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Abstract
Experiments in porous media suffer from preferential flow along apparatus walls—called 
the wall effect—which results from higher porosity and therefore higher permeability near 
the walls. Through a theoretical analysis of porosity in a three-dimensional rectangular 
apparatus containing spherical beads with hexagonal close packing, this study shows that 
porosity, and therefore wall effects, exhibits different behavior along each of the orthogonal 
walls. This study also experimentally evaluates two techniques for mitigating wall effects 
in experiments of solute transport in porous media using monodisperse, spherical beads in 
hexagonal close packing as the bulk porous medium. The first mitigation technique adds 
a sublayer of smaller beads of one third of the diameter of the primary beads between the 
wall and the bulk media. The second mitigation technique applies a half-bead-diameter-
thick layer of silicone to the wall and embeds one layer of beads into the silicone, creating 
a wall of hemispheres. Both techniques seek to impose more uniform porosity up to the 
wall. Velocity profiles indicate that both techniques eliminate preferential flow along the 
wall and therefore are effective at mitigating the wall effect.

Keywords  Wall effect · Hexagonal close packing · Refractive-index matching · Laser-
induced fluorescence · Preferential flow

1  Introduction

Experiments of flow and transport in porous media are often conducted by packing 
porous media into a bench-scale container. Examples include permeameters to estimate 
permeability by measuring head loss across a column, column experiments to estimate 
dispersivity from measured breakthrough curves (Robbins 1989), and quasi-two-dimen-
sional experiments to observe flow and transport, often using refractive-index matched 
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porous media and fluid combinations (Stohr et al. 2003; Werth et al. 2010; Wright et al. 
2017). Unfortunately, the apparatus used in the experiments described above all suffer 
from the so-called wall effect, i.e., preferential flow adjacent to smooth walls resulting 
from non-uniform packing of the porous material near the apparatus walls, which can 
contribute to significant experimental error (Cohen and Metzner 1981).

Media packing becomes less dense in proximity to the wall due to the transition from 
an unbounded media structure in the interior to a truncated structure with increased void 
volume along the planar surface of the wall. For example, for round granular media, 
porosity at the interface between the media and a smooth apparatus wall approaches 
unity (Cohen and Metzner 1981; Schwartz and Smith 1953; Eisfeld and Schnitzlein 
2001; Gunn 1987).

As the local porosity increases, the local permeability within the porous media also 
increases. In approximately monodisperse, spherical media, permeability, k, can be esti-
mated using the Kozeny–Carman equation (Carman 1937) given by

where n is porosity, and d50 is the median grain diameter. Equation (1) indicates that per-
meability is primarily controlled by porosity for monodisperse granular media. Thus, along 
an apparatus wall, where local porosity is higher than the bulk porosity, local permeability 
will be higher than the bulk permeability. Since velocity is proportional to permeability, 
higher permeability near the apparatus walls leads to higher velocities near the walls. For 
example, Schwartz and Smith (1953) found that near-wall velocities are 30–100% higher 
than the velocity in the bulk porous media.

To limit the impact of the wall effect on the experimental results, some experimental 
protocols only analyze regions that are sufficiently far from apparatus walls, approximately 
6 grain diameters away from the wall for one-dimensional flow (Cohen and Metzner 1981; 
de Klerk 2003). Others apply a correction factor during the data analysis phase (Cohen 
and Metzner 1981; Eisfeld and Schnitzlein 2001). Alternatively, the wall effect can be 
directly mitigated by implementing a strategy to match the near-wall porosity to the aver-
age porosity of the bulk porous media, which would lead to near-wall velocities that essen-
tially match the velocity in the bulk porous media. One such mitigation technique has been 
proposed by Mcwhirter et al. (1997), in which grains were embedded in the wall. Unfortu-
nately, the efficacy of the proposed technique was not confirmed experimentally. Although 
techniques for mitigating wall effects have been suggested, we are unaware of any pub-
lished experimental testing of these techniques.

In this work, we perform a laboratory investigation of the effects of two techniques for 
mitigating wall effects in a rectangular, smooth-walled glass chamber filled with spherical 
beads with hexagonal close packing (HCP). The two mitigation techniques include filling 
extra near-wall pore space with either smaller beads or silicone. We evaluate wall effect 
mitigation by comparing near-wall fluid velocity to the bulk velocity. To do this, we fill the 
pore space with a refractive-index matched fluid, and track the movement of a dye tracer in 
the fluid. We use laser-induced fluorescence to image the dye movement through the cham-
ber both with and without wall mitigation techniques.

Theoretical analysis of local porosity for hexagonal close packing near apparatus walls 
is provided in Sect.  2. The experimental apparatus, wall mitigation techniques, and the 
data analysis are described in Sect. 3. Velocity profiles from experiments with and without 
mitigation techniques, which demonstrate the efficacy of those mitigation techniques, are 
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reported in Sect. 4. Sections 5 and 6 provide discussion and conclusions, and the porosity 
relationships reported in Sect. 2 are derived in the “Appendix”.

