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SEMISIMPLICITY OF THE LYAPUNOV SPECTRUM FOR
IRREDUCIBLE COCYCLES

ALEX ESKIN AND CARLOS MATHEUS

ABSTRACT. Let G be a semisimple Lie group acting on a space X, let pu be a
symmetric compactly supported measure on GG, and let A be a strongly irreducible
linear cocycle over the action of G. We then have a random walk on X, and let T'
be the associated shift map. We show that, under certain assumptions, the cocycle
A over the action of T is conjugate to a block conformal cocycle.

This statement is used in the recent paper by Eskin-Mirzakhani on the classifica-
tion of invariant measures for the SL(2,R) action on moduli space. The ingredients
of the proof are essentially contained in the papers of Guivarch and Raugi and also
Goldsheid and Margulis.
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1. INTRODUCTION

1.1. Statement of the main results. Let G be a semisimple Lie group. Denote
by p a symmetric compactly supported probability measure on G.

Let X be a space where G acts and denote by v a p-stationary measure (that is,
px v =wv where px v := [, g.vdu(g)). We assume that v is p-ergodic.

Consider L a real finite-dimensional vector space and A : G x X — SL(L) a
(linear) cocycleﬂ. Since it is sufficient for our purposes, we will assume that A(g, x
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Le., the cocycle relation A(gag1,2) = A(ga, g1(x)) - A(gr, x) holds for all z € X and g1, 92 € G.
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is bounded for ¢ in the support of . Denote by H the algebraic hull of A(.,.) in
Zimmer’s sense, that is, the smallest linear R-algebraic subgroupﬁ H such that there
exists a measurable map C : X — SL(L) with C(g(z))A(g,2)C(z)"" € H for u-
almost all g € G and v-almost all x € X. In what follows, we will assume that H is
a R-simple Lie group with finite center, and a basis of L is (measurably) chosen at
each x € X so that the cocycle A(.,.) takes its values in H.

Definition 1.1. We say that the cocycle A( .) has an invariant system of subspaces
if there are measurable families W;(z), i = 1,...,k, of subspaces of L such that
A(g,z)(Wi(x)U---UWi(z)) C Wi(g(x))U---U Wk(g(:c)) for p-almost every g € G
and v-almost every x € X.

Definition 1.2 (Strong irreducibility). We say that A(.,.) is strongly irreducible if
there are no non-trivial and proper invariant systems of subspaces.

We will be interested in the behavior of a strongly irreducible cocycle A(.,.) on the
Lyapunov subspaces obtained after multiplying the matrices A(g,x) while following
a random walk on G. For this reason, let us introduce the following objects.

Let Q = GY. Denote by T : Q x X — Q x X the natural forward shift map on
Qx X:

T(u,x) = (o(u),u1(z))
where o(u) = (uy,...) for u = (u1, us,...) € Q. Denoting by 3 = u" the probability
measure on §) naturally induced by pu, it follows from the fact that v is u-stationary
that the probability measure § x v is T-invariant.

As we already mentioned above, from now on, we will assume that the stationary
measure v is fi- ergodlcﬁ that is, f x v is T-ergodic.

In this language, we can study the products of matrices of the cocycle A(.,.) along
random walks with the aid of the cocycle dynamics Fiy : Q@ x X xH — Q x X xH
naturally associated to A(.,.):

Fa(u,z,h) = (T(u,x), A(uy, z)h)

Actually, for our purposes, the “fiber dynamics” of Fy will be more important than
the base dynamics T'. For this reason, given u € €2 and = € X, let us denote by
A"™(u, z) the matrix given by the formula:

Fi(u,z,1d) = (T™(u,z), A(tp, Up_1 ... u1(x)) ... A(uq,x))
= (T™(u,x), Alup ... uy,z)) = (T"(u, x), A" (u, )).

In this context, the multiplicative ergodic theorem of V. Oseledets [Os] says that, if
[log™ ||A(g, x)||du(g)dr(x) < oo, then there is a collection of numbers A\; > -+ > \;

2Recall that the algebraic hull is unique up to conjugation (cf. Zimmer’s book [Zi]).

3By definition, v is p-ergodic if it is not a non-trivial convex combination of two distinct -
stationary measures. The fact that v is p-ergodic is equivalent to the T-ergodicity of 8 x v is
classical: see e.g. Benoist-Quint’s book [BQD].
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with multiplicities mq, ..., m; called Lyapunov exponents and, at § x v-almost every

point (u,z) € Q x X, we have a Lyapunov flag

(1.1) {o}=vi, cVi(u,z)c - CVi"(u,2) =L

such that V;*(u,z) has dimension m; 4 --- + my and lim 1log||A™(u, )pl| = A;
n—oo

whenever p'e V" (u,z) \ Vi, (u, ).

In this paper, we will study the consequences of the strong irreducibility of a cocycle
for its Lyapunov spectrum (i.e., collection of Lyapunov exponents and flags). In
particular, we will focus on the following property:

Definition 1.3. We say that F4 or simply A(.,.) has semisimple Lyapunov spectrum
if its algebraic hull H is block-conformal in the sense that, for each ¢+ = 1,... k,
Vi (u, ) /ViE, (u, ) possesses an invariant splitting,

V;+(U> I)/Vzil(u> T) = @ Eij(u> ),
=1

and on each E;;(u,x) there exists a (non-degenerate) quadratic form (.,.);j . such
that, for all p, ¢ € E;j(u,z) and for all n € N,

(A™(u, 2)p, A™(w, 2)Dijrn(umy = €7D, @i oum)
for some cocycleﬁ Aij 1 x X xN—=R.

Standing assumptions. From now on, besides the hypotheses

(A1) G is a semisimple Lie group group acting on a space X;

(A2) p is a symmetric compactly supported probability measure on G and v is an
ergodic p-stationary probability measure on X;

(A3) A: G x X — SL(L) is a linear cocycle (where L is a real finite-dimensional
vector space) such that A(g,z) is bounded for g in the support of y;

(A4) the algebraic hull H of A(.,.) is a R-simple Lie group with finite center.

(A5) A verifies Oseledets’ integrability condition [ log ||A(g, z)*!|du(g)dv(z) < oo,

we will actually require the (stronger assumption of) invariance of v under supp(u):
(A6) for all g € supp(u), one has g.v = v.

In fact, most of the arguments in this paper need justﬁ the p-stationarity of v: as it
turns out, the invariance of v under supp(u) is used only at Subsection
In this context, the main result of this paper is the following theorem:

Theorem 1.4. If A(.,.) is strongly irreducible, then it has semisimple Lyapunov
spectrum.

AThat is, Aij(u, z,m + 1) = Xij (T™(u, ), 1) + \ij (u, T, m).
"We emphasize this point by writing most of this article in the setting of stationary measures.
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Furthermore, the top Lyapunov exponent corresponds to a single conformal block,
that is, for B x v-a.e. (u,x) there are a (non-degenerate) quadratic form (.,.),. and
a cocycle A : 2 x X x N — R such that

(1.2) (A™(u, 2)P, A™ (u, 2) Do (umy = TP, D
for all p,q € Vit (u,x)/ V5t (u, x).

