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Abstract We prove that every finite family of convex sets in the plane satisfying the
(4,3)-property can be pierced by 9 points. This improves the bound of 13 proved by
Gyárfás, Kleitman, and Tóth in 2001.

1 Introduction

For positive integers p≥ q, a family of sets C is said to satisfy the (p,q)-property if
for every p sets, some q have a point in common. We say that C can be pierced by
m points if there exists a set of size at most m intersecting every element in C . The
piercing number τ(C ) of C is the minimum m so that C can be pierced by m points.

In 1957 Hadwiger and Debrunner [2] conjectured that for every given positive
integers p ≥ q > d, there exists a (smallest) constant HDd(p,q) such that every fi-
nite family C of convex sets in Rd satisfying the (p,q)-property has τ(C )≤ c. This
conjecture was proved by Alon and Kleitman in 1992 [1].

In general, the bounds on HDd(p,q) given by Alon and Kleitman’s proof are far
from optimal. The first case where HDd(p,q) is not known is when d = 2, p = 4, and
q = 3. In this case, the bound in HDd(p,q) given by the Alon-Kleitman proof is 343,
while there is no known example of a family of convex sets in the plane that satisfy
the (4,3)-property and cannot be pierced by 3 points. We note that improvements on
general upper bounds on HDd(p,q) were made in [4].

In 2001, Gyárfás, Kleitman, and Tóth [5] proved that HD2(4,3) ≤ 13, and since
then this bound has seen no improvement. In this paper we prove that HD2(4,3)≤ 9:

Theorem 1 If C is a finite family of convex sets in R2 such that for any 4 sets, 3 have
a point in common, then τ(C )≤ 9.
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The main tools in the proof are the following two theorems, and a geometrical anal-
ysis.

Let ∆ n−1 ⊂ Rn denote the n− 1-dimensional simplex with vertex set e1, . . . ,en.
The following version of the KKM was proven in [?].

Theorem 2 Let A1, . . . ,An be open sets such that for every face I⊆{1, . . . ,n},∪IAi⊇
conv{ei | i ∈ I}. Then ∩n

i=1Ai 6= /0.

We note that Theorem 2 stated for closed sets A1, . . . ,An is the original KKM
Theorem, which was proved in [6].

A matching in a family of sets F is a subset of pairwise disjoint sets in F . The
matching number ν(F ) is the maximum size of a matching in F .

Let L1,L2 be two homeomorphic copies of the real line. A 2-interval is a union
I1∪ I2, where Ii is an interval on Li.

Theorem 3 (Tardos [7]) If F is a family of 2-intervals then τ(F )≤ 2ν(F ).

2 Using the KKM theorem

Given a finite family C of convex sets we may assume that the sets are compact, by
considering a set S containing a point in each intersection of sets in C , and replacing
every set C ∈ C by C′ = conv{s ∈ S | s ∈C}.

Let C be a finite family of compact convex sets satisfying the (4,3) property. We
may clearly assume |C | ≥ 4. We scale the plane so that all the sets in C are contained
in the open unit disk, which we denote by D. Let f be a parameterization of the unit
circle defined by

f (t) = (cos(2πt),−sin(2πt))

for t ∈ [0,1]. For two points a,b in the plane, let ab be the line through a and b and
let [a,b] be the line segment with a and b as endpoints.

Let ∆ = ∆ 3 = conv{e1,e2,e3,e4} ⊂ R4 be the standard 3-dimensional simplex,
and let x = (x1,x2,x3,x4) ∈ ∆ . For 1≤ i≤ 4, define Ri

x to be the interior of the region
bounded by the arc along the circle from f (∑i−1

j=1 x j) to f (∑i
j=1 x j) (an empty sum is

understood to be 0) and by the line segments [(1,0), f (x1 + x2)] and [ f (x1), f (x1 +
x2 + x3)] (see Figure 1). Notice that if xi = 0, then Ri

x = /0.
For every 1≤ i≤ 4 define a subset Ai of ∆ as follows: x ∈ ∆ 3 is in Ai if and only

if there exist three sets C1,C2,C3 ∈ C such that C1∩C2∩C3 6= /0 and C j∩Ck ⊂ Ri
x for

all 1≤ j < k ≤ 3 (see Figure 2). Observe that Ai is open.
For every x ∈ ∆ and C ∈ C let IC be the (possibly empty) 2-interval

(C∩ [(1,0), f (x1 + x2)])∪ (C∩ [ f (x1), f (x1 + x2 + x3)]).

