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SELF-JOININGS FOR 3-IETS
JON CHAIKA AND ALEX ESKIN

ABSTRACT. We show that typical interval exchange transformations on three inter-
vals are not 2-simple answering a question of Veech. Moreover, the set of self-joinings
of almost every 3-IET is a Paulsen simplex.

1. INTRODUCTION

Defintion 1. Let (X,B,u,T) be a probability measure preserving system. A self-
joining is a T x T" invariant measure on X X X with marginals p.

Defintion 2. (X, B, i, T) is called 2-simple if every ergodic self-joining, other than
1 X i, 1S one-to-one on almost every fiber.

Defintion 3. A Poulsen simplex is a metrizable simplex where the extreme points are
dense.

Lindenstrauss, Olsen and Sternfeld proved that a Poulsen simplex is unique up to
affine homeomorphism [10].

Defintion 4. a 3-interval exchange transformation is defined by 3 non-negative num-
bers él,gg,gg. It s T : [0,61 -+ 62 —|—€3) — [0,61 -+ gg —|—€3) by

$+€2+€3 Zfl'§£1+€2
T(z) = .
x4 by + U3 — (01 + 205+ l3)  otherwise.

Theorem 1.1. Almost every 3-IET is not 2-simple. Also, its self-joinings form a
Poulsen simplex.

Note that T" x T" has topological entropy 0.

The first part of Theorem 1.1 answers a question of Veech in the negative [15,
Question 4.9]. (In [15] “2-simple” is called “Property S.”)

Recall that a measure preserving system is called prime if it has no non-trivial
factors. In the paper [15] mentioned above, Veech classified the factors of 2-simple
systems, and so a natural question remains:
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Question 1. Is almost every 3-IET prime?

It is also natural to wonder what happens for IETs with other permutations and
flows on translation surfaces. It is likely that our techniques can show that residual
sets of interval exchange transformations on more intervals, and flows on translation
surfaces of genus greater than 1 are not simple, but we do not see how they can be
applied to almost every flow on translation surface or IET with different permutation.

To prove Theorem 1.1 we define in Section 2 a distiguished class of self-joinings

called “shifted power joinings.” In Section 2 we also show that a special type of
transformations called “rigid rank 1 by intervals” (which includes IET’s by [16, Part
1, Theorem 1.4 |) have the property that linear combinations of shifted power joinings
are dense in their self-joinings. M. Lemanczyk brought to our attention that this result
was proved in an unpublished paper of J. King [9]. We then prove that almost every
3-IET has the property that its ergodic self-joinings are dense in linear combinations
of the shifted power joinings. We do this by having an abstract criterion (Section 3)
and showing 3-IETs verify this criterion (Section 4).
Context of our results: Before Veech’s work, D. Rudolph introduced the notion
of minimal self joinings, using it as a fruitful class of examples, including examples
of prime systems [11]. The property of 2-simple generalizes minimal self joinings and
in particular, no rigid system has minimal self joinings. The typical IET is rigid [16,
Part 1, Theorem 1.4], so the typical IET does not have minimal self joinings, but
there are rigid 2 simple systems. Ageev proved that the set of measure preserving
transformations which are not 2 simple contains a dense Gy, i.e. it is a residual set,
(with the topology being the so called weak topology) [1]. Our construction can be
modified to give a new proof of this fact.

Our result that the self-joinings form a Paulsen simplex is also perhaps a little un-
expected. Many examples of systems whose set of invariant measures form a Paulsen
simplex are well known, but typically these systems are high complexity, satisfying
some form of specification. In contrast, our examples have very low complexity, as
T x T has quadratic block growth. Since systems of linear block growth have only
finitely many ergodic measures [2], such a system can not have that the set of its
invariant measures form a Paulsen simplex (though as our examples show its Carte-
sian product could). We remark that in the previously mentioned unpublished work,
J. King proved a residual set of measure preserving transformations (which therefore
must include rank 1 transformations) have that their set of their self-joinings form a
Paulsen simplex [9], giving many (non-explicit) entropy zero examples. Our result is
perhaps still surprising, because we treat a previously considered family of examples
and we show typicality in a metric, rather than topological setting.

Two key steps are showing that the typical 3-IET admit (n;, n;+ 1) approximation
(see the proof of Proposition 4.5) and that this implies the existence of all sorts of
ergodic joinings (see Proposition 3.1). Some consequences of transformations with
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(nj,n; 4+ 1) approximation were studied by Ryzhikov [13] and as a result we get some
spectral consequences for 7" and T x ... X T', see Remark 2.
—_———

n times

Acknowledgments: We thank El Abdaloui, M. Lemaczyk and V. Ryzhikov for
numerous illuminating discussions on connections of other results with this work.

2. JOININGS OF RIGID RANK 1 TRANSFORMATIONS COME FROM LIMITS OF
LINEAR COMBINATIONS OF POWERS

Let ([0,1], M, A\, T) be an ergodic invertible transformation.

Defintion 5. We say T is rigid rank 1 by intervals if there exists a sequence of
intervals I, ... and natural numbers nq, ... so that
o T}, is an interval with diam(T"I},) = diam(I;) for all 0 < i < ng.
e T'[,NT I, =0 for allk and 0 < i < j < ny.
o lim AU 'TL) = 1.
k—o00
e lim
k—o00

ATk [ ATL) 0

Alk) o

This is a condition saying that our transformation is well approximated by peri-
odic transformations. A similar condition, admiting cyclic approzimation by periodic
transformations was considered in [6].

Let
np—1
Re= ] T'LL,
=0
ne—1
(2.1) Ri=|J T nT" L N T Iy),
=0
TLk—l
Ri=J TN T L N T L, N T I, N T2 1),
=0

Then, Ry is the Rokhlin tower over I, 7A€k is the Rokhlin tower over I, T~ " I, NT"* I},
and Ry is the Rokhlin tower over ﬂ?:,g T [,.. We have

(2.2) Ri={z: Tz € Ry, for all —ny <i < ngl,
and
(2.3) Ri = {z: Tz € Ry for all —2ny, < i < 2ny}.

Heuristically one can think of R, as the set of points we can control. 7@;C and ﬁk
let us control the points for long orbit segments, which is necessary for some of our
arguments.