In fact, the ingredients of the proof of this result are essentially contained in the
articles of Goldsheid-Margulis and Guivarc’h-Raugi [GRI], [GR2]. In particular,
the fact that such a result holds is no surprise to the experts.

Nevertheless, we decided to write down a proof of this theorem here mainly for
two reasons: firstly, this precise statement is hard to locate in these references, and,
secondly, this result is relevant in the recent paper [EMi| where a Ratner-type theorem
is shown for the action of SL(2,R) on moduli spaces of Abelian differentials.

1.2. The backwards cocycle. As it turns out, for the application in Eskin-Mirzakhani
paper , one needs the analog of Theorem [[.4] for the backward shift.

More precisely, let @~ = GZNand Q = Q" xQ. Denoteby 77 : " x X — Q" x X
the natural backward shift map on Q= x X:

T~ (v,y) = (07 (v),05 (1))

where 0= (v) = (...,v_y) for v = (..., v) € ¥~. Similarly, denote by 7 : Q x X —
) x X the natural forward shift map on €2 x X:

~

T(v,u,z) = (6(v,u),u(x))

where (v, u) = (¢;_1)iez for (v,u) = (¢;)iez-

Recall that Q is equipped with the probability measure 8 = u, so that 8 x v is
a T-invariant probability measure on 2 x X. Note that Borel measures on ) and
Q are uniquely determined by their values on cylinders. In particular, the natural
projection 7, : O x X = Qx X induces a bijection (7). between the spaces of
T-invariant and T-invariant Borel probability measures, and, a fortiori, there exists
an unique probability measure m on Q) x X projecting to $ X v under (7 ).. In
this context, the natural 7'~ -invariant probability measure ¥ constructed in Lemma
3.1 of Benoist and Quint is BX = (7_), 0 (12)7Y(8 x v) == (B x v)~, where
m_:Q x X — O x X is the natural projection.

Similarly to the previous subsection, we can study the products of matrices of the

cocycle A(.,.) along backward random walks with the aid of the dynamical system
Fi: Q" xXxH—=Q xX xH given by

Fy(v,y,0) = (T (v,y), Avo, v ' (y))'h)
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naturally associated to A, or, equivalently, the “fiber” dynamics A="(v,y) given by
the formula:

(F)"(v,9,1d) = (T7)"(0,9), A(v—(u1), v _yy -+ Vo (¥)) - Alvo,vg " (1))
= ((T7)"(v, ), A" (v,9))
By Oseledets multiplicative ergodic theorem, if [log™ || A(g, z)*!||du(g)dv(x) < oo,
then we have a Lyapunov flag
(1.3 (0} =V C W) € C V(o) = L
such that V" (v,y) has dimension m; + --- + m; and 7}1_{& Llog |[A™(v,y)q| = =X,

for g€ V; (v,y) \ V;_1(v,y), where \; are the Lyapunov exponents of Fy and m; are
their multiplicities from the paragraph surrounding (ILT).
In this setting, we will show the following:

Theorem 1.5. Suppose that A(.,.) is strongly irreducible. Then, Fy has semisimple
Lyapunov spectrum.
Furthermore, the largest Lyapunov exponent corresponds to a single conformal

block, i.e., for B~ = (B/G)_—a.e. (v,y) there are a (non-degenerate) quadratic form
(., oy and a cocycle X : 17 x X x N — R such that

(14) <A—n(v’ y)p: A—n(,U’ y)@(T*)”(v,y) - 6)\(1)7%”) <]5; (Dv,y
for all p,q € Vi (v,y).

1.3. The invertible cocycle. Both Theorem [[4] and Theorem [T are derived as a
consequence of a theorem about the two-sided walk. By Oseledets theorem applied

to T, the flags (II)) and (I3) exist for ﬁ/;-a.e. (v,u,z) € Q x X (and, moreover,
Vi (o, ) = Vi (u, ) and Vi (v,u,2) = Vi (0,2).

j
Then for § x v-a.e. (v,u,z) € Q2 x X, let us define
Ve(v,u,2) =V, (u,2) NV, (v, 2)

for every 1 < ¢ < k. By Lemma 1.5], Vy(v, u, x) has dimension m, and
k J
Vi (u,x) = @Vg(v, w,z) and Vi (u,z) = @Vg(v,u,x)
=i =1

In particular, for ﬁ/;<\y-a.e. (v,u, ),

V}J’(u,x)/Vjil(u,z) ~ Vi(v,u,x) =V (v,2)/V,_ (v, )

J

Using this information, we show below that Theorems [[.4] and follow from the
corresponding result for the two-sided walk:
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Theorem 1.6. If A(.,.) is strongly irreducible, then it has semisimple Lyapunov
spectrum, in the sense that the restriction of A™(v,u,z) to each Vi(v,u,x) is block-
conformal.

Furthermo/_reihe top Lyapunov exponent corresponds to a single conformal block,
that is, for B x v-a.e. (v,u,x) there are a (non-degenerate) quadratic form (.,.)yux
and a cocycle \ : QO x X x N = R such that

(15) <An(,07 u, .CL’)]?, An(vu u, x)@T”(v,u,x) = eA(v,u,x,n) <Z3: @v,u,x
for all p, ¢ € Vy(v,u, x).

Remark 1.7. It is shown in Appendix C] that if the algebraic hull H is the
whole group SL(L), then all Lyapunov exponents are associated to single conformal
blocks, i.e., for § x v-a.e. (v,u,z) € © x X and for each 1 < ¢ < k, there are a

(non-degenerate) quadratic form (.,.); .. and a cocycle A; : ) x X x N — R such

that

<An(v’ u, l’)ﬁ: An(v’ u, z)®i7fn(v7u7x) = e)w'(v,%xm) <]5; @i,v,u,x

for all p, ¢ € Vi(v, u, x). Furthermore, analogous statements hold for the forward and
backward walks.

Proof of Theorems[1-4) and LA assuming Theorem[Ld. Denote by (., .);j . the inner-
products coming from the block-conformality property ensured by Theorem [L6. We
will show that for (8 x v)-almost every (u, ), resp. %-almost every (v, ), the con-
formal class of (., .)ijvuz does not depend on v, resp. w (and this will suffice to obtain
Theorems [[.4] and [L5]).

Given ¢ > 0, we can select a compact subset K €  x X with S/E(K) >1—c¢
such that the functions (v,u,x) — (.,.)ijwuz are uniformly continuous on K. By
ergodicity, if we take 0 < e < 1/2 and we consider the corresponding compact subset
K just described, it follows that there exists ¥ € Q x X with m(Y) = 1 such
that, for any (v,u,x) € Y, the elements of the orbit (T"(v, u, T))nez belong to K for
a set of integers n with asymptoticﬁ density > 1/2.