Lemma 1 Suppose there exists x ∈ ∆ \
(
∪4

i=1 Ai

)
. Then there exist two points a,b

such that if a,b /∈C then IC 6= /0.
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x

Fig. 1 A point x ∈ ∆ 3 corresponds to four regions Ri
x.

Proof Assume that x ∈ ∆ \
(
∪4

i=1 Ai

)
. Note that since C does not contain three pair-

wise non-intersecting sets, at most two of the regions Ri
x can contain a set in C .

We claim for every i ≤ 4, the region Ri
x contains at most two sets in C . Indeed,

assume to the contrary that Ri
x contains three sets C1,C2,C3 ∈C . Then C1∩C2∩C3 =

/0 since x /∈ Ai. Applying the (4,3) property to C1,C2,C3 and some additional set
F ∈ C , we obtain that C j ∩Ck ∩F 6= /0 for some 1 ≤ j < k ≤ 3, and all pairwise
intersections of C j,Ck,F are contained in Ri

x, contradicting x /∈ Ai.
If there is only one region Ri

x containing sets in C , then since there are at most
two such sets, there are two points that pierce them.

If there are two regions Ri
x and R j

x containing sets in C , then if there are two
sets contained in Ri

x (or R j
x), they must intersect. Otherwise these two sets together

with a set in R j
x (or Ri

x, respectively) will be three pairwise non-intersecting sets, a
contradiction since C has the (4,3)-property.

Therefore, there is a point piercing the sets contained in Ri
x and a point piercing

the sets in R j
x and we are done. ut

Theorem 4 If there exists x ∈ ∆ \
(
∪4

i=1 Ai

)
, then τ(C )≤ 8.

Proof Let D = {C ∈C | IC 6= /0}. We will show that τ(D)≤ 6. Together with Lemma
1 this will imply the theorem.

Let I = {IC : C ∈ D}. Let C1,C2,C3,C4 ∈ D be four sets. Some three, say
C1,C2,C3, intersect by the (4,3)-property. Since x /∈∪4

i=1Ai, the intersection of two of
these three sets, say C1∩C2, must intersect either [(1,0), f (x1+x2)] or [ f (x1), f (x1+
x2 + x3)]. In other words, IC1 ∩ IC2 6= /0. This shows that I has no four pairwise dis-
joint elements, implying ν(I )≤ 3. Thus, by Theorem 3, τ(D)≤ τ(I )≤ 6. ut
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Fig. 2 Three sets C1,C2,C3 ∈C with C1 ∩C2 ∩C3 6= /0 and C j ∩Ck ⊂ R1
x for all 1 ≤ j < k ≤ 3, implying

x = (x1,x2,x3,x4) ∈ A1.

By Theorem 4 we may assume that ∆ ⊂ ∪4
i=1Ai. We claim that in this case the

sets A1, . . . ,A4 satisfy the conditions of Theorem 2. Indeed, let I ⊂ [4], and let y ∈
conv{ei | i ∈ I}. Then for all j ∈ [4] \ I, we have R j

y = /0, implying y /∈ A j. Since
y ∈ ∪4

i=1Ai, we have that y ∈
⋃

i∈I Ai. Thus, by Theorem 2 we have:

Theorem 5 If ∆ ⊂ ∪4
i=1Ai, then there exists x ∈

⋂4
i=1 Ai.

For the rest of the paper we fix x ∈
⋂4

i=1 Ai. Let Ri
x = Ri, and let f0 = (1,0),

f1 = f (x1), f2 = f (x1 + x2), and f3 = f (x1 + x2 + x3). Let c be the intersection point
of [(1,0), f2] and [ f1, f3], and let C ∗ = {C ∈ C | c /∈C}. Note that

⋂4
i=1 Ai is an open

set, so we may shift x slightly to ensure that c does not lie on the boundary of any set
in C and neither of the segments [(1,0), f2] or [ f1, f3] coincide with the boundary of
any set in C .