2 � Theoretical Analysis of Porosity with Hexagonal Close Packing

HCP, a close packing geometry that can be easily implemented for monodisperse spheres, 
produces nearly homogeneous packing within bulk porous media. In experiments, this 
quality makes it possible to accurately distinguish between flow behavior in the bulk 
porous media from that near the wall. HCP packing of monodisperse spheres has a theo-
retical porosity of 0.26 (Smith et al. 1929); however, in practice the packing structure, and 
therefore the porosity, deviates from HCP at the apparatus walls. For example, McWhirter 
et al. (1998) and Smith et al. (1929) report that porosity typically ranges from 0.35 to 0.45 
in experiments due in part to rigid walls that upset packing geometry. The specific packing 
structure near a wall depends on the orientation of the wall relative to the main HCP layer 
structure. Consider the packing in Fig. 2, which shows a horizontal projection of two lay-
ers of spheres packed with hexagonal close packing, adjacent to the corner of a rectangular 
prismatic container. With layers numbered in the + z direction, the light-colored spheres 

Fig. 1   Hexagonal close packing 
(HCP) of spheres. a Plan view 
of a single layer. b Oblique view 
of a unit cell comprising four 
layers of spheres, with each layer 
of like-colored spheres having 
the same positioning in the x–y 
plane. Spheres are offset by one 
half of a sphere diameter in the 
x direction and by 1∕

√
3 of a 

sphere diameter in the y direction 
relative to spheres in the overly-
ing and underlying layers

ba

Fig. 2   Horizontal projection of 
two layers of spheres with HCP 
packing in the vicinity of the 
front and side walls. Light circles 
(gray in online version) represent 
odd-numbered layers, numbered 
sequentially from the bottom. 
Darker circles (tan in online 
version) represent the even-num-
bered layers. See “Appendix” for 
details
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(gray in online version) represent Layer 1, which is the bottom layer and assumed to be 
resting on a flat plane at z = 0, following the configuration shown in Fig.  1a. The dark-
colored spheres (tan in online version) represent the second layer of spheres in the z direc-
tion, which are resting in the valleys created by three gray spheres, as shown in Fig. 1b. 
The alternating layers of light-colored and dark-colored spheres continue in the z direction 
(see Fig. 1b).

Figure 2 shows that the packing along the walls deviates from the packing in the interior 
of the container, with extra void space near the wall where a grain would otherwise be in 
the absence of a solid boundary. For this particular packing structure, Fig. 3 shows plots of 
areal porosity as a function of distance from the x-normal, y-normal, and z-normal walls, 
relative to the bead diameter d (see “Appendix” for details). We use the terminology x-nor-
mal wall, y-normal wall, and z-normal wall to define the walls parallel to the y–z (normal to 
the x-direction), x–z plane, and x–y planes, respectively. 

Porosity is unity at the wall and decreases away from the wall. Beyond a certain distance 
from the wall (shown in Fig. 3), porosity exhibits a repetitive pattern, where the average 
porosity is equal to the theoretical porosity of 0.26 for HCP. Note that the near-wall porosi-
ties are different for each wall, therefore each wall experiences different wall effects. For 
HCP using the defined coordinate system, the z-normal wall exhibits the lowest porosity 
as compared to the other walls. This is due to the fact that HCP does not have right angles 
(Fig. 1), while the apparatus does. While each layer in the x–y plane is identical, each layer 
is shifted diagonally from neighboring layers. Therefore, packing against the z-normal wall 
presents differently than packing against the x- or y-normal walls (see “Appendix” for fur-
ther details on HCP geometry for each wall).

3 � Experimental Methods

3.1 � Apparatus

The experimental apparatus shown in Fig.  4 includes a one-dimensional flow chamber 
that contains porous media, fluid, and dye; a laser to induce fluorescence of the dye; and 

Fig. 3   Porosity as a function of 
distance from a the x-normal 
wall, b the y-normal wall, and c 
the z-normal wall. The shaded 
gray box represents the region 
where porosity is impacted 
by proximity to the wall. The 
labeled arrows represent the 
interval of repetition. The bead 
diameter is denoted as d 
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a camera to capture images of the dye movement. The porous media are 3 mm diameter, 
borosilicate glass beads (Pyrex, part# 7268-3), that were systematically placed into the 
flow chamber to obtain HCP packing. Glycerin (99.7% USP Glycerin, Chemworld, CAS# 
56-81-5) was chosen as the fluid. Glycerin and borosilicate glass both have a refractive 
index of 1.47 at room temperature, making the fluid-bead system essentially transparent 
and allowing optical access through the flow chamber. A fluorescent dye solution of Rho-
damine 6G (Aldrich, CAS# 989-38-8) dissolved in glycerin was used as a tracer. The addi-
tion of dye did not have a measurable impact on the refractive index of the glycerin.