Next, we define

[ﬁ (j] 3 L <]§’7 @ij,v,u,x
s Qligvue = T 1/2 N 1/2
<p> mij/,v,u,m<q> (Dij/,v,u,m

Let (v, u,x), (V,u,x) € Y, resp. (v,u,z), (v,u,x) € Y. By Theorem [L6]

(16) [ﬁn, (j‘n]ij,T”(y,u,m) = []5; ﬂij,v,u,xa [ﬁrw Jn]ij,T7l(v’,u7m) = []5; (ﬂij,v’,u,x ‘v’n Z O,
[ﬁm Jn]ij7fvl(v,u1,x) = [ﬁ; q_jij,v,u’,gc vn <0
6By definition, R C Z has asymptotic density > & when lirnJirnf %#{n ER:0<n<m}>0
m——+00

and limJirnf L#fneR:—m<n<0}>0.
m—r—+00
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where p,, := A"(u,z)p and @, := A™(u,x)q for all n > 0, resp. p, := A™"(v,x)p and
Gn = A""(v,2)q for all n <0.
By construction of Y, we can select a subsequence nj, — +00, resp. ny — —o0
such that 77 (v, u ,T), T"k(v u,z) € K, resp. T™ (v, u,z), T™ (', u ,x) € K Vk e N.
Since the points 7" (v, u, z) and T™(v', u, z), resp. T™(v,u, z) and T"(v,u’, ), ap-
proach each other as n — 400, resp. n — —oo, it follows from the definition of K
(and our choice of (ng)ren) that

[ﬁnk’ (j‘nk]z],fmk (vyu,z) [ﬁnk’ an]zy,f”k (v',u,x) - O’
resp.
[ﬁnk’ an]zy,f”k (v,u,x) [ﬁnk’ Jnk]zy,f"k (v,u,) —0

as k — oo.
By plugging this into (IL6), we see that

[ﬁ: q]ij,v’,u,x = [ﬁ: (ﬂij,v,u,wv resp. [ﬁ: q]ij,v,u’,x = [ﬁ: (ﬂij,v,u,wv

whenever (v, u, ), (v,u,z) €Y, resp. (v,u,x),(v,u/,x) €Y.
In other terms,

(1'7) <25; @ijvvlyuvx = C(U/’ U? u? I) <25: @ijvvvuvl" resp'
<Z3: @ij,v,u’,m == C(U, u/7 u, LE‘) <Z3: q_>ij,v,u,w7

whenever (v, u, z), (v,u,x) €Y, resp. (v,u,x),(v,u/,x) €Y.

On the other hand, for 3x v, resp. ¥ almost every (u,x), resp. (v, ), we can Borel
measurably select v = v(u,z) € Q7, resp. u = u(v,z) € Q such that (v,u,z) € Y
(because of von Neumann selection theorem, see Theorem A.9 at page 196 of Zimmer’s
book [Zi]). By setting (., )uz := (- o(ue) s 1P (4, Jve = (-, )vu(ve)z, We obtain
that the conclusions of Theorems [[L4 and are valid for these choices of inner-
products thanks to Theorem [[L6]l and the conformality relations (L.7]). O

The remainder of this paper is devoted to the proof of Theorem [L.6l

2. R-sIMPLE LIE GROUPS

Let H be a R-simple Lie group. We will always assume that H is a linear algebraic
group with finite center. Let 6 denote a Cartan involution of H, and let K denote
the set of fixed points of #. Then, K is a maximal compact subgroup of H.

Let A denote a maximal R-split torus of H such that #(A) = A, and let X denote
the associated root system. Let X% denote the set of positive roots, and let A denote
the set of simple roots. Let B denote the Borel subgroup of H corresponding to X7.
Let W denote the Weyl group of (H, A).

Let A be the positive Weyl chamber, i.e.,

A, :={ae A : a(loga) >0 foralla € B}
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We have the decomposition
(2.1) H =KA K.
If g € H is written as g = kyako where ki, ko € K and a € A, we write for a € T
(2.2) a(g) = a(loga).
We also have the Bruhat decomposition
H= | | BuB.
weWw

Let wy € W be the longest root. Then, BwyB is open and dense in H. Let
(2.3) J C H/B denote the complement of BuwyB/B in H/B.

Given a subset I C A, let P; denote the parabolic subgroup of H associatedd to .
We have the Langlands decomposition

P;=M;A Ny,
where
Ar={ace A : a(loga) =0 for all o € I}.

The group M is semisimple, and commutes with A;. The group N; is unipotent,
and N; < Py.

For later use, we denote N; = woNjw; ' and let J; be the complement of (BwoP;)/P;
in H/PI

We will use the rest of this section to deduce some general properties of the actions
of elements of H on H/P;. In particular, even though these properties help in the
proof of Theorem [LL6, we decided to present them in their own section because they
have nothing to do with the cocycle A but only with the group H.

2.1. A lemma of Furstenberg.

Definition 2.1 ((¢,d)-regular). Suppose € > 0 and § > 0 are fixed. A measure 7 on
H/B is (¢, 0)-regular if for any g € H,

n(Nbhde(gJ)) <4,

where J is as in ([23]). A measure n; on H/P; is (¢, §)-regular if for any g € H,
n1(Nbhde(gJ1)) <6,

where Jy is the complement of (BwoP;)/P; in H/Pj.

7I.e., P; contains A and its root system (P, A) is 3T UX; where ¥; C ¥ consists of roots whose
expansions relative to A have vanishing coefficients at elements of I.
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Lemma 2.2 (Furstenbergﬁ). Suppose I C A, g, € H is a sequence, and n, is a
sequence of uniformly (e, d)-reqular measures on H/P. Suppose § < 1. Write

Gn = knankl,
where k, € K, kI, € K and a, € A.
(a) Suppose I C A is such that for all « € A\ I,

(2.4) ala,) — 0.
Then, for any subsequential limit A of g,n,, we have
(2.5) k.Pr— koo Pr and AN{kxoP;})>1-10

for some element k., € K.

(b) Suppose g,n, — X\ where X\ is some measure on H/P;. Suppose also that
there exists an element ko such that A({kxPr}) > 55. Then, as n — oo,
(Z4) holds for all « € A\ I. As a consequence, by part (a), (22) holds and
AP }) > 1.

Proof of (a). Without loss of generality, k!, is the identity (or else we replace 7, by

k).
Let N; = woN;w, . By our assumption (24), for n € Ny,

a,nP; = (a,na, YP; — P; in H/P;.

For any z € H/P; such that z ¢ J;, we may write z = nP; for some n € N,.
Therefore, d(g,z, k,P;) — 0, where d(-,-) denotes some distance on H/P;. It then
follows from the (e, d)-regularity of 7, that (23] holds, and any limit of g,n, must
give weight at least 1 — 0 to ko, P; (where k4, is a subsequential limit of k).

Proof of (b). This is similar to Lemma 3.9]. There is a subsequence of the g,
(which we again denote by ¢, = kna,k],) such that for all v € A, either y(a,) — oo
or v(a,) is bounded. After passing again to a subsequence, we may assume that
kn — koo. Also, without loss of generality, we may assume that £/, is the identity (or
else we replace n,, by k., n,).

Suppose there exists & € A\ I such that (24 fails. Let I’ C A denote the set of
v € A such that, for vy € A\ I’, v(a,) — co. Since we are assuming that o € A\ I
and a ¢ A\ I', we have A\ I ¢ A\ I, and thus I' Z I.

Let N, C N denote the subgroup obtained by exponentiating the root subspace
—a. We may write N; = NN’ for some subgroup N’ of N. Note that the action by
left multiplication by g, on H/P; does not shrink the direction N,.

