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[1] This paper proposes a new approach to the hydraulics of in situ groundwater
remediation. In situ remediation promotes reactions between an injected treatment
solution and the contaminated groundwater, but without a hydraulic mechanism to
promote spreading, the laminar flows characteristic of porous media will keep the two fluids
in approximately the same relative configuration as they travel through the aquifer, limiting
the opportunity for reactions to occur. To address this fundamental limitation, this paper
borrows a key result from the fluid mechanics literature: Spreading in laminar flows is
optimized by chaotic advection. Previous studies have applied this result to groundwater
remediation using the pulsed dipole model, but that model depends on reinjection of fluid,
which presents a number of theoretical and practical limitations. Accordingly, this paper
proposes a new conceptual model for plume spreading by chaotic advection, using an
engineered sequence of extractions and injections of clean water at an array of wells, which
generates plume spreading by stretching and folding the fluid interface between the injected
treatment solution and the contaminated groundwater but does not require reinjection. The
paper includes an overview of the analytical techniques—Poincaré sections, periodic points,
stable and unstable manifolds, heteroclinic points, and Lyapunov exponents—used to
demonstrate chaotic advection in the limiting case in which diffusion is negligible.
Numerical simulations show that spreading by stretching and folding is complimentary to
spreading resulting from aquifer heterogeneity.
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1. Introduction
[2] Treatment solutions containing chemical amendments

(oxidants, electron donors, or nutrients) are frequently
injected into aquifers for in situ remediation of contami-
nated groundwater [Domenico and Schwartz, 1998], but this
approach suffers from a fundamental technical problem:
Contaminant degradation requires mixing of the treatment
solution and the contaminated groundwater [MacDonald
and Kitanidis, 1993], which is difficult because mixing in
porous media is generally very poor [National Research
Council, 2009]. Because flow in porous media is laminar, it
lacks the turbulent eddies that generate most of the mixing
in open channels and engineered reactors. As a result, in
situ degradation reactions are confined to a narrow fluid
interface between the injected plume of treatment solution
and the contaminated groundwater [National Research
Council, 2000], across which pore-scale dispersion is the
rate-limiting step. This is a fundamental technical problem

that has received considerable attention from the ground-
water research community.
[3] The literature on mixing in aquifers can be grouped

into two broad categories, (1) heterogeneity effects, and (2)
chaotic advection. Both groups generally conceptualize
mixing as a two-step process with a transport step and a
dispersion step. Under this paradigm, the term mixing is
used in a restrictive sense for the dispersion step resulting
from pore-scale processes and causing dilution, while the
terms stirring, stretching, or spreading refer to the transport
step resulting from advection, including heterogeneity
effects manifested as macrodispersion, causing plumes to
become more contorted but without dilution [Dentz et al.,
2011; Kapoor and Gelhar, 1994a; Kitanidis, 1994; Le
Borgne et al., 2010]. A common metric to quantify mixing
is the local mixing factor rTCDrC, where C(x, t) is the
scalar concentration of interest, and D is the dispersion ten-
sor. For example, a recent review shows that three other mix-
ing metrics are proportional to this local mixing factor: the
rate of decay of concentration variance, the rate of growth of
concentration entropy, and the rate of chemical reactions at
high Damköhler number [Dentz et al., 2011]. The volume
integral of the local mixing factor is the scalar dissipation
rate, which has been used to quantify mixing not only in
porous media [e.g., Le Borgne et al., 2010] but also in other
branches of fluid mechanics [e.g., Pope, 2000]. In essen-
tially all cases relevant to groundwater remediation, mixing
is distinct from spreading, which can instead be quantified
by the spatial moment of C(x, t) [Le Borgne et al., 2010] or
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by the plume interface length [Zhang et al., 2009], both of
which increase with time as the plume becomes more con-
torted. The latter metric is particularly appropriate for the
limiting case in which pore-scale dispersion is neglected
[Dagan, 1989, section 4.3.5; Kapoor and Gelhar, 1994b].
In particular, plumes in incompressible flows without dis-
persion maintain their initial concentration and volume
[Dagan, 1989, section 4.3.5], so in this simplified case the
plume interface length directly records the degree of
spreading. The present study neglects dispersion in order to
focus entirely on spreading, with the understanding that
mixing (i.e., pore-scale dispersion) provides the final link
required to increase chemical reaction rates and conse-
quently the effectiveness of remediating groundwater by
injecting treatment solutions.
[4] A review of the literature on mixing in aquifers high-

