL, where [; is an interval on L;.

Theorem 3 (Tardos [7]) If F is a family of 2-intervals then T(F) <2v(Z).

2 Using the KKM theorem

Given a finite family % of convex sets we may assume that the sets are compact, by
considering a set S containing a point in each intersection of sets in %, and replacing
every set C € ¢ by C' =conv{s € S |s € C}.

Let € be a finite family of compact convex sets satisfying the (4, 3) property. We
may clearly assume || > 4. We scale the plane so that all the sets in ¢’ are contained
in the open unit disk, which we denote by D. Let f be a parameterization of the unit
circle defined by

f (@) = (cos(2nt), —sin(27t))

for t € [0,1]. For two points a,b in the plane, let ab be the line through a and b and
let [a, b] be the line segment with a and b as endpoints.

Let A = A% = conv{ey,ez,e3,e4} C R* be the standard 3-dimensional simplex,
and let x = (x1,x2,x3,x4) € A. For 1 <i <4, define R; to be the interior of the region
bounded by the arc along the circle from f (23;11 x;j) to f( 3:1 x;j) (an empty sum is
understood to be 0) and by the line segments [(1,0), f(x; +x2)] and [f(x1), f(x1 +
x2 +x3)] (see Figure 1). Notice that if x; = 0, then R. = 0.

For every 1 <i <4 define a subset A; of A as follows: x € A3 isin A; if and only
if there exist three sets C1,C»,C3 € € such that C;NC,NC3 # 0 and C;NC, C R for
all 1 < j <k <3 (see Figure 2). Observe that A; is open.

For every x € A and C € % let I¢ be the (possibly empty) 2-interval

(C€N[(1,0), f O +x2))U(CN[f (1), f (01 +x2 +x3)])

Lemma 1 Suppose there exists x € A\ (U?Zl A,-). Then there exist two points a,b
such that if a,b ¢ C then I¢c # 0.
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Fig. 1 A point x € A3 corresponds to four regions RL.

Proof Assume thatx € A\ (U?:1 Ai). Note that since % does not contain three pair-

wise non-intersecting sets, at most two of the regions R. can contain a set in %.

We claim for every i < 4, the region Ri contains at most two sets in €. Indeed,
assume to the contrary that Rfc contains three sets C;,C>,C3 € €. Then CiyNCo,NC3 =
0 since x ¢ A;. Applying the (4,3) property to C;,Cp,C3 and some additional set
F € €, we obtain that CiNCyNF # 0 for some 1 < j <k <3, and all pairwise
intersections of C;,Cy, F are contained in R}, contradicting x ¢ A;.

If there is only one region R containing sets in ¢, then since there are at most
two such sets, there are two points that pierce them.

If there are two regions Rj; and R’ containing sets in %, then if there are two
sets contained in R% (or R{), they must intersect. Otherwise these two sets together
with a set in R} (or R., respectively) will be three pairwise non-intersecting sets, a
contradiction since % has the (4,3)-property.

Therefore, there is a point piercing the sets contained in R. and a point piercing
the sets in R} and we are done. O

Theorem 4 [f there exists x € A\ (Uj‘zl Ai), then ©(¢) < 8.

Proof Let 2 ={C €€ |Ic #0}. We will show that 7(2) < 6. Together with Lemma
1 this will imply the theorem.

Let & = {Ic: C € Z}. Let C1,C2,C3,C4 € P be four sets. Some three, say
Cy,Ca,Cs, intersect by the (4,3)-property. Since x & U?_, A;, the intersection of two of
these three sets, say C; NCy, must intersect either [(1,0), f(x; +x2)] or [f(x1), f(x1 +
x2 +x3)]. In other words, Ic, NIc, # 0. This shows that .# has no four pairwise dis-
joint elements, implying v(.#) < 3. Thus, by Theorem 3, 7(2) < 1(.#) < 6. O



4 Daniel McGinnis

flxr+x2+x3)
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Fig. 2 Three sets C1,C2,C3 € C with C;NC2NC3 # 0 and C;NC, C R forall 1 < j < k < 3, implying
x = (x1,X2,%3,X3) €Ap.

By Theorem 4 we may assume that A C U ;A;. We claim that in this case the
sets Aj,...,Aq4 satisfy the conditions of Theorem 2. Indeed, let I C [4], and let y €
conv{e; | i € I'}. Then for all j € [4]\ I, we have R} = 0, implying y ¢ A;. Since
ye U;‘ZIA,-, we have that y € [ J;c;A;. Thus, by Theorem 2 we have:

Theorem 5 IfA C U?ZIA,; then there exists x € ﬂ?zl A;.