Writd] koP; = n,n'P;, where n, € N, 7/ € N'. Then, for z € H/P;, g,z
does not converge to ko, P; unless z € n,N'P; or z € J;. In particular, since

8Compare with [Fu, Theorems 8.3 and 8.4].
9The (e, 6)-regularity of 7, and our assumption A\({keP;}) > 56 imply that ko P ¢ J;. Hence,
it is possible to write k. P; as claimed.
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noN'P; C noJr (because woN'w, ' € Bw,woB), we obtain that if g,z converges to
koo Py then z € Jy Un,J;.
On the other hand, since 7, is (¢, §)-regular,

1, (Nbhd (J; U ngJp)) < 20.

Therefore A(ko P;) < 30 which is a contradiction. Thus «a(g,) — oo for all a €
A\ I. Now, by part (a), (23]) holds, and Ak P;) > 1—19. O

2.2. The functions £,(-,-) and 7,(-,-). Let w, be the fundamental weight corre-
sponding to «, i.e. for v € A,

( )= 1 ifa=xy
YT N0 ity e A {al.

Then,
(2.6) o= (@),
RISTAN
We write
(2.7) Wa(g) = wa(loga), where g = kyaks, k1, ks € K, a € A
Note that for all @ € A and all g € H,
(2.8) alg) =Y (o, 7)wy(9).
vyEA

Lemma 2.3. Forall g, € H, go € H, and for all « € A,

(2.9) Wa(9192) < wWalg1) + walga)-
and
(2.10) wa(9192) = wal(g1) — walgs ")

Proof. There exists a representation p, : H — GL(V') such that its highest weight
is w, (see [Knl Chapter V]). Let || - || be any K-invariant norm on V. Then, since w,
is the highest weight,

lpa(g)vll
lpa(g)| = sup “=r— = el
veV\{0} ||U||

Since [[pa(g192)|l < llpa(g)llllpa(ge)ll, 3) follows.
Now write g1 = hihy, go = hy ', so that g1g, = hy. Substituting into (Z3), we get

wa(hfl) S wa(hflh2) + wa(hf2_1>
which immediately implies (2.10). O
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Let P, be the parabolic subgroup corresponding to the subset A\ {a} C A. We
can write

Pa = MaAaNau
where
A,={ace A : ~y(oga)=0forall vy € A\ {a}}.
Note that A, is one dimensional, and that M, commutes with A,. We have the
Iwasawa decomposition
H=KP,=KM,A,N,.
Let PY = M,N,,. If we decompose g € H as g = k,maaanq with k, € K, m, € M,,
a, € A, and n, € N, then the decomposition is unique up to the transformation
ko — komi, mag — ml_lma for mi € KN M,. We can thus define the function
& H/PY — R by
£a(9) = wa(loga), where g =kman, k € K, m € M,, a € A, and n € N,.

By definition, we have for a € A,

(2.11) §alga) = &alg) + &ala).
We now define for g € H, z € H/P?,

ga(ga Z) = Sa(gz) - Sa(z)'
Then, in view of (ZIT)), for a € A,, &.(g,2a) = £.(g,2). Thus, we may consider
&a(+,+) to be a function from H x (H/P,,) to R.
Lemma 2.4. We have for all a« € A:
(a) For all g1, g2 € H,

£a(9192, 2) = &alg1, 922) + Ealg2, 2)-
(b) Forall g € H and all z € H/P,,

§alg,2) < wal9),

where wy(g) is as defined in [2.7).
(c) For all € > 0 there exists C = C(€) > 0 such that for all ke € K, for all
g€ KA ks and all z € H/P,, with d(ksz, J,) > e,

ga(gaz) > Wa(g) - C.

Proof. Part (a) is clear from the definition of £,(-,-). To show part (b), note that
there exists a representation p, : H — GL(V') with highest weight w,. Let || - || be
any K-invariant norm on V. Let v, be the highest weight vector. Then P? is the
stabilizer of v,, and for all g € H,

1pa(9)vall
(g) = log MWeld) Zall,
alg) = log Toal
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As in the proof of Lemma 2.3,

wp log 12200l
veV\{0} HUH

Then, part (b) of Lemma 24 follows.

To show part (c), write g = kyaks, k1, ko € K, a € A, Note that if d(kyz, J,) =
d(koz, (NoP,)¢) > €, then we can write

wa(g)-

]{?22’ - ﬁaPaa

with d(7, €) < Ci(€). Then, |wa(na)| < C(€). We have

I
Q)
Q

IS

3l

o)

s
AN

|-U

Il

I

Q

Q

3

Q

Q
e

)

\/ \_/

§ala,Pa) — C(e) by (a)
wa(a) — C(e) since &,(a, Py) = wa(a)
by (b) and since |w,(angaa™ )| < C(e).
U

+ -

ga(ga Z) - ga(klak% Z)

= &0 (kya, ky2) by (a) and since &, (kq, 2) =0

= ga(klaa 'ﬁ'aPa>

= &,(a, 1o Py) by (a) and since &, (k1,-) =0

= Lalana, Po) — &allia, Pa) by (a)

> Eo(ang, Py) — C(e) by (b) and since |w,(74)| < C(€)
(
(

v
£
LI
S
|
[\]
Q
G

For a € A, g € H, let B= MAN be Langlands’ decomposition of B and
0a(9) = a(a), where g =kman, k € K, m € M, a € A and n € N.

Note that &, descends to a well-defined function on H/(IMN).
By definition, we have for a € A,

(212) &a(ga) = &a(g) + a-a(a)'
We now define for g € H, z € H/(MN),
a'o¢(gaz) = &a(gz) - &a(z)-

Then, in view of [2I2), for a € A, 6,(9,2a) = 64(g,2). Thus, we may consider
Ga(+,+) to be a function H x H/B — R.

Lemma 2.5. We have for all a € A:
(a) For all g1,9o € H and z € H/B,

00(9192,2) = 6a(g1, g22) + Gal92, 2).
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(b) For all € > 0 there exists C = C(e) > 0 such that for all ks € K, for all
g € KA. ky and all z € H/B with d(ksz, J,) > ¢,
a-oa(ga Z) > a(g) - Ca
where a(g) is as defined in (22).

Proof. The natural map H/P, — H/B allows us to consider the functions (-, -)
to be functions H x H/B — R. Then, in view of (28], we have

Gal9,2) = > (@, 1&(g,2).

RISTAN

Then (a) immediately follows from (a) of Lemma 2.4l Also,
Galg,2) = (@, 0)&a(g, 2) + Y {0, 1&g, 2)

YF#o
> {a,a)éalg, 2) + Z(Oz, Y)w~(g) by Lemma [2Z4(b) and since (o, ) <0
VFo
> (0, @)walg) = Cle) + Y (@, 7)wy(g) by Lemma EA(c)
YF#o
= afg) — Ce).
This completes the proof of (b). O

3. COCYCLES WITH VALUES IN R-SIMPLE LIE GROUPS

Let A: G x X — SL(L) be a linear cocycle satisfying the properties (A1) to (A6)
described in {I] above. In particular, we will assume that A(.,.) takes values in its
algebraic hull H. Furthermore, we will suppose that H is a R-simple Lie group with
finite center.