lights two key findings. In the first category of literature
that discusses heterogeneity effects, the key finding is that
spreading depends on the structure of the flow [Dentz and
Carrera, 2005; Finn et al., 2004], consistent with the liter-
ature on turbulence [e.g., Crimaldi et al., 2008]. The struc-
ture of the flow in geologic porous media largely results
from heterogeneous permeability [Dagan, 1989, section
4.3.5; Kapoor and Gelhar, 1994a, 1994b; Kitanidis, 1994;
Rolle et al., 2009]. In the usual conceptual model, where
flow results from an imposed hydraulic head gradient in a
certain primary flow direction, background flow and heter-
ogeneous permeability are required to generate heterogene-
ous velocity in the porous media. Recently, Le Borgne et al.
[2010] generalized the role of heterogeneity by emphasizing
that spreading depends on heterogeneous velocity, which
could result from heterogeneous permeability, or from other
mechanisms such as temporal fluctuations in the fluid veloc-
ity [Dentz and Carrera, 2005]. Once achieved, spreading
enhances mixing through increased transverse dispersion
[Cirpka, 2005; Cirpka et al., 2011]. In sum, the literature
on heterogeneity effects articulates the need for spreading,
and emphasizes that spreading depends on the structure of
the flow, namely, heterogeneous velocity. It does not, how-
ever, provide guidance on what the structure of the flow can
or should be to promote spreading. Accordingly, the present
study proposes a new way to generate heterogeneous veloc-
ity, using extractions and injections at wells, that does not
require background flow or heterogeneous permeability.
[5] The second category of literature, pioneered by Aref

[1984] and Ottino [1989], falls under the heading of chaotic
advection, which is known to optimize spreading in laminar
flows [Ottino et al., 1994]. Chaotic advection exists when
fluid particles exhibit sensitive dependence on initial condi-
tions, which requires at least two-dimensional (2-D) unsteady
flow or three-dimensional (3-D) steady flow [Ottino, 1989,
section 4.7]. In particular, certain velocity fields are manifes-
tations of the horseshoe map, a mathematical expression of
stretching and folding that implies the presence of chaotic
advection [Ottino et al., 1994]. Since chaotic advection opti-
mizes spreading in laminar flows, and since stretching and
folding can indicate chaotic advection, the key finding in this
second category of literature is that stretching and folding
can optimize spreading in laminar flows [Chakravarthy and
Ottino, 1995; Ottino et al., 1994]. For example, in a theoreti-
cal study and analysis of data from the Borden site, Weeks
and Sposito [1998] found that spreading is more effective if

chaotic flow leading to both stretching and folding can be
induced. Indeed, the importance of stretching and folding for
spreading in laminar flows was first recognized more than a
century ago by Reynolds [1894]. One can also grasp the im-
portance of folding from a practical perspective, since only a
certain degree of stretching can be accomplished within a
bounded domain before folding becomes necessary to
achieve continued stretching [Aref, 2002]. In the present
application, the bounded domain is a finite region of an aqui-
fer, to which it is beneficial to constrain remediation activity
for reasons of waste containment.
[6] There are several conceptual models for chaotic

advection in laminar flows, e.g., (1) the blinking vortex
[Aref, 1984], (2) eccentric cylinders [Funakoshi, 2008; Muz-
zio et al., 1992; Swanson and Ottino, 1990], and (3) the
pulsed dipole [Jones and Aref, 1988; Sposito, 2006; Stremler
et al., 2004; Tel et al., 2000] and similar approaches [Bagtzo-
glou and Oates, 2007; Trefry et al., 2012]. Of these, the
pulsed dipole merits special attention because it has found
several applications, including spreading in porous media,
since its introduction by Jones and Aref [1988]. Tel et al.
[2000] applied the pulsed dipole to 2-D open flows, and
investigated the effects of chaotic advection on chemical and
biological processes in such flows. Stremler et al. [2004]
investigated chaotic advection with a single pulsed dipole
and with two pulsed dipoles, with applications to porous
media and to microfluidics. Extending the work of Jones and
Aref [1988] and Stremler et al. [2004], Sposito [2006]
applied the pulsed dipole in the specific context of in situ
groundwater remediation.
[7] Several other authors have reported methods similar to

the pulsed dipole. Bagtzoglou and Oates [2007] numerically
simulated transport in groundwater due to random extraction
and injection at three wells in a triangular pattern, with no
net extraction of water from the aquifer. Their results showed
that this oscillating well triplet led to enhanced plume
spreading. In a follow-up experimental study, Zhang et al.
[2009] found that the oscillating well triplet increased the
plume interface length more than a nonoscillating well tri-
plet. Trefry et al. [2012] presented the rotating dipole based
on a circular array of wells around a contaminant plume, of
which two wells on opposite sides of the circle form a dipole
at any given time. When the wells are operated such that the
dipole pair proceeds around the circle, Trefry et al. [2012]
showed the system to exhibit chaotic advection, leading to
enhanced plume spreading.
[8] Although it has been applied to chaotic advection in