We use Ri to denote the topological closure of Ri.

Proposition 1 If C ∈ C ∗, then there exists some i for which C∩Ri = /0.

Proof Assume C has a point pi in each Ri. Then since C is convex, it contains the
points q1 = [p1, p2]∩ [ f1, f3] and q2 = [p3, p4]∩ [ f1, f3]. Since q1 and q2 lie in two
different hyperplanes defined by the line f0 f2, C must contain c, a contradiction. ut

Let Ci denote the family of sets in C ∗ that are disjoint from Ri. By Proposition 1,
we have C ∗ = ∪4

i=1Ci. In the remainder of the paper we prove the following:

Theorem 6 For every i≤ 4, τ(Ci)≤ 2.

This will imply that C can be pierced by 9 points: two points for each Ci and the
point c.
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3 Piercing Ci by two points

In this Section we prove Theorem 6. Without loss of generality we prove the theorem
for C1.

3.1 Preliminary definitions and observations

Let C1,C2,C3 ∈C be the three sets witnessing the fact that x∈ A1; so C1∩C2∩C3 6= /0
and C j ∩Ck ⊂ R1 for all 1≤ j < k ≤ 3.

If there are two sets F1,F2 ∈ C1 that do not intersect, then F1,F2,C1,C2 do not
satisfy the (4,3)-property. Thus every two sets in C1 intersect. Also, if for some
1 ≤ i ≤ 3 we have Ci ⊂ R1, then again by the (4,3)-property every three sets in C1
have a common point. This implies by Helly’s theorem [3] that τ(C1) = 1. So we
may assume that no Ci is contained in R1.

Let L1 be the line f1 f3 and let L2 be the line f0 f2 (see Figure 3).

f0

f3

f2

f1

Fig. 3 The lines L1 and L2.

By our assumption Ci is not contained in R1 for 1≤ i≤ 3, and thus Ci∩ (R2 \R1)
has at least one non-empty connected component. The next proposition shows that
Ci∩ (R2 \R1) has at most two connected components.

Proposition 2 For every 1≤ i≤ 3, the set Ci∩ (R2 \R1) has at most two connected
components. Moreover, if Ci ∩ (R2 \R1) has two components, then the components
are Ci∩R2 and Ci∩R4 and hence are convex.
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Proof If Ci contains c, then Ci ∩ (R2 \R1) has one component because the line seg-
ment from any point in R2 \R1 to c is contained in R2 \R1. So assume Ci does not
contain c. Then it must have a point in either R4 or R2, without loss of generality, in
R4.

Suppose Ci contains a point in R3. Since Ci does not contain c but contains points
in the three regions R1,R4,R3, then by Proposition 1 it cannot contain a point in R2.
Thus Ci∩ (R2 \R1) =Ci∩ (R4∪R3). This means that Ci∩ (R2 \R1) is an intersection
of two convex sets, hence it is convex and has only one component.

Thus, if Ci ∩ (R2 \R1) has more than one component, then Ci does not have a
point in R3. In this case the components of Ci∩ (R2 \R1) are Ci∩R2 and Ci∩R4 both
of which are convex. ut

Let Z = [ f1,c]∪ [c, f0]. We think of Z as a segment starting at f1 and ending at f0.
Thus a point a ∈ Z comes before a point b ∈ Z if the distance from a to f1 on Z is not
larger than the distance from b to f1 on Z.

Let I1
i =Ci∩ [ f1,c], I2

i =Ci∩ [c, f0], and Ii =Ci∩Z.
For any interval (i.e., connected set) I on Z, let l(I) be the endpoint of I that comes

first on Z, and let r(I) be the other endpoint. Given a convex set C and a point p on the
boundary of C, a supporting line for C at p is a line L passing through p that contains
C in one of the closed halfspaces defined by L. For 1≤ i≤ 3, let C′i =Ci∩ (R2 \R1).