For a € A, let

(3.1) Ao = lim sup ~a(A™(u, 7))

n—+oo 1
By (2.8) and Lemma 23] the map
(u,z,n) = Ay (A"(u, x))
is a linear combination of subadditive cocycles.
Therefore, by the subadditive ergodic theorem, the limsup is actually a limit. Also,
by the ergodicity of T', \, is constant a.e. on {2 x X.

From now on, let us fix / C A minimal such that for (8 x v)-a.e. (u,z) € 2 x X,
we have

(3.2) I={aeA : )\, =0}
Thus, for all « € A\ I, A\, > 0.
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We will deduce Theorem from the following:

Theorem 3.1. Let [ C A be as in (3.3). Then, for almost all ((v,u),z) € Q x X
there ezists C'(v,u,x) € H such that

(3.3) C’(T"(v, u, ) A" (v, u, 2)C(v, u, 1) = ky(v, u, 2)an (u, v, ),
where k,(v,u,x) € KNM; and a,(v,u,z) € Ay, and for all o € A\ I,
(3.4) | l‘im La(log ay(v,u, ) = Aq > 0

n|—oo

where Ay is as in (31).

Let wg € W be the longest root. Let I’ C A be defined by:
(3.5) I' = {~woawy* : a€l}.
Theorem [B.1] will be deduced from the following results.

Proposition 3.2. Let I' C A be as in (314). Then,
(a) For almost all (u,x) € Q x X there exists C*(u,x) € H such that for all n
and almost all (u, ),
CH(T™(u, ) A" (u, 2)CF(u, ) € P
(b) For almost all (v,x) € Q= x X there exists C~ (v, xz) € H such that for all n
and almost all (v, ),
C (T "(v,2)) *A™"(v,2)C~ (v, z) € Py.
(¢) For almost all (v,u,z) € Q x X,
(36) C+(U,SL’)_1C_(’U,SL’) € PpwyPy.
We note that Proposition is similar in spirit to the geometrical versions of
Osceledets multiplicative ergodic theorem in the literature (see the survey [Fi]). The
standard proofs (see e.g. [GM]) are based on the subadditive ergodic theorem. We

give a proof in § below based on the martingale convergence theorem. Parts of this
proof will be used again in the proof of Theorem B.1]in §5l

4. PROOF OF PROPOSITION

4.1. A Zero One Law. Let v be an ergodip stationary measure on X. Let X =
X x H/B. We then have an action of G on X, by

g- (ZL’,Z) = (g:B,A(g,x)z)
Let ¥ be an ergodic p-stationary measure on X which projects to v under the natural
map X — X. Note there is always at least one such: one chooses 7 to be an extreme
point among the p-stationary measures which project to v. If o = 0y + 0 where the
v; are p-stationary measures then v = m,(0) = m, (1) + 7. (22). Since v is p-ergodic,
this implies that (1) = v or 7.(5) = v, hence the ; or 1y also project to v. Since
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v is an extreme point among such measures, we must have 21 = v or 0, = . This »
is p-ergodic.
We may write
dv(x, z) = dv(z) dn,(z2),

where 7, is a measure on H/B.

Lemma 4.1 (cf. [GM| Lemma 4.2], cf. [GRI], Théoreme 2.6], cf. [EMi, Lemma C.10]).
For almost all x € X and any g € H,

1n:(gJ) =0,
where J is defined in (2.3).

Proof. Let d be the smallest number such that there exists a subset £/ C X with

v(E) > 0 and for all x € E an irreducible algebraic subvariety J, € H/B of

dimension d with 7,(J,) > 0. For x € E, let S(x) denote the set of irreducible

algebraic subvarieties of H/B of dimension d such that for @ € S(z), 1.(Q) > 0.
Note that for a.e. z € X, for any Q1 € S(x), Q2 € S(z) with Q3 # @4,

77:(:(@1 N Q2) =0.

(since @1 N Q2 is an algebraic subvariety of dimension lower than d). Thus

Z nm(Q) <1

QES(x)

Therefore S(x) is at most countable. Moreover, by setting

(4.1) f(@) Jnax 12(Q)
and Spax(7) = {Q € S(x) : n.(Q) = f(z)}, we see that Syax(z) is finite.

Consider the measurable subset Spax = {(2,2) 12 € E, 2 € Spax(2)} € U ({2} X

reFR

S(z)). By definition, for each = € X, the fiber {z € H/B : (2, 2) € Snax} := Smax(7)
of Spax at x is a finite set, and, in particular, Spax () is a countable union of compact
sets. By aresult of Kallman (see, e.g., the statement of Theorem A.5 in Appendix A of
Zimmer’s book [Zi]), we can find a Borel measurable section for the restriction to Spax
of the natural projection 7 : X — X. In other words, one has a Borel measurable
map X 3 2 = QY € Suax(z) whose graph E; = {(z,QY)) € X : z € X} is a
measurable subset of Spax. If By = Spax, we get that Spa is the graph of a section
of m. Otherwise, we apply once more Kallman’s theorem to S.x — F1 in order to
obtain a measurable subset Fy of S;,.x — F1 given by the graph of a Borel measurable
map 7(Ey) = {y € X : #Snax(y) > 2} 3 2 = QP () € Spax() that we extend
(in a measurable way) to X by setting Q@ (z) := QW (z) whenever #Suax(7) = 1.
Since the fibers S,,4. (%) of Spax are finite sets, by iterating this procedure at most
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countably many times, we obtain a non-empty subset Z C N and, for each m € Z, a
Borel measurable map
X3z QM (2) € Spax(®)
such that Spayx(7) = {QW(2), ..., QFSmx(@)(2)} for almost every z € X.
Fix m € Z. Since 0 is p-stationary, we have u * 7(graph(Q™)) = (graph(Q™)),
that is,

(4.2) /X QU (@))dv(x) = D(graph(Q™)) = ju# P(graph(Q"™))
- / / Narapn(@ (07, A(g, 2)2)dn, (2)dv(2)dp(g)
- j/t/"nx (9, 2)7' Q™ (g))dv(x)dp(g)

= /X ( /G m(A(Q,x)‘lQ(m’(gx))du(g)) dv ().

On the other hand, since 7,(Q™(z)) = f(z) = maxges@) 17:(Q), we see that

(4.3 | 1Al 0@ g dle) < 1) = Q) ()
By combining (£2]) and (4.3), we deduce that

fl@) = n.(Q"(x)) = n.(Alg, 2) 7' Q"™ (92)),

ie., A(g,2)'QU (gx) € Smax(x) for p-almost every g and v-almost every z. In other
terms, for all m € Z, p-almost every g and v-almost every z, one has QU (gz) €
A(g, )Smax(x). By putting together this inclusion with the facts that Syax(y) =
{QW(y),. .., QWSmxW)(y)} for v-almost every y and v is p-stationary, one has that
Simax(97) C A9, ©)Smax(x) for p-almost every g and v-almost x.

Now, let ng € Z the smallest integer in Z such that {x € X : #Snax(z) < no}
has positive v-measure. Because Syax(97) C A(g, 7)Smax(x) (for g x v-almost every
(g,7)), the set {r € X : Spax(z) < ng} is essentially invariant. Thus, from the
p-ergodicity of v and our choice of ng, we conclude that {x € X : #Snax () = np}
has full v-measure. Hence, from the p-stationarity of v, we obtain that #S . (gx) =
#Smax (1) = ng for (u x v)-almost every (g, z). In particular, the inclusion Sy, (g2z) C
A(g, 2)Smax() is actually an equality
(4.4) Smax(92) = A(g, ¥)Smax(2)
for (u x v)-almost every (g, x), that is, the cocycle A permutes the finite sets Spax ().