porous media, the pulsed dipole [Jones and Aref, 1988;
Sposito, 2006; Stremler et al., 2004; Tel et al., 2000]
includes assumptions about the timing and orientation of
reinjection of fluid particles that are not physically realistic
in groundwater applications, where the timing and orienta-
tion of reinjection is random because of turbulent mixing
of fluid particles in the pumps and because of dispersion in
the piping between wells. Chaotic advection cannot be
achieved in the pulsed dipole unless certain reinjection rules
are used; in particular, Radabaugh [2011] showed a lack of
chaotic advection, and hence poor spreading, on a single
pass from the injection to the extraction well. Accordingly
the unrealistic reinjection rules in the pulsed dipole are par-
ticularly problematic in the context of groundwater remedia-
tion. Moreover, reinjection is a regulatory concern, because
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injecting contaminated water into an aquifer is generally for-
bidden, even in the context of groundwater remediation.
[9] The pulsed dipole also suffers from a practical limi-

tation in groundwater applications. Because the pulsed
dipole extracts both the treatment solution and the contami-
nated groundwater simultaneously, they will undergo tur-
bulent mixing in the pumps, leading to reactions in the
wells, rather than spatially extensive reactions throughout
the aquifer itself. Such reactions near wells frequently gen-
erate clogging [Bagtzoglou and Oates, 2007; Li et al.,
2009, 2010; MacDonald et al., 1999], leading to difficulty
in well operations and uncertainty in the structure of the
flow field. For this reason, a method that can produce
spreading while minimizing plume extraction would be
preferable.
[10] The goal of the present paper is to present a new

approach to the hydraulics of plume spreading in the con-
text of in situ groundwater remediation, using an engi-
neered sequence of extractions and injections of clean
water at an array of wells surrounding the injected plume
of treatment solution. This engineered sequence of injections
and extractions generates plume spreading by stretching and
folding the fluid interface between an injected treatment solu-
tion and contaminated groundwater. The paper begins with
an overview of the analytical techniques—Poincaré sections,
periodic points, stable and unstable manifolds, heteroclinic
points, and Lyapunov exponents—used to analyze chaotic
advection. These analytical techniques are used to demon-
strate chaotic advection in the engineered sequence of injec-
tions and extractions for the idealized case of homogeneous
permeability. Numerical simulations are then presented to
show the relative contribution of spreading resulting from
stretching and folding compared to spreading resulting from
aquifer heterogeneity.

2. Analytical Techniques
[11] This section provides a brief overview of the analyt-

ical techniques used to characterize chaotic advection,
which will be applied to the engineered sequence of extrac-
tions and injections. This brief overview does not attempt a
comprehensive treatment of these techniques, for which
more complete details appear in many monographs on dy-
namical systems, such as those by Ottino [1989] and Tabor
[1989].

2.1. Poincaré Sections

[12] In the context of periodic flows, a Poincaré section
is a stroboscopic picture showing fluid particle positions at
discrete time intervals [Ottino, 1989, section 5.5]. Because
they help to visualize and distinguish chaotic and non-
chaotic behavior, Poincaré sections are a standard technique
for analyzing chaotic advection. In the present paper, the
discrete time step is chosen to be the duration of the peri-
odic pumping pattern used to drive the flow. Rather than
analyzing the flow in continuous time, Poincaré sections
simplify the analysis by considering the flow as an iterated
map, where the map determines the coordinates for each
fluid particle after each iteration of the periodic flow. Nota-
bly, in the case of potential flow, such as flow through ho-
mogeneous porous media, a Poincaré section is equivalent
to a phase space plot, which is a standard tool in the litera-
ture on dynamical systems [Aref, 2002; Sposito, 2006].

2.2. Periodic Points

[13] A periodic point of period n is a point in the flow
domain to which particles return exactly after n iterations
of the periodic flow [e.g., Tabor, 1989]. Period n periodic
points always occur in groups of size n, and can be plotted
on Poincaré sections. As discussed below, periodic points
are the basis for several diagnostics for chaotic advection,
so their identification is a prerequisite for what follows.
Periodic points can be categorized as elliptic or hyperbolic
on the basis of the eigenvalues of the Jacobian that maps
the periodic point back to itself. In the neighborhood of
elliptic periodic points, defined by imaginary eigenvalues,
spreading is poor because fluid particles become trapped
inside these regions indefinitely. In the neighborhood of
hyperbolic periodic points, defined by real and unique
eigenvalues with one positive and one negative, spreading
is good [Funakoshi, 2008; Mosovsky and Meiss, 2011], as
discussed below.