The glycerin and beads were contained in a quasi-one-dimensional flow test section 
constructed from a glass box measuring 17 cm × 8 cm × 7 cm (Fig. 4). On either side of the 
test section, flow entrance and exit chambers were bounded by an aluminum screen with a 
large mesh size to minimize perturbed flow, while simultaneously holding the beads firmly 
in place. The bead packing within the test section was nearly homogeneous HCP. Devia-
tions from theoretical HCP were due to variations in bead size, typically ± 3% of the nomi-
nal bead diameter, and not due to bead misalignment. Porosity was measured at the conclu-
sion of each experiment (see Roth 2018 for the protocol). The measured porosity range was 
0.314–0.347, which is below the typical range of 0.35–0.45 found in other experiments 
(Smith et al. 1929; McWhirter et al. 1998) and closer to the theoretical porosity of 0.26 
for HCP. Although it is practically impossible to achieve the minimum theoretical poros-
ity, because of slightly non-uniform bead diameters and the disruption to the HCP pattern 
imposed by the fixed walls, nevertheless the low porosity measured at 0.314–0.347 indi-
cates a high degree of homogeneity for a matrix containing monodisperse spheres.

A 514 nm laser was passed through a beam expander (Melles Griot, 25x-10x) and sin-
gle-axis scanning-galvo-mirror (Thorlabs, GVS011) to create a 1-cm-thick laser sheet that 
illuminated the dye within the test section containing the porous media (Fig. 4), causing it 
to fluoresce. A camera (Imperx, ICL-B1410M-SCO), oriented perpendicular to the laser 
sheet, captured images of dye fluorescence. An optical band-pass filter (Omega Optics, 
555DF30) was attached to the camera lens, blocking the 514  nm excitation light from 
the laser while transmitting fluoresced light from the dye. The resulting image showed 

Fig. 4   Schematic of one-dimen-
sional flow apparatus
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fluorescent emission intensity from the dye present within the laser sheet only. The imaged 
intensity is proportional to the dye concentration (Crimaldi 2008).

Prior to the start of the experiment, the solution of dye and glycerin was preloaded into 
the entrance chamber and segregated from the beads in the test section by a plastic curtain. 
Simultaneously, the beads were saturated with dye-free glycerin. Immediately prior to data 
collection, the plastic curtain was pulled back to allow dye to flow into the test section, 
supplied by a continuous flow of identical dye–glycerin solution injected into the entrance 
chamber upstream of the porous media at a flow rate of approximately 5 mL/min, from a 
gear pump (Ismatek, model# CB 78008, with Cole-Parmer model# 73004-14 pump head). 
Dye–glycerin solution entered the porous media as a continuous planar source. Fluid 
passed through the exit chamber, then left the apparatus through an outlet left open to the 
atmosphere 2 cm above the top elevation of the bulk porous media. Throughout the experi-
ment, the entire apparatus, including the entrance and exit chambers, was kept saturated at 
a head equivalent to 2 cm of glycerin controlled by the outlet condition.

For these experiments, pore-scale Reynolds number was calculated for the bulk porous 
media within the chamber by

The density, ρ, and dynamic viscosity, µ, of glycerin at 20 °C are 1.26 g/cm3 and 14.9 g/
cm-s, respectively. Velocity, v = 4.5 × 10−3 cm/s, was calculated by using the average meas-
ured porosity of 0.33, the flow rate of 5 ml/min (used in all experiments), and by assuming 
uniform flow through the 8  cm × 7  cm cross section. Reynolds number for these experi-
ments is approximately 1.2 × 10−4. Diffusivity, D, for Rhodamine 6G in glycerin at 20 °C 
was calculated using the Stokes–Einstein equation:

where kB is Boltzmann’s constant, and T is the absolute temperature. The radius of a spher-
ical particle, r, corresponds with a molecule of Rhodamine 6G dye. Assuming that the 
Rhodamine 6G particle has a radius of 7.7 × 10−8 cm (as calculated from the diffusivity 
of Rhodamine 6G in water), calculated diffusivity for Rhodamine 6G dye in glycerin was 
1.9 × 10−9 cm2/s. Peclet number, P, was calculated by

Peclet number for these experiments is approximately 7.2 × 105.

3.2 � Wall Effect Mitigation

Two techniques were tested to mitigate wall effects by modifying the near-wall poros-
ity to reduce the local permeability and preferential flow along apparatus walls. In the 
first technique, near-wall porosity was approximately matched to that in the bulk porous 
media by placing 1-mm borosilicate glass beads (Chemglass, part# CG-1101-06), with 
diameters equal to 1/3 times that of the bulk media, into the interstitial volume between 
the wall and the first layer of 3-mm beads, as shown in Fig. 5b. The refractive index of 
the 1-mm beads matched that of the bulk porous media and the fluid, so optical access 

(2)R =
d�

�
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(3)D =
kBT
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d
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through this wall was preserved. Since this mitigation technique adds a layer of beads 
whose diameter is 1/3 of the diameter of the main beads, we call this mitigation tech-
nique the “d/3 bead layer”.

