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ABSTRACT 
The research presented in this paper explores the effect of concept maps on students’ 
neurocognition when constructing engineering problem statements. In total, 66 engineering 
students participated in the experiment. Half of the students were asked to create a concept map 
illustrating all of the systems and stakeholders represented in a building on campus. The other half 
of students were not asked to draw a concept map. Both groups were then asked to construct an 
engineering problem statement about improvements to the building. While performing the problem 
statement task, their neurocognitive activation in their prefrontal cortex (PFC) was measured using 
a non-intrusive neuroimaging technique called functional near-infrared spectroscopy. The students 
that were asked to complete the concept mapping task required less cognitive effort to formulate 
and analyze their problem statements. The specific regions that were less activated were regions 
of the brain generally associated with working memory and problem evaluation. These results 
provide new insight into the changes in mental processing that occurs when using tools like 
concept maps and may provide helpful techniques for students to structure engineering problems.  
 
INTRODUCTION 
The world is fundamentally shifting towards becoming a complex interconnected system. Future 
challenges associated with our built environment cannot be solved as isolated elements. Those 
who design and construct our built environment need to explore the interconnection of systems 
including social, environmental, and economic dimensions of complex problems (Maani & 
Maharaj, 2004). Concept mapping is a method to help represent complex systems graphically 
(Novak, 1998; Novak & Cañas, 2006). Concept maps provide a visual representation of 
information and the relationships between this information. It is an increasingly popular technique 
to help both students learn, and engineering professionals visualize, the dynamic relationships 
between components of systems (Watson et al., 2016; J. Novak, 1998). 
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Teaching students and helping professionals visualize dynamic relationships between 
complex systems is necessary because too often engineering works to reduce, rather than embrace, 
complexity. For instance, engineering often breaks systems apart to optimize individual 
components. Optimizing the cost to deliver potable water in Flint, Michigan had disastrous 
consequences, causing pipe corrosion and lead exposure for residents (Erban & Walker, 2019). 
Reducing complexity can also lead to narrowly defining problem statements (Beamish & Biggart, 
2012), which can constrain the types of solutions that can be developed (May, 2006; Shealy & 
Klotz, 2014).  

Any tool or technique that can help engineers make sense of complexity and recognize the 
interconnection between systems is useful to create new and novel engineering solutions to benefit 
society. Concept mapping can help achieve this goal (Ellis et al., 2004). It may also be useful as a 
tool for engineers to define and reframe the systems within which they work. Engineering design 
is a process of problem framing and reframing (Gero, 1990). It requires the co-evolution of the 
problem and solution space (Asimow, 1962; Schön & Wiggins, 1992). The purpose of the research 
presented in this paper was to measure the effect of concept mapping when students constructed 
engineering problem statements. The objective was to measure how concept maps change the 
cognitive processes students use when thinking about engineering problems. 
 
BACKGROUND 
 
The process of identifying problems is critical in engineering because it determines the types of 
ideas and solutions that will follow (Dorst & Cross, 2001; Schön, 1983). The activity of defining 
the problem and generating solutions takes place within the mental “frames” created by the 
engineer (Gero, 1990). Using concept maps to define systems can help extend the mental frames 
that students use to understand and explore problems.  

How students think through complex engineering problems to arrive at solutions has been 
widely studied for decades using observation and think aloud protocols (Dorst, 2011; Hay et al., 
2017a, 2017b). Concept mapping is known to work by enabling unique retrieval paths for new 
concepts and information (O’Donnell et al., 2002). Students attain new knowledge by integrating 
existing knowledge in new ways (Turns et al., 2000a). What is less known is the fundamental 
neurocognitive functions that actually change as students use concept mapping to reframe and 
expand the problems they then work to solve. To explore the effect of concept mapping on how 
students conceptually frame engineering problems, this research used an approach from 
neuroscience that measures change in neurocognitive activation.    