2.2.1. Stable and Unstable Manifolds
[14] Spreading around hyperbolic periodic points is con-

trolled by the stable and unstable manifolds associated with
these points. A stable manifold is a curve on a Poincaré
section (i.e., comprising points plotted at discrete time
intervals) passing through the hyperbolic periodic point,
such that particles on the stable manifold approach the peri-
odic point in subsequent iterations of the map. An unstable
manifold is similar, except that particles on the unstable
manifold diverge from the hyperbolic periodic point in sub-
sequent iterations of the periodic flow [e.g., Tabor, 1989].
A small area element on a Poincaré section in the neighbor-
hood of the hyperbolic periodic point will be compressed
along the stable manifold and stretched along the unstable
manifold in such a way that its area is preserved [Tabor,
1989]. Thus, the presence of hyperbolic periodic points is
characteristic of good spreading.

2.2.2. Heteroclinic Points
[15] Heteroclinic points are intersections between the

stable manifold of a certain hyperbolic periodic point and
the unstable manifold of a different hyperbolic periodic
point. They are a significant feature because their existence
implies chaos and good spreading [Ottino, 1989, section
5.9]. Moreover, the presence of one heteroclinic point
implies the presence of an infinite number of heteroclinic
points [Ottino, 1989, section 5.8]. Therefore heteroclinic
points are a simple but compelling diagnostic for chaotic
advection.

2.3. Lyapunov Exponents

[16] A fundamental aspect of chaotic advection is sensi-
tive dependence on initial conditions, indicated by expo-
nential growth of the separation distance of initially nearby
particles. The rate of exponential growth is quantified by
the Lyapunov exponent, for which the classical definition is

� ¼ lim
t!1; dð0Þ!0

1

t

� �
ln

dðtÞ
dð0Þ

� �
; (1)

where d(t) is the separation distance of a pair of particles
at time t [Tabor, 1989]. However, because this definition
is based on the limit of long time, it is not the most appro-
priate metric to quantify sensitive dependence on initial
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conditions in spreading applications. For example, Swanson
and Ottino [1990] noted that a significant degree of spread-
ing (i.e., large separation distances) is desired in the first
few iterations, in contrast to generic chaotic systems, in
which large separation distances are only required asymp-
totically (i.e., large time). Accordingly, this paper will fol-
low the approach of Jones and Aref [1988], who defined a
modification to the Lyapunov exponent for finite times.
This paper adapts their metric as follows:

�ðnÞ ¼ 1

n

� �
ln
dðnÞ
dð0Þ

� �
; (2)

where d(n) is the separation distance of a pair of particles af-
ter n iterations of the map. This approach is analogous to
contemporary analysis of dynamical systems using finite
time Lyapunov exponents [Kleinfelter et al., 2005; Stefanski
et al., 2010] and related metrics [Mosovsky and Meiss, 2011].

3. Plume Spreading by Stretching and Folding
[17] This section presents a new conceptual model for

plume spreading based directly on Ottino’s [1989, page ix]
premise that spreading ‘‘is the efficient stretching and fold-
ing of material lines and surfaces.’’

3.1. Model Definition

[18] Consider a homogeneous, isotropic, confined, horizon-
tal aquifer of infinite extent, porosity ", and thickness b that

has been contaminated. To promote in situ remediation, a
plume of treatment solution is injected into the contaminated
aquifer, creating a circular fluid interface between the treat-
ment solution and the contaminated groundwater, the center
of which defines the point (0, 0). Degradation reactions occur
where the two solutions overlap each other. To promote
plume spreading, four fully penetrating wells are installed at
(�L, 0), (L, 0), (0, �L) and (0, L) as shown on Figure 1a. The
wells are operated in a engineered sequence of extractions
and injections of clean water, with discharge Qi and duration
Ti, where i is the step number, creating a periodic, unsteady
flow field within the aquifer in the vicinity of the wells.
Neglecting storage effects, this is a sequence of radial flows
away from the active well during injection, and toward the
active well during extraction.
[19] The flow can be simulated by tracking particle posi-

tions at the end of each injection or extraction step. A volume
balance around the injection well gives Q ¼ Aq ¼ 2�rbq,
where Q > 0 is the injection rate, A is the area perpendicular
to the fluid velocity, q is the specific discharge, and r is the ra-
dial distance to the active well. The fluid velocity is v ¼ q/",
where " is porosity. Since v ¼ dr/dt,

dr

dt
¼ Q

2�b"

� �
1

r
: (3)

For a fluid particle that is initially at a distance of ro from
the injection well at time to, (3) can be integrated from