To install the d/3 bead layer, a guide was built by gluing a single HCP layer of 3-mm 
beads to an aluminum plate with dimensions matching those of the z-normal face of the 
apparatus test section. A second layer of 3-mm beads was placed in the guide in an HCP 
geometry controlled by the preceding rigid layer and held in place by gravity. Individual 
1-mm beads were then placed into the interstitial volumes of the second 3 mm layer. The 
apparatus was then turned upside down, and the loaded bead guide was lifted upward into 
the inside of the apparatus, such that the 1  mm sublayer was in contact with the z-nor-
mal face of the test section. With the guide held firmly in place, the chamber and guide 
were righted together, such that the 1-mm beads were at the lowest elevation, followed by 
a 3 mm HCP layer, and the guide. The guide was removed, allowing the 1-mm and 3-mm 
beads to maintain HCP configuration (see “Appendix” for details).

Subsequent bead layers were then loaded in the HCP configuration by gently shaking 
the apparatus at different orientations. The HCP geometry was confirmed for each bead in 
the layer before adding beads for subsequent layers. It should be noted that packing geom-
etry for each of the two y-normal walls will be different. During HCP loading, one of the 
y-normal walls will preferentially be used for bead alignment while adding additional HCP 
layers, resulting in a “tightly packed” y-normal configuration. Due to inherent mismatches 
between HCP geometry and the rigid boundary imposed by the geometry of the test sec-
tion, the opposite y-normal wall will exhibit a “loosely packed” configuration.

The second wall effect mitigation technique is similar to that suggested by Mcwhirter 
et al. (1997). First, the volume of the test chamber was completely packed with HCP beads. 
A uniform layer of wet silicone (GE, 100% Silicone II, Black) was then applied to the 
lid of the apparatus by using a screed and spacers to ensure a consistent depth. The sili-
cone on the lid was then pressed into the pre-packed beads, resulting in an opaque wall of 
hemispheres which preserved HCP packing (Fig. 5c). We call this mitigation technique the 
“hemisphere wall”. With this configuration, both porosity and permeability are uniform 

Fig. 5   Schematic of vertical cross section above z-normal wall for a unmitigated wall, b d/3 bead layer, and 
c hemisphere wall. Porosity as a function of distance from the z-normal wall for d unmitigated wall, e d/3 
bead layer, and f hemisphere wall, note that the pore space within the shaded region is filled with silicone 
and is therefore not within the flow domain
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throughout the entire domain, at the expense of losing optical access through the opaque 
silicone.

Figure 5d–f shows the theoretical distribution of areal porosity as a function of distance 
from the z-normal wall for the unmitigated wall and for the two wall mitigation techniques. 
Both wall mitigation techniques theoretically result in a lower near-wall porosity. For the 
hemisphere technique, considering the volume above the silicone, the porosity exactly 
matches the pattern present within the bulk porous media (Fig.  3). While the d/3 tech-
nique does not exactly match the porosity pattern within the bulk porous media, the aver-
age porosity for z/d < 0.5 nearly matches the measured average porosity of the bulk porous 
media in our experiments.

3.3 � Image Analysis

Throughout the experiments, two-dimensional images of the depth-integrated intensity 
of fluoresced dye, which is proportional to dye concentration, were collected within the 
x–y plane at a frequency of 1 frame every 10  s. Thus, the images show the propagation 
of the dye front through the apparatus. Although the flow rate through the chamber was 
controlled by a pump and therefore was known, the dye velocity varies in the direction 
transverse to flow as a result of wall effects. However, flow can be assumed to be one-
dimensional everywhere (for justification, see Sect. 4).

Under assumptions of one-dimensional flow in a homogeneous porous material in a 
semi-infinite domain, with constant dye concentration of Co entering at x = 0, the dye con-
centration, C(x, t) is given by (Ogata and Banks 1961)

where v is average linear velocity in the region unaffected by wall effects and D is the dis-
persion coefficient. Neglecting terms in (2) that account for boundary effects, C/Co = 0.5 at 
x = vt; thus the velocity as a function of position in the direction transverse to flow can be 
obtained by dividing the domain into narrow slices parallel to flow and tracking the posi-
tion where C/Co = 0.5 (defined here as x50) for each slice. Slice width was equal to d/2 for 
z/d ≤ 2 and equal to d for z/d > 2. Linear regression performed on a plot of x50 versus time 
was used to estimate the velocity for each slice (an example of this method can be seen in 
Fig. 6). The influence of the wall effects was also evaluated qualitatively by visually identi-
fying the region where the dye front was not perpendicular to the flow direction.

