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Abstract

For a fixed planar graph H, let NP(n,H) denote the maximum number of copies of H in
an n-vertex planar graph. In the case when H is a cycle, the asymptotic value of NP(n,Cm)
is currently known for m ∈ {3, 4, 5, 6, 8}. In this note, we extend this list by establishing
NP(n,C10) ∼ (n/5)5 and NP(n,C12) ∼ (n/6)6. We prove this by answering the following
question for m ∈ {5, 6}, which is interesting in its own right: which probability mass µ on the
edges of some clique maximizes the probability that m independent samples from µ form an
m-cycle?

1 Introduction

For graphs G and H, let N(G,H) denote the number of (unlabeled, not necessarily induced) copies
of H in G. Furthermore, for a planar graph H, define

NP(n,H)
def
= max

{
N(G,H) : G is an n-vertex planar graph

}
.

The study of NP(n,H) was initiated by Hakimi and Schmeichel [7], who determined NP(n,C3)
and NP(n,C4) exactly. Alon and Caro [1] continued this study by determining NP(n,K2,k) exactly
for all k; in particular, they determined NP(n, P3). Győri et al. [4, 5] later gave the exact values
for NP(n, P4) and NP(n,C5). Afterward, Ghosh et al. [3] asymptotically determined NP(n, P5),
and the current authors [2] computed NP(n, P7) asymptotically. Generalizations of some of these
results to other surfaces have been established by Huynh, Joret and Wood [8].

In [2], a general technique was introduced which allows one to bound NP(n,H) whenever H ex-
hibits a particular subdivision structure. Using this technique, the authors established NP(n,C6) ∼
(n/3)3 and NP(n,C8) ∼ (n/4)4. They furthermore conjectured that

NP(n,C2m) =

(
n

m

)m

+ o(nm) for all m ≥ 3,

and exhibited graphs meeting this lower bound.1 Currently, the best known general upper bound
is

NP(n,C2m) ≤ nm

m!
+ o(nm) for m ≥ 5.

In this note, we make progress toward this conjecture by establishing the next two open cases:
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Theorem 1. For m ∈ {5, 6},

NP(n,C2m) =

(
n

m

)m

+ o(nm).

The paper is organized as follows. In Section 2, we recall the technique developed in [2] and
extract the key ingredients necessary for the proof of Theorem 1. The proof of Theorem 1 is then
the topic of Section 3.

Remark. While this paper was under review, Theorem 1 was extended to cover all values m ≥ 3
by Lv–Győri–He–Salia–Tompkins–Zhu [9], thus settling the full conjecture.

2 Preliminaries

In [2] it was shown that one can upper bound NP(n,C2m) for m ≥ 3 by answering the following
question, which is interesting in its own right:

Question 2. Which probability mass µ on the edges of some clique maximizes the probability that
m independent samples from µ form a copy of Cm?

To formalize this question, we lay out the following definition. For a graph G and an integer
m ≥ 3, let Cm(G) denote the set of (unlabeled) copies of Cm in G, so N(G,Cm) = |Cm(G)|.
Additionally, for a finite set X, let KX denote the clique on vertex-set X.

Definition 3. Let X be a finite set and let µ be a probability mass on
(
X
2

)
.

1. For a subgraph G ⊆ KX , define

µ(G)
def
=

∏
e∈E(G)

µ(e).

2. For an integer m ≥ 3, define

β(µ;m)
def
=

∑
C∈Cm(KX)

µ(C), and

β(m)
def
= sup

{
β(µ;m) : µ a probability mass on

(
X

2

)
for some finite set X

}
.

The quantity β(m) yields an upper bound on NP(n,C2m):

Theorem 4 ([2, Lemma 2.5]). For m ≥ 3,

NP(n,C2m) ≤ β(m) · nm +O(nm−1/5).

The argument here establishes that, as n → ∞, the extremal graphs for NP(n,C2m) may be
approximated by taking some fixed graph G and “blowing up” the edges into independent sets of
various sizes. Here, “blowing up” an edge xy means replacing the edge with an independent set
of vertices, each of which is connected to both x and y. The probability mass µ is a compact way
to represent the relative sizes of each of these independent sets, and β(µ;m) is a normalized count
of the number of C2m’s in the resulting blow-up. Interestingly, planarity plays only a minor role
in this argument, and so the theorem applies to a much larger class of graphs. For example, the
result applies to the class of graphs which can be embedded onto any surface of a fixed genus.
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In [2], the authors conjectured that β(m) = m−m, which is the value achieved by the uniform
distribution on E(Cm), and they established the cases of m = 3 and m = 4. In this paper we
prove that β(m) = m−m for m ∈ {5, 6}, which will then imply Theorem 1 thanks to Theorem 4;
constructions establishing a matching lower-bound are discussed in [2, Section 1].