Figure 1. Plume spreading by stretching and folding using the engineered sequence of extractions and
injections of Table 1. Dots denote well locations, with labels shown in Figure 1a. For reference, the ini-
tial fluid interface is shown on each plot as a thin line. Arrows denote injection (into well) or extraction
(out of well).
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radius ro to r and from time to to t to give the radial distance
from the injection well at time t,

rðtÞ ¼ Q

�b"
ðt � toÞ þ r2o

� �1=2
: (4)

This equation is used to calculate the position of a water
particle at the end of an injection step. Since flow is radial,
the particle does not move in the tangential direction.
Extraction is modeled by Q < 0. The various independent
variables can be grouped into a single dimensionless param-
eter, �2, which uniquely identifies the flow:

�2 ¼ QT

�"bL2
; (5)

where T is the duration of injection (assumed equal to the
duration of extraction) and L is the well separation dis-
tance. This expression has been generalized from Jones
and Aref [1988] to include the effect of porosity.
[20] A sequence of extractions and injections is chosen

in such a way as to create stretching and folding of the fluid
interface, leading to improved spreading, and presumably
therefore to enhanced reaction and more complete in situ
groundwater remediation. One possible implementation of
such an engineered sequence of extractions and injections
is the 12-step sequence shown in Table 1 and illustrated in
Figure 1 and Animation S1 of the auxiliary material.1 Injec-
tion or extraction rates are expressed using �2, defined in
(5). The initial position of the fluid interface is assumed to
be a circle of radius r ¼ L/4 centered at the origin, giving
an initial plume interface length of 1.57L. Modeling the
fluid interface as a collection of particles, (4) is used to
track their positions relative to the active well. In the first
six steps, the west and east wells are operated. During the
first two steps, water is injected, stretching the fluid inter-
face (Figures 1a and 1b). During the next four steps, water
is extracted, folding the fluid interface (Figures 1c–1f). These
six steps are then repeated using the north and south wells,
leading to a second fold in the fluid interface (Figures 1g–1l).
Equal volumes of water are injected and extracted such that
the net extraction is zero. These twelve steps complete one
cycle of the sequence of extractions and injections.
[21] To provide an example, if L ¼ 5 m, b ¼ 3 m, " ¼

0.25, and T ¼ 1 d, then the initial plume would have a radius
of 1.25 m, the four wells would inscribe a circle of area 79 m2,
and the first injection rate of �2 ¼ þ3.5/� in Table 1 would
correspond to injection of 66 m3 d�1¼ 46 L min�1.
3.2. Analysis of Chaotic Advection

[22] Analysis of the periodic points and finite time
Lyapunov exponents demonstrate the presence of chaotic
advection, and therefore good spreading [Aref, 1984;
Ottino, 1989] in the engineered sequence of extractions and
injections. Period n periodic points were identified numeri-
cally, by calculating the separation distance between the ini-
tial position and final position of a grid of particles after
n cycles of extractions and injections and then finding zeros.
Figure 2 shows these distances for n ¼ 1, and Figure S1 of

the auxiliary material shows these distances for n ¼ 1, 2,
3, 4. In order to focus on the vicinity of the initial fluid
interface, Figure 3 shows an enlargement of Figure 2
(and of Figure S1) along with corresponding results for n ¼
2, 3, 4, with a change in color scale to emphasize small
separation distances. (For comparison, Figure S2 of the aux-
iliary material shows Figure 3 superimposed on the position
of the initially circular fluid interface, and Figure S3 repeats
Figure S2 at the scale of Figure 2.) The analysis shows four
period 1 periodic points (Figure 3a), four period 2 periodic
points (Figure 3b), 12 period 3 periodic points (Figure 3c),
and 16 period 4 periodic points (Figure 3d). Periodic points
of higher period exist but are not shown in Figure 3.
[23] The classification of periodic points as elliptic or

hyperbolic identifies whether the periodic points represent
regions of poor spreading or good spreading, respectively.
Classification of periodic points was determined by track-
ing a circle of 360 particles placed at a radius of r ¼
0.001L around each periodic point forward for 4 cycles to
produce unstable manifolds, and backward for 4 cycles to
produce stable manifolds (Figure 4). All period 2 periodic
points and eight period 4 periodic points (shown as trian-
gles and circles in Figures 4b and 4d) are elliptic, so the
circle of particles surrounding each elliptic periodic point

Table 1. Engineered Sequence of Extractions and Injections to
Stretch and Fold the Fluid Interfacea

Step Well �2

1 W þ3.5/�
2 E þ3.5/�
3 W �1.0/�
4 E �3.0/�
5 W �1.6/�
6 E �1.4/�
7 S þ3.5/�
8 N þ3.5/�
9 S �1.0/�
10 N �3.0/�
11 S �1.6/�
12 N �1.4/�
a�2 > 0 indicates injection.

