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A b s t r a c t .  We compute the asymptotic growth rate of the number N (C ; R )  of closed geodesics of
length  R  in a connected component C of a stratum of quadratic differentials. We prove that, for
any 0    1, the number of closed geodesics  of length at most R  such that  spends at least –fraction of
its time outside of a compact subset of C is exponentially smaller than N (C ; R).  The theorem
follows from a lattice counting statement. For points x; y in the moduli space M ( S )  of Riemann
surfaces, and for 0    1 we find an upper-bound for the number of geodesic paths of length  R  in
C which connect a point near x  to a point near y and spend at least a –fraction of the time outside
of a compact subset of C.

1. Int roduc t i on

Let S  =  Sg;p be a surface of genus g with p punctures and let M ( S )  be the moduli space of
Riemann surfaces homeomorphic to S . The co-tangent bundle of M ( S )  is naturally identified
with Q M ( S )  the space of finite area quadratic differentials on S . Let Q 1 M ( S )  be subspace of
quadratic differentials of area 1. There is a natural SL(2; R) action on the Q 1 M ( S ) .  The orbits of

the diagonal flow, gt =      e
t

e
0

t , projects to geodesics in M ( S )  equipped with the Teich-

müller metric. For R  >  0, let N ( R )  be the number of closed Teichmüller geodesics of length less
than or equal to R  on Q 1 M ( S ) .  It was shown in [EM2] that, as R  !  1 ,  the number N ( R )  is
asymptotic to ehR =hR; where h =  6g      6 +  2p.

The moduli space of quadratic differentials is naturally stratified: to each quadratic differential
(x; q) 2  Q M ( S )  we can associate (q) =  (i; : : : ; k; &) where 1; : : : ; k are the orders of the zeros and
poles of q, and & 2  f  1; 1g is equal to 1 if q is the square of an abelian differential and
 1 otherwise. For a given tuple , we say a quadratic differential (x; q) 2  Q M ( S )  is of type  if (q)
=  . The space Q M ( )  of all quadratic differentials in Q M ( S )  of type  is called the stratum of
quadratic differentials of type . The stratum Q M ( )  is an analytic orbifold of real dimension 4g +
2k +  &      3.

Let Q 1 M ( )  be the space of quadratic differentials in Q M ( )  of area 1. It is not necessarily
connected (see [KZ]  and [La] for the classification of the connected components), however, each
connected component is SL(2; R) invariant. Let C be a connected component of Q 1 M() .  In this
paper, we study the asymptotic growth rate of the number N (C ; R) of closed Teichmüller geodesics of
length less than or equal to R  in C. Our main tool is estimating the number N (C K ; R )  of closed
geodesics that stay completely outside of a large compact set K   C.
Theorem 1.1. Given  >  0 there exists a compact subset K   C and R 0  >  0 such that for all
R  >  R0 ,

N ( C K ; R )   e(h 1 + ) R :

This result implies that:

Theorem 1.2. As R  !  1 ,  we have
h R

N (C ; R)  
hR  

;

where h =  1 [1 + dimR (C)] and the notation A   B  means that the ratio A = B  tends to 1 as R  tends to
infinity.

Remark 1.3. In the case of abelian differentials, h is equal to the dimension of the relative homology
of S  with respect to the set of singular points of (x; q) 2  C, otherwise h is one less.
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Recurrence of geodesics. We prove a stronger version of Theorem 1.1. Every quadratic differ-
ential defines a singular Euclidean metric on the surface S  and for every compact set K   C, there is
a lower bound for the q–length of a saddle connection where q 2  K .  Here, we restrict attention to
closed geodesics where more than one simple closed curve or saddle connection is assumed to be
short; in this case the growth rate is of even lower order.

Let T (S )  be the Teichmüller space, the universal cover of M ( S ) .  Let QT (S )  and Q1T (S )  be
defined similarly. To  distinguish between points in the Moduli space and Teichmüller space, we
use x  2  M ( S )  and X  2  T (S ). Also, we use the notation (x; q) for points in Q 1 M ( S )  and (X ; q )
for points in Q1T (S ). We denote a geodesic in Q 1 M ( S )  by g  and a geodesic in Q1T (S )  by G.
The space Q1T (S )  is also naturally stratified. We denote the space of quadratic differentials in
Q1T (S )  of type  by Q1T (). To  simplify the notation, let

Q()  : =  Q1T ():

Recall that E x t X ( )  denotes the extremal length of a a simple closed curve  on the Riemann surface
X  2  T (S ). (see Equation (1) for definition). We introduce a notion of extremal length for saddle
connections on quadratic differentials.     Essentially, the extremal length of a saddle connection
!  in a quadratic differential (X ; q )  2  Q1T (S )  with distinct end points p1 and p2 is the extremal
length of the associated curve in the ramified double cover of X  with simple ramification points at
only p1 and p2 (see §3.5 for more details).

Definit ion 1.4. For  >  0 and for any quadratic differential (X ; q )  2  Q(), let
q () be the set of saddle connections !  so that either Ext q ( ! )    or !  appears in a geodesic
representative of a simple closed curve  with E xt X ( )   . Let Q j ; ( )  be the set of quadratic differentials
(X ; q )  of type  so that
q () contains at least j  disjoint homologically independent saddle connections. When  is fixed, we
denote this set simply by Qj ; .  Let Cj;  be the set of points in C whose lift to Q1T (S )  lies in Qj ; .
For 0    1, define N(C j ; ; R)  to be the number of closed geodesics of length at most R  in C that spend
at least –fraction of their length in Cj;.

In this paper, we show:

Theorem 1.5. Given  >  0, there exist  >  0 small enough and R  >  0 large enough so that, for
all j   1 and 0    1,

N(C j ; ; R)   e(h j + ) R :

Remark 1.6. The condition on
q () is necessary. Just assuming there are j  saddle connections of q–length less than  does not
reduce the exponent by j .  In fact, for any , there is a closed geodesic g  in Q 1 M ( S )  where the
number of saddle connections with q–length less than  is as large as desired at every quadratic
differential (X ; q )  along g. This is because the Euclidean size of a subsurface could be as small as
desired (see §3.4) and short saddle connection can intersect.

Latt ice counting in  Teichmüller space. Let  (S )  denote the mapping class group of S  and let
B R ( X )  denote the ball of radius R  in the Teichmüller space with respect to the Teichmüller metric
centered at the point X  2  T (S ). It is known ([ABEM]) that, for and Y 2  T (S ),

 (S )   Y \  B R ( X )   2 e(6g 6) R ;

as R  !  1 :  Here  is a constant depending only on the topology of S  (See [Du]).
The main theorem in this paper is a partial generalization of this result for the strata of quadratic

differentials. Here we are interested in the case where the Teichmüller geodesic joining X  to g  Y , for
g 2   (S ),  is assumed to belong to the stratum Q()  or stay close to it.

More precisely, for a fix r0 >  0 (see §6.2), let N(Q j ; ; X ; Y ; R)  be the number of points Z  2  T (S )
such that (See Fig. 1):

 Z  2  B R ( X )  and Z  =  g  Y , for some g 2   (S ).
 there is a Teichmüller geodesic segment G  Q()  joining X 1  2  B r  ( X )  to Y1 2  B r  ( Z )   G
spends at least –fraction of the time in Qj ; .
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R

B R ( X )
X

Z  =  g  Y

X 1 G
Y1

Y

Q()

F i gu r e  1. There is a geodesic G in Q()  connecting a point near X  to a point
near Z  2  B R ( X )  that is in the orbit of Y .

Also, for a fix 0 (see §1.3 below), we define S X  to be the set of 0–short curves in X  and

G ( X )  =  1 +  
2 S X  

p
E x t X ( )

:

Theorem 1.7. Given  >  0, there exist  >  0 small enough and R  >  0 large enough such that, for
every 0    1, j   1 and X ; Y  2  T (S ) ,  we have

N(Qj ; ; X ; Y ; R)   G ( X ) G ( Y  ) e(h j + ) R ;

Compare with Theorem 7:2 in [EM2].

1.1. Notes on the proof.

1. Each stratum Q 1 M ( )  has an affine integral structure, and carries a unique probability measure ,
called the Masur-Veech measure, invariant by the Teichmüller flow which is equivalent to the
Lebesgue measure. Moreover, the restriction of the Teichmüller flow to any connected component C
of Q 1 M ( )  is mixing with respect to the Lebesgue measure class [Ma], [Ve]. In fact, the Teich-müller
flow on C is exponentially mixing with respect to  [AR], [AGY].  However, we will only use the mixing
property (as stated in Theorem 2.4) in this paper.

2. The main difficulty for proving Theorem 1.2 is the fact that the Teichmüller flow is not uni-
formly hyperbolic. As in [EM2], we show that the Teichmüller geodesic flow (or more precisely
an associated random walk) is biased toward the part of C that does not contain short saddle
connections (see Lemma 6.4). Similar method has been used in [EM2] where it is enough to use
Minsky’s product region theorem (see §2.5) to prove the necessary estimates. In this paper, since
the projection map from C to M ( S )  is not easy to understand, we need different and more delicate
methods to obtain similar results.

3. We define a notion of a (q; )–regular triangulation for a quadratic differential (X ; q )  (Defini-tion
3.11). Such a triangulation captures the geometry of singular Euclidean metric associated to q in a
way that is compatible with the hyperbolic metric associated to X .  We will show that a set of disjoint
saddle connections in
q () can be included in a (q; )–regular triangulation (Lemma 3.13).

4. In order to prove Theorem 5.1 (§5) we compute, given the triangulation Ta, the number of
possible triangulations Tb which have certain bounds on their intersection number with Ta. It
turns out that the number of possible triangulations Tb is related to the number of edges in Ta that are
homologically independent. This is the main reason that the growth rate of N(Q j ; ; X ; Y ; R)  is
related to dimR C. In §3 we establish the basic properties of a (q; )–regular triangulation and in §4 we
establish the necessary bounds on the intersection number between Ta and Tb needed in §5.
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5. Theorems 1.1 and 1.5 are essentially corollaries of Theorem 1.7. In §6, we use Theorem 5.1 to
prove Theorem 1.7. Here we describe the steps involved in the proof of Theorem 1.7. First, we fix a
net N  in M ( S )  and its lift N  in T (S ). For any constant , we note that N(Q j ; ; X ; Y ; R)  is bounded
above by the number of trajectories f0; : : : ; ng in N  from X  to Y so that the distance between i  and
i + 1  is at most  and, for  proportion of steps, the segment [i ; i+1 ] can be approximated by a path in
Qj ; .

Given i , we bound the number of possible choices for i + 1  so that the segment [i ; i+1 ] can be
approximated by a path in Qj ; .  The bound depends on the geometry of i  (captured by the function
G (  ).

On the other hand, if G : [a; b] !  Q j ;  is a geodesic segment with initial and terminal quadratic
differentials (Xa ; q a )  and (Xb ; qb ) with jb   aj  , one can find a (qa; )–regular triangulation Ta and
(qb; )–regular triangulation Tb so that Ta and Tb have j  nomologically independent edges in common
(See Lemma 6.1 for the precise statement). Then Theorem 5.1 shows that the number of choices for
i + 1  is also reduced by a factor e j  .

6. To  obtain Theorem 1.2, we use the basic properties of the Hodge norm [ABEM] to prove a
closing lemma for the Teichmüller geodesic flow in §8. We remark that the Hodge norm behaves
badly near smaller strata, i.e. near points with degenerating zeros of the quadratic differential,
where quadratic differentials have small geodesic segments.

On the other hand, the set of quadratic differentials with no small geodesic segment is compact
and in any compact subset of C, the geodesic flow is uniformly hyperbolic (See [Ve], [Fo] and §7).
Also, in view of Theorem 1.5, for any 0    1, the number of closed geodesics  of length at most R
such that  spends at least a –fraction of the time outside of a compact subset of C is exponentially
smaller than N (C ; R). Therefore, "most" closed geodesics spend at least (1   )– fraction of the
time away from the degenerating locus. This allows us to prove Theorem 1.2 following the ideas
from Margulis’ thesis [Mar].

1.2. Fu r t h e r  remarks and references.

1. According to the Nielsen-Thurston classification, every irreducible mapping class g 2   (S )  of
infinite order has a representative which is a pseudo-Anosov homeomorphism. Let K g  denote the
dilatation factor of g [Th1]. By a theorem of Bers, every closed geodesic in M ( S )  is the unique
loop of minimal length in its homotopy class. Also a pseudo-Anosov g 2   (S )  gives rise to a
closed geodesic Gg of length log(Kg )  in Q 1 M ( S ) :  Hence log(Kg )  is the translation length of g as
an isometry of T (S )  [Be]. In other words,

L ( S )  =  log(Kg )  j g 2   (S )      pseudo-Anosov

is the length spectrum of M ( S )  equipped with the Teichmüller metric. By [AY ]  and [Iv], L ( S )
is a discrete subset of R.  Hence the number of conjugacy classes of pseudo-Anosov elements of the
group  (S )  with dilatation factor K g   e R  is finite. We remark that for any pseudo-Anosov g 2   (S )
the number K g  is an algebraic number and log(Kg )  is equal to the minimal topological entropy of
any element in the same homotopy class [FLP].  (See [Pe] and [BC] for simple explicit constructions
of pseudo-Anosov mapping classes.) In terms of this notation, N (C ; R) is the number of conjugacy
classes of pseudo-Anosov elements g in the mapping class group  (S )  with expansion factor of at
most e R  such that Gg  C:

2. The first results on this problem are due to Veech [Ve]. He proved that there exists a constant
c such that

h  lim inf 
log N ( R )  

 lim sup 
log N ( R )  

 c 
R ! 1

and conjectured that c =  h.
Foliations fixed by pseudo-Anosov maps can be characterized by being representable by eventu-

ally periodic "convergent" words [PP1]. Moreover, there is an inequality relating the length of the
repeating part of the word corresponding to a pseudo-Anosov foliation and the dilatation factor
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of a pseudo-Anosov map preserving that foliation [PP2]. However, the estimates obtained using
these inequalities are weaker.