For the rest of the paper we fix x € !, A;. Let R. = R', and let fy = (1,0),
fi=7F(x1), f2=f(x1 +x2), and f3 = f(x1 +x2 +x3). Let ¢ be the intersection point
of [(1,0), 2] and [f1, f3], and let €* = {C € € | ¢ ¢ C}. Note that ()}, A, is an open
set, so we may shift x slightly to ensure that ¢ does not lie on the boundary of any set
in € and neither of the segments [(1,0), f2] or [f1, f3] coincide with the boundary of
any setin &.

We use R’ to denote the topological closure of R'.

Proposition 1 If C € €x, then there exists some i for which CNR! = 0.

Proof Assume C has a point p; in each R'. Then since C is convex, it contains the

points g1 = [p1,p2] N [f1, /3] and g2 = [p3, pa] N [f1, f3]. Since g1 and g lie in two
different hyperplanes defined by the line fj f>, C must contain ¢, a contradiction. O

Let %; denote the family of sets in % that are disjoint from R’. By Proposition 1,
we have ¢ = Uj‘:l%. In the remainder of the paper we prove the following:

Theorem 6 For everyi <4, ©(6;) <2.

This will imply that " can be pierced by 9 points: two points for each %; and the
point c.
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3 Piercing %; by two points

In this Section we prove Theorem 6. Without loss of generality we prove the theorem
for Cg] .

3.1 Preliminary definitions and observations

Let C,C,,C3 € € be the three sets witnessing the fact thatx € Aj; so Ci;NC, NC3 # 0
and C;NCy C R forall 1 < j <k <3.

If there are two sets Fj,F> € %) that do not intersect, then Fj,F>,C;,C, do not
satisfy the (4,3)-property. Thus every two sets in %] intersect. Also, if for some
1 <i <3 wehave C; C R', then again by the (4,3)-property every three sets in %]
have a common point. This implies by Helly’s theorem [3] that 7(%]) = 1. So we
may assume that no C; is contained in R'.

Let L be the line f] f3 and let L be the line fy f> (see Figure 3).

/3

12

Jo

S

Fig. 3 The lines L; and L,.

By our assumption C; is not contained in R! for 1 <i < 3, and thus C; N (R?\ R")
has at least one non-empty connected component. The next proposition shows that
C;N (R?\ R') has at most two connected components.

Proposition 2 For every 1 <i < 3, the set C;N (R*>\ R') has at most two connected
components. Moreover, if C; N\ (R?\ R") has two components, then the components

are C; NR2 and CiNR* and hence are convex.
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Proof 1f C; contains c, then C; N (R?\ R!) has one component because the line seg-
ment from any point in R?\ R' to ¢ is contained in R?\ R'. So assume C; does not
contain ¢. Then it must have a point in either R* or R2, without loss of generality, in
R4,

Suppose C; contains a point in R3. Since C; does not contain ¢ but contains points
in the three regions ﬁ,ﬁ,ﬁ, then by Proposition 1 it cannot contain a point in R2.
Thus C;N (R2\ R') = C;N (R*UR3). This means that C; N (R2\ R") is an intersection
of two convex sets, hence it is convex and has only one component.

Thus, if C;N (R?\ R') has more than one component, then C; does not have a
point in R3. In this case the components of C;N (R?\ R') are C; N R? and C; N R* both
of which are convex. g

Let Z = [f1,c]U]c, fo]- We think of Z as a segment starting at f; and ending at fp.
Thus a point a € Z comes before a point b € Z if the distance from a to fi on Z is not
larger than the distance from b to f; on Z.

LetI! =C;N[fi,c], I =CiNle, fol, and I; = ;N Z.

For any interval (i.e., connected set) I on Z, let /(1) be the endpoint of I that comes
first on Z, and let (1) be the other endpoint. Given a convex set C and a point p on the
boundary of C, a supporting line for C at p is a line L passing through p that contains
C in one of the closed halfspaces defined by L. For 1 <i<3,letC; =C;N (R%\R").

Definition 1 Let A be a connected component of Cl{ ,and let I =ANZ (so [ is an
interval on Z). We define supporting lines S!(I) and S/ (1) for C; at the points /(1) and
r(I), respectively, as follows:

If A C L, for some j € {1,2}, then S{(I) = S/(I) = L;.