Figure 2. Displacement (dimensionless) during one cycle
of the sequence of extractions and injections for each initial
position. These results are also shown in Figure S1 of the
auxiliary material, along with equivalent results for two,
three, and four cycles. Wells are shown as white dots, and
the white dashed square is the area shown in Figure 3.

1Auxiliary materials are available in the HTML. doi:10.1029/
2011WR011567.
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Figure 3. Displacement (dimensionless) during n cycles of the sequence of extractions and injections for
each initial position in the dashed white square shown in Figure 2, where (a) n ¼ 1, (b) n ¼ 2, (c) n ¼ 3,
and (d) n ¼ 4. In each plot, period n periodic points are shown as white circles, and lower period periodic
points are shown as white squares. For example, period 1 periodic points appear at each cycle and are
shown as white circles in Figure 3a and as white squares in Figures 3b–3d.

Figure 4. Period n periodic points for the sequence of extractions and injections with stable (gray) and
unstable (black) manifolds, where (a) n ¼ 1, (b) n ¼ 2, (c) n ¼ 3, and (d) n ¼ 4. To allow comparisons
of magnitude for manifolds associated with different periods, each plot shows manifolds after four itera-
tions of the sequence of extractions and injections. Several heteroclinic points are evident in Figure 4a,
indicating the presence of deterministic chaos. In each plot, sets of periodic points are indicated by com-
mon plotting symbols. Numbered periodic points are referenced in Figure 5.
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remains in approximately the same position throughout the
simulation, and thus no manifolds are observed in Figure 4b.
These points represent locations where spreading is poor.
[24] The remaining periodic points are hyperbolic, repre-

senting regions of good spreading. The relative degree of
spreading can be measured by the lengths of the segments
of the manifold that are shown in Figure 4. The segments
do not represent the complete manifold, but rather the por-
tion of the manifolds generated in 4 cycles of forward or
reverse time. The period 3 periodic points have the least
amount of spreading on the basis of the short length of the
manifold segments. On the other hand, for two of the pe-
riod 1 periodic points, labeled 1b and 1c on Figure 4a, the
segments of the manifolds are long, indicating a high degree
of spreading in the vicinity of these periodic points. For
these two periodic points, the stable manifold of one peri-
odic point intersects the unstable manifold of the other;
these points of intersection are heteroclinic points, which
imply the presence of chaos in this system. If the particle
positions were tracked for more than 4 cycles, additional
heteroclinic points would be seen in Figure 4a, and new het-
eroclinic points would emerge in Figures 4c and 4d.
[25] One can grasp the crucial role of hyperbolic periodic

points by recalling that the basic idea of chaos is sensitive
dependence on initial conditions. Consider two fluid par-
ticles that are initially close to each other, but (just) on op-
posite sides of a stable manifold of a hyperbolic periodic
point. In the first few iterations after they pass the hyper-
bolic periodic point, these two particles will diverge rap-
idly. So, by extension, if the domain contains many
hyperbolic periodic points, then it will also exhibit good
spreading [Funakoshi, 2008; Mosovsky and Meiss, 2011].
[26] Additional evidence of chaos is seen in Figure 5,

which plots �(n) calculated by (2) versus the number of
cycles. The selected periodic points are highlighted on Fig-
ure 4. The flow exhibits positive �(n), indicating chaotic
advection in the first few cycles, similar to the results of the
pulsed dipole [Jones and Aref, 1988]. The behavior of the
system during the first few cycles is critical for spreading,
since the system will be most cost effective if spreading
can be achieved in a short amount of time [Swanson and
Ottino, 1990].

3.3. Heterogeneity Effects

[27] As discussed in section 1, the discussion to this
point has been based on a highly idealized model that

neglects (1) dispersion, in order to focus entirely on spread-
ing, and (2) heterogeneous permeability, in order to focus
on heterogeneous velocity resulting from the engineered
sequence of injections and extractions. Accounting for dis-
persion is the subject of ongoing work that will extend this
approach to include mixing and remediation reactions. In
contrast, heterogeneous permeability (henceforth called het-
erogeneity) is relevant even when focusing entirely on
spreading [Dagan, 1989, section 4.3.5; Kapoor and Gelhar,
1994a, 1994b; Kitanidis, 1994; Le Borgne et al., 2010;
Rolle et al., 2009]. Accordingly, this section reports simula-
tions to show the relative contribution of spreading resulting
from stretching and folding compared to spreading resulting
from aquifer heterogeneity.
[28] Random log hydraulic conductivity fields Y ¼ ln(K)