Lemma 2.1. lim A(R;) =1 = lim A(Ry,) = lim A(Ry).

k—o00 k—o0 k—00
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Proof. By the third condition in the definition of rigid rank 1 by intervals we have
lim A\(Ry) = 1. By (2.1),
k—o00
MRi) = MRy — AL \ (T™ L, UT ™™ 1)) > MRy) — 2ne (I, \ T™ 1),
and thus by the fourth condition of the definition of rigid rank 1 by intervals, klim )\(ﬁk) —
—00

L. Similarly, lim MRy) = 1. O
—00

Defintion 6 (Shifted Power Joining). Let (X, T, pu) be a measure preserving dynamical
system. A self-joining of (X, T, p) that gives full measure to {(x, T%z)} for some a € Z
with a # 0 s called a shifted power joining.

These have also been called off diagonal joinings.
Let ¢ : [0,1] — [0,1] by  — (x,x). Let u = . A. Shifted power joinings have the
form (id x T*),u for some a € Z \ {0}.

The operator A, and convergence in the strong operator topology. Let
o be a self-joining of (T, \). Let o, be the corresponding measure on [0, 1] coming
from disintegrating along ¢ on the fiber {z} x [0,1]. Define A, : L*(\) — L*(\) by
Ao(Dla] = f fdo.

Recall that one calls the strong operator topology the topology of pointwise con-
vergence on L?()\). That is Ay, ... converges to A, in the strong operator topology if
and only if lim |Aif — A fll2 = 0 for all f € L*(N).

Theorem 2.2. Assume ([0, 1], T, \) is rigid rank 1 by intervals and o is a self-joining
of ([0,1],T,X\). Then A, is the strong operator topology (SOT) limit of linear com-
binations, with non-negative coefficients, of powers of Uy, where Ur : L*([0,1],\) —
L?([0,1],\) denotes the Koopman operator Ur(f) = foT.

Corollary 2.3. (J. King) Any self-joining of a rigid rank 1 by intervals transforma-
tion is a weak-* limit of linear combinations of shifted power joinings.

These results (or very closely related results) were established earlier by J. King [9]
using a different proof. In fact he shows that if the joining in Corollary 2.3 is ergodic
then there is no need to take a linear combination. See also [5, Theorem 7.1]. There
is an open question of whether this result is true for general rank 1 systems [8, Page
382]. Ryzhikov has a series of results in this direction, see for example [12] and [14].

2.1. Proof of Theorem 2.2.

Lemma 2.4. For each 0 < j < ng we have

(2.4) i /T o R{)AA(x) < AR,

Remark. Note that ny is roughly \(771;,)~1.
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Proof. Suppose 0 < j < ny, and suppose 2 € T7I;. From (2.3) we have T"R§ C R
for all —ny <7 < ni. We claim that

(2.5) 02(RE) < opey(RE) for all —ny < € < ny.
Indeed, 0,(R§) = 070, (T'RE) < 07e,(RE), proving (2.5). Integrating (2.5) we get
(2.6) / o, (RE)dN(y) < / 0. (R§)dN(z)  for all —ny, < £ < ny.
Ti Iy, T+,
Since we can choose £ in (2.6) so that j + ¢ takes any value in [0,n, — 1] N Z, we get

(2.7) /T . 0,(R{)dN\(y) < min /T ; 0. (RE)dA(2).

— 0<i<ny
Now
ng—1
> [ a@inw s [ o @i <A®),
o JTiIL [0,1]
where the last estimate uses that ¢ has projections A\. So we obtain

(2.8) min /T | nR)IN) < nikx(vig).

0<i<ny
Now the estimate (2.4) follows from (2.7) and (2.8). O

We want to guess coefficients ¢; so that o is close to Z?igl ¢j(id x T"),pu. The next
lemma comes up with a candidate pointwise version. Theorem 2.2 and Corollary 2.3
follow because by Egoroff’s theorem this choice is almost constant on most of the
T*I; and the lemma after this (Lemma 2.6), which shows that they are almost T
invariant.

Lemma 2.5. Let © € Ry NTY1,, where 0 < Jj < ng. Define ¢;(x) = o,(T*I; N 7A2k)
where 0 < a < ny and i + j = a(mod ng). For all 1-Lipschitz f we have

TLk—l

Acf(x) = cilx) f(T'x)

=0

Morally ¢;(z) is the o, measure of the level in Ry, that is j levels above the level x
is on. Because j 4 ¢ can be bigger than ny the definition is slightly more complicated.
Note that the ¢;(x) are non-negative.

Proof. Suppose © € Ry, N T91;. First notice that if y,z € T'I; for some 0 < i < ny,
we have that d(y, z) < diam(I). So if j + ¢ < ny we have

(2.9)

/ v fdo, — cj(x)f(Tix) < | fllzip diam(1y).
RNTi+1,
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If j + £ > ng then |¢;(z) — AM(Re N TV < A(RS N T because if y € Ry, then
T*y € Ry,. So for any j we have

[ o))
RyNTI+ET,

By (2.2), for all 0 < ¢ < ng, T™'Ry, C Ry. Therefore, R, C |J2* ' T'I, for all
0 < ¢ < ng. By summing over the j in (2.10) we obtain

(2.10) < (1 Fllzip diam(Ze) + | fllsup ACRE N T L),

np—1

fdo, = Y ) f(Ti)

Ry s
/ fdo,
%

In view of the fact that
we obtain the lemma. O

(2.11) < 1Fllzip diam(Le) + [ fllsupA(BE).

(2.12) <1 llowp AR,

Lemma 2.6. Suppose 0 < { < ny,. If v € T'I}, and —{ < i < ny — { then

nE—1

Z lcj(x) = ¢;(T'x)| < QUI(RZ)'

Proof. Suppose 0 < ¢ < ng, 0 < j < ng, and —¢ < i < ng — £. First note that if
0<m < ngand z € T™I; N R then by (2.1), we have T%z € T}, N Ry, for all
—m < s <n,—m. Thus, if j +¢ <n, and 7 + j + £ < ng, we have

orin (T, N Ry) = 0, (T, N TRy = 0, (T7T1, 0 Ry).
This gives ¢j(z) = ¢;(T"x) if j + € < ny, and i + j + ¢ < ny. By similar reasoning we
have that ¢;(z) = ¢;(T"x) if j + € > ny and i + j + £ > ny.
Now lets assume that j + ¢ < ny and i + j + ¢ > ny. Then,

(2.13) ¢;(T'x) = opig (T [ N Ry) = 0 (T ™ [, N T Ry,).
Also,
(2.14) ci(x) = o (T, N Ry).