Denote by M the space of algebraic subvarieties of H/B of dimension d, so that,
by definition, Spax(x) are finite subsets of M. Note that the algebraic group H

acts algebraically on M. By the Borel-Serre theorem (see, e.g., Theorem 3.1.3 of
Zimmer’s book [Zi]), the action of H on M has locally closed orbits, and, hence,
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M /H is Hausdorff. Consider the function f: Q x X — M/H, f(u,z) := HSnax (7).
By (@4)), the function f(u,x) is T-invariant. By the T-ergodicity of 8 x v, it follows
that f is almost everywhere constant, so that there is Sy € M such that, for v-a.e.
x, one has Spax(z) = h(z)Sy with h(z) € H.

In particular, it follows that the conjugated cocycle A'(g,z) = h(gz) ' A(g, z)h(z)
stabilizes Sy, i.e., A'(g,x) takes its values in the stabilizer Stabg(Sy) of Sy in H.
Hence, the algebraic hull of A(.,.) must be a subgroup of Stabg(Sp). This is a
contradiction with our assumption that H is the algebraic hull of A(.,.) because
Stabg (Sp) is a proper subgroup of H (since H acts transitively on H/B). O

4.2. Another lemma of Furstenberg. Let X =X x H/B. The group G acts on
the space X is by

(4.5) g (r,2) = (97, A(g, z)z).

We choose some ergodic p-stationary measure 7 on X, which projects to v, and
write

dv(z, z) = dv(z) dn,.(z).
Note that Lemma 1] applies to the measures 7, on H/B.

Lemma 4.2 (Furstenberﬂ). Forae A, let 5, : G x X x (H/B) = R be given by

0alg,,2) = 0a(Alg, 7)2)
with 6,4(.,.) as in §2.2. Then, we have

)\a:Aéaa(g,x,z)dﬁ(x,z)du(g).

where N\, is as in (F1).

Proof. This is similar to the proof of Lemma 5.2]. Note that
goc(ga Z) = Z(waa w'y>a-'y(g> Z)
YEA

where &,(.,.) and 7,(.,.) asin §2.2 Therefore, it is enough to show that for all &« € A,

(4.6) /| / EalAlg,2)2) di(, 2) dplg) = 3 (was ).

yEA

By (31), the boundedness assumption on A(-,-) and the dominated convergence the-

orem, we have

ho= lim = [ a(A"(g,2)) dB(g)du(x).

n—oo n Ox X

Compare with Theorem 8.5].
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Thus,
1
Z(wa, Wy) Ay = lim — wa(A"(g,2)) dB(g)dv(z).

oy n—=00 N Joyx
Write An(gux) = /;?n(g,l’)dn(g,x)];?;(g,%), where ];;n( 9 ) k/( ) € K’ C_LTL(Q,SL’) < A+7

and fix € > 0. Then, by Lemma 24, for all z € H/P,, with d(k’,(g, )z, (NoP,)¢) > €,
we have

wa(A"(g, 7)) 2 €a(A"(9,2), 2) Z wa(A"(g,2)) — Cle).
Hence, by Lemma [F.1]

ZW%WVM = lim = Ea(A"(g, ), 2)dB(g) di(z, 2).

n—oo N 5

By Lemma 24] (a) and by iterating the cocycle relation for A(.,.),
§a(A" (g, Zfa (s Gr—1 -+ 917), A(Gr—1 - - - g1, )2),

Since # is stationary, each of the terms in the sum has the same integral over Q x X
(with respect to § x ). Therefore

L e ds@ae = [ [ a2 i) i),

which completes the proof of (.G O

4.3. Proof of Propos1t10n B.2l(a). For u € Q, let the measures v,, 1, be essen-
tially] as defined in [BQ| Lemma 3.2, i.c.

(4.7) Ve = lim (up, ... uy); v
n—o0

(4.8) Dy = lim (u, ... up); 0.
n—oo

The limits exist for f-a.e. u € Q by the martingale convergence theorem. We disin-

tegrate
dv(x, z) = dv(z) dn.(z), dvy(x, z) = dvy(x) dny.(2).
We want to exploit ([4H), [@T) and (L8] to deduce that the sequence of condi-
tional measures A((ty ... u1) " Up ... ULT) Ny, . 0ye cOnverges to the conditional mea-

sures 7,,. For this sake, we shall use the invariance of v under supp(u). More

Tt is shown in Lemma 3.2] that the convergence of (uj ...un).v and (ug...uy).v for 5-

almost every u = (uy,usz,...) € Q. Inour setting, this implies the convergence of (un . ul) 1y and

(U ... up)7 0 for B-almost u € Q because (U, ...u1) P =u;t...u;t, B =pV, and p is symmetric.
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concretely, let C' C X and D C H/B be measurable subsets, and denote by y4 the
characteristic function of A. Since 1 is u-stationary, we have from (L3) that

/C ne(D)dv(z) = #(C x D) = (ux )(C x D) = / velgy)Alg, y)ty (D)dv(y)diu(g)

By using the invariance of v to rewrite the right-hand side of this equality, we get

/ ne(D)du(x) = / vol(@)Alg, g~ "0)sny-12(D)di(x)du(g)
C

= [ ([ 407010, Dante)) vt

Because C' and D are arbitrary, we deduce that

= /G Alg,g~"2)my 12dplg)

From this identity, the cocycle relation and the symmetry of i, we conclude that

A((gn—1---91)‘1,%—1---9136)*77%1...g1x=/A((gn---91)‘17911---glx)mgn...glxdu(gn),
G

so that A((gn..-g1)", gn -+ - 917) Ny, gz s @ martingale. Thus, the martingale con-
vergence theorem and the uniqueness of Rokhlin disintegration imply that

m A((ty - owy) ™ U o U)oy = Moz
n—oo

for (u,x) in a set of § x v full measure.
Note that, by the cocycle relation A(g~!, gx) = A(g, )}, one has

A((tg . oou) Sty wgx) = Aty . oug, )

Hence, on a set of 5 x v-full measure,

(4.9) m Aty . U1, 2) Ny iye = Moz

n—oo

In view of Lemma (1] (see also the proof of [EMi, Lemma 14.4]), given § > 0, there
exists a compact Ks C X with v(Ks) > 1 —§ and € = ¢(d) > 0 with €(J) — 0 as
d — 0 such that the family of measures {7, },ex, is uniformly (e, d/5)-regular (in the
sense of Definition 2.1]). Let

(4.10) Ns(u,z) ={n eN : u,...uz € Ks}.
Write
(4.11) Ay . cup, 7)™ =k (u, 2)an (u, )k (u, )

where k,(u,z) € K, k], (u,z) € K and a,(u,z) € A;. We also write
(4.12) Aty .. up, x) = ky(u, 2)an, (u, )k (u, ).
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where k, and k! are elements of K, and a, € A,. Then, a,(u, ) = woa, (u, r) twy "’

and thus,

(4.13) o (an(u,z)) = a(a,(u,x)),

k(u, @) = K, (u,2) " wg ' K (u, ) = wok(u, )7,

where wy is longest element of the Weyl group, and o’ = —wgaw; .