3. The basic idea behind the proof of the main theorem in this paper is proving recurrence results for
Teichmüller geodesics. Variations on this theme have been used in [EMM], [EM1], [Ath], and
[EM2]. One reason the proof is different from [EM2] is that in general the projection map :
Q 1 M ( )  !  M ( S )  is far from being a fibration: in many cases dim(Q1 M())  <  dim(M(S ))  and dim(
1 ( X )  \  Q 1 M ( ) )  depends on the geometry of X .  In this paper, we need to analyze the geometry
of quadratic differentials more carefully. The results obtained in §3 allow us to deal with this issue.

4. Our results are complimentary to the following result:

Theorem 1.8 (Hammenstadt). There exists a compact K   C such that for R  sufficiently large,

N ( C K ; R )   e(h 1 ) R :

Also, by results in [H2] the normalized geodesic flow invariant measure supported on the set of
closed geodesics of length  R  in C become equidistributetd with respect to the Lebesgue measure  as
R  !  1 .

1.3. Choosing constants. We choose our constants as follows: We call a curve short if its ex-
tremal length is less than 0. This is a constant that depends on the topology of S  only (a uniform
constant) and is chosen so that Theorem 2.2 and the estimate in Equation (5) hold. We call any
other constant that depends in the topology of S  or the choice of 0 a uniform constant. Most of
these constants are hidden in notations  and  (see the notation section below). For the arguments
in §6 to work, we need to choose  large enough depending on the value of  (see proofs of Theorem 1.5
and Lemma 6.4 in §6). Then  is chosen small enough depending on the value of . We need   1 =  1 () so
that Lemma 3.13 holds and   2 =  2 () so that Lemma 6.1 holds. The dependence on the choice of  and
is always highlighted and a constant that we call uniform does not depend on  or .

1.4. Notation. In this paper, the expression A   B  means that A  <  c B  and A   B  means A
B  +  c for some uniform constant c which only depends on the topology of S  (a uniform

constant). We write A   B  if we have both A   B  and B   A .  Similarly, A   B  if both A   C  and B
A  hold. The notation A  =  O (B)  means that A   B .

Acknowledgements. We would like to thanks the referee for many useful comments that have
improve the exposition of the paper at several places.

2. T e i ch m ül l e r  Space and Q u a d r at i c  D i f f e r e n t i a l s

In this section, we recall some definitions and known results about the geometry of M ( S )
equipped with the Teichmüller metric. For more details, see [Hu], [FM] and [St].

2.1. Teichmüller space. Let S  be a connected oriented surface of genus g with p marked points. A
point in the Teichmüller space T (S )  is a Riemann surface X  of genus g with p marked points
equipped with a diffeomorphism f  : S  !  X  sending marked points to marked points. The map f
provides a marking on X  by S . Two marked surfaces f1  : S  !  X  and f2  : S  !  Y define the same
point in T (S )  if and only if f1   f : Y !  X  is isotopic (relative to the marked points) to
a holomorphic map. By the uniformization theorem, each point X  in T (S )  has a complete metric of
constant curvature  1 with punctures at the marked points. The space T (S )  is a complex
manifold of dimension 3g      3 + p, diffeomorphic to a cell. Let  (S )  denote the mapping class group of
S , the group of isotopy classes of orientation preserving self-homeomorphisms of S  fixing the
marked points point-wise. The mapping class group  (S )  acts on T (S )  by changing the marking.
The quotient space

M ( S )  =  T (S )= (S )
is the moduli space of Riemann surfaces homeomorphic to S .
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2.2. Teichmüller distance and Teichmüller ’s theorem. The Teichmüller metric on T (S )  is
defined by

dT     ( f1  : S  !  X1 ) ; ( f2  : S  !  X 2 )  =  
1 

inf log (K f  );

where f  : X 1  !  X 2  ranges over all quasiconformal maps isotopic to f1   f  1 and K f   1 is the
dilatation of f .  For convenience, we will often omit the marking and write X  2  T (S ). To
distinguish between a marked point and an un-marked point, we use small case letters for points in
Moduli space and write x  2  M ( S ) .

We recall the following important theorem due to Teichmüller. Given any X 1 ; X 2  2  T (S ), there
exists a unique quasi-conformal map f ,  called the Teichmüller map and quadratic differentials
(X i ; q i )  2  Q 1 ( X i )  such that the map f  takes zeroes and poles of q1 to zeroes and poles of q2 of the
same order and dT (X 1 ; X 2 )  =  2 log (K f  ).

2.3. T h e  space of quadratic differentials. Let Q ( X )  denote the vector space of quadratic
differentials on X  with at most simple poles at the marked points of X .  The cotangent space of T
(S )  at a point X  can be identified with Q ( X )  and the space

o
QT (S )  =      (X ; q )   X  2  T (S ); q 2  Q( X )

can be identified with the cotangent space of T (S ).
In local coordinates z, q is the tensor given by q(z)dz2, where q(z) is a meromorphic function

with poles of degree at most one at the punctures of X .  In this setting, the Teichmüller metric
corresponds to the norm Z

k q kT =      jq(z)j jdzj2

X

on QT (S ). Let Q1T (S )  denote the space of (marked) unit area quadratic differentials, or equiva-
lently the unit cotangent bundle over T (S ). Define

Q M ( S )  =  QT (S )= (S )      and     Q 1 M ( S )  =  Q1T (S )= (S ):

To  simplify the notation, in this paper, we let p  denote both projection maps

p : T (S )  !  M ( S ) ; and p : Q1T (S )  !  Q 1 M ( S ) :

Similarly,  will denote both projection maps:

: Q 1 M ( S )  !  M ( S ) ; and : Q1T (S )  !  T (S ):

2.4. Extremal and hyp erbolic  lengths of simple closed curves. By a curve we always mean
the free homotopy class of a non-trivial, non-peripheral, simple closed curve on the surface S  where
the homotopy is relative to the marked points. We denote the set of curves on S  by S  to emphasize
that they are simple curves.

Given a curve  on the surface S  and X  2  T (S ), let ‘ X ( )  denote the hyperbolic length of the unique
geodesic in the homotopy class of  on X .  The extremal length of a curve  on X  is defined by

2
(1) E xt X ( )  : =  sup 

Area(X; )
;

where the supremum is taken over all metrics  conformally equivalent to X ,  and ‘ ( )  denotes the
infimum of –lengths of representatives of .

Here X  can be any Riemann surface, even an open annulus. Recall that the modulus of an
annulus A  is defined to

Mod(A) : =  
ExtA ()

;

where  is the core curve of A.
Given curves  and  on S , the intersection number i(; ) is the minimum number of points in

which representatives of  and  must intersect. In general, by [GM]

(2) i(; ) E x t X ( )  ExtX ( ) :
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The following result [Ker] relates the ratios of extremal lengths to the Teichmüller distance:

Theorem 2.1 (Kerckhoff ). Given X ; Y 2  T (S ) ,  the Teichmüller distance between X  and Y is
given by

p !

dT (X ; Y ) =  sup log p
E x t Y  ()

:

The relationship between the extremal length and the hyperbolic length is complicated; in
general, by the definition of extremal length,

2

(2g      2 +  p) 
 ExtX ( ) :

Also, for any X  2  T (S ), the extremal length can be extended continuously to the space of measured
laminations [Ker] such that

E x t X ( r   )  =  r2 ExtX ( ) :
As a result, since the space of projectivized measured laminations is compact, for every X  there
exists a constant cX so that

1 
‘ X ( )   

p
E x t X ( )   cX ‘ X ( ) :  X

However, by [Mas]

(3)

Hence, as ‘ X ( )  !  0;

1 E xt X ( ) 1 ‘ X ( ) = 2

‘ X ( ) 2

‘ X ( )
E xt X ( )

2.5. Minsky ’s pro duct  theorem. Let A  =  f1; : : : ; j g be a collection of disjoint simple closed
curves on S  and, for a fixed 0, 

n o
T0 ( A )  =      X  2  T (S )   E x t X ( i )   0; 1  i   j  :

Then, using the Fenchel-Nielsen coordinates on T (S ), we can define

A  : T0 ( A )  !  (H2 ) j

by

A ( X )  =      1 (X ) ;  
‘X (1 )

; : : : ; j (X );  
‘ X ( j )      

:

Here, i ( )  is the Fenchel-Nielson twist coordinate around i  and represents the x–coordinate in
upper-half plane H  and the y–coordinate in H  is the reciprocal of the hyperbolic length. Following
Minsky, we get a map

: T0 ( A )  !  (H2 ) j   T ( S  n A);
where T ( S  n A )  is the quotient Teichmüller space obtained by collapsing all the i . The product
region theorem [Mi] states that for sufficiently small  the Teichmüller metric on T ( A )  is within
an additive constant of the supremum metric on (H2 ) j   T ( S  n A) .  More precisely, let dA ( ; )
denote the supremum metric on (H2 ) j   T ( S  n A) .  Then:

Theorem 2.2 (Minsky). There is 0 >  0 is small enough and B  >  0 depending only on S  such
that for all X ; Y  2  T (A) ,

dT (X ; Y )      d A
 

(X ); (Y ) <  B :

As mentioned in the introduction, we fix 0 so that the above theorem and the estimate in
Equation (5) hold.
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2.6. Short  curves on a surface. For 0 as above, we say a curve  is short on X  if E x t X ( )   0. From
discussions in [Mi], we know that, if two curves are short in X  they can not intersect. Let S X  be the
set of short curves on X .  Define G : T (S )  !  R +  by

(4) G ( X )  =  1 +  
2 S X  

p
E x t X ( )

:

If dT (X ; Y ) =  O(1) then G ( X )   G(Y ): The function G  is  (S )  invariant and induces a proper
function on M ( S ) .  We also recall the following lemma which, for example, follows from [EM2].

Lemma 2.3. For any X  2  T (S )  let
I X  =  g 2   (S ) dT  (g  X ; X )  =  O(1) :

be the set of mapping classes that move X  by a bounded amount. Then

I X   G(X ) 2 :

2.7. Stratum of quadratic differentials. Although the value of q 2  Q ( X )  at a point in X
depends on the local coordinates, the zero set of q is well defined. As a result, there is a natural
stratification of the space QT (S )  by the multiplicities of zeros of q. For  =  (1; : : : ; k; &) define QT
()  QT (S )  to be the subset consisting of pairs (X ; q )  of quadratic differentials on X  with zeros and
poles of multiplicities (1; : : : ; k). The poles are always assumed to be simple and are located at the
marked points, however, not all marked points have to be poles. The sign & 2  f  1; 1g is equal to 1 if
q is the square of an abelian differential (an abelian differential). Otherwise, & =   1. Then

QT (S )  = QT ():

It is known that each QT ()  is an orbifold. See [Ma] and [MS2] for more details.

2.8. F la t  lengths of simple closed curves and saddle connections. Let (X ; q )  be a quadratic
differential. If we represent q locally as q(z)dz2 then jqj =  jq(z)j 2 jdzj defines a singular Euclidean
metric on X  with cone points at zeros and poles. The total angle at a singular point of degree  is (2
+  ). (for more details, see [St]). This is not a complete metric space since poles are a finite distance
away. However, one can still talk about the geodesic representative of a curve that may pass through
the poles even though the poles. Namely, for a arc in (X; q ), consider the lift of this arc to the
universal cover, take the geodesic representative in the completion of the universal cover and then
project it back to (X ; q ). Following the discussion in [R1, Page 185], we can ignore this issue and
treat these special geodesics as we would any other geodesic.

The homotopy class of an arc (relative to its endpoints) has a unique q–geodesic representative.
Any curve  either has a unique q–geodesic representative or there is flat cylinder of parallel
representatives. In this case, we say  is a cylinder curve and we denote the cylinder of geodesics

representatives of  by F.  We denote the Euclidean length of the q–representative of  by ‘q (). A
saddle connection on (X ; q )  is a q–geodesic segment which connects a pair of singular points

without passing through one in its interior. We denote the Euclidean length of a saddle connection
!  on q by ‘q ( ! ) .

2.9. Perio d coordinates on the strata. In general, any saddle connection !  joining two zeros of
a quadratic differential q =  dz2 determines a complex number holq (! ) (after choosing a branch of
and an orientation of ! )  by

0 1 0 1

holq (! ) =  @ <
p

A  +  @ I m
p

A i :
! !

We recall that for any  =  (i; : : : ; k; &) the period coordinates gives QT ()  the structure of an affine
manifold. Consider the first relative homology group H1 (S; ; R)  of the pair (S; ) with jj =  k: Let

h =  (2g +  k      1) =  dim H1 (S; ; R)



 h

 1

0

  

  

~
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if & =  1; and
h =  (2g +  k      2) =  dim

 
H1 (S; ; R)

 
     1

if & =   1: We recall that given (X ; q )  2  Q1T () there is a triangulation T of the underlying surface
by saddle connections (see for example [Vo, Proposition 3.1] and [Th2, Proposition 3.1]). One can
choose h directed edges !1 ; : : : ; !h  of T , and an open neighborhood Uq  QT ()  of q such that the
map

T ;q : QT ()  !  C h defined by T ;q (q) =  holq (! i )  i = 1

is a local homeomorphism. For any other geodesic triangulation T0, the map     T 0 ;q      T ;q is linear.
In case of abelian differentials (& =  1) it is enough to choose a basis for H1 (S; ; R)  from the

edges of T . Note that for non-orientable differentials (& =   1) there will be a linear relation
between the holonomies of the vectors corresponding to a basis for the relative homology (see

§4.3). In this case, it is enough to choose dim(H1 (S; ; R))   1 independent vectors of T . For a
more detailed discussion of the holonomy coordinates see [MS1].