Now because Ry, C N, TiRy, if 2 € T [, (R then, z € TiH =" [, NT— Ry,
and z € T9H] kN Rk. Therefore, the symmetric difference bgtween T+t | kM T*iRk
and T71;, N Ry, is contained in the union of T+~ [, N R¢ and T7*I;,, N RS. Thus,
in view of (2.13), and (2.14),

ej(z) = o(T'2)] < 0 T/ ) + 0, (T7 ).
The last case, where j + ¢ > ny and 0 < i+ j + £ < ny_gives analogous bounds. So
we bound Z"’“ Yej(x) — ;(Tx)| by 235 " AT 0 RE) < 2X\(Ry) and obtain the

lemma. O
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Let dixr denote the Kantorovich-Rubinstein metric on measures. That is

dicrlp,v) = sup{ [ tin= [ sav

The next lemma is an immediate consequence of this definition.

Lemma 2.7. If f is 1-Lipshitz and dxg(0,,04) < € then |A,f(z) — A, f(y)| <.

: fis 1—Lipschitz} .

We say 0 < j < ny is k-good if there exists y; in T71,, so that at least 1—e proportion
of the points in 771} have their disintegration e close to y;. That is

M{z €Tl + dxr(os,04) <e}) = (1—e)A(Iy).
Lemma 2.8. For all € > 0 there exists ko so that for all k > kg we have
{0 < j < ng:jis k-good }| > (1 — €)ng.

Proof. By Lusin’s Theorem there exists a compact set K of measure at least 1 — %
so that the map y — o, is continuous with respect to the usual metric on [0,1] and
the metric dxr on measures. Because K is compact this map is uniformly continuous

and so there exists § > 0 so that z,y € K and |z — y| < § then dgr(0,,0,) < €. We
choose k so that diam (/) < 6 and A([0,1] \ Ry) < %. Let

1 .
n=—[{0<j<m : NIy N K*) > M)}
k

Then, because the 771 are disjoint and of equal size and | I;Ligl T71, = Ry, it is clear
that
2
c € 2
MK NRy) «_i__°

ne < < = ;
ARy R

and thus 1 < €¢/2. This completes the proof of the lemma. 0

Notation. If j is k-good let
Gj={x €Tl : \{y € T'I} : dxp(0.,0,) < 2€}) > (1 — )N Ip)},

i.e. G is the set of points that are almost continuity points of the map = — o,
(restricted to T71;). We set G; = 0 if j is not k-good.

Lemma 2.9. ForAall e > 0 there g:m'sts k1 so that for all k > ky there exists 0 < £ < ny,
and yx, € T*I;, N Ry, so that o, (RE) < € and

(2.15) =t <j<mng—0:Ty € Geyj and j is k-good}| > (1 — 12€)ny..

Proof. 1f j is k-good then
AG) > (1= OAIL).
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Let Ry = U;Ligl G;. Notice that ]}erolo NUMSIT L) = klggo ARk) = 1 and so for all
large enough k (so that A\(Ry) is close to 1 and Lemma 2.8 holds) we have
AMRE) > (1 —€)?A(Ry) > 1 — 3e.

By a straightforward L' estimate, we have

ng—1
Z My eT L : {0 <j<n—L:Gj=0or Ty &G} > 12en;}) < % = i
=0

Therefore, the measure of the set of y satisfying (2.15) (for some £) is at least 1/2.
Recalling that by Lemma 2.1 we have klim A(RE) = 0 and so for k large enough,
— 00

~ 1
AM{y : 0y(Ri) > €}) < 3
Thus, we can pick y; satisfying the conditions of the lemma. 0]

Proof of Theorem 2.2. For each k large enough so that Lemmas 2.8 and 2.9 hold and
diam(Iy) < e and A\(Rf) < ¢, let yx be as in the statement of Lemma 2.9 and assume
it is in T*I}, for some 0 < ¢ < ny.

Step 1: We show that for all 1-Lipschitz functions f with || f||sup < 1 we have

ng—1
lim {4, f — Z ci(un)Upfl2 = 0.
First, observe that by Lemma 2.5 and the fact that || f|[sup < 1,
ne—1
Ao f(T7ye) = D ci(Ty) F(T )| < diam (L) + 2074, (Rf) <
i=0

< diam(I},) + 20y, (RS).

By our assumptions that diam(/;) < € and oy, (R{) < € we have

ne—1

[Asf (T7yx) = > ci(T ) f(T™yy)| < 3e.

i=0
From Lemma 2.7 we have that if z satisfies
(216) dKR(Ux;UTJ'yk) <€
then

nk—l

|A, f(x) — Z ci(TPy) f (T )| < 4e.

=0
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Let V denote the set of z satisfying (2.16) and such that z € T I, N Ry, for —¢ <
j < ng — L. Then, for x € V, Tz, Ty, € T+ (medni) [ for all 0 < i < ny, since
—ng < 1,1+ 7 <ng (by (2.2)). Thus for any x € V,

nk—l

| Ay f(z) — Z ci(T?y) f(T'x)| < 4e + diam([y,).

i=0
Recalling that by assumption diam(/;) < € and invoking Lemma 2.6 we have

ng—1

/ 405(0) = 32 IR < e+ 0, R0 < (60"

Since yj, satisfies the assumptions of Lemma 2.9 and A(R§) < € we have that
Estimating trivially on V¢ we have

ng—1 nkp—1

1A f — chyk OT]HQ—/!AJ” =S ) F(T) P () <
7=0

< (66)" + [[f l5up ((2€m) A (1) + €).
Since || f||sup < 1 and € is arbitrary this establishes Step 1.

Step 2: Completing the proof.

The idea of the proof is that by step 1 and linearity we have the limit on a dense set
in L?. Since the functions on L? we consider have operator norm uniformly bounded
(by 1) they are an equicontinuous family and so convergence on a dense set implies
convergence.

To complete the formal proof of the theorem, observe that for any z we have
Sei(z) = Y |ei(2)] < 0.([0,1]) and we may assume that o,([0,1]) = 1." So

nk—l

> il Uy

=0

<1 for all k.

op

ng—1

Therefore since we have shown klim Ao f =Y ¢i(ye)Us ]2 = 0 for a set of f with
—00

dense span in L? (that is 1-Lipschitz functions with || f|lsup < 1), we know that for
all f € L*? we have that klim | Agf — St ¢i(yr) Ui f|l2 = 0. This is the definition of
—00

strong operator convergence. 0

Tt is 1 for all but a measure zero set of z and we may change the disintegration on this zero set.
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Proof of Corollary 2.3. Let 5p denote the point mass at p. By the proof of the theorem
that there exists y; so that

ne—1

dKR(Ux7 Z Cj(yk)g(;c,Tiq:)) < He

j=0

for all x € V. By (2.17) we may assume A\(V°) is as small as we want. The corollary
follows. 0

3. AN ABSTRACT CRITERION

Let (S,Y,A) be a uniquely ergodic topological dynamical system. Let 5p denote
a point mass at p. Note we will consider the metric dgr on the Borel probability
measures on Y x Y (which is a weak-* closed set since Y is compact) and the measures
5p forp e Y xY. If pis a measure on Y x Y, let (1), be the disintegration of 1 along
{z} x Y.