Neuroscience literature provides insight into how brain regions support cognitive function 
(e.g. visual or spatial thinking) (Dalton et al., 2015), but less is known about how these processes 
are used for tasks like concept mapping (Bunce et al., 2011; Rosen et al., 2016). Measuring 
students’ neurocognitive activation can provide new understanding about how students think 
through problems and the effects of techniques like concept mapping to help them expand and 
explore new realms of the problem space (Hu & Shealy, 2018a). 
 
fNIRS to explore neurocognitive processes when students construct problem statements 
To measure brain activation, the research team used a technology called functional near infrared 
spectroscopy (fNIRS). fNIRS combines some of the benefits of electroencephalography (EEG) 
and functional magnetic resonance imaging (fMRI). fNIRS is useful to understand cognition in a 
more natural experimental setting compared to fMRI. fNIRS is more resistant to head movements 
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than EEG (Grohs et al., 2017). fNIRS uses a similar setup to EEG. Participants can comfortably 
sit or stand while wearing a cap that is connected to a data acquisition system. fNIRS offers similar 
spatial resolution to EEG but lacks the high spatial resolution of fMRI. It provides little information 
about subcortical brains region, but is sufficiently effective to investigate areas like the prefrontal 
cortex (PFC). 

This study focused on the PFC region of the brain because of its role in decision-making 
and problem solving (Goel, 2014; Shealy et al., 2020). The PFC plays a role in ideation and 
creativity in design tasks (Fink et al., 2009; Goel & Grafman, 2000). The PFC is also required to 
control executive functions, such as planning, attention, and working memory (Glimcher & Fehr, 
2013). Subregions within the PFC are associated with more specific cognitive functions. For 
example, the dorsolateral prefrontal cortex (DLPFC) tends to be associated with abstract reasoning 
(Pochon et al., 2002). The right part of the ventrolateral prefrontal cortex (VLPFC) is generally 
associated with evaluating problems rather than solving them (Aziz-Zadeh et al., 2009) and to 
support the generation of alternative hypotheses to explore in the problem space (Goel & Vartanian, 
2005). 

 
RESEARCH QUESTION 
 
Drawing relationships between elements of systems might facilitate new ways students think about 
complex problems (Hu et al., 2019). Measuring students’ neurocognitive activation when 
constructing engineering problem statements can lead to a more detailed understanding of the 
mental process used for problem framing. The research question is what is the effect of concept 
maps on students’ neurocognitive activation when constructing an engineering problem statement?  
 
METHOD 
 
Experimental design  
All of the participants in this study were engineering students (undergraduate and graduate) at 
Virginia Tech. Participants were recruited by sharing requests across engineering courses and other 
university communication channels such as campus activity bulletin boards. The participants were 
provided with a $30 gift card for their participation in the study. The experiment procedure was 
approved by the Institutional Review Board. 

Engineering students were asked to construct an engineering problem statement. Students 
were told: “Patton Hall needs to be renovated and your role is to provide a document containing 
everything you think could be improved in the building. Please be as descriptive and elaborate as 
you can in explaining your ideas and how they would impact the systems and stakeholders.” 

Participants were given as much time as they needed to create their problem statement. The 
experiment was designed without a time restriction because time presented an additional variable 
that could have influenced how students constructed their problem statement. Without a time 
restriction, students had the autonomy to complete the task at their own pace. Sixty-six students 
participated in the study. Thirty-three students started the task without first being asked to create 
a concept map (i.e., the control group). The remaining students received a concept map 
intervention (i.e., intervention group). Participants were randomly assigned to one of the two 
groups. In the intervention group, before seeing the task about the problem statement, participants 
were asked to create a concept map illustrating all of the systems and stakeholders that interact in 
the building. Participants in the intervention group were briefed and trained to use concept maps. 
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The pre-task training included a 4-minute introductory video on concept maps and drawing a 
practice concept map so that students could ask questions. 
 All participants were outfitted with the fNIRS cap as shown in Figure 1(a), before 
beginning the experiment. Changes in oxygenated blood were measured using the fNIRS in 22 
channels placed in the 10-20 system (Figure 1(b)). Since the task required participants to write a 
response, students were also asked to first complete a word tracing task as a baseline activation in 
their brain. This type of baseline recording is typical among neurocognitive studies (Hu & Shealy, 
2018b; Tak & Ye, 2014). The experiment was conducted with PsycoPy. PsycoPy helped provide 
timed instructions for the participants. The time length for the experiment was similar for both 
groups and lasted around 7 minutes. Participants were not given a time restriction for writing their 
problem statements.  
 