2.10. Teichmüller geodesic flow. We recall that when 3g +  p >  4 the Teichmüller metric is not
even Riemannian. However, geodesics in this metric are well understood. A  quadratic differential
(X ; q )  2  Q1T (S )  with zeros at p1; : : : pk is determined by an atlas of charts mapping open subsets of
S    fp1; : : : ; pkg to R2  such that the change of coordinates are of the form v !  v +  c: Therefore
the group SL(2; R)  acts naturally on Q1T (S )  by acting on the corresponding atlas; given A  2
SL(2; R), A   q 2  Q1T (S )  is determined by the new atlas fA i g:  The action of the diagonal

subgroup gt =  et

e
0

t      is the Teichmüller geodesic flow for the Teichmüller metric. In

other words, in holonomy coordinates the Teichmüller flow is simply defined by

<  holg t ( q ) (! i )  =  et <  holq (! i )  ;
and

=  holg t q (! i )  =  e t  =  holq (! i )  :
This action descends to Q 1 M ( S )  via the projection map p : Q1T (S )  !  Q 1 M ( S ) .  We denote

both actions (on Q1T (S )  and Q 1 M ( S ) )  by gt. The subspaces Q1T ()  and Q 1 M ( )  are invariant under
the Teichmüller geodesic flow. Moreover, we have ([Ve], [Ma]):

Theorem 2.4 (Veech-Masur). Each connected component C of a stratum Q 1 M ( )  carries a unique
probability measure  in the Lebesgue measure class such that:

 the action of SL(2; R)  is volume preserving and ergodic;
Teichmüller geodesic flow is mixing.

3. G e o m e t ry  o f  a  q u a d r at i c  d i f f e r e n t i a l

In this section, we recall some of the basic geometric properties of a quadratic differential (X ; q ).
We describe how the extremal length of a curve, which can be calculated from the conformal
structure of X ,  relates to the singular Euclidean metric associated to (X; q ).     We also define the
notion of a (q; )–regular triangulation, where  >  0 is a large constant. This is a partial
triangulation of (X ; q )  using the saddle connections that captures the geometry of the singular
Euclidean metric associated to q. The main statement of the section is Lemma 3.13 which shows the
existence of such triangulations. In the rest of the section, we establish some basic properties of
(q; )–regular triangulations which are used in section 5.

3.1. Intersection number. In the hyperbolic metric of X ,  the geodesic representatives of any two
curves  and  intersect minimally. Hence, the geometric intersection number between homotopy
classes of curves is equal to the intersection number between their geodesic representatives.

In the singular Euclidean metric jqj, this is not true. First, as mentioned in 2.8, the geodesic
representative might pass through the poles even though the poles are removed from the surface.
Also, the q–geodesic representatives of curves  and  that have geometric intersection number zero
may intersect. However, these intersections are tangential. That is,  and  may share an edge, but
they do not cross. By this, we mean that any lifts ~ and  to the universal cover q~ of q



~
~

1
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have end points in the boundary that do no interlock. To  simplify the exposition, when we say
and  intersect, we always mean that they have an essential intersection not tangential.

We also talk about the intersection number between two saddle connections. Here, we say two
saddle connections are disjoint if they have disjoint interiors or if they are equal. The intersection
number between two saddle connections is the number of interior intersection points. The inter-
section number between a saddle connection and itself is zero. In both cases, (saddle connections
and curves) the intersection number is denoted by i( ; ).

If A  is an embedded annulus, we distinguish between a curve  intersecting A  and crossing it. To
intersect A,  needs only to enter the interior of A. The curve  crosses A  if  enters one side of A  and
exits the other. To  be more precise, in the annular cover X A  of X  associated to A, there is a lift of
connecting the two boundary components of X A .

3.2. Extremal lengths and flat lengths of simple closed curves. One can give an estimate for
the extremal length of a simple closed curve  in X  by examining the singular Euclidean metric jqj.
As mentioned before,  may not have a unique geodesic representative; different geodesic
representatives of  are parallel and foliate a flat cylinder that we refer to as F.  Denote the two
boundary curves of F  by E  and G .  When F  is degenerate, E  =  G .

We say an annulus is regular if its boundary curves are equidistant. Let E  be the largest
embedded regular annulus with boundary curve E  and let G  be the largest embedded regular
annulus with boundary curve G .  Note that E  and G  may intersect F  and each other. In a
degenerate case, the interior of some or all of these annuli could be empty, for example, the interior of
F  is empty when  has a unique geodesic representative.

We call E ,  the shared boundary of E  and F,  the inner boundary of E  (and similarly G  is the inner
boundary of G). The annuli E  and G  are called expanding because the equidistance curves parallel
to the inner boundary get longer as they span E  and G. Let l =  ‘q ()  and let e; f and g be the q–
distances between the boundaries of E ,  F  and G  respectively. According to [R4], when E xt X ( )   0,
(see §1.3 for the discussion of the choice of 0) we have the following estimates

(5)
E xt X ( )  

 Mod(E) +  Mod(F) +  Mod(G) where

(6) Mod(E)  Log 
l

Mod(F) =  
l 

; and Mod(G)  Log 
l 

:

Here Log( ) is a modified logarithm function:
Log(t) =  max log(t); 1 :

We intend Log to apply only to large numbers. Of course, the value of either e, f  or g could be
zero and the second line will be  1 .  We use the modified logarithm to avoid this issue.

Note that, a simple closed curve that has a short flat length may not have a small extremal
length. We need to measure what is the largest neighborhood of  that still has a simple topology.
Later, we use this idea to define a notion of extremal length for a saddle connection.

3.3. Short  simple closed curves. As in §2.6, we say a curve  is short in q if E x t X ( )   0. Denote
the set of short curves in q by Sq . We say  is a cylinder curve if the interior of F  is not empty. In
what follows, the cases when  2  Sq is a cylinder curve and F  has a large enough modulus will need
special treatments. When the modulus of F  is extremely small,  behaves essentially like a non-
cylinder curve. We make this precise:

Definit ion 3.1. Let  be a positive real number and let M =  e 2 . We say a curve  2  Sq is a
large-cylinder curve if Mod(F)  M . Denote the set of large-cylinder curves by Sq 

 and define

Sq 
 =  Sq n Sq 

 :

For  2  Sq 
 , the size s of F  is defined to be the distance between the boundaries of F.



q

q
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Remark 3.2. The constant , which is determined in §6, is the distance between steps of a ran-dom
walk trajectory. We use M instead of just writing e 2 to highlight the fact that M is a bound for
modulus. There is an implicit assumption that  is large enough (say,   0 for some uniform constant
0). That is, unless otherwise stated, all statements hold with uniform constants independent of  as
long as   0.

Along Teichmüller geodesics, the length of a curve  2  S   changes slowly while the modulus of
F  remains small. More precisely, let

(Xt ; q t )  =  gt (X; q);

where gt is the Teichmüller geodesic flow. Assuming  2  S   and 0  t  , we have Modqt ( F )   1. As a
consequence of Equations (5) and (6), Modq (G)  and Modq ( E )  change at most linearly and we have

(7)
E xt X ( )  

     t  
E x t X t  ()  

 
E x t X ( )  

+  t:

3.4. T h e  th ick-th in  decomposition of quadratic differentials. We call the components of S
n Sq the thick subsurfaces of q. The homotopy class of each such subsurface Q of S  has a
representative with q–geodesic boundaries. There is, in fact, a unique such representative that is
disjoint from the interior of cylinders associated to the boundary curves of Q. This can also be
described as the smallest representative of Q with q–geodesic boundaries. We denote this
subsurface by Q as well. Define the size sQ  of Q to be the q–diameter of this representative. The
following theorem states that the geometry of the subsurface Q is essentially the same as that of the
thick hyperbolic subsurface of X  in the homotopy class of Q but scaled down to a size sQ :

Theorem 3.3 ([R3]). For every essential closed curve  in Q,

‘ X ( )   
p

E x t X ( )   
‘q ()

: Q

In particular, the q–length of shortest essential curve in Q is on the order of sQ .

Example 3.4. A  quadratic differential can be described as a singular flat structure of a surface plus a
choice of a vertical direction. For example, the surface obtained from the polygon in Fig. 2 with the
given edge identifications is a once punctured genus 2 surface. Assume that the edges 2; 3; 5 and
6 have a comparable lengths, the edge 1 is significantly shorter and the edge 4 is significantly longer
than the others. Choose an arbitrary vertical direction and let (X ; q )  be the associated quadratic
differential.

3 4

2

2

1 3 1 4

5
6
5
6

F i gu r e  2. Quadratic differential (X ; q )  and short curves of X .

Then the hyperbolic metric on X  has two short simple closed curves; Sq =  f; g. The curve  is
a cylinder curve and has a small extremal length because the flat annulus F  (Fig. 3) has a large
modulus. In fact,  is a large-cylinder curve ( S   =  fg). The curve  is a non-cylinder curve and it
has a small extremal length because the expanding annuli E  and G  (Fig. 3) have large moduli (S
=  fg). Note that the q–geodesic representative of  is the saddle connection 1 (the end points of
arc 1 are identified).



s
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E G

F

F i gu r e  3. The maximal expanding annuli E  and G  and the maximal flat an-
nulus F.

There are two thick subsurfaces. There is a once punctured torus with a boundary curve
whose q–representative is degenerate and is represented in q with a graph of area zero (the union of
arcs 5 and 6). The other is a pair of pants whose boundaries consist of two copies of  and one copy
of . The maximal expanding annuli E  and G  do not necessarily stay inside of the q–representative
of this pair of pants and they may overlap.

The size of a thick subsurface Q is related to the radii of annuli E ,  F  and G  for every
boundary curve . We make a few observations that will be useful later.

Lemma 3.5. Let Q be a thick subsurface of (X ; q ) ,   be a boundary component of Q and E  be the
expanding annulus in the direction of Q. Using the notation of Equation (5) we have

(1) l  2sQ .
(2) e  sQ .
(3) max(e; f ; g)  ‘q (). (4)
(e +  l )  sQ .
(5) If Mod(E)  1 then e  sQ .

Proof. Since  is part of Q, its length is less than twice the diameter of Q which is the first
assertion. To  see part two, note that if e is larger than sQ, then Q is contained in E  which is an
annulus. This is a contradiction. Part (3) follows from Equation (6) and the fact that  is 0–short. Parts
(1) and (2) imply (e +  l )  sQ . Hence, to prove part (4), we need to show (e +  l )  sQ .

Since E  is maximal, its outer boundary self-intersects. Let  be the curve constructed as a
concatenation a sub arc of  and two arcs connecting  to the boundary points of E  associated to the
self intersection of E .  Note that the inner boundary of E  is a geodesic and its outer boundary
has positive curvature, therefore, the interior of E  is convex, and the curve  must be essential.

Then l +  e  ‘q (). If  is contained in Q and is essential in Q, then E xt X ( )   1 (Q is a thick
subsurface). From Theorem 3.3 we get,

‘q ()  
 1     and hence     (e +  l )  sQ : 

Q

If  is not contained in Q, we show that there exists a closed curve 0 in Q whose length is not
much longer than .

Assume that  exists Q by intersecting a boundary curve 0 and returns via a boundary curve 00 (0

and 00 maybe the same curve). By part (3), max(e0; f 0; g0) is larger than l0, max(e00; f00; g00) is larger
than l00 and ‘q ()  is larger than both. There is a sub-arc !  of  connecting 0 to 00, in particular, ‘ q ( ! )
‘q (). If 0 =  00, let 0 be the curve obtained as a concatenation of two copies of !  and a copy of 0 and 00

each. This curve is essential in Q unless Q is a pair of pants, in which case, we take 0 to be the curve
that wraps around 0 twice. If 0 =  00, then let 0 be the curve obtained as a concatenation of !  and a
sub-arc of 0. Again, this curve is essential in Q unless Q is a pair of pants, in which case, we take 0

to be the curve that wraps around 0 twice. The curve 0 resides in Q and ‘q (0)  ‘q (). We have

(e +  l )  ‘q ()   ‘q (0)  sQ :



e
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To  see part (5), we note that, if

Log 
l 

 Mod(E)  1     then     e  (e +  l): Now,

part (5) follows from part (4).

As a corollary we get the following analogue of the collar lemma:

Corol lary 3.6. Let  2  Sq be the boundary of a thick subsurface Q and let  be any curve crossing .
Then

‘q ()   sQ :

Proof. We have ‘q ()   max(e; f ; g) and by part (3) of Lemma 3.5, max(e; f ; g)  l. Hence, ‘q ()
(e +  l). The corollary now follows from part (4) of Lemma 3.5.