If r(I) = c,Aliesin R"UR?, and A ¢ Ly, then S/ (I) = L.

IfI(I) =c, Aliesin R'UR*, and A ¢ Ly, then S\(I) = L;.

Otherwise, set S!(I) and S’ (I) to be any supporting line for C; at the point /(I) and
r(I), respectively.

Definition 2 Assume C; has two components A; = C; NR2 and A, = C NR*. We
define S/ to be a piece-wise linear curve as follows:

- If Ay CLyand Ay C Ly, then
St = Ui, rUDI VI () L)V LU?), fol.

- IfA; CLjand Ay & Lo, then

S = [f,r(H VI 1ID] U (SHIF) NRY).
- IfA; ¢ Ly and Ay C Lo, then

S = (ST NR) U [r(I) L) U L(ID), fo)-
- IfA; ¢ Ly and Ay & L, then

St = (ST NR) U [r(I}), L(IF)] U (SH(IF) NRY).

Note that in all the cases S} lies in the closed halfspace defined by the line r(I})I(1?)
containing fy and fi.
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Fig. 4 Definition 2. The blue set is C;, and the red curve is S;.

3.2 Five lemmas

For two intervals I and J of Z, we say that I comes before J on Z if the point r([)
comes before /(J) on Z.

Lemma2 Let 1 <i# j<3. Let A be a component of C; and I = ANZ. Let B be
a component of C;- and J = BN Z. Suppose that F C % is a convex set such that
FNR'=0, FNA# 0 and FN\B # 0. If I comes before J on Z, then F NSI(I) # 0
and FNS4(J) #0.

Proof Observe that if A is a line segment or a single point, then A C S7(I) and we are
done. This is true since if A C L, for some ¢ € {1,2} then S} (/) is L;, and if A is a line
segment not contained in L; or L, then C; must be a line segment so A C S;(I). So
we may assume that A is not a line segment, and in particular, / consists of more than
one point.

We will show that F NS7(I) # 0. The other statement follows similarly.

Case 1. r(I) € [c, fo]. We claim that B does not have a point R! UR?. Indeed, by
definition B does not have a point in R'. If B has a point p in R2, then for a point
g € C;NR', we have that the line segment [p,q] crosses Z in y € [fi,c]. Therefore, y
comes before /(J) on Z, a contradiction.

Now, if S7(I) = Ly, then since A C R' UR? and B C R3 UR* then F must intersect
L, as needed. So we can assume S} (1) # Ly. Let H be the closed halfspace defined
by S7(I) containing C;. If r(I) € (c, fo], then since I consists of more than one point,
H contains a point of [c, fy] that comes before r(I) on Z, so every point on Z coming
after r(I) must lie in the complement of H. If r(I) = c, then since S;(r(I)) # Ly, we
have that A has a point y in R3 UR*\ L; (this follows from the definition of S7(/) when
r(I) =c).
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Note that y € R3. This is true because if A has a point in R* other than ¢, then
A must contain a point in (¢, fy]. By the convexity of C; and the fact that I contains
more than one point, we can conclude that A has a point in L, N R? U R3 other than c.
Again, this implies that every point on Z coming after c lies in the complement of H.
Now, if B has a point p in H, then for a point g € C;NC; C H NR!, we have that the
segment [p, g crosses Z in H. This is a contradiction since every point of J lies in the
complement of H.

Case 2. r(I) € [f1,¢). If Si(I) = Ly, then A C S7(I) and we are done.

Otherwise, take H to be the closed halfspace defined by S} (/) containing C;. If
S7(I) does not intersect (c, fy], then every point after (1) on Z lies in the complement
of H and we can apply the previous argument to conclude that B cannot contain a
point in H. If S7(I) intersects (c, fo], then the set (H \ R')N % has two connected
components. Let H' be the component containing A. Every point that comes after
r(I) on Z lies in the complement of H’, so a similar argument to the one used above
shows that B cannot contain a point in H'. Thus F must intersect S’ (7). ad

Similar arguments can be applied to prove the following lemma.

Lemma 3 Let | <i# j<3. Assume that C} has two components A} = C! N\ R2 and
Ay =CINR*. Let B be a component ofC;- and J = BNZ. Suppose F C % is a convex

set such that FNRY =0 and FNB # 0. If FNA, # 0 and J comes after I! on Z, or
if FNAy # 0 and J comes before I? on Z, then F NS, # 0.