(a)  (b)  
Figure 1. fNIRS cap on participant (a), prefrontal cortex channel placement (b) 

 
Data analysis 
Ten out of sixty-six participants were removed from further analysis due to bad signals. fNIRS 
raw data for the fifty-six (n=28 for each group) participants were processed using a bandpass filter 
(frequency ranging between 0.01 and 0.1 Hz, third order Butterworth filter) which was done to 
eliminate low frequency physiological and high frequency instrumental noises. Additionally, an 
independent component analysis (ICA) with a coefficient of spatial uniformity of 0.5 was applied 
to remove motion artifacts. This elimination step was critical in processing the raw fNIRS data to 
avoid false discovery in fNIRS analysis (Santosa et al., 2017). The parameters in data processing 
are based on prior research (Naseer & Hong, 2015; Sato et al., 2011). Shimadzu fNIRS software 
was used to filter and pre-process the fNIRS data. After pre-processing, fNIRS data were analyzed 
using a locally developed python scripts. A baseline correction and a transformation were applied 
to make fNIRS data comparable between subjects and between the two groups.  

To address the research question, the neuro-activation in the PFC and its sub-regions was 
analyzed. Oxy-Hb was averaged for all channels to assess differences in activation for the whole 
PFC. Since sub-regions in the PFC are recruited for different cognitive tasks related to engineering, 
we also analyzed oxy-Hb across functional sub-regions for each participant. The mean oxy-Hb 
throughout the task was used as a normalized proxy for cognitive activation. Two sample t-tests 
were performed to compare the control group to the experimental group. The confidence interval 
was 0.05. Cohen’s d values were used to measure effect size. 
 
RESULTS 
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Concept maps change patterns of neurocognitive activation in students when constructing 
their problem statements 
Completing a concept map prior to constructing their problem statements had a significant effect 
on participants’ neurocognition. Significant differences were observed between groups in the 
average activation across students’ prefrontal cortex (PFC) and in two sub-regions in the left PFC. 
The t-test suggests a significantly (t=-2.08, p=0.04) lower average activation in the PFC for the 
intervention group (M = 0.002, SD = 0.01) than the control group (M=0.07, SD=0.02). The effect 
size is large with a Cohen’s d value of 3.04.  

Using concept maps reduced the neurocognitive activation in the PFC during the problem 
framing task. Figure 2(a) shows the activation heat map for the control group, while Figure 2(b) 
shows the activation heat map for the intervention group. The heat maps of brain activation in the 
PFC highlight a difference in the left PFC. Further statistical analysis using t-tests confirmed a 
significant difference in brain activation in the left PFC (t=2.47, p=0.02, Cohen’s d=3.14). When 
participants were primed using concept maps before constructing their problem statement, they 
did not recruit activation from the left PFC as intensely as participants in the control group. No 
significant differences in brain activation were found in the right PFC (t=-1.28, p=0.14) between 
groups. 

 
Figure 2.  Brain activation in the prefrontal cortex (PFC); (a)Average brain activation heat map 

for the control group throughout the task; (b) Average brain activation heat map for the 
experimental group throughout the task; (c) Average oxy-Hb in the PFC in the first 90 seconds of 

the task. (Note: a.u. = arbitrary unit; p*<0.1, p**<0.05) 
 
Concept maps reduced students’ neurocognitive activation in the left part of the PFC when 
constructing their problem statements 
Activation in two sub-regions in the left PFC showed most significant differences during the 
engineering problem definition task. Detailed statistical analysis of the sub-regions in the PFC 
indicated that most significant differences occurred in the left dorsolateral prefrontal cortex 
(DLPFC) and left ventrolateral prefrontal cortex (VLPFC), as illustrated in Figure 3.  