3.5. Extremal lengths and flat lengths of saddle connections. As mentioned above, we
can also define a notion of extremal length for saddle connections. Let !  be a saddle connection
connecting two distinct critical points in (X; q ). Let E !  be the annulus obtained by taking the
largest regular neighborhood of !  that is still a topological disk and then cutting a slit open along ! .
Let l =  ‘ q ( ! )  and e be the radius of E !  (the q–distance between !  and the boundary of E ! ) .  Then,
we define (the second inequality follows from Equation (6))

Ext q ( ! )  : =  
Log(e=l) 

 
Mo d(E! )

:

Another interpretation of this notion of extremal length, that would provide roughly the same
result, is to compute the extremal length in a ramified double cover of (X; q ). Denote the end
points of !  by p1 to p2. There exists a unique ramified double cover : X !  !  X  with simple
ramification points at only p1 and p2. Note that !  =   1 !  is a simple closed curve on X ! .

Lemma 3.7. If Ext q ( ! )   0, then

E x t X !  ( ! )   Extq (! ) :

Proof. Let q !  be the lift of q to X ! .  Note that !  has a unique geodesic representative in q !
(Mo d(F !  )  =  0) and E !  and G !  are conformally equivalent to E ! .  Hence, by Equation (5)

E x t X !  ( ! )  
 Mo d(E !  )  +  Mod(G !  )  =  2 Mo d(E! )   

Extq (
!
)

:

Since l and e change at most exponentially fast along a Teichmüller geodesic, similar to Equa-
tion (7), for qt =  gt (q) we have

(8)
Ext q ( ! )

 
     t  

Extq t  ( ! )  
 
Ext q ( ! )

 
+  t:

Definit ion 3.8. For any 0 <    0, let
q () be the set of saddle connections !  of q so that, either

 Ext q ( ! )   , or
 !  lies on a geodesic representative for  with E xt X ( )   .

Later in the text, we will add further restrictions on the value of  depending on  (see Lemma 3.13 and
Lemma 6.1). We note however that, in all the proofs, making  smaller or making  larger does not
effect the constants involved in any of our estimates.

In general, knowing ‘ q ( ! )  is small does not imply that !  has a small extremal length. However,
we have the following lemma which is enough to show that Theorem 1.1 follows from Theorem 1.5.

Lemma 3.9. Assume that (X ; q )  has a saddle connection !  with ‘ q ( ! )   1. Then, either

Ext q ( ! )  
 Log 

‘ q ( ! )
or

E xt X ( )  
 Log 

‘q ( ! )
;  

for
some simple closed curve . In particular,

q () is non-empty.
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Proof. Let l =  ‘ q ( ! )  and e be the radius of E ! .  Since the boundary of E !  self intersects ( E !  is
maximal), there is a simple closed curve , obtained by a concatenation of a sub arc of !  and two

arcs connecting !  to the boundary of E ! ,  with ‘q ()   (e +  l).
Assume first that Sq is empty. Then, ‘q ()   1. Since, e  1, we have

e       (e +  l ) 1
l l ‘ q ( ! ) and

Ext q ( ! )  
 Log 

l 
 Log 

‘q ( !
)
:

That is, the first inequality holds.     Otherwise, we show that, there is a curve 1 2  Sq with ‘q (1 )
(e +  l). This is because, either  2  Sq and we can take 1 =   or  intersects a thick subsurface Q in
which case we let 1 be any boundary component of Q. Using Corollary 3.6 and part one of Lemma
3.5, we get:

(e +  l )  ‘q ()   sQ   ‘q (1 ):

Since the total area of q is 1, there is always a thick subsurface of size comparable to 1. Let
Q1; : : : ; Qk be a sequence of distinct subsurfaces of sizes s1; : : : ; sk respectively, where 1 is a
boundary component of Q1, Qi 1 and Qi share a boundary curve i  and sk  1. Let l i  =  ‘q ( i )  and let
s0 =  l1.

Consider G i  , the expanding annulus with inner boundary i  in the direction of Qi with radius gi .
For i   1, part (4) of Lemma 3.5 implies, (gi +  l i )   si and by part (1) si  1  l i . Hence, from

Equation (5), we know that

Extq ( i )  
 max Log 

l i  
; 1

 
 Log 

gi 

l i  

l i   Log 
si 1 

:

That is, the common boundary curve of two surfaces of very different size has a very small extremal
length. Also, (recall that s0 =  l1  (e +  l)):

(9)
i = 1  

s
si

1

e +  l 
 
 
1 

 
e +  l 

 
1

:

Here, the maximum value of k depends only on the topology of S . Therefore, taking the logarithm
of both sides of Equation (9), we conclude that either

there is some i  where,
Extq ( i )  

 Log 
l

or Log 
e +  l 

 Log 
1

:

In the first case, the lemma holds for  =  i . In second case,

Ext q ( ! )  
 Log 

l 
 Log 

e 
l 

l 
 Log 

‘q ( ! )
:

Remark 3.10. Note that in both Lemma 3.7 and Lemma 3.9 the implied constants only depend on
the topology of S:

3.6. A  (q; )–regular triangulation. We would like to mark a quadratic differential q by a
triangulation where the edges have a bounded length. However, the notion of having a bounded
length should depend on which thick subsurface we are in. That is, we would like the q–length of
an edge to not be longer than the size of the thick subsurfaces it intersects. The complication comes
from the fact that a saddle connection may intersect several thick subsurfaces of various sizes.

Also, as mentioned before, large-cylinder curves will require a special treatment. Hence, we
triangulate only the complement of large-cylinders. Recall that two saddle connections are said to be
disjoint if they have disjoint interiors but they may share one or two end points.

Definit ion 3.11. Let (X ; q )  be a quadratic differential. Given a cylinder curve , let  be an arc
connecting the boundaries of F  that is perpendicular to . By a (q; )–regular triangulation T of q we
mean a collection of disjoint saddle connections satisfying the following conditions:
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(1) For  2  S   , denote the interior of a cylinder F  by F .  Then, T is disjoint from F  and it
triangulates their complement

q n F:   2  Sq

That is, the complement of T is a union of triangles and large-cylinders F ,   2  S   . In
particular, T contains the boundaries of F.

(2) If an edge !  of T intersects a thick subsurface Q of q then ‘ q ( ! )   sQ .
(3) If  is a cylinder curve in Sq 

 then  intersects T a uniformly bounded number of times.

We shall see that condition 3 means that the triangulation T does not twist around short simple
closed curves.

Remark 3.12. It is important to choose the implied constants in conditions 2 and 3 in Definition 3.11
large enough so that every quadratic differential q has a (q; )–regular triangulation. In fact, we
choose the constants so that the key Lemma 3.13 below holds.

Lemma 3.13. For every  there is 1 () so that for  <  1 () the following holds. Let
 be a subset of
q () consisting of pairwise disjoint saddle connections. Then
 can be extended to a (q; )–regular triangulation T .

Proof. We would like to triangulate each thick piece Q separately and let T be the union of these
triangulations. However, saddle connections in
 may intersect a boundary curve  of Q. To  remedy this, we perturb  slightly to a curve  that is a
union of saddle connections, lies in a small neighborhood of  and is disjoint from
 (see Claim 1). These curves divide the surface into subsurfaces with nearly geodesic boundaries.
We denote the surface associated to Q with Q. We then extend
 to a triangulation in each Q so that the edge lengths are not much longer than the diameter of Q
which is comparable to sQ  (see Claim 3) and let T be the union of these triangulations. However,
one needs to be careful that Q does not intersect any subsurface of size much smaller that sQ ,
otherwise the resulting triangulation would not be (q; )–regular.

Claim 1: For every  2  Sq , there is a representative  of  that is a union of saddle connections, lies in a
(‘q ()=2)–neighborhood of  and is disjoint from
. For ;  2  Sq ,  and  do not intersect. Furthermore, if  is a boundary of Q then  intersects only
surfaces that are larger than Q, namely, if  intersects a thick subsurface Q0 we have:

sQ0   sQ :

Proof of Claim 1: Let  2  Sq be a common boundary of thick subsurfaces Q and R .  Recall that M =
2 2 . If Mod(F)  M , we can choose 1 small enough to ensure that  is disjoint from
. This is because, if !  is part of a short curve 0, then !  is disjoint from  because short curves  and 0 do
not intersect. Otherwise, !  has to satisfy the first assumption in Definition 3.8. But, F  does not
contain any singular points and any arc !  2
 intersecting  has to cross F.  Therefore, ‘ q ( ! )   f  ( f  is the distance between the boundaries of F )
and, for the radius e !  of E ! ,  we
have e !   ‘q ()  (otherwise  would be contained in E ! ) .  But Mod(F) =  ‘  ( )   M and thus (the
second inequality follows from Equation (6))

1 
 
Ext q ( ! )  

 Log 
‘
q

(
!

)
 
 Log 

‘
 f

)  
 Log 

M 
=  2:

which is not possible if 1 is chosen to be small enough. To  summarize, if Mod(F)  M , then  is
already disjoint from
, we can take  =  .

If Mod(F)  M , then either E  or G  has a large modulus. The annulus with the larger modulus is
in the direction of the thick surface with the larger size (Lemma 3.5). Assume E ,  the annulus in the
direction of Q, has a large modulus. Let e be the distance between the boundaries of E .  By part (5)
of Lemma 3.5 and the previous assumption we have

e  sQ   sR :



l ! 1
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Denote the (‘q ()=2)–neighborhood of  in E  with E .  The annulus E  may not be contained entirely
in Q and may intersect some thick subsurfaces with very small size. But E  does not intersect any
small subsurfaces. To  see this, assume Q0 intersects E .  Since Q0 is disjoint from , it has to enter E
intersecting the outer boundary of E .  But e is much larger than ‘q (), and hence:

sQ0   ‘q(@Q0) >  e      ‘q ()=2  sQ :

Thus, the last condition of the claim is satisfied as long as  stays in E .
Note that no arc in

 can cross E  (intersect both boundaries). This is because, if !  is an arc in a curve  2  Sq , then
it does not intersect  since  and  have intersection number zero. Otherwise, Ext q ( ! )  is small, which
implies that its length is much less than the injectivity radius of any point along ! .  But the
injectivity radius of any point in E  is less that 2‘q (). Hence, (by choosing  small enough) ‘ q ( ! )  is
less than the distance between the boundaries of E  with is equal to ‘q ()=2.

Consider the union of  and the set
 of arcs in
 that intersect . The convex hull H  of this set in E  is an annulus (perhaps degenerate). We
observe that the interior of H  does not contain any singular points. Otherwise, there would be a
geodesic quadrilateral, where two edges are subsegments of arcs in
 and one edge is a subsegment of , that contains a singular point in its interior. But this violates
the Gauss-Bonnet theorem. Let  be the boundary component of H  that is not . Then  is in the
homotopy class of  and lies inside E .  Also, because the interior H  does not contain any singular
points,  is disjoint from every saddle connection in
. Furthermore, by the triangle inequality, any saddle connection !  that appears in  has a q–length
less than or equal to 2‘q ().

It remains to show that for ;  2  Sq ,  and  are disjoint. Assume ‘q ()   ‘q (). Then,  is
disjoint from E ,  otherwise,  would be contained in E  which is an annulus an does not contain
any curve non-homotopic to . This means  is disjoint from  which is contained in E .  Also, since H
contains no singular points, if a saddle connection !  2
 intersects  then it also intersects . But then !  is in
 and hence it is disjoint from . Therefore,  is disjoint from the convex hull H  and thus also from .
This finishes the proof of claim 1.

Next, let
 be the set of edges that appear in curves  for every  2  S . We have shown that saddle connections in
 are disjoint from those in
. After removing the interiors of large cylinders from the quadratic differential (X ; q )  and cutting
along curves ,  2  Sq , we obtains a collection of subsurfaces with nearly geodesic boundaries. Denote
the representative of a thick subsurface Q that is disjoint from curves  by Q.

For each  2  Sq 
 , if F  is disjoint from every saddle connection in

 [
, we choose a saddle connection !  that crosses F,  is disjoint from  (does not twists around ). In
particular, !  is disjoint from every saddle connection
 [
 and has a length that is comparable with ‘q (). Let
n  denote the set of such saddle connections ! .

Claim 2: Saddle connections in
T0 =
 [
 [
n

satisfying conditions (2-3) of Definition 3.11.

Proof of Claim 2: All  the conditions follow immediately from the construction, but the argument is
long since we have to look at all the cases. We have already shown that these edges satisfy
condition (1) and arcs in  satisfy condition (2). To  see that an arc !  2
 satisfies condition (2)
note that if it did not, !  would intersect a thick subsurface Q with ‘ q ( ! )   sQ. The radius of E !  is

much larger than length of !  (log e !        1 ), which implies E !  contains Q. This is a contradiction.
We show that arcs in T0 satisfy condition (3). Namely, if !  2



 intersects a cylinder F,  we need to show that !  intersects  a bounded number of times. In fact, if
they intersect more than once, then ‘ q ( ! )   ‘q (). But then E !  would contain the curve  which is a

contradiction ( E !  is a topological disk). Also, the curve  is a convex hull of the union of the curve
which is disjoint
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from F  and a bounded number of arcs in
, each of which intersect  at most once. Hence  intersects  at most a bounded number of times
and thus arcs in  satisfy condition (3).

Since, for every  2  Sq 
 , there is a saddle connection in T0 crossing F,  any triangulation

containing T0 is guaranteed to satisfy the condition (3).

In the next claim, we describe how to add the remaining edges to T0 while still satisfying
conditions (1) and (2).

Claim 3: A  partial triangulation of Q where the length of edges are less than a fixed multiple of sQ

can be extended to a triangulation using saddle connections of length less than a larger fixed
multiple of sQ .