4 � Results

4.1 � Wall Effect

First we present results to demonstrate that each unmitigated wall produces a different wall 
effect because of different local porosity variations. Figures 7 and 8 show images of nor-
malized dye concentration at three different times during two different experiments with 
no wall effect mitigation. Figure 7 shows the results for z-normal wall packing geometry 
as defined in Fig. 2; while Fig. 8 shows the results for the y-normal wall packing geometry 
(tightly packed). In both experiments, the beads were packed the same way, with z = 0 as 
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the base of the apparatus; however, in the experiment shown in Fig. 7, the apparatus was 
rotated 90° about the x-axis so that the wall effect along the z-normal walls could be ana-
lyzed. Preferential flow near the wall is evident in the depth-integrated (over the axis paral-
lel to the viewing angle) images of C∕Co from both unmitigated wall experiments. Veloci-
ties in the bulk porous media, beyond approximately 0.5 bead diameters from the wall, 
are also relatively uniform for both cases. However, within 0.5 bead diameters to the wall, 
velocity is much higher. For example, in Figs. 7b and 8b, the dye near the wall (z/d = 0 and 
y/d = 0, respectively) reaches the downstream boundary (x/d = 40) after only 0.5 pore vol-
umes of dye were eluted, while the dye front in the bulk porous media has only traveled to 
x/d ≈ 10.

Figures 7 and 8 also provide evidence that the bead packing was homogeneous. For 
regions sufficiently far from the apparatus walls, i.e., approximately 2 bead diameters, 
the advection front remained approximately planar and perpendicular to the direction 
of flow. If the packing were heterogeneous, one would expect to see a non-perpen-
dicular advection front, indicating a systematic change in packing with depth, or the 
formation of preferential pathways into the bulk porous media. Image analysis shows 
that velocities in the bulk porous media are relatively uniform for regions beyond one 
bead diameter from the wall for the y-normal wall, and beyond 0.5 bead diameters for 

Fig. 6   Example of method to 
estimate average linear velocity. 
a C/Co for the experiment with 
the unmitigated z-normal wall 
at three times after introduction 
of dye for 5 < z/d < 6. Note that 
the region near the planar dye 
source was cropped for analysis 
due to non-uniform bead loading 
near the entrance chamber. The 
diamonds identify the points on 
the curve where C = Co/2, and 
x = x50 at each time. b x50 versus 
time and best-fit line. The slope 
of the best-fit line is the velocity 
for 5 < z/d < 6. The diamonds 
correspond to the points taken 
from subplot a
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Fig. 7   C/Co images for unmitigated wall effect along the z-normal wall as shown in Fig. 5a after a 0.2 pore 
volumes eluted, b 0.5 pore volumes eluted, c 1 pore volume eluted. The wall is located at z/d = 0

Fig. 8   C/Co images for unmitigated wall effect along the y-normal wall as shown in Fig. 5a after a 0.2 pore 
volumes eluted, b 0.5 pore volumes eluted, c 1 pore volume eluted. The wall is located at y/d = 0
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the z-normal wall (Fig.  9a). The z-normal wall exhibits a near-wall velocity that is 
60% higher than the average velocity in the bulk porous media. The y-normal walls 
exhibit near-wall velocities 200% and 700% higher than the average velocity in the 
bulk porous media for tightly and loosely packed walls, respectively. These results 
are consistent with the theoretical porosity distributions in Fig.  3b, c. The presence 
of the wall affects porosity over a larger distance in the y-normal direction than in the 
z-normal direction. Since higher porosity produces higher permeability, which in turn 
leads to higher velocity, the theory predicts that the lowest velocity would occur along 
the z-normal wall, and the highest velocity would occur along the y-normal wall with 
loose packing.

It should be noted that the experiment uses physical media which will inherently 
have some slight variation in bead diameter, as well as slight imperfections in packing. 
From a practical perspective, the bead packing in the physical apparatus would be less 
uniform than what was assumed in the theoretical model. Also, the data shown for the 
y-normal wall with loosely packed media in Fig. 9 exhibit a farther-reaching wall effect 
relative to the y-normal wall with tightly packed media. The loosely packed wall repre-
sents a condition where rigid apparatus walls do not perfectly match the dimensions of 
the porous media bed, leading to looser packing near the wall.

Fig. 9   Normalized veloc-
ity profiles as a function of 
distance from the a y-normal and 
z-normal unmitigated walls. b 
z-normal wall with mitigation. vo 
is the velocity in the bulk porous 
media
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Fig. 10   C/Co images for mitigated wall effect using the d/3 wall treatment along the z-normal wall as shown 
in Fig. 5a after a 0.2 pore volumes eluted, b 0.5 pore volumes eluted, c 1 pore volume eluted. The wall is 
located at z/d = 0

Fig. 11   C/Co images for mitigated wall effect using the hemisphere wall treatment along the z-normal wall 
as shown in Fig. 5a after a 0.2 pore volumes eluted, b 0.5 pore volumes eluted, c 1 pore volume eluted. The 
wall is located at z/d = 0
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4.2 � Wall Effect Mitigation