The DLPFC is usually associated with attention and working memory (Cieslik et al., 2013). 
The left DLPFC is generally described as involved when making analytical judgments and goal-
directed planning (Aziz-Zadeh et al., 2013; Gabora, 2010). The second sub-region with a 
significant difference in activation is the left VLPFC. This region tends to be associated with 
evaluating a problem rather than solving it (Aziz-Zadeh et al., 2013). These results suggest that 
generating a concept map, illustrating the systems of the problem, reduced cognitive activation in 
the left DLPFC and left VLPFC when constructing the engineering problem. 
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Figure 3.  Brain activation in the left dorsolateral prefrontal cortex (DLPFC) and left 

ventrolateral prefrontal cortex (VLPFC) 
 
DISCUSSION 
 
The results provide empirical evidence of the effects of concept mapping on students’ 
neurocognition when developing engineering problem statements. When participants used concept 
maps, it reduced the cognitive effort required for them to frame their problem statements. This 
decreased neurocognitive activation was observed in prior neuroimaging experiments that use a 
similar priming intervention (Henson, 2003). The results of this study further highlight a decrease 
in activation in the left part of the PFC (the DLPFC and VLPFC). The left part of the PFC is known 
to be recruited for rule-based design, goal-directed planning of design solutions (Aziz-Zadeh et al., 
2013) and making analytical judgments (Gabora, 2010). The reduction in cognitive activation in 
these sub-regions suggests concept mapping helps engineering students frame the problem with 
lessened cognitive load particularly related to goal directed planning.  

Research in design cognition provides empirical evidence of the co-evolution of the design 
problem and design solution space (Dorst & Cross, 2001; Maher & Poon, 1996). Such cognitive 
process implies a dual processing (Goldschmidt, 2016; Sowden et al., 2015) relying on exploring 
the problem space through the generation of solutions. In other words, the problem is framed 
through the ideation and conceptualize of solutions (Dorst, 2011). At a neurocognitive level, the 
findings from this study suggest that to construct the problem statement, students in the control 
group engaged both brain hemispheres. This is coherent with empirical evidence of the co-
evolution of the problem-solution space that require bilateral activation. On the other hand, using 
concept maps reduced the activation in the left part of the PFC. The left part of the PFC tends to 
be engaged for goal-directed planning and deductive reasoning (Goel & Dolan, 2004). A possible 
explanation is that using concept maps nudged students to engage more cognitive efforts to 
generate solutions instead of focusing on evaluating the design problem itself. Indeed, concept 
maps set the problem space through the identification of elements represented in the problem 
statement (Turns et al., 2000b). 
 A complementary explanation is that without concept maps, engineering students used 
more cognitive effort to formulate and analyze the problem-solution space that occurs in 
engineering design. Students in the intervention group were trained to use concept maps; therefore, 
they might have needed less cognitive effort to conceptually think about the problem. The lower 
activation in the left part of the PFC in the experimental group may suggest that students required 
less cognitive effort to engage in goal-oriented processes as a result of the concept mapping 
intervention. Furthermore, the results also provide evidentiary support for cognitive load theory in 
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engineering education, which could be further explored in the future, by establishing how priming 
students in ways that use specific regions and patterns of activation in their brain reduce subsequent 
cognitive effort.  
 
 This study highlights new evidence about the effects of concept maps on students 
neurocognition. Concept maps significantly changed students’ neurocognition as they constructed 
their engineering problem statements. Future research could expand to include different types of 
tools other than concept maps to prime participants for engineering design. Future studies could 
begin to compare different techniques to concept maps to enrich and compare across tools to 
enhance engineering education. One limitation of this study is the small sample size. Although this 
sample size is in the range of similar previous studies that use neuroimaging methods in 
engineering (Hu & Shealy, 2019), a larger sample may provide more reliable results. Another 
limitation is the lack of evaluation of the problem statement. The research presented here is part 
of a wider study and our future research will include a larger dataset and more comparison between 
neurocognitive results and students’ written problem statements.  
 
CONCLUSION 
 
Significant differences were observed in students’ neurocognition when constructing engineering 
problem statements. Concept mapping changed neurocognitive behavior in students. Without 
concept maps, students used more cognitive effort to formulate and analyze their problem 
statement. Students that carried out the priming concept mapping task required less cognitive effort 
to conceptually think about the problem. Better understanding how concept maps, and other tools, 
can help frame complex problems and change students’ neurocognition can lay the ground for 
novel advances in engineering education and new tool development for teaching. Future research 
will extend the current results by measuring changes in brain behavior across time and begin to 
analyze what students said in their problem statements and how this differed between groups.  
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