Definition 1 Let A be a connected component of C′i , and let I = A∩ Z (so I is an
interval on Z). We define supporting lines Sl

i(I) and Sr
i (I) for Ci at the points l(I) and

r(I), respectively, as follows:

– If A⊂ L j for some j ∈ {1,2}, then Sl
i(I) = Sr

i (I) = L j.
– If r(I) = c, A lies in R1∪R2, and A 6⊂ L1, then Sr

i (I) = L2.
– If l(I) = c, A lies in R1∪R4, and A 6⊂ L2, then Sl

i(I) = L1.
– Otherwise, set Sl

i(I) and Sr
i (I) to be any supporting line for Ci at the point l(I) and

r(I), respectively.

Definition 2 Assume C′i has two components A1 = C′i ∩R2 and A2 = C′i ∩R4. We
define S′i to be a piece-wise linear curve as follows:

– If A1 ⊂ L1 and A2 ⊂ L2, then

S′i = [ f1,r(I1
i )]∪ [r(I1

i ), l(I
2
i )]∪ [l(I2

i ), f0].

– If A1 ⊂ L1 and A2 6⊂ L2, then

S′i = [ f1,r(I1
i )]∪ [r(I1

i ), l(I
2
i )]∪ (Sl

i(I
2
i )∩R4).

– If A1 6⊂ L1 and A2 ⊂ L2, then

S′i = (Sr
i (I

1
i )∩R2)∪ [r(I1

i ), l(I
2
i )]∪ [l(I2

i ), f0].

– If A1 6⊂ L1 and A2 6⊂ L2, then

S′i = (Sr
i (I

1
i )∩R2)∪ [r(I1

i ), l(I
2
i )]∪ (Sl

i(I
2
i )∩R4).

Note that in all the cases S′i lies in the closed halfspace defined by the line r(I1
i )l(I

2
i )

containing f0 and f1.
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Fig. 4 Definition 2. The blue set is Ci, and the red curve is S′i.

3.2 Five lemmas

For two intervals I and J of Z, we say that I comes before J on Z if the point r(I)
comes before l(J) on Z.

Lemma 2 Let 1 ≤ i 6= j ≤ 3. Let A be a component of C′i and I = A∩Z. Let B be
a component of C′j and J = B∩ Z. Suppose that F ⊂ U is a convex set such that
F ∩R1 = /0, F ∩A 6= /0 and F ∩B 6= /0. If I comes before J on Z, then F ∩ Sr

i (I) 6= /0
and F ∩Sl

j(J) 6= /0.

Proof Observe that if A is a line segment or a single point, then A⊂ Sr
i (I) and we are

done. This is true since if A⊂ Lt for some t ∈ {1,2} then Sr
i (I) is Lt , and if A is a line

segment not contained in L1 or L2, then Ci must be a line segment so A ⊂ Sr
i (I). So

we may assume that A is not a line segment, and in particular, I consists of more than
one point.

We will show that F ∩Sr
i (I) 6= /0. The other statement follows similarly.

Case 1. r(I) ∈ [c, f0]. We claim that B does not have a point R1∪R2. Indeed, by
definition B does not have a point in R1. If B has a point p in R2, then for a point
q ∈C j ∩R1, we have that the line segment [p,q] crosses Z in y ∈ [ f1,c]. Therefore, y
comes before l(J) on Z, a contradiction.

Now, if Sr
i (I) = L2, then since A⊂ R1∪R2 and B⊂ R3∪R4 then F must intersect

L2 as needed. So we can assume Sr
i (I) 6= L2. Let H be the closed halfspace defined

by Sr
i (I) containing Ci. If r(I) ∈ (c, f0], then since I consists of more than one point,

H contains a point of [c, f0] that comes before r(I) on Z, so every point on Z coming
after r(I) must lie in the complement of H. If r(I) = c, then since Si(r(I)) 6= L2, we
have that A has a point y in R3∪R4\L2 (this follows from the definition of Sr

i (I) when
r(I) = c).
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Note that y ∈ R3. This is true because if A has a point in R4 other than c, then
A must contain a point in (c, f0]. By the convexity of Ci and the fact that I contains
more than one point, we can conclude that A has a point in L2∩R2∪R3 other than c.
Again, this implies that every point on Z coming after c lies in the complement of H.
Now, if B has a point p in H, then for a point q ∈Ci∩C j ⊂ H ∩R1, we have that the
segment [p,q] crosses Z in H. This is a contradiction since every point of J lies in the
complement of H.