We say that a set F lies below a line L in RZ if F does not intersect L F C ﬁ,
and F lies on the side of L containing f;. Note that if F lies below L; in R? then F
must be empty. Similarly, we say that F' lies below L in R*if F does not intersect L,
F C ﬁ, and lies on the side of L that contains fy. If L = L,, then again F = 0.

Lemma 4 Assume that for 1 < i # j <3, C; and C;; both have two components:
A =C] NRZ Ay = C NR* B, = C;- NR2, and By = C} N R*. Assume that 1! comes
before I} on Z and Il-2 comes before I]2 onZ. Let F\,F, € 6\, and write F = F1 N F.
Then one of the following holds:

— If F intersects C| and C'; or F intersects By then F NS](I}) # 0.

— If F intersects C} and C'; or F intersects Ay, then F N S§. (I3) #0.

Proof First note that A; lies below S%(I7) in R? and By lies below Sj (') in R* For
instance, if A| contains a point p lying on or above Sé (IJZ), then the segment [p,1(1?)]
crosses [f1,c] on or above Sﬁ- (IJZ), contradicting the fact that I} comes before 1} onZ.
A similar argument applies to the corresponding statement for B;.

Assume for contradiction that there exists two sets F,F> € €] such that F{ N F,
lies below Sﬂ(ljz) in RZ and A; N (F;NF) # 0, and two sets F3, Fy € 6, such that
F3 N Fy lies below S7(I') in R* and B, N (Fy N F,) # 0. By the (4,3)-property, three
sets out of F1, F>, F3, F4 have a common point. If F1, F>, F3 intersect, then F3 intersects
B and has a point below Sﬁ(ljz) in R2, which implies that F3 has a point in R', a
contradiction. Similarly, F, F3, F4 cannot intersect. Therefore, there is no pair of sets
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in %) whose intersection intersects B, and lies below S/ (I) in R4, or there is no pair
of sets in %) whose intersection intersects A and lies below Sﬁ» (Ijz) in R2.

Assume that there is no pair of sets in 4] whose intersection lies below S7(I!)
in R* and intersects B,, and take L = A\ (Iil). Let F be the intersection of any pair of
sets in 1. If F intersects B,, then by the above F does not lie below L in R*. This
implies that F intersects L since B lies below L in R*.If F intersects By and Ay, then
F intersects L by Lemma 2. If F intersects By and A, then F' intersects L since B
lies in the halfspace defined by L that does not contain C;.

If there is no pair of sets in 47 whose intersection lies below Sﬂ. (112) in R? and

intersects A1, then a similar argument shows that the corresponding statements follow
for S%(17). O

Lemma 5 If F € 6, and C; has two components, then F NS} is an interval.

Proof Clearly, F N (S/NR2) and F N (S} NR*) are intervals, and F NS, = (S} R2) U
(S!NR*), so it suffices to show that F cannot intersect both SN R* and S} N RZ.
Suppose it does. Let 7' be the line passing through r(I!) and /(I?). By the definition
of 8/, both S'NR2 and S/ N R* lie on the closed halfspace defined by T containing fy
and f,. Since F is convex, this implies that F has a point in R!, a contradiction. O

Lemma 6 Let F\,F, € 6, then F|\ NF, intersects at least two of C1,Cy,C3.

Proof Suppose F; N F> does not intersect Cy. Since (C;NC,) C R and FNR! =0, by
the (4,3)-property for the sets Cy,Cs, Fy, F2, we have that C; must intersect F; N F3.
Similarly, C5 intersects F1 N F;. O

3.3 Proof of Theorem 6

We wish to show that 7(%)) < 2. We split into four cases. In each case and subcase,
we find two homeomorphic copies of the real line 77 and 75, and show that the family
of 2-intervals .# = {(FNT)U(FNT,): F € ¢} satisfies v(.#) = 1. By Theorem
3, this implies 7(.#) < 2. The curves Tj,T; will be of the form S} (1), Sf (I), or S, and
Lemma 5 ensures that .# is indeed a family of 2-intervals. Recall that Ii1 =C;N[f1,d],
P=CiNe, fol,and I; = C;iNZ.

Case 1. C/ has one component for each i (see Figure 5).

Notice in this case each J; is an interval. Assume without loss of generality that /;
comes before I, and I, comes before I3 on Z.

Set Ty = S} (1) and T» = S5(I»), and let Fi,F> € %). By Lemma 6, F; N F> inter-
sects two of the C;. Then, by Lemma 2, F; N F; intersects 77 or 5. It follows then our
collection of 2-intervals, .#, has matching number 1.