Proof of claim 3: We prove the claim by induction. Start by cutting Q along the given edges. Each
cutting increases the diameter by at most twice the length of edge being cut. Hence, in the end, we
have several components each with diameter comparable to sQ . If all components are triangles, we
are done. Otherwise, some component contains a saddle connection that is not part of its
boundaries or the given triangulation, the shortest such saddle connection has a length less than
the diameter of the component it is in, which is comparable to sQ  (again, see [Vo, Proposition 3.1]).
The claim follows from the fact that this process ends after a uniformly bounded number of times.
The diameter grows at most multiplicatively each time but still it is uniformly bounded multiple of
sQ  in the end. We choose the constant in the second condition of a (q; )–regular triangulation large
enough so that the outcome of this algorithm is in fact a (q; )–regular triangulation.

The triangulation T is now defined to be the union of all the saddle connections in T0 and those
coming from claim 3. The newly added edges in Q have a q–length less than a fixed multiple of sQ

and, for any thick subsurface R  that Q intersects, we have sQ   sR . Hence, the condition (2) in
Definition 3.11 is satisfied. Therefore, the resulting triangulation T is (q; )–regular.

3.7. Twist ing and extremal lengths. In this section we define several notions of twisting and
discuss how they relate to each other. This is essentially the definition introduced by Minsky
extended to a slightly more general setting. We denote the relative twisting of two objects or
structures around a curve  by twist ( ; ). This is often only coarsely defined, that is, the value
of twist(; )  is determined up to a uniformly bounded additive error.

In the simplest case, let A  be an annulus with core curve  and let  and  be homotopy classes of
arcs connecting the boundaries of A  (here, homotopy is relative to the end points of an arc).
The relative twisting of  and  around , twist(; ), is defined to be the geometric intersection number
between  and .

Now consider a more general case where  is a curve on the surface S  and  and  are two
transverse curves to . Let S  be the annular cover of S  associated to  and denote the core curve of
S  again by . Let  and ~ be the lifts of  and  to S  (respectively) that connect the boundaries of S.
Note that freely homotopic curves lift to arcs that are homotopic relative their endpoints. The arc
is not uniquely defined, however any pair of lifts are disjoint. We now define

twist(; ) =  twist(; ~);

using the previous case. This is well defined up to an additive error of 2 (see [Mi]).
We can generalize this further and define twisting between any two structures on S  as long

as the structures in question provide a (nearly) canonical choice of a homotopy class of an arc
connecting the boundaries of S. Then we say the given structure defines a notion of zero
twisting around . The relative twisting between two structures is the relative twisting between
the associated arcs in S. Here are a few examples:

 Let X  be a Riemann surface. Then  can be taken to be the geodesic in X  that is
perpendicular to  in the Poincare metric of X .  Alternatively, we can pick a shortest curve
transverse to  and let  be the lift of  that connects the boundaries of X .  In any case, the
choice of  is not unique, but any two such transverse arcs have bounded
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geometric intersection number (see [Mi]) and the associated relative twisting twist( ; X ) is
well defined up to an additive error.

 Let q be a quadratic differential. As before,  can be taken to be the geodesic in q~ that is
perpendicular to  in the Euclidean metric coming from q or a lift of a q–shortest curve
transverse to  (see [CSR]). We denote the associated relative twisting with twist(; q).

Let T be a (q; )–regular triangulation of (X ; q )  and  2  S   . Then we can choose a curve
 transverse to  that is carried by T and has a bounded combinatorial length in T and let

the lift of  to the annular cover of  define zero twisting. Since curves with bounded
combinatorial length intersect a bounded number of times, the associated relative twisting
twist(; T ), is again well defined up to an additive error.

The expression “fix a notion of zero twisting around ” for a curve  in S  means “choose a
homotopy class of arcs connecting the boundaries of S.”

3.8. Intersection and twisting estimates. In this section we establish some statements relating
Extremal length, twisting and intersection number. We start with a theorem of Minsky giving an
estimate for the extremal length of a curve. For a X  2  T (S ), let S X  be a set of 0–short simple
closed curves in X .  There is a uniform constant B  depending on 0 and the topology of S  so that, for
every X ,  any curve  not in S X  intersects a curve  with E xt X ( )   B .  That is, the curves with
extremal length at most B  fill every complementary component of S X .  Let B X  be the set of curves
with extremal length at most B .

Theorem 3.14. (Minsky, [Mi, Theorem 5.1]) Given X  2  T (S )  and a simple closed curve  2  S  , 
(10) E xt X ( )   max i(; )2      

E x t X ( )
 
+  twist2 ( ; X ) E xt X ( )  +  max i(; )2: The

multiplicative constant depends only on the topology of S .

It follows from the definition of twisting and elementary hyperbolic geometry that if twist(; X ) is
large (that is, if  twists around  a lot), then E xt X ( )   ExtX ( ) .

Corol lary 3.15. For every curve  and any X  2  T (S ) ,  there is a curve  so that,
p

E x t X ( )
 
E x t X ( )   i(; ) and twist(X; ) =  O(1):

Note that the reverse of first inequality always holds (Equation (2)).

Proof. If  2  S X ,  then we choose  to be a curve that intersects  once or twice, is disjoint from
other curves in S X ,  where twist(; X ) is bounded and where i(; ) =  O(1) for  2  B X .  Applying

Equation (10) to  we have E xt X ( )   E x t
1  

( )  which implies that the corollary holds for  and . If  is
not short in X ,  Theorem 3.14 applies to . Since the number of elements in S X  and B X

is uniformly bounded, E x t X ( )  is comparable to one the following terms:

i(; )2

E xt X ( )
i(; )2 twist(; X ) ExtX ()      or i(; )2:

In the fist two cases  2  S X  and in the third case  2  B X .  We argue in 3 cases.
If E x t X ( )   i ( ; )  

) , for  2  S X ,  then the corollary holds for  =   (the second conclusion follows from
the fact that the twisting number of a short curve around a long curve is uniformly bounded).

In the second case, we take  to be a curve transverse to  with (see above) E x t X ( )   E x t
1  

( )  and
twist(; X ) =  O(1). In particular

(11) twist(; X )  twist(; ):

The curve  also intersects  and hence E xt X ( )   E x t
1  

( )   ExtX ( ) .  Thus,  twist around  at most a
uniformly bounded number of times. Also, every strand of  intersecting  intersects
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 at least twist(; ) times (up to an additive error). In this case twist(; ) is large and the additive
error can be replaced by a multiplicative error to obtain

(12)

Therefore,

(Assumption on )

(Equation (11))

(Equation (12))

i(; ) twist(; )  i(; ):

E x t X ( )   i(; )2 twist(; X ) ExtX ()
      i(; )  twist(; ) E x t X ( )
         i(; )2

E xt X ( )

which implies the corollary.
The last case is when  2  B X  and E xt X ( )   i(; )2. In this case, we take  =  . Since  has bounded

length in X ,

twist(; X ) =  O(1) and E xt X ( )   1:

Again, the corollary follows.

We also recall the following lemma ([R2, Theorem 4.3]):

Lemma 3.16 (Rafi). For a quadratic differential (X ; q )  and a Riemann surface Y 2  T (S )  with
dT (X ; Y ) =  O(1), we have

twist(Y; q)  
ExtX ( )

:

3.9. Geometry of quadratic differentials and (q; )–regular triangulations. As we men-
tioned at the beginning of the section, a (q; )–regular triangulation is supposed to capture the
geometry of q. We make this explicit in the following two lemmas. In Lemma 3.17, we relate the
length of a saddle connection to its intersection number with a (q; )–regular triangulation. Lemma
3.18 shows that the notion of zero twisting coming from q or T is the same. These are used to
prove Lemma 3.19 but more essentially they are needed in §4.

Lemma 3.17. Let T be a (q; )–regular triangulation and ! T      be an edge of T . Let s be the
minimum of sQ  where Q is a thick subsurface of q that intersects ! T  . Let !  be any other saddle
connection in q so that, for every curve  2  Sq 

 , twist(!; q) =  O(1). Then

i ( ! T  ; ! )   
‘
q

(
!

)
 
+  1:

Proof. Condition (2) in the definition of a (q; )–regular triangulation implies that ‘ q ( ! T  )   s. It is
sufficient to prove the lemma for a subsegment of ! T  with a q–length less than s=7, because ! T
can be covered but uniformly bounded number of such segments. Hence, without loss of generality,
we assume ‘ q ( ! T  )   s=7.

Consider the s=7–neighborhood N  of ! T  . Then !  \  N  has at most O     ‘ q ( ! ) components.
Hence, it is sufficient to show, for every component ! of !  \  N , that

i ( ! T  ; !)  =  O(1):

First, we claim that any non-trivial curve in N  is homotopic to some curve in Sq . This is
because, any nontrivial loop  in N  has a q–length of at most 3s=7. By the definition of s, it can
not be an essential curve in any subsurface Q that ! T  intersects. Assume it intersects curves 1; 2 2
Sq that are boundary curves of Q1 (1 may equal 2). Then, ‘q (1 ) and ‘q (1 ) are much smaller than ‘q ()
which is at most 3s=7. But, the sum of ‘q (1 ), ‘q (2 ) and twice the distance between 1 and 2 (the sum
is less than s) is an upper-bound for the size of Q which is assumed to be larger than s. The
contradiction proves the claim.
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!

F 1

Q3

N

! T

F 2

Q1 Q2

F i gu r e  4. The arc ! T      intersects curves 1; 2 2  S   and thick subsurfaces Q1; Q2
and Q3. Each component ! of !  \  N  intersects ! T  only a bounded num-ber of times
outside of cylinders F      and F  . The number of intersection points inside of F i  is
bounded because of the assumption on the twisting.

We have shown that a closed curve in N  cannon intersect curves in Sq . However, the saddle
connection ! T  may still intersects some curve  2  S   (in fact more than one, see Fig. 4). As before,
let  be an arc in F  that connects the boundaries of F  and is perpendicular to them.

First we observe that the number of intersection points between ! T      and ! inside of F  is
uniformly bounded. This is because both ! T  and ! intersect  a uniformly bounded number of times.
(This follows from the definition (q; )–regular triangulation and the twisting assumption on ! . )  If
two arcs inside of a cylinder have a large intersection number, at least one of them has to twist
around F  a large number of times.

It remains to show that the number of intersection points outside of all cylinders F  is bounded. To
see this we observe that, for any thick subsurface Q, it is not possible to have a subsegment of ! T

and a subsegment of ! that are contained in Q and have the same endpoint. Otherwise, the
concatenation would create a two segment curve  that is non-trivial in N . Hence, it has to be
homotopic to some curve  2  Sq . Which means,  and  create a cylinder with total negative curvature
which contradicts the Gauss-Bonnet theorem. (See [CSR,  Lemma 5.6] for a more detailed discussion.)

Since the number of thick components Q is uniformly bounded and ! T  and ! can intersect at
most once in each Q we conclude that the total intersection number outside of cylinders F  is
uniformly bounded as well. This finishes the proof.

Lemma 3.18. For a quadratic differential (X ; q ) ,   2  S   and a (q; )–regular triangulation T we
have

twist(T; q) =  O(1):

Proof. Let Q1 and Q2 be the thick subsurfaces of (X ; q )  glued along the cylinder F  (which by
assumption, has a modulus at most M ), and let  be an essential curve in Q1 [  F  [  Q2 that is
transverse to  and has the shortest combinatorial T–length. A  representative for the curve  can be
constructed using edges of T that intersect either Q1 or Q2. Consider such a representative
traversing the minimum possible number of edges. Let  be a curve transverse to  with the
shortest q–length. From the definition of relative twisting,

twist(T; q)  i(; ): Hence, it

is sufficient to show that i(; ) is uniformly bounded.
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The curve  intersects  once if Q1 =  Q2 and twice otherwise. Its restriction to Qi has a length
bounded by O(sQ )  and its restriction to F  has a length bounded by ‘q ()  (Mod(F) is bounded and
there is no twisting around ) which is less than both sQ       and sQ  . An argument similar to that of
Lemma 3.17 implies that  intersects any edge of T at most a bounded number of times.

On the other hand, each edge of T appears at most twice along the representative of , otherwise a
surgery argument would reduce the length of . Also, the total number of edges of T is bounded by
the topology of S . Hence, i(; ) is uniformly bounded.

3.10. T h e  number of (q; )–regular triangulation. We now count the number of (q; )–regular
triangulations near a point in Teichmüller space. We can think of a (q; )–regular triangulations on
(X ; q )  as topological objects on S , after being pulled back by the marking map f X  : S  !  X ,  up
to homotopy. That is, we say a (q; )–regular triangulation T on (X ; q )  is equivalent to a q0–
regular triangulation T0 on (X 0; q0) if the pre images f  1(T ) and f  1(T 0) are homotopic on S . The
homotopy does not have to fix the vertices of T . For a multi-curve S0, we say T is equivalent to T0 up
twisting around S0 if, T is equivalent to (T 0) where  is a multi-twist with support on curves in S0.

Lemma 3.19. Let U be a ball of radius one in T (S )  centered at X 0 .  Then the number of equiv-
alence classes, up to twisting around S X  , of (q; )–regular triangulations T on a quadratic differ-
ential (X ; q )  where X  2  U is uniformly bounded.