with unit mean hydraulic conductivity and standard devia-
tions �Y ¼ 0, 0.1, 0.3, and 1 were produced from a single
realization of sequential Gaussian simulation in GSLIB
[Deutsch and Journel, 1992]. Simulations used a spherical
variogram with correlation length IY ¼ 2.1L. As shown in
Figure S4 of the auxiliary material, the domain is 66.005L
in the x and y directions, chosen to eliminate boundary
effects from the assumed constant head condition on each
boundary. For each level of heterogeneity, MODFLOW
2000 [Harbaugh et al., 2000] was used to simulate the flow
resulting from the 12-step sequence of injections and
extractions given in Table 1, assuming specific storage
Ss ¼ 0.001/L. The plume interface was modeled by particle
tracking using MODPATH 5.0 [Pollock, 1994], with poros-
ity " ¼ 0.25, and particles inserted when necessary to keep
the maximum separation distance between adjacent particles
no more than 0.0031L [Schafer-Perini and Wilson, 1991].
[29] Results show that spreading by stretching and folding

is complimentary to spreading resulting from aquifer hetero-
geneity. For the homogeneous case of �Y ¼ 0, Figure 6a
confirms that the numerical model is consistent with the ana-
lytical model of section 3.1, with plume interface lengths of
3.65L and 3.77L for the numerical and analytical models,
respectively. Figure 6b (�Y ¼ 0.1) shows minor deviations
from the homogeneous case, giving an increased plume
interface length of 4.76L, but no apparent extraction of the
plume interface. Figure 6c (�Y ¼ 0.3) and Figure 6d (�Y ¼ 1)
show larger deviations from the homogeneous case, giving
increased plume interface lengths of 11.7L and 114L, respec-
tively. Taken together, these results show that heterogeneity
provides additional spreading, and would therefore be

Figure 5. Average values of �(n) for the numbered periodic points shown in Figure 4. Each curve
shows the average value of �(n) for 360 particles uniformly spaced around the relevant periodic point on
a circle of radius (1 � 10�12)L. All curves approach zero asymptotically.
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expected to increase mixing of injected treatment solutions.
While this is certainly good news for groundwater remedia-
tion, Figure 6 also contains an important caveat, because as
heterogeneity increases, the plume interface is increasingly
likely to be extracted (at well S for �Y ¼ 0.3 and wells N and
S for �Y ¼ 1), which would trigger regulatory and clogging
concerns as discussed in section 1. Extraction of the plume
interface is not surprising, because the 12-step process in
Table 1 was specifically developed for the homogeneous
case. In particular, the long plume interface length of 114L
for �Y ¼ 1 results not only from heterogeneity, but also from
extraction of the plume interface at wells N and S. Given the
heterogeneous nature of essentially all geologic porous
media, Figure 6 indicates that stochastic optimization should
be considered for practical implementation of the stretching
and folding approach proposed here. This is the subject of
ongoing work.

3.4. Discussion

[30] The approach presented here for plume spreading by
stretching and folding is related to the baker’s transformation,

which has been called the best possible mixing device
[Chakravarthy and Ottino, 1995; Ottino, 1989, section 5.8;
Ottino et al., 1994]. However, because it requires cutting
and fusing, the baker’s transformation cannot be applied
directly to continuous flows; its continuous analog, the
horseshoe map, is the best available approximation [Ottino,
1989, section 5.8]. The presence of heteroclinic points gener-
ally implies the flow is equivalent to a horseshoe map
[Ottino, 1989, section 5.9], which means that the engineered
sequence of extractions and injections presented here is an
example of the larger class of horseshoe maps that is known
to be optimal for spreading.
[31] With in situ remediation, improved spreading of the

treatment solution will allow increased interactions between
the treatment solution and the contaminated groundwater,
thereby increasing the potential for contaminant degradation
reactions to occur. The presence of hyperbolic periodic
points, heteroclinic points, and positive early time Lyapunov
exponents indicates that the proposed flow produces chaotic
advection, and therefore good spreading. In particular, (1) the
extraction-injection sequence can be designed so that the