Motivated by Corollary 2.3 we wish to build ergodic joinings that are close to finite
linear combinations of shifted power joinings. For example we wish to have ergodic
measures with dx g distance € from the joining that gives measure % to {(z,z)} and
measure 3 to {(z, Sz)}. Naively, one wants to find a sequence of shifted power joinings
that spend half their time close to {(x,z)} and half their time shadowing {(z, Sz)}.
Taking a weak-* limit of these we wish to have a measure close to the joining that
gives measure 3 to {(z,z)} and measure 3 to {(z, Sz)}.

Our approach will be to do this inductively, to have a sequence of measure v; and
i so that vy is the shifted power joining supported on {(x,z)} and gy is the joining
supported on {(z,Sz)}. Inductively, p;; spends a definite proportion of its time
near p; and a definite proportion near v; and similarly for v;,;. That is, we want
to have sets A;.; and B,y so that when x € A, we have (v;41), is close to (1),
and (g;y1). 18 close to (v;), and when x € B;y; we have (v;41), is close to (v;), and
(fi41)s is close to (u;),. Clearly we want the union of A; and B; to have almost full
measure and it is helpful that they each have measure at least ¢ > 0. This isn’t quite
good enough, in particular if A; and B; were constant sequences. We now make the
next technical proposition to overcome these issues and additionally guarantee that
limiting joining is ergodic.

Of course we want to consider the case of a linear combination of d off diagonal

joinings. That is, if we are given a finite number of shifted power joinings 1/(()1), e I/éd)

we wish to approximate éZle Véi). We do this analogously to the previous case.

Indeed, we have Ay, B; and {ufi) 4 so (V{i))x is close to (Véi*l));r for x € Ay (where
i — 1 is interpreted as d if ¢ = 1) and (yél))x for x € By. We repeat this and obtain
(UYL Ay and B,. Now (14"), is close to (1), for 2 € A; N Ay. We continue

repeating to approximate Cll Zle z/él).
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Proposition 3.1 makes this precise. Conditions (a)-(e) are basic setup, Condition
(A) gives the inductive switching as above and Condition (B) lets us rule out a
previously mentioned issue to show that the weak-* limit of the v; and p; is close to
%(Mo + 1) and moreover that it is ergodic.

Let J. be a sequence of intervals, U, be a sequence of measurable sets, r; be a
sequence of natural numbers, ngf) be sequences of natural numbers for ¢ € {1, ..., d}

and €; > 0 be a sequence of real numbers. Let Ay, = £, S*(Jy) \ Uy, and By, = A§\Uy.
Let V,(f) be the unique S x S invariant probability measure supported on {(z, S ”g)x)}.
Note that the system (Y x Y, S x S, V}gz)) is isomorphic to (S, Y, \). Note that (uj(-e))x,
is a point mass at (z, S"y)x).

Proposition 3.1. Assume

(a) There exists ¢ > 0 so that for all k we have A\(Ag) > ¢ and A(Byg) > c.
(b) The minimal return time of S to J, is at least 3ry.
(C) )\(Uk) < €k.
(d) kh_}rglork Yok AMJi) =0.
(e) € are non-increasing and Y €; < o0.
If

(A) For any x € Ay, we have dKR((V](f))x, (V,(f:ll))x) < € and for any x € By we

have dKR((V,(f))m, (V](f_)l)z> < €.

Note V,Sf__ll) 1s interpreted to be V/gci)l if € =1.
(B) dicr(+ 5 (S x VWM i) < e for allz € X, all L > P and any
te{l,..d}.*?
Then the weak-* limit of any V](f) (as k goes to infinity) is the same as the weak star
limit of clz E;lzl y,g) as k goes to infinity. In particular these limits exist. Call this

measure (. It is ergodic and there exists C so that dxr(u, Cll Z?Zl I/,(f)> < CZ;’;k €.

To connect this to the remarks above, consider the case that the uée) are given

shifted power joinings and we want an ergodic measure close to éz l/(()z). Of course
this only treats particular types of linear combinations, but if our system is rigid
(which rigid rank 1 by interval transformations are), for any shifted power joining
we have different shifted power joinings close to it. For example, if we want to
approximate 7 = 2(T™ x id), A + 3(T™ x id), A we choose k so that T* ~ id. This
means

VR

1 1
(T % id) N + §(T” X id) A + g(Tm X id) A

Wl

®
2Note that since S x S on {(x,S™ )} is uniquely ergodic, such an rj,; always exists [3, Propo-
sition 4.7.1].
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and this is the measure we approximate as above. This lets us treat general linear
combinations of shifted power joinings.

Remark 1. One can drop the assumption that (S,Y, \) is uniquely ergodic. In this
case one replaces (B) by

L
1
A({zx: dKR(—Z(S S (v z))mylgm) > ¢ for some L > —— dan ) < €.
L &= 9
This requires some straightforward changes to the estimates in the proof of Corollary
3.3 and the definition of the set (G in the proof of Proposition 3.1.

3.1. Proof of Proposition 3.1.

Lemma 3.2. Given ¢ > 0 and d € N there exists p < 1, C so that if 0 < §; < 1/2
and a;, b; are such that a;,b; > c and 1> a; +b; > 1—6; and also 0 < %(g) <1 are
sequences of real numbers for each € € {1,...,d} satisfying
(3.1) = (a5 + b)) < b

then
i—1

d
OREES wNGI S L0 ik
% d;% _C]Zk(z 1_5i>+0p

forallk>0,i>k and s € {1,...,d}.

Proof. Let &,(f) = vl(f) and inductively let %@) = i %( 1 RS o Jr'b % 1 Observe that

a; (¢-1) gﬁ—1>> bi < 0 ())
CLZ—Fb <7’L 77,71 + O/Z—i_bl ’y ,)/Z +

ai (-1 bi w0 __®
az + b 77, al + bl ﬁyl— f)/’l,

77 =71 <

The second term is at most

. ¢ i—1 :
4 =01 < o (6 + 5.
Thus it suffices to show that there exists C, p so that ms 3 Zz 17,f | < Cpi=k.