Figures 10 and 11 show images of normalized dye concentration at three different times 
during experiments with the two mitigation techniques. In both cases, the dye along the 
wall travels at the same rate as the dye in the bulk porous media, in contrast to the fast-
moving dye along the walls in the experiments with unmitigated walls (compare Figs. 10b 
and 11b with Figs. 7b and 8b). These results demonstrate that both mitigation techniques 
eliminated the preferential flow near the wall. For the d/3 layer mitigation technique, the 
near-wall velocity appears lower than the velocity in the bulk porous media (Fig. 10); how-
ever this behavior was caused by a non-planar dye source distribution in this particular 
experiment. Note that data were only gathered within a center 1 cm × 7 cm thick slice of 
the apparatus for the x-normal walls, or center 1  cm × 8  cm thick slice for the y-normal 
walls within the 17 cm × 8 cm × 7 cm apparatus. These slices were illuminated by the laser 
sheet, capturing fluid dynamics for only two of the walls parallel to flow for each experi-
ment, and approximately 15% of the total cross-sectional area parallel to flow. Therefore, 
flow velocities along two of the walls parallel to flow were unknown. Flow rate through the 
bulk porous media can change dramatically due to variations in packing density (contribut-
ing to variations in preferential flow) along the unmeasured walls for each experiment. So 
even though all experiments were performed with the same inlet flow rate, velocity through 
the measurement area can vary across experiments. In addition, porous media packing near 
the upstream and downstream walls of the apparatus (normal to flow) was non-uniform due 
to the screen material used at the boundary. Therefore, data near the entrance and exit of 
the bulk porous media was not included in the analysis.

Figure 9b shows the velocity profiles based on image analysis of both wall effect mitiga-
tion techniques. In both cases, the near-wall velocities are approximately equal to average 
velocities in the bulk porous media. These results provide additional evidence that both 
wall mitigation techniques eliminate preferential flow near the walls, and therefore elimi-
nate the wall effects. Note that preferential flow paths are present in the bulk porous media 
due to the structure of the HCP. These flow paths are caused by oscillating porosity pat-
terns (Fig. 3). All of the data shown in Fig. 9 are averaged over a width larger than d/4, a 
resolution that does not show the effects of this uniform, oscillatory behavior.

5 � Discussion

The wall effect mitigation techniques discussed in this paper were developed and used for 
quasi-two-dimensional solute transport experiments. These techniques also should prove 
valuable for other applications that use granular media within a system with flat walls—at 
least on the floor and the ceiling (i.e., z-normal walls) of the apparatus, defined from the 
perspective of loading the granular media. Within the context of groundwater hydrology, 
the accuracy of granular media experiments could be improved using these methods. For 
industrial applications, these techniques could be employed to improve the efficiency of 
fixed bed reactors.

To our knowledge, the d/3 diameter sphere mitigation technique used to preserve RIM opti-
cal access in porous media has not been proposed by other researchers. While the embed-
ded bead technique was proposed by Mcwhirter et al. (1997), we did not find experimental 
implementation of the technique in the literature. Based on reported porosity in the literature, 
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we could find no evidence of an HCP loading as precise as ours. The qualitative results of the 
physical experiments are consistent with theory. In addition, we found no experimental evi-
dence in the literature to support expectations from theory.

These wall effect mitigation treatments could potentially be extended to other applications, 
particularly within apparatus that do not use flat boundaries. For this situation, it may be pos-
sible to insert the d/3 spheres concurrently with the primary diameter spheres that constitute 
the bulk porous media using application-specific equipment. The hemisphere wall treatment 
could be applied to any apparatus surface prior to media packing using specific media pack-
ing protocols such as silicone application devices specifically designed to accommodate the 
geometry of the apparatus.

6 � Conclusions

The HCP loading used in the experiments produced homogeneous porous media, evident 
from minimal porosity measurements and from uniform flow velocities for regions sufficiently 
far from apparatus walls. Dependent upon precision of media loading and bead uniformity, for 
one-dimensional flows within HCP porous media, flow will not be significantly affected by 
wall effects for regions beyond one bead diameter from side walls and beyond 0.5 bead diam-
eters from base walls. While this result is in agreement with the theoretical analysis presented 
in this text, it is somewhat inconsistent with the conventional wisdom that wall effects extend 
4–6 bead diameters from smooth walls (Cohen and Metzner 1981, de Klerk 2003). This dis-
crepancy is likely due to the highly uniform packing used in experiments, leading to enhanced 
media heterogeneity near the wall (as shown theoretically in Fig. 3). If packing is less uniform 
near the wall, which is likely for most porous media experiments, the wall effect likely would 
extend farther into the bulk porous media. Similarly, in our experiments velocities near the 
walls were 60–700% higher than average velocities in the bulk porous media, significantly 
higher than the 30–100% increase found in other studies. This is most likely due to the use of 
more densely packed media in our experiments, creating a sharper contrast between porosity 
within the bulk media and the near-wall regions, with the wall effect occupying a smaller por-
tion of the total cross-sectional area normal to flow. Due to conservation of mass, the reduc-
tion in cross-sectional area encompassed by the wall effect will lead to higher velocities along 
the walls relative to experiments with less densely packed porous media.