Figure 6. Comparison of plume interface with and without heterogeneity, shown after the 12-step
sequence of injections and extractions given in Table 1. The homogeneous case (dotted line) corresponds
to Figure 1l and was calculated with the analytical model of section 3.1. The heterogeneous case (solid
line) was calculated using the permeability field shown in Figure S4 and the numerical model of section
3.3 for (a) �Y ¼ 0, (b) �Y ¼ 0.1, (c) �Y ¼ 0.3, and (d) �Y ¼ 1.0, where Y ¼ ln(K) and K is hydraulic con-
ductivity. The open circles are wells at (0,61) and (61, 0).
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fluid interface is not extracted, at least in the first few itera-
tions where spreading is crucial, thereby minimizing the risk
of clogging and regulatory concerns, and (2) plume spreading
is not dependent on background flow. In other words, the
scheme proposed here provides an alternative for cases where
the background flow is too slow to produce plume spreading
on a practical time scale.
[32] Unbounded spreading in an in situ remediation sys-

tem is not desirable because the contaminant would be
spread into regions of the aquifer that were initially uncon-
taminated. Instead, the goal is spreading at early times,
when the injected plume of treatment solution is spread
throughout the contaminated region, while still containing
the contaminant to a finite region of the aquifer. Such a sys-
tem would be represented by exponential growth of separa-
tion distances for early times when the initial spreading
occurs within the finite region, followed by no growth in
separation distances at later times because all particles
remain in the finite region. The system presented in this pa-
per shows this behavior, as demonstrated by the positive
value of the finite time Lyapunov exponent, �(n), at early
time, and a value of zero as time increases (Figure 5).
[33] There is remarkable similarity between the unstable

manifolds of the hyperbolic periodic points and the geome-
try of the fluid interface itself. For example, Figure 7 shows
the segment of the unstable manifold for period 1 points
generated with 7 cycles along with the fluid interface
after 4 cycles; Figure S5 in the auxiliary material shows
similar results for period 2, 3, and 4 periodic points; and
Animation S2 of the auxiliary material shows the corre-
spondence between the plume evolution and one of the
unstable manifolds for a period 1 periodic point. Unstable
manifolds are infinitely long and have an infinite number of
bends of approximately 180 degrees (see Figure 7) where
the manifold reverses direction, producing long and narrow
filaments. In the context of in situ remediation, as the fluid
interface stretches along the unstable manifolds, the fluid
interface will also be characterized by these same long and
narrow filaments. As these filaments become narrower, their
width will approach the length scale for pore-scale diffusion.

Thus, the longer fluid interface provides more area for reac-
tion while the narrow filaments enable the final pore-scale
diffusion step required for mixing and therefore for reaction.
[34] The region of good spreading is determined by the

structure of the flow, which can be visualized by the 4-cycle
displacement in Figure 3d, by the stable and unstable mani-
folds in Figure 4a, or by the fluid interface in Figure 7. The
correspondence between the region of good spreading and
the initial size of the r ¼ L/4 plume is by design, because
the 12-step sequence of injections and extractions given in
Table 1 was specifically designed for a plume of that size
and geometry in a homogeneous aquifer.

4. Conclusions
[35] With in situ remediation, degradation reactions

occur where the treatment solution and the contaminated
groundwater contact each other, or more precisely, are
close enough to interact by pore-scale dispersion on a prac-
tical time scale. Spreading promotes mixing, and the fluid
mechanics literature indicates that spreading is produced
efficiently by chaotic advection. A review of the pulsed
dipole shows that it produces chaotic advection, but that it
suffers from theoretical and practical limitations. Accord-
ingly, the goal of this paper was to introduce a new concep-
tual model for chaotic advection to create stretching and
folding in order to enhance in situ groundwater remedia-
tion. The engineered sequence of extractions and injections
introduced in this paper creates a periodic, unsteady flow
field in the vicinity of the interface between the treatment so-
lution and the contaminated groundwater, leading to stretch-
ing and folding of the fluid interface, which increases
contact between the treatment solution and the contaminated
groundwater, which will enhance mixing and therefore con-
taminant degradation. Chaotic advection has been shown to
lead to good spreading [Aref, 1984; Ottino, 1989]; thus by
demonstrating that the sequence of extractions and injections
produces chaotic advection, evidenced by heteroclinic points
on the Poincaré section and nonzero Lyapunov exponents at
early time, this paper has demonstrated that the engineered
sequence of extractions and injections produces good
spreading. Moreover, the proposed scheme does not require
reinjection, which reduces the risk of clogging and regula-
tory concerns resulting from extraction of contaminated
groundwater, and the proposed scheme does not rely on
background flow to produce plume spreading.
[36] The specific sequence of extractions and injections

presented in this paper was chosen simply as an illustration
to produce stretching and folding, but was not optimized.
Moreover, pore-scale dispersion has been neglected. The rel-
ative contribution to overall mixing (and enhanced reaction)
of the flow proposed here versus pore-scale dispersion is the
subject of ongoing work. Aided by plume spreading by
stretching and folding, and by the complimentary spreading
caused by heterogeneous permeability, improved mixing
would be expected to increase reaction rates and conse-
quently the effectiveness of in situ groundwater remediation.
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Figure 7. Comparison of the unstable manifold for period
1 points after seven cycles (solid black line) with the fluid
interface after four cycles (gray dashed line).
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