Case 2. r(I) ∈ [ f1,c). If Sr
i (I) = L1, then A⊂ Sr

i (I) and we are done.
Otherwise, take H to be the closed halfspace defined by Sr

i (I) containing Ci. If
Sr

i (I) does not intersect (c, f0], then every point after r(I) on Z lies in the complement
of H and we can apply the previous argument to conclude that B cannot contain a
point in H. If Sr

i (I) intersects (c, f0], then the set (H \R1)∩U has two connected
components. Let H ′ be the component containing A. Every point that comes after
r(I) on Z lies in the complement of H ′, so a similar argument to the one used above
shows that B cannot contain a point in H ′. Thus F must intersect Sr

i (I). ut

Similar arguments can be applied to prove the following lemma.

Lemma 3 Let 1 ≤ i 6= j ≤ 3. Assume that C′i has two components A1 =C′i ∩R2 and
A2 =C′i ∩R4. Let B be a component of C′j and J = B∩Z. Suppose F ⊂U is a convex
set such that F ∩R1

x = /0 and F ∩B 6= /0. If F ∩A1 6= /0 and J comes after I1
i on Z, or

if F ∩A2 6= /0 and J comes before I2
i on Z, then F ∩S′i 6= /0.

We say that a set F lies below a line L in R2 if F does not intersect L, F ⊂ R2,
and F lies on the side of L containing f1. Note that if F lies below L1 in R2 then F
must be empty. Similarly, we say that F lies below L in R4 if F does not intersect L,
F ⊂ R4, and lies on the side of L that contains f0. If L = L2, then again F = /0.

Lemma 4 Assume that for 1 ≤ i 6= j ≤ 3, C′i and C′j both have two components:

A1 = C′i ∩R2, A2 = C′i ∩R4, B1 = C′j ∩R2, and B2 = C′j ∩R4. Assume that I1
i comes

before I1
j on Z and I2

i comes before I2
j on Z. Let F1,F2 ∈ C1, and write F = F1 ∩F2.

Then one of the following holds:

– If F intersects C′i and C′j or F intersects B2 then F ∩Sr
i (I

1
i ) 6= /0.

– If F intersects C′i and C′j or F intersects A1, then F ∩Sl
j(I

2
j ) 6= /0.

Proof First note that A1 lies below Sl
j(I

2
j ) in R2 and B2 lies below Sr

i (I
1
i ) in R4 For

instance, if A1 contains a point p lying on or above Sl
j(I

2
j ), then the segment [p, l(I2

i )]

crosses [ f1,c] on or above Sl
j(I

2
j ), contradicting the fact that I1

i comes before I1
j on Z.

A similar argument applies to the corresponding statement for B2.
Assume for contradiction that there exists two sets F1,F2 ∈ C1 such that F1 ∩F2

lies below Sl
j(I

2
j ) in R2 and A1 ∩ (F1 ∩F2) 6= /0, and two sets F3,F4 ∈ C1 such that

F3 ∩F4 lies below Sr
i (I

1
i ) in R4 and B2 ∩ (F1 ∩F2) 6= /0. By the (4,3)-property, three

sets out of F1,F2,F3,F4 have a common point. If F1,F2,F3 intersect, then F3 intersects
B2 and has a point below Sl

j(I
2
j ) in R2, which implies that F3 has a point in R1, a

contradiction. Similarly, F1,F3,F4 cannot intersect. Therefore, there is no pair of sets
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in C1 whose intersection intersects B2 and lies below Sr
i (I

1
i ) in R4, or there is no pair

of sets in C1 whose intersection intersects A1 and lies below Sl
j(I

2
j ) in R2.

Assume that there is no pair of sets in C1 whose intersection lies below Sr
i (I

1
i )

in R4 and intersects B2, and take L = Sr
i (I

1
i ). Let F be the intersection of any pair of

sets in C1. If F intersects B2, then by the above F does not lie below L in R4. This
implies that F intersects L since B2 lies below L in R4. If F intersects B1 and A1, then
F intersects L by Lemma 2. If F intersects B1 and A2, then F intersects L since B1
lies in the halfspace defined by L that does not contain Ci.