To see this note that %er => ¢ S% ) where 1 > ¢ps > ¢ > 0 for some fixed ¢
depending only on ¢ and d. Consider the matrix A; which has (¢, s) entry equal to
cs. This matrix is a definite contraction in the Hilbert projective metric. Indeed,
for every ( there exists # > 0 so that if M is a positive matrix where the ratio of
every pair of entries is at most ¢ and v, w are any vectors in the positive cone then

Dyp(Mv, Mw) < 0Dgp(v,w) where Dyp denotes the Hilbert Projective metric.

Now &,(ﬁrd is the (™ entry of AyAjiq...Apsr—1)a7 where 7 is the vector whose i*™"

entry is %(k)

Oi—

T il + ;-1 and using this we inductively see that

Since each A,y q is a definite contraction in the Hilbert projective



SELF-JOININGS FOR 3-IETS 13

metric, we see that Wzird %(Qd| decays exponentially inr. It is straightforward to

d A0 d (¢
check that 5 375 | 4 z( d Zz 1T =4 Ze 1 ’Yk " and so "kad DI ’Yig )| decays

exponentially in r. After choosmg C > p~4 we get ]’ykﬂ. 3 Ze:r ’y,(f)] < Cp. O
Corollary 3.3. Under the assumptions of Proposition 3.1 there exist p < 1, C' > 0 so
that dKR(V,f), 1 (ei 1 Vée)) < Z] , € + C'pF=0 whenever k > b and ¢ € {1,...,d}.
Remark. Corollary 3.3 establishes all the conclusions of Proposition 3.1 except the
ergodicity of .

Proof of Corollary 3.3. First notice that by (A) we have that

(3.2) dicr(|a;, v\ |4,) < €5 and dier(V” |5, 10, ]5,) < €.
We now claim that for all ¢,

1 Y Y €;
(3.3) dcn (A ERCATE y;._g) <oat2e

Indeed, for f 1-Lipschitz with || f|sup < 1 we have

"y

o o _ 1 ogi (Siz) d?
r;/ fa ) /U’ szJ\deVj I_A(J')Tj ;/J fo (@hxu(S'z) dvyy

Z/ foSix d“)— /foSZ (Six) dv?,.

S €j—1,

By (B) N

1 1, g
/\(Jj)rj; JJfOS /fd

and by (c) (i.e. the size estimate on Uj),

< [ fllsupA(U; N U S'T;) < 2;.

e ./foSZ Ko (S)dv

Then (3.3) follows because

1 1 1
_ < _
rA(;)  MA) T rA)  mA() = AU;)
Similarly, by partitioning B; into D, , ... where

Dy={x € S J; :min{i > 0: S’z € J;} = (},

we get

1
(34) dKR ()\(BJ) |BJ> () ) < €5-1 +2€j —|— =




14 JON CHAIKA AND ALEX ESKIN

So for any 1- Lipschitz function, f, with || f|lsup < 1, we claim that we may apply
Lemma 3.2 to % ffdu() with ¢ = ¢, §;_1 = €j_1 + 4¢; + E;, a; = MA;) and
b; = A(B;). To verify (3.1), note that

' [~ [ gat? = [ gt

and so by (3.2)
4 J4
‘ / fdv? — fdu /B fav',

Then, by (3.3) and (3.4),

[ 1= (a0 [ ras” a8 [ sl

This completes the verification of (3.1), and, in view of Lemma 3.2, the proof of
Corollary 3.3. O

< | fllsupA(Ui) < €

S 262'.

E.
<€ q+4de; + L.
= &1 J 2

To complete the proof of Proposition 3.1, we need to prove that p is ergodic. We
start with the following:

Lemma 3.4. It suffices to show that for any ¢ > 0 and M € N there exists ¢ > 0
and G CY xY with u(G) > ¢ and so that for (z,y) € G there exists L > M with

[
drr(T 20il1 O(sx8)i (e 1) < €.
To prove Lemma 3.4 we use the following consequence of the ergodic decomposition.

Lemma 3.5. Let T : Y — Y be a measurable map of a o-compact metric space
and fi be a invariant measure. For fi almost every z € Y we have that % Zjvgol )
converges to an ergodic measure in the weak-* topology. (The measure is allowed to
depend on the point.)

Proof. [i has an ergodic decomposition i = fy ftydft where [i,, is an ergodic probability
measure with fi,({z : fi, = fi,}) = 1 for fi-almost every y. For each y, let

Zy= {2+ Jim 3" 5(00) = [ i tor every f € C(Y)).

Because there is a countable || - ||sup-dense subset of C.(Y'), by the Birkhoff Ergodic
Theorem, we have that fi,(Z,) =1 for all y. UZ, has full i measure and satisfies the
conclusion of the lemma. O

Proof of Lemma 3.4. By our assumptions, a positive x measure set of (z,y) have that
w1 is a weak-* limit point (in particular the set lim sup of the G for a choice of € going
to 0). Throwing out a set of y measure zero where the limit may not exist, Lemma 3.5
implies this is the unique weak-* limit point and it is ergodic. O
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We now identify a set of full measure for p. As a preliminary, by the assumptions
(e) and (A) of Proposition 3.1 we have that if ¢ ()~ U,—,, U (this is a full measure
condition) then there exists p;(z), ..., pa(x) so that

Zliglo{( ) }Z 1= {(51)1 75Pd(33)}'

Lemma 3.6. u({(l’,m(@)a oy (I,pd(x)) }z¢m;°:1ug';nUk) =L

Proof. 1t is straightforward to see that for any f € C(Y x Y) we have

. 12
i f, 4G z;' /Zf“’f

Y XY
By Corollary 3.3, the left hand side is [ fdu = lim [, , fdl/i for every ¢, estab-
71— 00
lishing the lemma. ]

Proof of Proposition 3.1. Let G} be the set of all z € Y so that
(1) Sll’ ¢ U]o'ik—i-l Jj U Serj for all 0 S 1 S T}CTJA
(2) |{0 <4< Tpyr: Sixy € U;ik; U]}| < 4Zﬁk %rk—&-l-
(3) = ¢ U2 U

Claim 3.7. For all large enough k we have that A\(Gy) > 3.

This is a straightforward measure estimate using Assumptions (c), (d) and (e).

Suppose r € Gy and y € supp(j,). The next claim shows that there exists ¢; so
that hm( ))x is the point mass at y.