Let 7 : H/B — H/Py be the natural map. Let n! = (7)., and nl, =
(71)sNue- Then, nf" and n!’, are measures on H/P .

Suppose o € A\ I. Then, A\, > 0 and, a fortiori,

lim a(a,(u,x)) — 0.
n—o0

Thus,

lim o/ (a,(u,z)) — oo
n—o0

for each o/ € A\ I'.

Applying Lemma 22(a) to g, = A(u, ... uy, )"t for n € Ns(u,z) and the (e, d)-
regular measures 1, = 7. . we get that there exists k = k(I’,u,z) € K such that,
for n € Ns(u, ), one has k,(u, v)Py — kPp and

e ({kPp}) 21— 0.

Since § > 0 is arbitrary, we get that for almost all (u,x), 77595 is supported on one
point of H/P}.. Now choose C*(u,x) € H/B so that 7 (C*(u,r)) = k(I',u,2)Pp.
The desired property about C'*(u, z) follows from the stationarity of . O

4.4. Proof of Proposition (b),(c). The proof of PropositionB.2l(b) is virtually
identical to the proof of Proposition B.2(a), and so we omit the details. Part (c) of
Proposition is also a classical fact, cf. [GM], Lemma 1.5]. We give an outline of a
geometric argument as follows.

Let H/K be the symmetric space associated to H. We say that two geodesic rays
(parametrized by arc length) are equivalent if they stay a bounded distance apart.

By the geometric version of the multiplicative ergodic theorem [KM)], [Kal, for
almost all (u,z) € Q x X there exists a geodesic ray v* : [0,00) — H/K with
v*(0) = K such that

(4.14) lim Ld(A™(u, )" K, 7+ (n)) = 0.
n—o0o N,

Similarly, by applying the same argument to the backwards walk, we get that for
almost all (v, ) € Q7 x X there exists a geodesic ray 7~ : [0,00) — H/K such that

(4.15) lim ~d(A~" (v, 2)""K, v~ (n)) = 0.

n—oo M
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Let F = F(v,u,x) be a flat in H/K which contains rays 4" and 4~ equivalent to
and v~ respectively. Then, we have

(4.16) lim Ld(A"(v, u, 2)" K, 7+ (n)) = 0.
n—oo N,

and

(4.17) lim ~d(A~" (v, u, 2)""K, 4~ (n)) = 0.
n—o0o N,

Therefore, for every 6 > 0 there exists a set K5 C  x X with m([((;) >1—9 and
N > 0 such that for (v,u,x) € Ks and n > N,

(4.18) d(A™(v,u, ) 'K, 4T (n)) < on, and d(A™"(v,u,z) 'K, 5 (n)) < én.

Let X, = A"(v,u,z) 'K, and let X,, be the closest point to X, on 4. Then, by
([4I6), for (v,u,z) € Ks and n > N,

(4.19) d(X,, X,) < on.

Let 4, (t) be unique geodesic ray equivalent to 4~ such that 4, (0) = X,,. Then, as
long as 7" (v, u,x) € K5, and m > N, by (£I8) and (£I9), we have

d(A™™(v,u, 2) "t X, A (m)) < dn + dm.

Since A™(v,u, ) and A="(T™(v,u, z)) are inverses, we have
(4.20) d(5, (n),e) < 2n.
Note that X,, 47, 47 all lie in F. However in that case, ({@20) (for sufficiently small
0 and large enough n) implies that
(4.21) A% and 4~ belong to the closures of opposite Weyl chambers in F.
We now interpret (2I)) in terms of C*(u,z) and C~ (v, x). We can write

Y () = k(u, 2)AK,
where k(u,z) € K and A' € A,. Then, by comparing [@I4) with ), we get

k(u,2)Pp = C*(u,z)Pp,

where C*(u, x) is as in Proposition B2 (a), and I’ is as in ([B). Similarly, if we may
write

v (t) = kv, 2)N'K,
where k(u,z) € K and A* € A,. Then, by comparing ([EI5) with ([ZI1Z), we get

k(u, )Py = C™ (u,z)Pp,

where C~ (u, x) is as in Proposition B2 (b), and [ is as in ([3:2). Then, [@2I) implies
B.4). 0



22 ALEX ESKIN AND CARLOS MATHEUS

5. PROOF OF THEOREM [B.1]

5.1. Conformal blocks and Schmidt’s criterion. We will use the following cri-
terion of K. Schmidt [Sch| for the detection of conformal blocks.

Definition 5.1 (cf. Definition 4.6 in [Sch]). We say that a cocycle A: G x X — H
is Schmidt-bounded if, for every € > 0, there exists a compact set () C H such that

Bxv ({((v,u),x) €O x X : Av,u, 1) ¢ K(e)}) <e
for all n € N.

The importance of this notion in the search of conformal blocks becomes apparent
in view of the next result, which follows from [Schl Theorem 4.7].

Theorem 5.2 (Schmidt). A(.,.) is Schmidt-bounded if and only if there exists a
measurable map C : X — H such that the cocycle C(g(x))A(g, z)C(x)~" takes its
values in a compact subgroup of H.

5.2. Proof of Theorem [B.11 We use the notation from §4.3l

Lemma 5.3. For any o € I, let o/ = —wpawy, ' (so that o’ € I'). Then, Bxv-almost
all (u,z) € Q x X, the measure 0, has no atoms; i.e. for any element k,, € K, we

have nﬁjx({Eu,xPa/}) =0.

Proof. Suppose there exists § > 0 so that, for some o’ € I’ and for a set (u,x) of
positive measure, there exists k,, € K with 75, ({kusPa}) > 6. Then this happens
for a subset of full measure by ergodicity. Note that (Z3]) holds.

Then, by Lemma 2.2 (b), for § x v almost all (u, x), nﬁ‘:x({l_cu,xPa/}) >1—9 (and
thus k, P is unique) and, as n — oo along Ns(u,z) (where N(u,z) was defined

[@I0)), we have:

o' (an(u, ) — oo,

and

(5.1) ke (u, )P o — kP,
Then, by (LI3),

(5.2) alay(u, z)) — oo,
and

K (u,2) ' wo Py — kyoPor.

Therefore for any €; > 0 there exists a subset H,, C 2 x X of § x v-measure at least
1 —¢; such that the convergence in (.2)) and (5.1)) is uniform over (u, z) € H,,. Hence
there exists M > 0 such that for any (u,z) € H,,, and any n € Ns(u,z) with n > M,

(5.3) k! (u, 2) " 'wPy € Nbhd,, (k, ,Pu).
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By LemmaldT] (see also the proof of [EMi, Lemma 14.4]) there exists a subset H C X
with v(H! ) > 1—cy(e1) with c(e1) — 0 as e; — 0 such that for all x € H, and any
geH,

nI(thdQEl (gJ)) < C3(61)7
where c3(€;) — 0 as ¢, — 0. Let

(5.4) H ={(w,z,z) : (u,z)€ H.,, x€H' and d(z ky.J)>2e}.