If there is no pair of sets in C1 whose intersection lies below Sl
j(I

2
j ) in R2 and

intersects A1, then a similar argument shows that the corresponding statements follow
for Sl

j(I
2
j ). ut

Lemma 5 If F ∈ C1 and C′i has two components, then F ∩S′i is an interval.

Proof Clearly, F ∩ (S′i∩R2) and F ∩ (S′i∩R4) are intervals, and F ∩S′i = (S′i∩R2)∪
(S′i ∩ R4), so it suffices to show that F cannot intersect both S′i ∩ R4 and S′i ∩ R2.
Suppose it does. Let T be the line passing through r(I1

i ) and l(I2
i ). By the definition

of S′i, both S′i ∩R2 and S′i ∩R4 lie on the closed halfspace defined by T containing f0
and f1. Since F is convex, this implies that F has a point in R1, a contradiction. ut

Lemma 6 Let F1,F2 ∈ C1, then F1∩F2 intersects at least two of C1,C2,C3.

Proof Suppose F1∩F2 does not intersect C1. Since (C1∩C2)⊂ R1 and F∩R1 = /0, by
the (4,3)-property for the sets C1,C2,F1,F2, we have that C2 must intersect F1 ∩F2.
Similarly, C3 intersects F1∩F2. ut

3.3 Proof of Theorem 6

We wish to show that τ(C1) ≤ 2. We split into four cases. In each case and subcase,
we find two homeomorphic copies of the real line T1 and T2, and show that the family
of 2-intervals I = {(F ∩T1)∪ (F ∩T2) : F ∈ C1} satisfies ν(I ) = 1. By Theorem
3, this implies τ(I )≤ 2. The curves T1,T2 will be of the form Sr

i (I), Sl
i(I), or S′i, and

Lemma 5 ensures that I is indeed a family of 2-intervals. Recall that I1
i =Ci∩ [ f1,c],

I2
i =Ci∩ [c, f0], and Ii =Ci∩Z.

Case 1. C′i has one component for each i (see Figure 5).
Notice in this case each Ii is an interval. Assume without loss of generality that I1

comes before I2 and I2 comes before I3 on Z.
Set T1 = Sr

1(I1) and T2 = Sr
2(I2), and let F1,F2 ∈ C1. By Lemma 6, F1∩F2 inter-

sects two of the Ci. Then, by Lemma 2, F1∩F2 intersects T1 or T2. It follows then our
collection of 2-intervals, I , has matching number 1.

Case 2. One of the C′i’s has two components (see Figure 6).
We can assume without loss of generality that C′3 has two components, and that

I1 comes before I2 on Z.
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f0

f3

f2

f1

T1 = Sr
1(I1)

T2 = Sr
2(I2)

Fig. 5 Case 1

Subcase 2.1. If the order of the intervals on Z is I1, I2, I1
3 , I

2
3 , then set T1 = Sr

1(I1)
and T2 = Sr

2(I2).

Subcase 2.2. If the order of the intervals is I1, I1
3 , I2, I2

3 , then set T1 = S′3 and T2 =
Sr

1(I1).

Subcase 2.3. If the order of the intervals is I1, I1
3 , I

2
3 , I2, then set T1 = Sr

1(I1) and
T2 = Sl

2(I2).

Subcase 2.4. If the order of the intervals is I1
3 , I1, I2, I2

3 , then set T1 = S′3 and T2 =
Sr

1(I1).
The remaining subcases of Case 2 are symmetrical. For instance, the case where

the order of the intervals is I1
3 , I

2
3 , I1, I2 follows similarly to the case where the order

of the intervals is I1, I2, I1
3 , I

2
3 .

Fig. 6 The configuration of each Ci in the subcases of Case 2. Blue represents C1, red represents C2, and
green represents C3.

Case 3. Two of the C′i’s have two components (see Figure 7).
Without loss of generality, assume C′2 and C′3 have two components.
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Subcase 3.1. Assume the order of the intervals is I1, I1
2 , I

1
3 , I

2
3 , I

2
2 , then set T1 =

Sr
1(I1) and T2 = S′2.