Proof. We start with a topological counting statement. Let S0 =  S c  [  S n  be a system of curves
on S . For every subsurface Q in S  n S0, let Q  be a marking for the subsurface Q in the sense of
[MM]. That is, Q  is a pants decomposition f1; : : : ; k g for Q together with a transverse curve  for 0
i   k. Each  is contained in Q, intersects i  once or twice and is disjoint from j ,  j  =  i. Also, for  2
S n ,  let  be a curve transverse to  that is disjoint from all other curves in S0 and i(; Q ) =  O(1).
Define

M = Q  [  S0 [  f g 2 S n  : Q

Claim: Given a set M as above, there is a uniformly bounded number of possibilities for the
homotopy class of a triangulation T , triangulating S  n S c , where the curves in M and T have
representatives with the following properties:

(1) curves in M have no self intersections and intersect each other minimally.
(2) for any  2  S c , i(T ; ) =  0.
(3) for any  2  Q , i(T ; ) =  O(1).
(4) for  2  S n ,  twist(T; ) =  O(1), and i(T ; ) =  O(1).

To  see the claim, note that the curves in M divide S  into a uniformly bounded number of com-
plementary regions, each one is either a polygon or an annulus parallel to a curve  2  S c . Choose a
representative of the homotopy class of T that intersects curves in M minimally. There are a
uniformly bounded number of possibilities for the location of vertices of T . Once the vertices of T are
fixed, there are a uniformly bounded number of possibilities for any given arc, with end points on
these vertices, that can appear as an edge of T . This is because there are a uniformly bounded
number of possibilities for the intersection pattern of the given arc with the complementary regions.
Also, each region is either a polygon where there is a unique arc (up to homotopy) connecting any
two edges (or a vertex to an edge) or an annulus neighborhood of a curve  2  S c  where there are two
possibilities (edges of T are simple and disjoint from curves in S c ).

It remains to show, that for every (q; )–regular triangulation Tq on (X ; q )  where X  2  U, there is
a set of simple closed curves Mq so that Tq and Mq satisfy the above properties and then to
bound the number of possibilities for the set Mq.

Let (X ; q )  be a quadratic differential so that X  2  U. We construct Mq as follows: The curves
Sq =  S   [  S   have a uniformly bounded length in X 0  hence there are a uniformly bounded
number of possibilities for these sets. For each thick subsurface Q of q, choose a q–short marking Q  in
Q. Curves in Q  have a uniformly bounded length on X  and hence a uniformly bounded length in X0 .
Hence there are only a uniformly bounded number of choices for these as well. Now for each ,
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let q be the shortest q transverse curve to . Lemma 3.16 implies that twist(X0; q )   E x t X
 

( ) . Hence
the number of possible choices for q is of the order of E x t

 1 
() . Define

Mq =  
[

Q  [  Sq [  fq  g 2S 
 : Q

Bu construction, the total number of possible sets Mq chosen as above is of the order of G(X0 ) .
However, up to twisting around S X       there are only finitely many choices. For a (q; )–regular
triangulation Tq in (X ; q ), we need to check that the conditions (1)-(4) hold for Tq and Mq. Perturb
the q–geodesic representative of curves in Mq so that they have no self-intersections, intersect each
other minimally and the intersection number with T does not increase. Condition (2) follows from
the construction of (q; )–regular triangulations. Condition (3) follows from Lemma 3.17. The first
part of condition (4) is a consequence of Lemma 3.18 and the second part again follows from Lemma
3.17.

4. Intersect ion bounds between r e g u l a r  t r i an gu l at i o ns

As before, let Q()  be the stratum of quadratic differentials of type . In this section, we
establish some intersection bounds for (q; )–regular triangulations associated to a pair of quadratic
differentials that appear at the end points of a geodesic segment in Q().

Recall, from Remark 3.2, that there is an implicit assumption that the constant  is large. That
is, there is a uniform constant 0 so that all statements in this section hold as long as   0. In
particular, the implied constant in our estimates do not get worst as  gets larger.

4.1. Notation. First we need to establish some notations.

1. For a fixed constant r0, define B (Q() ; X ; )  to be the set of points Z  2  T (S )  so that there is a
Teichmüller geodesic

G Z  : [a; b] !  Q1T (); GZ (t) =  (Xt ; qt );

such that

dT ( X a ; X )   r0; dT (X b ; Z )   r0; b      a  :

and

(Xt ; q t )  2  Q():
One could think of B (Q( ) ; X ; )  as a ball of radius  centered at X ,  except that one is allowed only to
move in the direction of Q(). Since r0 is fixed, we refer to any constant that depends on r0 as a
uniform constant. The value of r0 will be determined in §6.2 depending on the choice of the net
N .

2. We use the notation of Equation (5) for qa and denote the flat and expanding annuli associated to
a curve  by E a ,  F a  and G a  and distances between their boundaries by ea, f a  and ga. Let a  be an
arc of length f a  connecting the boundaries of F.  Also, let l a  =  ‘q  ()  and let da =  max(ea ; f a ; ga )
be the maximum distance between the boundaries of these annuli. As a consequence of Equations (5)
and (6) we have

(13)
1                da

E xt X ( )         l a
and

Ext
1 

() 
 

l a  :

3. Let Ta be a (qa; )–regular triangulation and Tb be a (qb; )–regular triangulation. The geodesic flow
induces a one-to-one correspondence between saddle connections of qa and qb. Hence, we can
consider Tb as a union of saddle connections in qa. Then Ta and Tb have identical vertex sets and
their edges are either identical or intersect transversally. The slope of a saddle connection in qa (or
in qb) is a well defined number in the interval [0; 1].
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Definit ion 4.1. Let ! a  be a saddle connection in qa and let ! b  be a saddle connection in qb.
We say ! b  intersects ! a  positively, if when considering them both in qa (or qb), the slope of ! b  is
larger than the slope of ! a .  We say ! b  intersects ! a  essentially positively if either ! b  intersects ! a
positively or i ( ! a ; ! b )  =  O(1). We use similar terminology for intersection between a saddle
connection and a cylinder curve and two cylinder curves.

4.2. Intersection and twisting bounds between Ta and Tb. For the rest of this subsection,
we assume that qa and qb, Ta and Tb are as described in the beginning of the section.

Lemma 4.2. Let  2  S q a
 , ! b  2  Tb and b 2  S Z ,  then

twist(qa ; !b ) =  O(1) and twist(qa; b) =  O(1):

Similarly, let  2  Sqb
 , ! a  2  Ta and a  2  S X ,  then

twist(qb ; !a ) =  O(1) and twist(qb; a) =  O(1):

Proof. Let  be the arc connecting the boundaries of F a  and is perpendicular to them. Then, by
definition of Sq 

 ,
‘q a  ()  

=  Mod(F a )  e 2 : q a

Therefore
‘q b  ()   

‘q b

()
That is,  twists around  in qb a bounded number of times. But the same is true for ! b .  This gives a
bound on i(!b ; )  and thus on twist(qa; !b ). Also, the curve b is short in Z  and hence in qb. A  short
curve can not twist around any other curve. Hence i(b ; ) is uniformly bounded. Which means
twist(qa; b) is uniformly bounded. The proofs of the other two assertions are similar.

Remark 4.3. The main consequence of this lemma is that the twisting condition of Lemma 3.17 is
satisfied and can be applied freely.

Lemma 4.4. Let ! a  and ! b  be edges of Ta and Tb respectively. Then ! b  intersects ! a  essentially
positively and

i ( ! a ; ! b )   e :

Proof. Let Qa be the thick subsurface of qa with the smallest size that intersects ! a  and let sa be the
size of the subsurface Qa. Recall that, by the definition of a (qa; )–regular triangulation, we have

‘q a  ( ! a )   sa:
We denote the horizontal and the vertical lengths of ! a  by x a  and ya. Let Qb, sb, xb and yb be
similarly defined. The length of ! a  in Qb is

(xa e )2 +  (ya e  )2  xa e +  yae  :

If i ( ! a ; ! b )  =  O(1) we are done. Otherwise, Considering ! a  and ! b  in Qb, in view of Remark 4.3,
Lemma 3.17 implies that

i ( ! a ; ! b )   
‘q b  ( ! a )  

+  O(1): b

However, since i ( ! a ; ! b )  is large, ‘ q b  ( ! a )  is large and we can incorporate the additive error into the
multiplicative error. That is,

(14) i ( ! a ; ! b )   
‘q b  ( ! a )  

 
xa e +  yae  

: b b

Similarly, considering ! a  and ! b  in Qa we get

(15) i ( ! a ; ! b )   
‘q a  ( ! b )  

 
xb e  +  ybe 

a a
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Observing that xa ; ya  sa and xb; yb  sb, we can multiply the two inequalities and take a
square root to get i ( ! a ; ! b )   e .

Now assume that ! b  does not intersect ! a  positively. This means that the slope of ! a  in qb is
larger than the slope of ! b .  That is

yae            yb

xa e             xb
= ) xa yb e2  xbya:

From the product of inequalities in Equation (14) and Equation (15), we have

i ( ! a ; ! b )2   
xa x b  +  yayb +  xa yb e2 +  xbya e 2 

a  b

      xa yb e2 
 
xb ya =  O(1):  

a

b a  b

For a simple closed curve  and a triangulation T , we say T intersects  essentially positively if
any saddle connection in T intersects any saddle connection in the geodesic representative of
essentially positively.

Lemma 4.5. If  2  S X  and  2  S Z  then  intersects Tb essentially positively and

twist(X; Z ) i(; Tb )  p
E x t X ( )

:

Similarly, if  2  S Z  and  2  S X  then  intersects Ta essentially positively and

twist(X; Z ) i(; Ta )  p
E x t Z ( )

:

Proof. Let  be a simple closed curve in S X  n SZ .  Applying Lemma 3.16 to the pair X  and qa and
to the pair Z  and qb, we get

(16) twist(X; Z )  twist(qa; qb) +  
ExtX ( )

:

(The term E x t
1  

( )  is omitted from the right hand side because it is bounded and can be absorbed in
the multiplicative error.) Hence, to prove the lemma, it is sufficient to show that the expression
p

E x t X ( )  
is an upper-bounds for both

i(; Tb)
E xt X ( )

and twist(qa; qb) i(; Tb):

Let ! b  be an edge of Tb and let Qb be the thick subsurface of qb with the smallest size intersecting ! b .
Let sb be the size of Qb (thus ‘q  ( ! b )   sb, by the definition of a (qb; )–regular triangulation). Applying
Lemma 3.17 to ! b  and  in qb, we get

(17) i(; !b )       O(1)  
‘q b  ()  

 e l a  
: b b

Also, each subsegment of ! b  with end points in  has a length larger than da. Hence,

i(; !b )       1  
‘q a  ( ! b )  

 e sb :

Multiplying these two equations, taking the square root we and summing over all arcs in Tb we get
a

i(; Tb)      O(1)  e
da

 :

In view of Equation (13), we obtain

i(; Tb)      O(1)  e ExtX ( ) :

Dividing both sides by E xt X ( )  we obtain

(18)
i(; Tb)         e +  O(1) e

E xt X ( ) E xt X ( )             E x t X ( )



sb bs l

l l
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This is the first estimate we required.
We now find an upper-bound for twist(qa; qb) i(; Tb) by finding separate upper bounds for

twist(qa; qb) and i(; Tb). The argument involved in this new upper bound for i(; Tb) is somewhat
similar to above, but the two bounds do not imply each other. We need to consider the image of F a

in qb under the Teichmüller geodesic flow. Denote this cylinder by F b , the distance between its
boundaries by f b  and let b be an arc of length f b  connecting the boundaries of F b . Let lb =  ‘q b  ().
Note that the area of F a  and F b  are equal, that is

l a  f a  =  lb f b :

Consider again the arc ! b  in Tb of qb–length of order sb. Then the qb–length of every component
of ! b  \  F b  is larger than f b . Therefore

b
i(; !b )   

fb  
=  

l a
 
f a

 :

As before, applying Lemma 3.17 to ! b  and  in qb we have
b b

i(; !b )          +  O(1)        :
b b

The reason we can ignore the additive errors here is that since  is not short in Z ,  it has to either be an
essential curve in Qb or intersect some boundary curve of Qb. In either case, lb  sb, in the first case
by definition of the size and in the second case by Corollary 3.6. Hence, the additive error can be
absorbed into the fraction l b  

. Multiplying the last two inequalities, taking the square root and
summing over all arcs in Tb, we obtain

b

(19) i(; Tb)  p
l a  f a  :

We now argue that a component of ! b \ F  can intersect  at most a uniformly bounded number of
times: since  is not short in Z ,  ‘q  ()   sb and ‘q  ( ! b )   sb, which means the intersection number
between ! b  and  is at most ‘ q b  ( ! b )  =  O(1). Therefore, the relative twisting of qa and
qb around  is comparable to the intersection number between a  and b which is at most the qa–
length of  divided by the qa–length of . That is

twist(qa; qb)      O(1)  i(a ; b )   
e f b  

:

Taking a product and using the second part of Equation (13) we get:

(20) twist(qa; qb) i(; Tb)      O(i(; Tb))  e 

r

l b f b
p  

1
f a

 e
la   p

E x t
 

()
:

By Equation (18), we have i(; Tb) is much smaller than p
E x t X ( )

.  Hence,

(21) twist(qa; qb) i(; Tb)  p
E x t X ( )

:

The estimate in the Lemma follows from Equations (16), (18) and (21).
It remains to show that ! b  and  intersect essentially positively. Let ! a  be a saddle connection

of  that intersects ! b  many times. Then, by Lemma 3.17, ‘q b  ( ! a )   sb. However, ‘q b  ( ! b )   sb and
hence ‘q b  ( ! a )   lqb ( !b ) .  If the slope of !  was smaller than ! b  (say in qb) then we would also have ‘q

( ! a )   ‘q  (!b ) .  Hence, ! a  intersects ! b  at most twice (its length is less than da). This proves
that ! b  intersects !  essentially positively. But this is true for every saddle connection of . Thus
! b  intersects  essentially positively. The case when  2  S Z  can be treated similarly.