Claim 3.8. There exists £ so that dr(d,, (u,i”))x) <3 € Also

Tk+1

oo
dir Z Ssxsya vy | < "> ¢
Te+1 5 ik

Proof of Claim 3.8. We first state the following straightforward consequence of the
condition (A) of Proposition 3.1 (by considering if = € Ay or x € By):

Lemma 3.9. Let a € {1,..,d}. If S'x & J, US™J,, for 0 < j < L then there exists {
(it is either a or a + 1) so that dKR((V,(f))ij, (I/]ga_)l)ij) < € for any 0 < j < L with

By iterating we obtain:

Corollary 3.10. For all j > k, ¢ € {1,....,d} and v € Gy there ezists €’ so that
A1 )51, (1) si) <2Tdpp 0 Jor any 0 < i < 5 with S’z ¢ Ul
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Note that if L > " by condition (B) of the proposition we obtain

1 L

(3.5) drr(+ (V;(ga))ija V;(ga)> < €k-
L

j=1
By Corollary 3.10 there exists ¢ so that if S’z ¢ UZ’ikH Uy then for some ¢ we have
drr(0(5i %59 (2,)> (z/g))six) <Dk 6 (for 0 <4 < 75E). With (3.5) this gives

Tkl
9 o o

dKR(Z O(5x)i(2.y): nY) < e +2 Z € +4 Z €-
=1 j=k+1 j=k+1

O

This completes the proof by verifying Lemma 3.4 since for all ¢ > 0 there exists
ko so that for all & > ky and ¢ € {1,...,d} we have dKR(u,V,(f)) < € (by Corollary
3.3). O

4. PROOF OF THEOREM 1.1

In this section, we will verify the conditions of Proposition 3.1.

Before beginning the proof we set up a geometric context connected to our situation.
A 3-IET with lengths ¢, /5 and /3 is a rescaling of the Poincaré first return map of
rotation by 2t to the interval [0, 7LE2E) < [0,1) [6, Section §]. If w, denotes
the area one square torus oriented horizontally and vertically, observe that rotation

by « corresponds to the first return map of the vertical flow on ((1) —1a) Wsq to a
horizontal side, which is also the time one map of that flow.

To set up the geometric context, let M, 5 denote the moduli space of area 1 tori
with two marked points. Note that Mj o is isomorphic to (SL(2, R) xR?)/(SL(2,7Z) x
Z?). For w € M3 let F! denote the vertical flow on w, which corresponds to left

multiplication by the element ((1] (1)) X (?) Let w € Mo be the square torus

with two marked points distance % apart on the same horizontal line segment. Let

S C M, be the set of surfaces w so that Fjp is on the same horizontal as w and

its distance along this horizontal is at most % That is, if p is one marked point the

10 S

01)" (0

Let T be a 3-IET. It arises as the first return map of a rotation R, to an interval
K. Let

other marked point is at where s < %

M-1

vu(r) =) xx(Rhz).

=0
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Then, for any z € K so that RMz € K,
(4.1) T¥M@) g = RMy,

1 - .
0 104 wsq and marking
two points on the bottom horizontal line that are | K| apart. When it is convenient, in

what follows we will consider K as being embedded in wr and ¢; K as being embedded

et

t
in g;wr where g, = ( 0 eqt> . Here we are identifying ¢g; with the matrix (e eqt) X

Let wyr € M 5 be the torus defined by taking the torus

0
(8) and think of ¢, as acting on Mo = SL(2,R) x R?/SL(2,Z) x Z? by left

multiplication. Thus, for any M € N we can identify 1y(x) as the intersection
number between K and a vertical line of length M on wr starting at a x, see Figure 1.
Using this as a definition, we can make sense of 1y, for all M € R*.

If we embed K in wy, then for x € K and M € N, we have

(4.2) 7M@) — PM(g) if FM(z) e K

where ¢,/ (x) is the number of intersections between a vertical line of length M starting
at x and K.

FIGURE 1. The torus wr. A vertical segment of length M (colored in
red) intersects a horizontal slit (colored in blue) of length | K.

Lemma 4.1. For almost every T we have that & is a limit point of {gwr }e>o-

*
0
expanding horospherical subgroup with respect to the action of g;, or in other words,
the orbits of U™ are the unstable manifolds for the flow g;.

By construction, map 7' — wy projects to a positive measure subset D of a single
U™ orbit on M 2. Moreover, the pushforward of the Lebesgue measure on the space
of 3-IET’s to D is absolutely continuous with respect to the pushforward of the Haar
measure on UT to D. The lemma then follows from the ergodicity of g;. ([l

Proof. Let U™ denote the subgroup ((1) T) X ( ) of SL(2,R) x R?. Then, U™ is the
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Corollary 4.2. For every 6 > 0 and almost all T, there exists arbitrarily large t > 0
with guwr € B(w,§)NS.

Proof. Since w is square, for p € @, Flp = p. Therefore, for w’ € B(®,d) and p € o/,
Flp is within ¢;(¢") of p, where ¢1(8") — 0 as & — 0. Write FL,p — p = (v, v9), and
note that for ¢’ > 0 sufficiently small and for small s € R, for p € g,w’, we have

Fl op—p=(e5v,1— e+ evy).

gsw
Therefore, given w’ € B(w,§), we can choose s € R, with |s| < ¢2(d") where c3(d’) — 0
as 0 — 0, such that 1 —e® +evy = 0, i.e. gw’ € S. We have g’ € B(w, c3(0")) with
c3(0") > 0asd — 0.
Suppose T is such that @ is a limit point of {gwr}i>0. Choose ¢’ > 0 such that
c3(8") < 0 and choose t' such that gywr € B(w,d') and then let t = ¢’ + s where s is
as in the previous paragraph. Then gwr € B(w,d) NS as required. O

We now apply ¢; to Figure 1, with ¢t = log M. Note that 1/(x) is also the inter-
section number between a vertical segment 7; of length 1 and a horizonal slit v, of
length M|K| (see Figure 2). From now on, we assume that gwr € B(w,0) NS for

some § < 1.
/Z i

]
| ]
|

FIGURE 2. The torus gigmwr: A vertical segment v, of length 1
(drawn in red) intersects a horizontal slit 7, of length M|K| (drawn
in blue). If we also assume that giog ywr € B(w,d) NS then the torus

Jlog Mwr 18 nearly square, and the two endpoints of 7, are on the same
horizontal line segment, of length at most 1/2 4+ O(0).

The following lemma references Figure 3.