This study investigated two wall effect mitigation strategies, both of which were successful 
at producing near-wall velocities that were approximately equal to average velocities in the 
bulk porous media. In conclusion, these techniques should allow researchers to overcome the 
wall effect, that is, to eliminate preferential flows near walls. For homogeneously packed test 
sections, these techniques should accurately model unbounded porous media systems subject 
to one- or two-dimensional flow.
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Appendix: Areal Porosity Near Walls

Figure 12 shows a horizontal projection of two layers of spheres packed with hexagonal 
close packing in a three-dimensional, rectangular prismatic box, with the light-colored 
spheres (gray in online version) on the bottom (Layer 1) and the dark-colored spheres (tan 
in online version) in the layer above (Layer 2). The white triangles in Fig. 12 are used in 
Fig. 13 to determine the offsets between spheres in the same layer and between two spheres 
in adjacent layers, which are used below to calculate areal porosity. Let the coordinates of 
the center of Spheres G (in Layer 1) and T (in Layer 2) be (xG, yG, zG) and (xT, yT, zT), 
respectively. By inspection, xT − xG = d/2. From Fig.  13, yT − yG = d∕

�
2
√
3
�
 . Setting the 

Fig. 12   Horizontal projection of two layers of spheres with HCP packing in a rectangular box. Light circles 
(gray in online version) represent odd-numbered layers of spheres, numbered sequentially from the bottom. 
Dark circles (tan in online version) represent the even-numbered layers of spheres. The angles and side 
lengths of triangles ABC and ACD are presented in Fig. 13. Line JK is a projection of a control surface in 
the y–z plane; Line LM is a projection of a control surface in the x–z plane; and Trapezoid NOPQ is a con-
trol surface in the x–y plane

Fig. 13   Trigonometry of triangles ABC and ACD in Fig.  12. Vertices A, C, and D represent centers of 
spheres in the odd-numbered layers (light circles in Fig.  12), and Vertex B represents a point of contact 
between two such spheres. Point E is equidistant from vertices A, C, and D, and is situated directly below 
the center of a sphere in the even-numbered layers (dark circles in Fig. 12). The lengths of AE, CE, and DE 
are found from the law of sines as AE = sin 30

◦

d∕ sin 120
◦

= d∕
√
3
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distance between the centers of Spheres G and T to d leads to zT − zG = 2d∕
√
6 . Although 

not shown in the figure, the alternating of gray and tan layers continues in the z direction 
(as shown in Fig. 1b), with the bottom elevation of Layer j equal to z = 2(j − 1)d∕

√
6.

The areal porosity, n(s), in a plane parallel to the s-normal wall is given by

where s is the distance from the wall, ACS is the area of a control surface parallel to the 
wall, and AS(s) is the total area of intersection of the spheres and the control surface at a 
distance s from the wall. The shape and size of the control surface are chosen such that a 
tessellation of the shape covers the plane parallel to the wall, and each tile of the tessella-
tion contains the same sphere geometry. The area of intersection of a single sphere with the 
control surface is a circle of radius, ρ, given by

where η is the distance in the s direction between the sphere center and the control surface.
For the porosity in the x direction relative to the left wall in Fig. 12, let the control sur-

face be a rectangle represented by line JK in Fig. 12, which has length � = d
√
3 in the y 

direction and height h = 4d∕
√
6 in the z direction, from the center of one layers of light-

colored spheres to the center of the next layer of light-colored spheres. The area of this 
control surface in the y–z plane is ACS = �h = 4d2∕

√
2.

(3)n(s) =
ACS − AS(s)

ACS

(4)� =

√
d2

4
− �2

Fig. 14   Intersection of spheres with the control surfaces in a the y–z plane for various values of x; b the x–z 
plane for various values of y; and c the x–y plane for various values of z. In subplot a, the shapes with 
dashed outlines represent spheres centered at x = kd, and the shapes with solid outlines represent spheres 
centered at x = (2 k − 1) d/2, where k = 1, 2, 3, … In subplot b, the light (gray) and dark (tan) shapes with 
solid outlines represent spheres centered at y = 0.5d and y = 0.5d + d∕(2

√
3) , respectively. The light (gray) 

and dark (tan) shapes with dashed outlines represent spheres centered at y = 0.5d
�
1 +

√
3

�
 and 

y = (3 + 4

√
3)d∕6 , respectively. In subplot c, the spheres are centered at z =

�
1∕2 + 2j

√
6

�
d , where j is 

the layer number
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Figure 14a shows the control surface and the areas of intersection of spheres for various 
values of x. For x < d/2, the control surface intersects four light-colored spheres whose inter-
section with the control surface sum to form a complete circle and one dark-colored sphere 
entirely intersecting the control surface. The radius of the circles is found using (4) with 
η = d/2 − x. For x ≥ d∕2 , the control surface intersects nine spheres—six light-colored spheres 
and three dark-colored spheres as shown in Fig. 14a (for some x, the circles have a radius of 0 
based on the value of η for that x). From trigonometry and Eqs. (3) and (4), and summation of 
the areas of each circle and partial circle in Fig. 14a, the areal porosity relative to the left wall 
is given by

for k = 1, 2, … This porosity distribution is plotted in Fig. 3. Beyond x = d/2, the pattern 
repeats at intervals of d.