Lemma 4.6. Let  2  S X  and 0 2  S Z .  Then
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(1) If 0 =  , then

i(; 0) twist0 (X ; Z ) twist(X ; Z )   p
E x t X ( ) E x t Z ( 0 )

;

(2) If  =  0, then
 
twist(X; Z )

p
E x t X ( ) E x t Z ( 0 )

:

Proof. It is enough to prove that

(22) twist(X; Z )     E xt X ( ) E x t Z ( )   e :

If  =  0; this is equivalent to Equation (2). Also, if  =  0 and  2  S Z ,  then the inequality (1) trivially
holds (the left hand side is 0). Otherwise, from Theorem 3.14 (estimating Ext Z ( ) )  we have

(23) i(; 0)     ExtZ (0 ) twist0  ( X ; Z )  ExtZ () :

Multiplying the above equation to Equation (22) we obtain part (1) of the lemma.
By Corollary 3.15, (replace X  with Z ,   with  and  with 0) there always exits a simple

closed curve 0 so that twist(0; Z ) =  O(1) and

(24) ExtZ ( 0 ) ExtZ ( )   i(; 0): On the

other hand, from Theorem 2.1 we have

(25) ExtX ( 0 )   e ExtZ (0 );

and from Theorem 3.14 (this time estimating the length of  is X )  we have

(26) i(; 0 ) twist(X ; 0 )
p

ExtX ()   
p

E x t X ( 0 ) :

Since twist(0; Z ) =  O(1), we can replace twist(X; 0 ) with twist(X; Z ) in the above inequality. Now,
Equation (22) is obtained by successive substitution using Equations (23), (24), (25) and (26).

4.3. Relations between intersections numbers. So far, we have provided upper-bounds for
the intersection numbers between the edges of Ta and the edges of Tb. But these intersection
numbers are not independent. The fact that the edges in Ta intersect edges in Tb essentially
positively allows us to find relations between these intersection numbers. In this section we will
describe these relations. There are two kinds of relations.

Lemma 4.7. For every triangle in Ta with edges ! 1 ,  ! 2  and ! 3  , there are sings &1;&2;&3 2
f  1; +1g so that, for every edge ! b  in Tb (respectively, for any b 2  Sqb

 ),  we have the relation:

(27)  
X  

&i i ( ! i ; ! b )  =  O(1) @respectively,
X  

&i i ( ! i ; b )  =  O(1)A :
i=1;2;3                                                                                                              i=1;2;3

The additive error depends on the constant involved in the definition of essential positively.

Proof. There is a leaf of the vertical foliation that passes through a vertex of the given triangle
before entering it. Assume this leaf intersects the interior of ! 3  and makes an acute angle with ! 1
inside of the triangle. We claim that, since ! b  intersects ! 1  essentially positively, the number of
sub-arcs of ! b  going from ! 1  to ! 2  is uniformly bounded. This is because either the slope of ! b
is larger than the slope of ! 1  and every time ! b  intersects ! 1  it has to intersect ! 3  next, or it
intersect ! 1  a bounded number of times. Hence, we have

i ( ! 1 ; ! b )  +  i ( !2 ; ! b )  =  i ( ! 3 ; ! b )  +  O(1):

Note that the signs &1 =  1, &2 =  1 and &3 =   1 depend only on the triangle and are independent
of ! b .  The proof for b is similar.
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For each  2  S q a
 , consider a saddle connection  connecting the boundaries of F.  Let

Ua =  Ta [ : 2 S

We can choose the arcs  so that twist(qa; Ua) =  O(1). After orienting the arcs in Ua, we can think of
them as elements of H1 (S; )  where  is the set critical points of qa. In fact, arcs in Ua generate
H1 (S; ).

Lemma 4.8. Assume that the vertical foliation of qa is not orientable. Then, there is a set B  of
edges of Ua and for !  2  B  there is a sign &! 2  f  1; +1g so that, for every ! b  in Tb (respectively, for
any b 2  S   ),  we have the relation:

!

(28) &! i ( ! ; ! b )  =  O(1) respectively, &! i (! ; b )  =  O(1)     :
! 2 B                                                                                                              ! 2 B

Furthermore, this relation is independent of all the relations in Lemma 4.7.

Proof. Choose a minimum number of edges of Ua so that the complement is simply connected.
Denote the set of all these edges by B  and orient them in some arbitrary way. Minimality implies
that the compliment P  is connected. We can visualize P  as a polygon in C  with the vertical
foliation parallel to the imaginary axis. Each edge of B  has two representatives in the boundary of
P . The two vectors are equal up to a multiplication by 1. Let B  be the subset of B  where the two
representatives are negatives of each other (Fig. 5). Note that B  is non-empty since the vertical
foliation in qa is not orientable.

e
a c

a
P d

c
d

b e b

F i gu r e  5. Polynomial P . The set B  =  fa; b; cg.

Now consider a double cover of qa constructed as follows. Take a second copy P 0 of P . Glue the
edges that were not in B  as before and glue the edges in B  to the corresponding edge in P 0. Let B  be
the set of lifts of edges in B  to this cover. We now orient edges in B  so that, for every !~  2  B, P  is in
the same side of !~  (say, the left side). Denote this double cover by q~ =  P  [  P 0.

Let S  be the underlying surface for q~ and  be the pre-image of . Considering oriented saddle
connections as elements of H1 (S ; )  we let i( ; )  denote the algebraic intersection number. Note that q~
is the unique double cover of qa where q~ is a square of an abelian differential. Hence, for every two
oriented saddle connections !~  and !~ 0 in q~ , all the intersection points have the same signature.
That is,

i(!~ ; !~ 0 ) =  ji(!~ ; !~ 0 )j:
Consider !  2  B  and its lift !~ .  Note that !~  has an orientation and hence is identified with vector

in C.  We define &! to be + 1  if !~  has a positive x–coordinate and  1 otherwise. Let ! b  2  Tb and
let !~ b  be a lift of ! b .  We choose an orientation for !~ b  so it has a positive y–coordinate. We will
show that

&! i ( ! ; ! b )  =  O(1):
! 2 B

Consider an intersection point of !~ b  and !~  where &! =  1. If the absolute value of the slope of
!~ b  is larger than that of !~  then !~ b  is to the left of !~  and hence !~  intersects !~ b  with a positive
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F i gu r e  6. Polynomials P  and P 0. The set B  =  fa; a0; b; b0; c; c0g.

signature. Otherwise, !~  and !~ b  intersect a uniformly bounded number of times (!~ b  and !~  intersect
essentially positively). The opposite of this is true if &! =   1; either !~  intersects !~ b  with a negative
signature or a uniformly bounded number of times. If !~ ; !~ 0 2  B  are lifts of the same arc !  2  B
then, choosing orientations for !~  and !~ 0 as above, we have

(29) i ( ! ; ! b )  =  i(!~ ; !~ b )  +  i(!~ 0 ; !~ b )  &!      i (!~ ; !~ b )  +  i(!~ 0 ; !~ b ) :

To  reiterate, this is because the number of intersection points that do not have the same sign as
&! is uniformly bounded.

But arcs in B  separate q~ . Thus,

i(!~ ; !~ b )   1:
!~ 2 B

This is because every time !~ b  exits P  it intersects the boundary with the opposite signature than
when it enters it. The sum is not necessarily zero because !~ b  may start inside P  and end in P 0.
Therefore, summing Equation (29) over !  2  B, we get

X  
&! i ( ! ; ! b )  =  O(1):

! 2 B

The proof for the case of a simple closed curve b 2  Sq 
 is similar.

Finally, we note that the relations of the type (27) are also relations in the relative homology
with Z2–coefficients. But the edges in B  are independent in Z2–relative homology. Hence, this new
relation is independent from the previous ones.

5. Main counting statement

This section contains the main combinatorial counting arguments with the goal of proving
Theorem 5.1. Recall the definition of B (Q( ) ; X ; )  from §4.1. Define

B j ( Q ( ) ; X ; )   B (Q( ) ; X ; )

to be the set of points Z  2  T (S )  so that, for the associated quadratic differentials qa and qb, there
is a (qa; )–regular triangulation Ta and a (qb; )–regular triangulation Tb that have j  common

homologically independent saddle connections. Now let,
B (Q(); X ; Y ; )  =  B (Q( ) ; X ; )  \  

 
 (S )   Y ;

and
Bj (Q() ; X ; Y ; )  =  B j ( Q ( ) ; X ; )  \  

 
 (S )   Y :

That is, B j (Q() ; X ; Y ; )  is the intersection of the orbit of Y with B j (Q( ) ; X ; ) .  Also, recall from
§2.6 that (when S X  is empty, G ( X )  =  2):

G ( X )  =  1 +  
2 S X  

p
E x t

 
() 

 
2 S X  

p
E x t

 
()

:



2
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Notice that if g  Y 2  B j (Q() ; X ; Y ; )  then g 1  X  2  Bj (Q(); Y ; X ; ).  Thus, the number of points
in B j (Q() ; X ; Y ; )  is the same as the number of points in Bj (Q(); Y ; X ; ).  We prove the following
upper-bound for the size of Bj (Q(); Y ; X ; ):

Theorem 5.1. Consider the stratum Q().  Given X ; Y  2  T (S )

B j (Q() ; X ; Y ; )   j S X j + j S Y  j e(h j )  G ( X ) G ( Y  );

where h =  dim Q ( ) .

Remark 5.2. First we make a few remarks
(1) If, in the definition of Bj (Q(); X ; Y ; ),  we replace the assumption on the number of com-

mon homologically independent saddle connections with an assumption on the number of
common homologically independent simple closed curves, the same statement would still
holds. However, the theorem is strictly stronger. For example, assume S X  \  S Y  contains
only one homologically trivial simple closed curves . We can still conclude that j   1
because the geodesic representative of  in any quadratic differential q contains a (homo-
logically) non-trivial arc. That is, the number points Y , where the geodesic connecting X
to Y follows Q()  and contains a short curve throughout, is smaller than expected even
when  is a homologically trivial curve.

(2) The statement appears to be correct even without the term j S X j + j S Y  j . However, the proof
would become significantly more complicated.

5.1. Sketch of the proof Theorem 5.1. Here is a an outline of our strategy :
(1) We define a notion of a marking for the surface S  and what it means for a marking to have

a bounded length in a Riemann surface X .  A  marking contains a partial triangulation of
S , a set of short simple closed curves with their lengths and some twisting information.
Fixing a Riemann surface X ,  every quadratic differential q where the underlying conformal
structure is near X  defines a marking that has a bounded length in X .  A  marking takes the
lengths of the short simple closed curves and the twisting information around short cylinder
curves from X  and the triangulation and twisting around the non-cylinder short simple
closed curves from q. Up to some twisting information, there are a uniformly bounded
number of markings that have bounded length in a given Riemann surface X .

(2) Fixing a marking 0, a relation is a formal linear combination of edges of 0 with integer
coefficients. Given 0 and 1 and a set of relations R  we will define a set MR (0 ; 1 ; )
consisting of all markings  such that  is a homeomorphic image of 1, its weighted
intersection number with 0 is less than e and so that the intersection patterns between
and 0 satisfy the relations in R .  The weights depend on the length and the twisting
information of each short simple closed curve. This is similar to assuming that there is a
geodesic segment in a the stratum Q()  starting near X  and ending near Y . Lemma 5.8
provides and upper-bound for the number of elements in MR (0 ; 1 ; ).

(3) We then let R  be the set of relation of the type described in Lemma 4.7 and Lemma 4.8.
Each Z  2  B j (Q() ; X ; Y ; )  can then be mapped to a marking in  2  MR (0 ; 1 ; ) for some
marking 1 that has bounded length in Y and some marking 0 that has both a bounded
length and a bounded twisting in X .  This map is finite-to-one except for some twisting
information. An estimate for the number of possible markings 0 and 1 provides the desired
upper-bound for the size of B j (Q() ; X ; Y ; R) .

As is apparent from the outline, the main complication is to keep careful track of all the different
twisting informations. Otherwise, the argument is relatively elementary.

5.2. Markings  on S .  F ix  a set of points  on S . A  partial triangulation T of S  with the vertex set  is
an embedding of a graph to S  where vertices are mapped onto  and the complementary components
are either triangles or annuli. Even though the vertex set is fixed, we think of T as representing
a free homotopy class of triangulations. We say a curve  is carried by T if the free homotopy class of
can be represented by tracing the edges of T . We define a combinatorial
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length of a simple closed curve  in S  to be the minimum number of arcs of T that can appear in a
representative of  and we denote it by ‘ T  ().

Recall that a set of curves fill a subsurface Q os S  if every essential curve in Q intersects one of
these curves. We say a partial triangulation T fills a subsurface Q of S  if, again, every essential
curve in Q intersects T (their free homotopy classes do not have disjoint representatives). The two
notions are related:

Lemma 5.3. There is a constant B  such that, if T fills a subsurface Q of S ,  then the set of simple
closed curves  carried by T with ‘ T  ()   B  also fill the subsurface Q.

Definit ion 5.4. A  marking  =   S ; fE ()g; T     for S  is:
 a free homotopy class of oriented curve system S  (pairwise disjoint curves) together with

a notion of zero twisting for each curve  2  S , (that is, the expression twist(; )  makes
sense),

 a length E ( )  associated to each simple closed curve  2  S , and
 a homotopy class of a partial triangulation T with the vertex set  such that the core

curve of any annulus in the complement of T is in S .
 for each  2  S  intersecting T , twist(; T ) =  O(1).