Lemma 4.3. There exists m so that if the green segment does not cross the purple
segment then the number of times a trajectory of length 1 crosses g, KK (the blue lines)
is either m or m+1. Moreover it is m+ 1 if it does not cross the (horizontal) purple
segment and m if it does.
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T
/ ]
/ ]

g

/
A —
gﬁ

FiGure 3. Closing the curves. We complete the vertical segment 7, to
a closed curve v; by adding a horizontal segment (; (drawn in green).
Note that since gwr € B(w, )NS, the length of ¢; is at most 1/2+0(9).
Similarly, we close up the horizontal slit v, to obtain a closed curve 4,
by adding in a horizontal segment (5 and a vertical segment ¢} (drawn
in purple).

In other words, for the set of points x whose green segment does not cross the purple
segment, ¢p(x) is m if its red segment crosses the purple segment (where ¢y is as
in (4.2)) and ¢pr(x) = m + 1 if it does not.

Note that because Figure 3 is of giog(arwr, vertical trajectories of length 1 in Figure
3 correspond to vertical trajectories of length M on wr.

Proof. Indeed, the family of curves we define are all homotopic and so their intersec-
tion with 4 is all the same. So for such curves, if the green and purple segments have
intersection number zero then the intersection of the red segment and blue segment
depends only on the intersection of the purple segment and the red segment, which
by construction is either 0 or 1. O

Lemma 4.4. For all ¢ > 0 there exists § > 0 so that if w € B(w,d) NS and the
flow F5 is minimal then there exists p < € and L € N so that for any interval J with
|J| = p we have

[ J )\ <USE[O,L) FSJ> > 1 — €
o Forall0<s<{< L we have FSJNF'J =10
o 1] is horizontally adjacent to J.

Proof. Suppose p is a point in w, and w € §. Then, F'p is horizontally adjacent to
p. For all € > 0 there exists § > 0 so that if w is in SN B(w, ) then F'p is translated

by less than §. Since the vertical flow on w is minimal, F'p # p. Therefore, F'p is
translated horizontally by some amount p > 0. Let J be a horizontal interval of length
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p. We choose L = min{s > 0: FsJN.J # 0}. We have that A <U86[07L) FSJ> >1—p.
Proposition 4.5. For any a,b € Z and £ > € > 0 there exists 6 > 0, to > 0 so that
if gror € B(w,0) NS, A(K) > ¢ and t >ty then there ezist

encZ,reNLeN
e an interval J C K, and a measurable set B C K

so that the minimal return time (under T') to J is at least 3r, and for A =J,_,T"J
we have A(A) > 3A(K) — €, \(B) > 3A\(K) — € and the sets A and B satisfy
d(T"z,T%) < € forallz € A
and
d(T"z, T"x) < € for all v € B.

Moreover, T"JNT.J =0 for all0 <i < j < %r. Lastly, if v is the joining supported
on {(z, T*z)} then for all x € A we have

L-1
1
dKR (z ; 6(Tix,Ti+"cc)7 V(a)> < 2e

and if VY is the joining supported on {(x, T’z)} then for all x € B we have

L-1
1
dir (Z ; 6(Tix7Ti+nx), V(b)> < 2e.

Remark 2. Specializing to the case where a = 0 and b = k, we see that 3(Id + T*)
is in the weak closure of the powers of T". Veech showed that almost every 3-IET has
simple spectrum [16, Theorem 1.3]. Combining these two facts with Ryzhikov’s [13,
Theorem 6.1 (3) and (4)] we have that the spectrum of 7" and T' x ... x T are simple
—_——

n times

for all n > 0.
Proof. In view of Lemma 4.4, we can choose ¢ so small that for any w € B(w, ),

(i) The horizontal purple line has length between % — ¢ and % + 5.

.. 10 p
1 €
(i) Flx = <O 1> X (O) z where 0 < p < G-

Because T x T is uniquely ergodic on the support of #(® and v® there exists Ly so
that if d(p;, T*"'y) < € for all 0 <7 < L then

L1 L-1
1 . 1 ,
(4.3) dicr (Z Z;é(:”y,pmy( )) < 2, dxr (z 2;5(?@/71%)7 vt )) < 2e
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for all L > Ly and y € K. Indeed, T x T is uniquely ergodic on supp(v) and
supp(u(b)) and uniquely ergodic systems have uniform convergence of Birkhoff aver-
ages of continuous functions (see for example [3, Proposition 4.7.1]). We choose ¢, so
large that any vertical trajectory of length e’ on wy crosses K at least L times. We
further assume Ly > max{|al, |b|}.

We now set about defining J and A. Let V' be the horizontal purple line segment.
Let p be as in the previous lemma for g;wr. For any horizontal interval I on g;wr of
length p we have one of the following mutually exclusive possibilities:

(@) Usepoy F()NV =0

(b) There exists s € [0, 1) so that F*(I) C V.

(c) Use[o,l) F()n@v) #0
Note that by Lemma 4.3 there exists m so that if I/ C K so that if (b) holds then
¢ () = m and similarly if I C K so that (a) holds then ¢ (x) = m + 1.

Let A be the set of points in g;wr which belong to some horizontal interval of length
p satisfying (b). Let

(4.4) A= N Fs, A
s€[—2—|a—b|,2+|a—b|]
Let p > 0 be given by Lemma 4.4 and I be an interval of length p in AN gK so
that F~'I ¢ A. Now F'I is horizontally adjacent to I, and so F7I is horizontally jp
over from /. So by our assumption on the length of I, we have

; ~ V
(4.5) F'I c A, forall Ogjg%—2(2+]a+b\)—3zﬁ.

(Note that by (ii) and the fact that [V| > I — ¢ we have p > 1.)

We now use what we have done for the flow on g;wr to establish some of our claims
about the IET, T. Let r be the cardinality of the set of intervals of length p in
Use[O,ﬁ) FsI N K. Note that because in our set A a vertical trajectory of length 1
crosses ;K C gywr exactly m times, r = mp.

Let A" = g_t/i N K C wr N K, which we can consider as a subset of the domain of
T as well (because it is contained in K). Note that we have

(4.6) Gt (x) =m  forxe A
We also have for all x € A’,
(4.7) d(Fz,2) = e 'p,

because when we apply ¢g_; to pull back our dynamics from g,wr back to wr we
contract horizontal distances by e~*. It follows from (4.2), (4.6) and (4.7) that

(4.8) d(T™(z),z) =e'p  forallz e A

Let J denote the interval corresponding to I in the domain of our IET, T. That is,
we consider J = g I C K C wy, which since it is in K we consider as an interval in
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the domain of T'. Let A = UZ:& T'J, which we can consider as a subset of K C wr.
We now claim that

(4.9) AC g ANK.
Indeed, by (4.5), we have
(4.10) F*'Jcg A forall0<s<p.