In order to accomplish this goal, we will need to understand the structure of the probability
masses at play. The following definition lays out two important aspects of such a probability mass.

Definition 5. Fix a finite set X and let µ be a probability mass on
(
X
2

)
.

1. For x ∈ X, define

µ̄(x)
def
=

∑
y∈X\{x}

µ(xy),

which is the probability that an edge sampled from µ is incident to x. It can also be thought of
as the weighted degree of the vertex x. Note that

∑
x∈X µ̄(x) = 2 thanks to the handshaking

lemma.

2. The support graph of µ is the graph Gµ, which has E(Gµ) = suppµ and V (Gµ) = supp µ̄.
Since Gµ records the edges of positive mass under µ, observe that

β(µ;m) =
∑

C∈Cm(Gµ)

µ(C).

In [2, Corollary 4.7], it was shown that β(m) is achieved for each m ≥ 3, so we introduce the
following notation:

Definition 6. For an integer m ≥ 3, denote by Opt(m) the set of all probability masses µ satisfying
β(µ;m) = β(m).

We will require structural results about such optimal masses which were established in [2].

Lemma 7 ([2, Lemma 4.5]). Fix m ≥ 3 and µ ∈ Opt(m). Then,

m · β(µ;m) · µ(e) =
∑

C∈Cm(Gµ):
E(C)∋e

µ(C), for every e ∈ suppµ, and

m · β(µ;m) · µ̄(x) =
∑

C∈Cm(Gµ):
V (C)∋x

2 · µ(C), for every x ∈ supp µ̄.

Lemma 8 ([2, Lemma 4.6]). Fix m ≥ 3 and µ ∈ Opt(m). If z ∈ (0, 1) satisfies

1− m

2
z > (1− z)m,

then µ̄(x) > z for all x ∈ supp µ̄.

Explicitly, we will employ the following two straightforward corollaries.

Corollary 9. Fix m ≥ 3 and µ ∈ Opt(m). Then,

• For any e ∈ suppµ, we have µ(e) ≤ 1/m with equality if and only if e ∈ E(C) for every
C ∈ Cm(Gµ), and

3



• For any x ∈ supp µ̄, we have µ̄(x) ≤ 2/m with equality if and only if x ∈ V (C) for every
C ∈ Cm(Gµ).

Proof. Using Lemma 7, we observe that

m · β(µ;m) · µ(e) =
∑

C∈Cm(Gµ):
E(C)∋e

µ(C) ≤
∑

C∈Cm(Gµ)

µ(C) = β(µ;m),

and hence the first claim follows. The proof of the second claim is analogous.

Corollary 10. Fix m ∈ {5, 6}. If µ ∈ Opt(m), then |supp µ̄| = m and µ̄(x) = 2/m for every
x ∈ supp µ̄.

Proof. Set z = 2/(m + 1). For m ∈ {5, 6}, it can be checked that 1 − m
2 z > (1 − z)m. Thus,

Lemma 8 implies that µ̄(x) > z = 2/(m+ 1) for every x ∈ supp µ̄. From here, we see that

2 =
∑

x∈supp µ̄

µ̄(x) >
2

m+ 1
· |supp µ̄| =⇒ |supp µ̄| < m+ 1.

As such, we know that |supp µ̄| = m, since certainly |supp µ̄| ≥ m. Therefore, every copy of Cm

in Gµ must use every vertex of supp µ̄; hence µ̄(x) = 2/m holds for every x ∈ supp µ̄ thanks to
Corollary 9.

Corollary 10 is the key observation which enables our arguments in the next section. If one
could extend Corollary 10 to all m ≥ 7, then approaching the full conjecture that β(m) = m−m

would likely be significantly more tractable.

Remark 11. For µ ∈ Opt(7), Lemma 8 implies that µ̄ > 0.246 and so |supp µ̄| ≤ 8.
For µ ∈ Opt(m) and general m, using the bound 1− z ≤ e−z and Lemma 8 yields µ̄ > 1.593/m

and so |supp µ̄| < 1.256 ·m.

3 Proof of Theorem 1

To prove Theorem 1, it suffices to establish that β(m) = m−m for m ∈ {5, 6}, thanks to Theorem 4.

We begin by establishing an inequality on the edge-masses in an optimal probability mass.