Then, (8 x v)(H]) > 1—¢€ — ca(e1) — c3(er), hence (8 x v)(H ) — 1 as e — 0.
We now claim that for (u,z,2) € H! and n € Ns(u,z), we have

(5.5) d(k! (u,z)z, (N,PR)) > €.
Suppose not, then there exist (u,x,z) € H. and n € Nj(u,z) such that
d(k! (u,2)z, (N,P)°) < €.
Let W, C W denote the subgroup of the Weyl group which fixes M,,. Then,
d(k! (u, z)z, wo |_| BuwB) < €.

ngWaw(;lWa

Hence,
(5.6) d(z, K, (w,2)'wo | |  BuB)<e.
wgWowy ' Wa
Note that
P, || BuwB= || BuB
wgWowy ' Wa wgWowy ' Wa

By (B3]) and (5.6), this implies that
d(2, ky |_| BwB) < 2¢,

w&WanIWa
contradicting (5.4). This completes the proof of (B.3]).
Therefore, in view of Lemma [2Z5] there exists C' = C(¢;), such that for any
(u,z,z) € H. , any n € Ns(u,z) with n > M,

€17

(5.7) oAty .. up,x), 2) > a(Aluy, ... uy, ).
By (£.2) and (&.I2), this implies that for (u,x,z) € H] ,

(5.8) oAty ... uy,x),2) = 00 asn — oo along Ns(u, ).

Since (8 x 0)(H,,) — 1 as e; — 0, (5.8) holds for # x 7 almost all (u,z,z) € Q x X.



24 ALEX ESKIN AND CARLOS MATHEUS

Let 0, : © X X — R be defined by oo, x,2) = 74(uq,x,z), where g, is as in
Lemma [£2] Then, the left hand side of (5.§]) is exactly

iaa(fj(u,x,z)).

Also, we have n € Njs(u,z) if and only if T"(u,z) € Q x Ks. Then, by [EMI,
Lemma C.6],

/Q () d(3 % 7)(0) > 0.

By Lemma (Furstenberg’s formula), the above expression is A,. Thus A\, > 0,
contradicting our assumption that o € I. This completes the proof of the lemma. [

Proof of Theorem B.Il Let C*(u,z) € H and C~(v,z) € H be as in Proposi-
tion B2l By Proposition B2(c), for a.e. (v,u,z),
Ct(u,z) 'C~ (v,2) = pp (v, u, )wepr (v, u, r) where p;(v,u,z) € P, pp(v,u,z) € Pp.
Let

Cl(va u, .CL’) = C+(u7 x)pp(v, u, .CL’) = C_(Uv l’)p[(’U, u, .CL’)_IUJO_I.
Then, by Proposition B.2(a) and (b),

Cl(T”(v,u,x))_lA"(v,u,x)Cl(v,u,x) ePy N U)OP[wo_l =MpAp.

Let
A% (v, u, x) = Cy(T™(v, u, ) LA™ (v, u, ) Cy (v, u, z).
Suppose 8 > 0. Then there exist compact sets Ko(0) C Q x X with 5/;<\1/(IC2(5)) >
1 — ¢ and IC3(9) € H such that for ((v,u),x) € Ko(d), Ci(v,u, x) € K3(6).
Therefore, by (2.8) and Lemma 23] there exists ¢;(0) € R, such that for all
((v,u),z) € Ky(6) and all n € N with T™(v,u, x) € Ko(9), we have, for all @ € A,

(5.9) (A7 (v, u, 7)) — a(A™(v, u, z))| < e1(6).

Let now € = ¢(d) and KC(0) C X be as in the proof of Proposition B:2(a), so that
for z € K(§), the measure 7, is (¢, §)-regular.

By Lemma[5.3] for all o/ € I, the measures ng“:x are non-atomic. Therefore, we can
find € = €/(§) and K'(0) C Q x X such that for (u,z) € K'(9), and all o/ € I, for any
A H/Pa/,

1o, (Nbhde (2)) < e.
Let
Ki(d) ={(u,2) e Qx X : ze€K(0),(u,z) e K')}
Then, by (£9), (£I1) and Lemma 22)(a), there exists co = ¢3(d) € R* such that for
all (u,z) € K1(6), all n with T"(u,z) € K1(), and any o/ € I,

AUy, ... u, )" < c(8), where a = —woa/w; .
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Thus, by (£12) and [@I3), for all (u,z) € 1(0) and all n € N such that T"(u, z) €
KC1(0) and all o/ € I,

(5.10) (At . . ug, ) < ca(9).
Let fl?, (v, u,x) denote the part of A7}, (v,u,z) which lies in M. Then,
(5.11) o (A% (v,u, ) = o (A% (v, u, 1)) for o/ € I'.

Let K\ () = Ko(0) N {(v,u,z) : (u,x) € K1(d)}. It follows from (59), (5I0) and
(G100, that for all o € I', all (v,u,z) € K(J) and all n € N with 7" (v, u, x) € K (0),

o (A% (v,u,x)) < c3(0).

Note that m(K’l(d)) > 1 —45. Since § > 0 is arbitrary, it follows that A
is Schmidt-bounded (see Definition (.1]). Therefore, by Theorem [.2] there exists
C : Q x X — M such that C(T™(v,u,x)) L A% (v, u, 2)C(v,u,x) € KN Mp. Let

C(v,u,z) = Cy(v,u, z)C(v, u, )wp.
Then,
C(T™(v,u,2)) A" (v, u, 2)C(v,u, ) € wy*(Mp NK)Apwy = (M;NK)A;.

Thus, (33 holds.
Finally, it is easy to see that ([B4]) follows from (B.9]) and the definition of the A,
(cf. the argument in the proof of Lemma 1.5]). O

6. PROOF OF THEOREM

Let L be a vector space, and suppose H is a subgroup of SL(L). We assume that
the action of H on L is irreducible, in the sense that no non-trivial proper subspace
of L is fixed by H.

Let K, I, Ay and M be as in Theorem 3.1l By Theorem [B.I] we may assume that
the cocycle A(-,-) takes values in (K N M;)A;. We choose an inner product on L
which is preserved by K.

Then, the block conformality of Theorem follows from the corresponding state-
ment in Theorem [B.11

We note that, by Theorem B.1I] there exists a, in the interior of A; such that the
Lyapunov exponents of A(-,-) are given by expressions of the form w(loga,), where
w is a weight of the action of H on L.

Let V!, C L be the subspace corresponding to the weight w; then for a € A, and
veV,

a-v=w(loga)v.

Let wp be the highest weight. (It exists and has multiplicity 1 because the action of
H on L is irreducible). Then, the top Lyapunov exponent A\; of A(:,-) is wy(logay).
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Then, since the action of H on L is irreducible, the Lyapunov subspace V; of A(-, )
corresponding to the Lyapunov exponent \; is given by

V=V,

wESH

where Sy consists of weights of the form

Wo — E Ca .

ael

Recall that for o € I, a(Aj) = 0. Therefore, for a € A; and v € Vy,

a-v=wy(loga)v.

Then, for k € (KNMj), a € Ay,

(6.1) (ka) - v =wp(loga)k - v.
Since A(+,-) takes values in (KN M)A, (L3 follows from (6.1)). O
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