It follows in view of (4.6), that for x € J,

p—1
(4.11) Bper (1) = Y e (F*'2) = mp = 1.
k=0

By (4.2), we have for x € J and i € N,
T'x = F*z, where s is such that ¢,(z) = i.

Since for a fixed x € J, the map s — ¢4(x) is monotone increasing in s, for 0 < ¢ < r
we have in view of (4.11),

T'z = F’z where s < p.
This, together with (4.10) implies (4.9). The same argument shows that

(4.12) T'ze A" forx € Aand [(] <m(la—b|+1).
We now claim that for all z € A we have:
ja—b]

d(T"z, T%z) < d(T"z, T"z) + Z d(Tmrag, T-Dmtag) < et < ¢
i=1
Indeed, by (4.12) and (4.8) we have d(T7" %z, TU=Dm+ag) = pe~t for all |j| < |a— b,
because |a| < m. We obtain the second inequality by (ii).
We now show that for all z € A

m—1
1
dKR(E ZO 5(Ti$’Ti+n$)7 V(a)) < 2e.

By construction, if € A then TPz € A’ for all —m < i < m. So we have that
d(T™"z, T "z) < € for all |i| < |m|. So by (4.3) and the fact that m > Ly we have
our condition on dgg.

We now show that A(A) > sA(K) — e. This follows from the fact that by (ii)
the measure of the set of x € g,wy so that F’x crosses the horizontal purple strip
for0</¢<1land -1 </¢<0and F o does not have this property for some
—1 < s < 1 has measure at most ZW. By our condition on the length of the
purple horizontal strip, the measure condition on A is completed.

The fact that the return time of 7" to J is at most %r follows from the fact that the
measure of A¢is at most $A\(K) + € and so the orbit of J after leaving A and before
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returning to .J has measure at least sA(K) — e — € > 2A(A). So J has at least 3r
images outside of A before part of it returns.
We now similarly define B C A°¢ with the desired properties. First let

B = {JZ € g1wr  Use[-3—|a—b|, 3+|a—b|]F ( ) NV = @}

gtwr

Similarly to before let B = Nsel-1,11F, B and B = g+BNK C wp, considered

gewr
as a subset of the domain of 7. Now as above, by Lemma 4.3 if z € B then
we have that a vertical trajectory of length 1 or -1 emanating from = crosses ¢, K
exactly m + 1 times. Moreover, F; . has this property for all —|a —b] < s <
la —b|. Since n = b+ (m + 1)(a — b), for any x € B and |i] < m we have
d(T"Tix, TPT'z) < M g(Titmt D, 700ty < ¢ Thus, as above we have
dcr(L ST S(pig pitngy, v®) < 2¢ for all # € B. The fact that A\(B) > MK) — € is
similar to the case of \(A) above.

O

Now given two number a, b we may iteratively apply Proposition 4.5 to obtain the
assumptions of Proposition 3.1. Indeed, we choose ¢; satisfying assumptions (c) and
(e). We apply Proposition 4.5 to the pair of numbers (a,b) and € = €; to obtain m,
A, B and r. Denote m by a;. We apply Proposition 4.5 to the pair of numbers (a, b)
and € = €; to obtain m, r’, A’, B, and denote m by b;. We repeat this procedure with
a1 and by in the place of a and b and €, in place of € and obtain as, by. We further
request that the interval J produced by Proposition 4.5 have max{r,r'}\(J) < €.
Iterating this we have the conditions of Proposition.

Proof of Theorem 1.1. Let i be an invariant measure for T'xT'. By Corollary 2.3 there
exists ny, ..., g so that v; is the joining supported on {(z, T"z)} and di g(p, & S ) <
€. For each pair n;,n;1 and § we apply Proposition 4.5 to obtain 4, t,. We further
do this for the pair ng, n;. We choose  to be the smallest of these and ty to be the

largest. We obtain ¢ > tg so that guwr € B(w,d). We then obtain m;, r; which we

) (U We now repeat this ngl)

max{rg )}. In doing this we obtain nZ@)

our kth choice of € be 5
We are now left to prove that there is an ergodic self-joining that is neither A x A

nor one-to-one on almost every fiber. Let I/él) be the self-joining carried on {(z,z)}

denote n, ’ and r; in place of n;, 5z in place of § and

and T’Z(Q). We repeat this recursively having

and VSQ) be the self-joining carried on {(z,Tz)}. Let ¢; > 0 satisfy that
(4.13) d(z,Tx) > 40C Z €

and

(4.14) dier(A X A, ( V) > 4026“
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where C' is as in the conclusion of Proposition 3.1. We apply Proposition 3.1 for these

€; as above to obtain I/i(l), Vi(z) and their weak-* limit v, an ergodic measure which

by (4.14) is not A x X\. The following lemma show v, can not be one-to-one on almost
every fiber.

Lemma 4.6. If p is a measure that is one-to-one on almost every fiber then i can
not be the weak-* limit of a sequence of measures v; that are two-to-one on almost
every fiber and so that

A{z : diam(supp(;),) > 0}) >

o

for infinitely many i.

Proof. There exists f : [0,1) — [0,1) measurable so that u is carried on {(z, f(z))}.

By Lusin’s Theorem there exists K compact with A(K) > % so that f| is uniformly

continuous. Let s > 0 be so that d(f(x), f(y)) < g for all z,y € K with d(z,y) < s.
Choose an interval I with |I| < s, A\(I NK) > 2\(I) and
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1
(4.15) A{z € I:diam((1;),) > 6}) > 5
for infinitely many i. Let p = f(z) for some z € I N K and let g : [0,1) x [0,1) = R
be a 1-Lipschitz function so that

® glrex,1) =0
i 9|IxB(p,§) =0
e g(z,y) = min{d(z,dI),d(y,0B(p, %)), 2} for all (z,y) € I x (B(p,3))".

Now [ gdo < 01| ||g|lsup < -01|1| - min{$, %} On the other hand if 7; satisfies
(4.15) then on a set of x € I of measure at least % we have one of the two points in

(D), is at least % away from p. A subset of these x of measure at least % satisfies
d(z,8I) > L|I|. So [gdy; > W min{¢, 1}, Since ¢ is 1-Lipschitz it follows that
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dir(p, ;) > [I|min{|I|(4 — 5%), & — 525} proving the lemma. O
Letting 7; = %(VZ-(I) + VZ-(Q)) and seeing that by (4.13) they satisfy the condition in
the lemma, we see T' is not 2-simple. 0
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