Lemma 12. Fix m ∈ {5, 6} and µ ∈ Opt(m). For each e ∈ suppµ,(
2

2−m · µ(e)

)4( m− 4

m− 4 +m · µ(e)

)m−4(
1−m · µ(e)

)
≤ 1.

Proof. Fix any e ∈ suppµ and define

a
def
=

2

2−m · µ(e)
, and b

def
=

m− 4

m− 4 +m · µ(e)
.

Observe that a, b ≥ 0 since m ≥ 5 and µ(e) ∈ (0, 1/m] (Corollary 9). We define a new probability
mass ν by

ν(s)
def
=


0, if s = e,

a · µ(s), if |s ∩ e| = 1,

b · µ(s), otherwise.
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Suppose that e = xy. Corollary 10 tells us that µ̄(x) = µ̄(y) = 2/m, so∑
s∈supp ν

ν(s) = a ·
∑

|s∩e|=1

µ(s) + b ·
∑

s∩e=∅
µ(s)

= a ·
(
µ̄(x) + µ̄(y)− 2µ(e)

)
+ b ·

(
1− µ̄(x)− µ̄(y) + µ(e)

)
= a ·

(
4

m
− 2µ(e)

)
+ b ·

(
1− 4

m
+ µ(e)

)
=

4

m
+

m− 4

m
= 1.

Therefore, ν is indeed a probability mass.
Since |supp µ̄| = |supp ν̄| = m (Corollary 10) and e /∈ supp ν, we know that any C ∈ Cm(Gν)

has exactly 4 edges incident to the pair {x, y}. Furthermore, β(µ;m) ≥ β(ν;m) since µ ∈ Opt(m).
Thus, by appealing to Lemma 7, we compute

β(µ;m) ≥ β(ν;m) = a4 · bm−4 ·
∑

C∈Cm(Gν)

µ(C)

= a4 · bm−4 ·
(
β(µ;m)−

∑
C∈Cm(Gµ):

E(C)∋e

µ(C)

)

= a4 · bm−4 ·
(
β(µ;m)−m · β(µ;m) · µ(e)

)
.

Dividing both sides of this inequality by β(µ;m) proves the lemma.

Lemma 12 allows us to place lower bounds on µ(e) for e ∈ suppµ.

Corollary 13. Fix m ∈ {5, 6} and µ ∈ Opt(m). If z ∈ (0, 1) satisfies(
2

2− z

)4( m− 4

m− 4 + z

)m−4

(1− z) > 1,

then µ(e) > z/m holds for all e ∈ suppµ.

Proof. For z ∈ [0, 1) define the function

f(z)
def
=

(
2

2− z

)4( m− 4

m− 4 + z

)m−4

(1− z).

Observe that f(z) > 0 for all z ∈ [0, 1), so we may compute

f ′(z)

f(z)
=

d

dz
log f(z) =

4

2− z
− m− 4

m− 4 + z
− 1

1− z
=

(1−m)z2 + 2z

(2− z)(1− z)(m− 4 + z)

Again, f(z) > 0 for all z ∈ [0, 1), so, since m ≥ 5,

sgn f ′(z) = sgn
(
(1−m)z2 + 2z

)
, for all z ∈ [0, 1).

In particular, we see that f ′(z) ≥ 0 for all 0 ≤ z ≤ 2
m−1 and f ′(z) ≤ 0 for all 2

m−1 ≤ z < 1. Since
f(0) = 1 and f(1) = 0, this implies that the curves y = f(z) and y = 1 intersect at 0 and at some
unique z∗ ∈ (0, 1). Furthermore, f(z) > 1 for all z ∈ (0, z∗) and f(z) < 1 for all z ∈ (z∗, 1).

Now that we have a better understanding of the function f , the claim follows quickly. Suppose
that z ∈ (0, 1) satisfies f(z) > 1. If we were to have 0 < µ(e) ≤ z/m, then 0 < m · µ(e) ≤ z. From
the above, this would then imply that f(m · µ(e)) > 1 as well, contradicting Lemma 12.
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Remark 14. Lemma 12 (and hence Corollary 13) follows solely from the observations laid out in
Corollary 10. Therefore, if Corollary 10 can be extended to m ≥ 7, then so can Lemma 12 and
Corollary 13.

With these observations in hand, we can determine β(5) and β(6). Firstly, for a graph G, let
µG denote the uniform distribution on E(G).

Theorem 15. β(5) = 5−5.

Proof. Fix any µ ∈ Opt(5). Thanks to Corollary 10, we know that |supp µ̄| = 5 and that µ̄(x) = 2/5
for all x ∈ supp µ̄. Furthermore, by applying Corollary 13 with z = 2/3, we see that µ(e) > 2/15
for all e ∈ suppµ.