For the porosity in the y direction relative to the front wall in Fig. 12, let the control sur-
face be a rectangle represented by line LM in Fig. 12, which has length d in the x direction 
and again extends in the z direction from the center of one layers of light-colored spheres to 
the center of the next layer of light-colored spheres. The area of this control surface in the 
x–z plane is ACS = 4d2∕

√
6. Figure 14b shows the control surface and the areas of intersec-

tion of the spheres for various values of y. For y < d∕
�
2
√
3
�
 (y < 0.289d), the control sur-

face partially intersects two light-colored spheres, whose areas sum to form a complete cir-
cle. For d∕

�
2
√
3
�
≤ y < d

√
3∕2(0.289d ≤ y < 0.866d), the control surface partially 

intersects two light-colored spheres and partially intersects two dark-colored spheres, 
whose areas sum to form one complete light-colored circle and one complete dark-colored 
circle, each with a different radius. For y ≥ d

√
3∕2(y ≥ 0.866d), the control surface may 

partially intersect two to six light-colored spheres and may wholly or partially intersect one 
to three dark-colored spheres, depending on the value of y.

From trigonometry and Eqs. (3) and (4), and summation of the areas of each circle and 
partial circle in Fig. 14b, the areal porosity relative to the front wall is given by

where A∗
yK
(y) is the normalized area (normalized by the control section area) for the differ-

ent groups of spheres in Fig. 14b, where K = lw for the whole light-colored spheres, K = dp 
for the partial dark-colored spheres, K = lp for the partial light-colored spheres, and K = dw 
for the whole dark-colored spheres. The normalized areas are

(5)n(x) =

⎧
⎪⎨⎪⎩

2d
2−𝜋

√
2(xd−x2)

2d2
x < d∕2

8d
2−𝜋

√
2(d2+4d �x−kd�−8(x−kd)2)

8d2
(k − 1∕2)d ≤ x < (k + 1∕2)d

(6)n(y) = 1 − A∗
ylw

(y) − A∗
ydp

(y) − A∗
ylp
(y) − A∗

ydw
(y)

(7)

A∗
ylw

(y) =
𝜋

√
6

4

�
1

4
−
� y

d
−

1

2
−
�
m1 − 1

�√
3
�2

�
for

�
m1 − 1

�
d
√
3 ≤ y < d +

�
m1 − 1

�
d
√
3
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ydp
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√
6

4

�
1

4
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2
−
�
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�√
3
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�
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�
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3 ≤ y < d +

�
m2 −

5

6

�
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√
3
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1
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where mi = 1, 2, 3, … This porosity distribution is plotted in Fig. 3. For y ≥ (
√
3 − 1)d∕

√
3 , 

the pattern repeats at intervals of d
√
3∕2.

For the porosity in the z direction relative to the bottom wall, let the control surface be a 
trapezoid NOPQ in Fig. 12, of length d on each side. The area of AP = d2

√
3∕2 in the x–y 

plane. Figure 14c shows the control surface and the areas of intersection of the spheres for 
various values of z. For all z, the control surface partially intersects four light-colored 
spheres whose areas sum to form a complete circle; however, depending on η, the circle 
may have a radius of ρ = 0. For z ≥ 2d∕

√
6(z ≥ 0.816d), the control surface also intersects 

one or three dark-colored spheres whose areas sum to form a complete circle (depending 
on η, the circle may have a radius of ρ = 0). All spheres are centered at z =

�
1∕2 + 2j

√
6
�
d , 

where j is the layer number. From trigonometry and Eqs. (3) and (4), and summation of the 
areas of each circle and partial circle in Fig. 14c, the areal porosity relative to the bottom is 
given by

where A∗
zj
(z) is the normalized area (normalized by the control section area) of the spheres 

in Layer j as a function of z, given by

This porosity distribution is plotted in Fig. 3. For z ≥
�
3 −

√
6
�
d∕3 , the pattern repeats at 

intervals of 2d∕
√
6.

As drawn in Fig.  12, the box dimensions are Nxd × d +
�
Ny − 1

�
d
√
3∕2 in the x–y 

plane, where Nx and Ny are the number of spheres in the x- and y-directions, respectively, in 
an odd-numbered layer. With these box dimensions, the odd-numbered layers are perfectly 
contained within the box. Nevertheless, the porosity is higher near the back wall than near 
the front wall, because the distance between the back wall and the last row of dark-colored 
spheres is greater than the distance between the front wall and the first row of dark-colored 
spheres. Thus, even for a perfectly dimensioned container, different wall effects would be 
observed along the two different walls in the y–z plane.

Furthermore, any rectangular prismatic box is likely not to be perfectly dimensioned, 
further increasing the wall effects. For example, if the box in Fig. 12 is slightly larger in 
the x direction, the spheres would be more loosely packed at the right wall, assuming that 
during packing the spheres are placed tightly along the left wall. Thus, n(x) near the right 
wall would be higher than n(x) near the left wall, leading to higher preferential flows and 
magnified wall effects along the right wall.
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