Case 2. One of the C/’s has two components (see Figure 6).
We can assume without loss of generality that C; has two components, and that
I comes before I, on Z.
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Fig. 5 Case 1

Subcase 2.1. If the order of the intervals on Z is Iy, 5,13, I3, then set Ty = S’ (1))
and T2 = 55(12).

Subcase 2.2. If the order of the intervals is 1,131 ,127132, thenset 7} = S5 and Tr =
ST(h).

Subcase 2.3. If the order of the intervals is 11,131 ,132,12, then set 7y = S7(1;) and
L= Slz (B).

Subcase 2.4. If the order of the intervals is 131,1 1,12, then set T} = Sy and Th =
St (0).

The remaining subcases of Case 2 are symmetrical. For instance, the case where
the order of the intervals is 131 ,132,1 1,1> follows similarly to the case where the order
of the intervals is /1,5, 1, I3.

PPDP

Fig. 6 The configuration of each C; in the subcases of Case 2. Blue represents Cj, red represents C,, and
green represents C3.

Case 3. Two of the C;’s have two components (see Figure 7).
Without loss of generality, assume C) and C} have two components.
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Subcase 3.1. Assume the order of the intervals is I;,1},13,13,13, then set T =
Sq([l) and T2 = S’2

Subcase 3.2. If the order of the intervals is 1,1}, 13,13,13, then set Ty = S’ (1))
and T to be the line obtained by applying Lemma 4 to C; and Cs.

Subcase 3.3. If the order of the intervals is I),1;,13, 13,13, then set Ty = S’ (1))
and T2 = S/Z'

Subcase 3.4. If the order of the intervals is 1, I, I}, I3, I3, then set Ty = S"(I;) and
T; to be the line obtained by applying Lemma 4 to C; and C3. Let F' be the intersection
of a pair of sets in %]. If F intersects C, and Cs, then F intersects 7, by Lemma 4.
If F intersects C; and C; or C; and Cé ﬁﬁ, then F intersects T7. If T, = S;(Izl) and
F intersects C; and Cy NR2, then F intersects T3 by Lemma 2. If 7> = S(I3) and F
intersects C; and Cé ﬂﬁ, then F intersects 7> by Lemma 4.

Subcase 3.5. If the order of the intervals is 121 ,131,11,132,122, then set 7} = S} and
=S5

Subcase 3.6. If the order of the intervals is 121 ,131,11 ,1227132, then set 7} = S} and
L= S/3.

The remaining subcases are symmetrical.

PP
DX

Fig. 7 The configuration of each C; in the subcases of Case 3.

Case 4: Each C/ has two components (see Figure 8).

Subcase 4.1. If the order of the intervals is I}, 13,13, 13,12, 17, then set T} = S} and
L= S/2'

Subcase 4.2. If the order of the intervals is I, I}, 1, I3, 13,13, then set T} = S} and
T—s).
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Subcase 4.3. If the order of the intervals is I, I}, 1, 17,12, 12, then set T} = S} and
T> to be the line obtained by applying Lemma 4 to C; and C3. Let F be the intersection
of a pair of sets in %). If F intersects C; and Cs, then H intersects 7> by Lemma 4. If
F intersects C) NR* and C; or (0 NR* and C,NR?, then F intersects 77 by Lemma 3.
If F intersects C} NR2 and C; or c NR2? and Cj N R4, then H intersects 7; by Lemma
3.

If =35, (111) and F intersects C} N R?, then F intersects T» by Lemma 4. If F
intersects C; NR2 and C} N RZ, then F intersects T by Lemma 2.

If 75 = S§(1}) and F intersects C| NR2, then F intersects 7> by Lemma 4. If F
intersects C; NR* and C; N R*, then F intersects T by Lemma 2.

Therefore, the resulting family of 2-intervals coming from these two lines has
matching number 1.

Subcase 4.4. If the order of the intervals is 111 , 121 7131 , 1227132, I 12, then set 71 = §) and
T; to be the line obtained by applying Lemma 4 to C; and Cs.

Subcase 4.5. If the order of the intervals is I}, I3, 1, I3, 13,13, then set T} = S} and
1> to be the line obtained by applying Lemma 4 to C; and Cs. A similar argument
as in subcase 3 shows that the resulting family of 2-intervals coming from these two
lines has matching number 1.

PPPP

Fig. 8 The configuration of each C; in the subcases of Case 4
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