Now, certainly δ(Gµ) ≥ 2 because Gµ has a spanning copy of C5. Furthermore, for any x ∈
supp µ̄, we have

2

5
= µ̄(x) >

2

15
deg(x) =⇒ deg(x) < 3.

We conclude thatGµ is 2-regular, and so we must haveGµ = C5. Applying the arithmetic–geometric
mean (AM–GM) inequality then yields

β(µ; 5) = µ(Gµ) ≤
(
1

5

∑
e∈suppµ

µ(e)

)5

=
1

55
.

with equality if and only if µ = µC5 .

The proof that β(C6) = 6−6 is similar, albeit slightly more involved.

Theorem 16. β(C6) = 6−6.

Proof. We begin by observing that

β(6) ≥ β(µC6 ; 6) =
1

66
.

Now, fix any µ ∈ Opt(6). Appealing to Corollary 10, we know that |supp µ̄| = 6 and that µ̄(x) = 1/3
for all x ∈ supp µ̄. Furthermore, by applying Corollary 13 with z = 6/11, we see that

µ(e) >
1

11
, for all e ∈ suppµ. (1)

Now, certainly δ(Gµ) ≥ 2 because Gµ has a spanning copy of C6. Furthermore, eq. (1) tells us
that each x ∈ supp µ̄ satisfies

1

3
= µ̄(x) >

1

11
deg(x) =⇒ deg(x) <

11

3
< 4.

Therefore, each vertex of Gµ must have either degree 2 or degree 3. In fact, we claim that Gµ is
either 2- or 3-regular. Indeed, if this were not true, then there would exist two adjacent vertices
x, y with deg(x) = 2 and deg(y) = 3 since Gµ is certainly connected. Now, since deg(x) = 2 and
Gµ has 6 vertices, every copy of C6 in Gµ must use the edge xy and so µ(xy) = 1/6 thanks to
Corollary 9. But then, one of the other two edges incident to y must have mass at most

µ̄(y)− 1/6

2
=

1/3− 1/6

2
=

1

12
<

1

11
,
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contradicting eq. (1).

Next, we claim that Gµ must actually be 2-regular. To prove this, suppose for the sake of
contradiction that Gµ is 3-regular.

To begin, we know that Gµ has 9 edges, so we may apply eq. (1) to see that for each C ∈ C6(Gµ),∑
e∈E(C)

µ(e) = 1−
∑

e∈E(Gµ)\E(C)

µ(e) < 1− 3

11
=

8

11
. (2)

Figure 1: The only two 3-regular graphs on 6 vertices: K3,3 (left) and K3 □K2 (right).

Now, it is a routine exercise to show that the only 3-regular graphs on 6 vertices are K3,3 and
K3□K2 (here, “□” denotes the Cartesian product of graphs; see Figure 1 for a drawing of K3□K2).
In either case, we have N(Gµ, C6) ≤ 6; thus by applying the AM–GM inequality and eq. (2), we
bound

1

66
≤ β(6) = β(µ; 6) =

∑
C∈C6(Gµ)

µ(C) ≤
∑

C∈C6(Gµ)

(
1

6

∑
e∈E(C)

µ(e)

)6

< 6 ·
(

8

11

)6

· 1

66
≤ 0.89

66
<

1

66
;

a contradiction.

Therefore, we know that Gµ is 2-regular, and so Gµ = C6. Applying the AM–GM inequality
one final time then yields

β(µ; 6) = µ(Gµ) ≤
(
1

6

∑
e∈suppµ

µ(e)

)6

=
1

66
,

with equality if and only if µ = µC6 . This concludes the proof.
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[6] E. Győri, A. Paulos, N. Salia, C. Tompkins, and O. Zamora. Generalized planar Turán numbers.
arXiv:2002.04579, 2020.

[7] S. L. Hakimi and E. F. Schmeichel. On the number of cycles of length k in a maximal planar
graph. J. Graph Theory, 3(1):69–86, 1979.

[8] T. Huynh, G. Joret, and D. R. Wood. Subgraph densities in a surface. arXiv:2003.13777, 2021.

[9] Z. Lv, E. Győri, Z. He, N. Salia, C. Tompkins, and X. Zhu. The maximum number of copies of
an even cycle in a planar graph. arXiv preprint arXiv:2205.15810, 2022.

8

http://arxiv.org/pdf/1909.13532
http://arxiv.org/pdf/2002.04579
http://arxiv.org/pdf/2003.13777

	Introduction
	Preliminaries
	Proof of thm:c10c12