Subcase 3.2. If the order of the intervals is I1, I1
2 , I

1
3 , I

2
2 , I

2
3 , then set T1 = Sr

1(I1)
and T2 to be the line obtained by applying Lemma 4 to C2 and C3.

Subcase 3.3. If the order of the intervals is I1
2 , I1, I1

3 , I
2
3 , I

2
2 , then set T1 = Sr

1(I1)
and T2 = S′2.

Subcase 3.4. If the order of the intervals is I1
2 , I1, I1

3 , I
2
2 , I

2
3 , then set T1 = Sr(I1) and

T2 to be the line obtained by applying Lemma 4 to C2 and C3. Let F be the intersection
of a pair of sets in C1. If F intersects C2 and C3, then F intersects T2 by Lemma 4.
If F intersects C1 and C3 or C1 and C′2 ∩R4, then F intersects T1. If T2 = Sr

2(I
1
2 ) and

F intersects C1 and C′2 ∩R2, then F intersects T2 by Lemma 2. If T2 = Sl
3(I

2
3 ) and F

intersects C1 and C′2∩R2, then F intersects T2 by Lemma 4.

Subcase 3.5. If the order of the intervals is I1
2 , I

1
3 , I1, I2

3 , I
2
2 , then set T1 = S′2 and

T2 = S′3.

Subcase 3.6. If the order of the intervals is I1
2 , I

1
3 , I1, I2

2 , I
2
3 , then set T1 = S′2 and

T2 = S′3.
The remaining subcases are symmetrical.

Fig. 7 The configuration of each Ci in the subcases of Case 3.

Case 4: Each C′i has two components (see Figure 8).

Subcase 4.1. If the order of the intervals is I1
1 , I

1
2 , I

1
3 , I

2
3 , I

2
2 , I

2
1 , then set T1 = S′1 and

T2 = S′2.

Subcase 4.2. If the order of the intervals is I1
1 , I

1
2 , I

1
3 , I

2
3 , I

2
1 , I

2
2 , then set T1 = S′1 and

T2 = S′2.
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Subcase 4.3. If the order of the intervals is I1
1 , I

1
2 , I

1
3 , I

2
1 , I

2
2 , I

2
3 , then set T1 = S′2 and

T2 to be the line obtained by applying Lemma 4 to C1 and C3. Let F be the intersection
of a pair of sets in C1. If F intersects C1 and C3, then H intersects T2 by Lemma 4. If
F intersects C′2∩R4 and C1 or C′2∩R4 and C′3∩R2, then F intersects T1 by Lemma 3.
If F intersects C′2∩R2 and C3 or C′2∩R2 and C′1∩R4, then H intersects T1 by Lemma
3.

If T2 = Sr
1(I

1
1 ) and F intersects C′3 ∩R4, then F intersects T2 by Lemma 4. If F

intersects C′2∩R2 and C′1∩R2, then F intersects T2 by Lemma 2.
If T2 = Sl

3(I
1
3 ) and F intersects C′1 ∩R2, then F intersects T2 by Lemma 4. If F

intersects C′2∩R4 and C′3∩R4, then F intersects T2 by Lemma 2.
Therefore, the resulting family of 2-intervals coming from these two lines has

matching number 1.

Subcase 4.4. If the order of the intervals is I1
1 , I

1
2 , I

1
3 , I

2
2 , I

2
3 , I

2
1 , then set T1 = S′1 and

T2 to be the line obtained by applying Lemma 4 to C2 and C3.

Subcase 4.5. If the order of the intervals is I1
1 , I

1
2 , I

1
3 , I

2
2 , I

2
1 , I

2
3 , then set T1 = S′1 and

T2 to be the line obtained by applying Lemma 4 to C2 and C3. A similar argument
as in subcase 3 shows that the resulting family of 2-intervals coming from these two
lines has matching number 1.

Fig. 8 The configuration of each Ci in the subcases of Case 4
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5. D. J. Kleitman, A. Gyárfás, and G. Tóth. Convex sets in the plane with three of every four meeting.
volume 21, pages 221–232. 2001. Paul Erdős and his mathematics (Budapest, 1999).
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