We denote the set of simple closed curves that are disjoint from T by S c  and the remaining curves in
S  by S n  (the set S c  is a place holder for large cylinder curves and the set S n  is a place holder for
non-cylinder curves or small cylinder curves).

We say a marking  =  S ; fE ()g; T     has a bounded length in X  if:
(1) S  =  S X .
(2) For  2  S , E ( )  =  ExtX ( ) .
(3) For  2  S c , twist(; X ) =  O(1).
(4) For each simple closed curve  2  S X  that is disjoint from S X ,  ‘ X ( )   ‘ T  ().

We say  has bounded length in X  with –bounded twist if we further have (5)
For  2  S n ,  twist(; X ) =  O().

Example 5.5. We continue Example 3.4 of a surface (X ; q )  described by a gluing of a polygon in
R2 . As it was discussed, there are two thick subsurfaces in the complement of curves  and  (Fig.
2). A  (q; )–regular triangulation of (X ; q )  is depicted in Fig. 7. Here S   =  fg  and Sq 

 =  fg.

3 4

2                                                                                                               5

6

2                                                                                                               5

6
1 3 1 4

F i gu r e  7. A  (q; )–regular triangulation.

Here a marking  that has bounded length in X  can be obtained as follows: The set S  is the set
f; g of short curves in X  (depicted as blue curves in Fig. 8), the triangulation T is the (q; )–regular
triangulation (depicted as the red triangulation) and E ( )  and E ( )  are the extremal length of  and  in
X  respectively. The condition (4) for  to have a bounded length in X  is a consequence of T being a
(q; )–regular triangulation.

Lemma 5.6. Let M (X ; )  be the set of markings  that have a bounded length in X  with –bounded
twist. Then

jM (X; )j  j S X j :
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F i gu r e  8. The curves and the triangulation in the marking .

Proof. The set S  and the lengths f E ( ) g  and the twisting around curves in S c  are determined by
definition. By Lemma 3.19, there is a uniformly bounded number of possibilities for T up to
twisting around curves in S n .  But each of these twisting parameters is bounded by multiple of
(condition (5) in the definition Definition 5.4). This finishes the proof.

Definit ion 5.7. Consider the markings

 =  fS ; fE ()g; T g     and     0 =  fS0 ; fE0 (0 )g; T0 g:

Recall that T and T0 have the same vertex set . For every  2  S c , let  be an arc with end point
in  and disjoint from T that crosses  so that T [   has bounded twisting around . Denote

U =  T [  
[  

:
2 S c

Let R[U ] be the vector space of formal sums with real coefficient of edges in U. Let R  be a finite
subset of R[U ] with integer coefficients. We define the set

MR (; 0 ; )

to be the set of markings  =  fS ; fE ()g; T g such that:
( I )   is a homeomorphic image of 0, and for every  2  S c  that is the image of 0 2  S0 , we have

E0 (0 ) =  E ( ) .
( I I )  For every element a !  2  R  and every arc !  2  T (respectively,  2  S  ), we have

X  
a !  i ( ! ; ! )  =  O(1); respectively,

X
a !  i ( ! ; )  =  O (1)

!

:
! 2 U                                                                                                                  !

( I I I )  Given  2  S c ;  2  S c , !  2  T and !  2  T ; we have the following bounds on the intersection
numbers:

(30)                                                                                                                 i ( ! ; ! )   e

(31)                                                                        twist(; )     E ( )  i(; T )  e

(32)                                                                        twist(; )     E ( )
 
i(; T )  e (33)

i(; ) twist(; ) twist(; )      E ( ) E ( )   e

and finally if  =   2  S c  \  S c  we have:
q

(34) twist(; )     E ( ) E ( )   e :

Note that the partial triangulations in  and  are defined up to homotopy. By above intersection
bounds we mean that the homotopy class of two partial triangulations have representations with
vertex set  so that the above bounds hold simultaneously.

Let hRi  be the subspace of R[U ] generated by elements in R .  We give the following upper
bound for such markings:
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Lemma 5.8. Let h R  =  dim(R[U ]=hRi). Then

jMR (; 0 ; )j  eh  

2 S c  

p
E ( )  

0 2 S 0  

p
E 0 ( 0 )

:

Proof. For  2  MR (; 0 ; ) consider the weighted graphs W =  T

+  
X  

m(; ) ;
2 S c

where the weights on the edges of T are 1 and the weight m(; ) 2  N are defined to be
q

m(; ) =  twist(; )     E ( )  :

Define W to be the set of weighted graphs induced by elements of MR (; 0 ; ): n
o

W =      W   2  MR (; 0 ; ) :

The weighted graph W essentially determines  except that, for  2  S c , the value of m(; ) determines
twist(; ) only up to p

E ( )  
=  p

E 0 ( 0 )  
possibilities (we have used the floor function in defining m(; )).

Hence,

(35) jMR (; 0 ; )j  
0 2 S 0  

p
E 0 ( 0 )  

jWj: We

proceed in two steps:

Step 1. Consider the set E  U that forms a basis for the space R[U ]=hRi. First, we claim that

the map
I  : W !  N h R  ; W ! i(W ; ! )

! 2 E

is finite to one, where i(W ; ! ) is defined to be

i(W ; ! ) =  
X  

i ( ! ; ! )  +  
X  

m(; ) i ( ; ! ):  ! 2 T

2 S c

Note that in general a weighted graph W is determined by the intersection numbers of its edges
with all the edges of U. The map I  records the intersection number with arcs in E. To  prove the
claim, we need to show that, there are only finitely many possibilities for the intersection number of
W with the other edges of U.

We can consider an  2  U as the element 1   2  R[U ]. Then  can be written as a linear
combination elements in the generating set E (which generates R[U ]=hRi)) and R  (the relations).
That is, there are constants c !  and d R  so that

 =  
X  

c ! !  +  
X  

d R R :
! 2 E R 2 R

But the intersection number is linear hence, for every !  2  W , we have

i ( ; ! )  =  
X  

c !  i ( ! ; ! )  +  O
X  

d R

!

:
! 2 E R 2 R

But the constants d R  depend only on the set R  and otherwise are uniformly bounded. Hence,
there are only finite number of possibilities for i( ; ! ).  This proves the claim.
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Step 2. We bound the size of I (W )   Nh by obtaining upper bounds on intersection numbers of
W with arcs !  2  E.

 First, if !  2  T , Equation (30) implies that

(36) i(T ; ! )   e :

Also, for  2  S c       S c  the Equation (31) implies 
m(; ) i(; ! )  twist(; )     E ( ) i ( ; ! )   e :

Hence,

(37) i(W ; ! )  e :

 For arc  2  U where  2  S c , and arc !  2  W by Equation (32) we have

(38) i ( ; ! )   i(; !) twist(; )  p
E ( )

:  And for  2  S c

S c , by Equation (33) we have

(39) m(; ) i(; )  twist(; )     E () i ( ; )   p
E ( )

:  Finally, if  =   2  S c  \

S c , by Equation (34)

(40) m(; ) i(; )  p
E ( )

:

Now from Equations (37), (38), (39) and (40), we get:

jWj  jI (W )j  
Y  

p        
Y  

e
c ! 2 T \ E

2 E

jE j 1

2 S c             E ( )

Now, applying Equation (35), we get

jMR (; 0 ; )j  e h R  

2 S c  

p
E ( )  

0 2 S c  

p
E 0 ( 0 )

;

which is as we claimed.

Proof of Theorem 5.1. Let Z  2  B j (Q() ; X ; Y ; )  and let (X a ; q a )  and (Xb ; qb ) be the initial and the
terminal quadratic differentials for the Teichmüller geodesic in Q()  starting near X  and finishing
near Z  2     Y , as before. There may be many choices for these quadratic differentials. We need to
be a bit careful.

Claim: We can choose (Xa ; q a )  and (Xb ; qb ) so that for any  2  Sq a
 ,

(41) twist(X; qa ) =  O():

Proof of claim. Assume (Xâ ; qâ ) and (X^; q^) are some choice of initial and terminal points with
associated regular triangulations Tâ and T^ that have j  common saddle connection. But, assume
that they do not satisfy Equation (41). We define (X a ; q a )  to be the image of (Xâ ; qâ ) under an
appropriate number of Dehn twists around curves in Sq 

 to ensure (41) and let (Xb ; qb ) be the
image of (X^; q^) under the same homeomorphism. We will show that X a  and X b  are still near X
and Z .

For  2  Sq â
 , if E x t

1  
( )   , by Lemma 3.16.

twist(Xâ ; qâ )  
ExtX ( )

:
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Hence, using the triangle inequality and Theorem 2.2
(42) twist(X; qâ )  twist(X; Xâ )  +  twist(Xâ ; qâ ) =  O

E xt X ( )
=  O():

Therefore, (41) is holds and no modification is required.
Now, assume E x t X ( )   . Since  is a non-cylinder curve, E x t X

 
( )  changes at most linearly with

time (Equation (7)). Hence, for  large enough, we have

(43)
E xt X ( )  

 
ExtZ ()

:

Again by Lemma 3.16, the number of Dehn twists n around  that needs to be applied to qâ to
ensure Equation (41) is at most O(1= Ext ()). That is,

X a  =      
Y  

D  X q 0  ;
2 S q â

where D  is a Dehn twist around  and n  E x t X ( ) .  By, Theorem 2.2

dT ( X â ; X a )  n E xt X ( )   1: 2 S q â

and
dT (Yb ; Xb )      

X  
n Ext Z ( )   1: 

2 S q â

Hence, (Xa ; q a )  and (Xb ; qb ) are as desired. Also, the images Ta and Tb of Tâ and T^ are still
regular triangulations and have j  arcs in common.

For the rest of the proof, we assume Equation (41) holds. To  the pair (Xa ; q a )  we associate the
marking  =  fS ; fE ()g; T g as follows:

 Let S  be the set of short curve in X  and set E ( )  =  ExtX ( ) .
 Let T be the (qa; )–regular triangulation Ta which has j  edges in common with the

triangulation Tb.
 If  2  S q a

 then set the twisting around  in  so that

twist(; X ) =  O(1):

 If  2  S q a
 then set the twisting around  in  so that

twist(; T ) =  O(1):

The result is a marking that has bounded length in X  and (by Equation (41)) has –bounded twist
in X .  Also, note that S c  =  Sq a

 and S n  =  Sq a
 .

We can similarly associate a marking  to the pair (Xb ; qb ). Here we can only conclude that  is
bounded in Z  (not with bounded twist); this is because the inequality (41) does not necessarily
hold for Z  and qb. Instead, similar to Equation (42), we have

(44) twist(Z; qb)  
ExtZ ()

:

Assume Z  =  g(Y ), for g 2   (S ).  Let 0 =  g 1(). Then 0 in bounded in Y . Also, let R  be the elements
in R[U ] coming from Lemma 4.7, (and Lemma 4.8 in case quadratic differentials in Q()  are not
orientable) and the j  edges in T that are present in the (qb; )–regular triangulation Tb. Taking this
Tb is the partial triangulation in , we have  2  MR (; 0 ; ). The number of possible choices for  is O ( j S X j )
(Lemma 5.6) and there are finitely many choices of for the homeomorphism type of 0. Lemma 5.8
provides an upper-bound for the size of the set MR (; 0 ; ). Also, using the fact that  is bounded in Z
and Equation (44), similar to Lemma 5.6, we can conclude that
the association Z  !   is at most O 2 S

 
 E x t

1  
( )      –to-one.
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To  summarize, we have defined a map from Bj (Q() ; X ; Y ; )  to the union of sets of markings
MR (; 0 ; ), where  is bounded X  with –bounded twist and 0 is bounded in Y . The map is not one-to-
one but we have a bound on the multiplicity.

The size of B j (Q() ; X ; Y ; )  is comparable to the product of the following: the number of choices for
, the number of choices for the homeomorphism class of 0, the maximum multiplicity of the
association Z  !   and the size of MR (; 0 ; ). That is,

jBj (Q(); X; Y ; )j   jM (X; )j  O(1)      
Y

Ext
1

()
 
 jMR(; 0 ; )j

2 S q

j S X j       
Y 1 h R     

 Y 1 Y 1 2 S
Ext Z ( )            

2 S c             E ( )  
0 2 S 0              

E0 (0 )

j S X j + j S Y  j  h R  
Y 1 Y 1 2 S

E ( )  
0 2 S 0             

E0 (0 )

The last line follows from the previous line because, for every term in the product 2 S
 
 E x t Z ( )  we

either have E x t
1  

( )  =  O() or, as in Equation (43),

1 1 1
Ext Z ( )             Ext Z ( )       E x t X ( )

and      2  S q a
 \  Sqb

 =  S n  \  S n :

That is, each term can either be counted in the power of  in the beginning of last line or it can be
divided into a term in each of the last two products. The proof is finished after checking that h R

=  (h   j ) .  This is true because all the relations in Lemma 4.7 are also relations in H1 (S; ). The fact
that the j  arcs we have fixed in Ta are homologically independent implies that these arcs and the
other relations in homology are independent in R[U ]. In fact, Lemma 4.8 is used only when & =
1. But this is accounted for in the definition of h (see §2.9). Hence, the dimension of R[U ]=hRi is
exactly j  less than h =  dim C +1 .

6. Geodesics in the thin pa rt  o f  moduli space

In this section we prove Theorem 1.1 and Theorem 1.5. The main idea, which is due to Margulis,
is to prove an inequality, which shows that the flow (or more precisely an associated random walk)
is biased toward a compact part of the space. Consider the stratum Q(). We discretize the
projection

(Q())   T (S );

by fixing an appropriate net N  in T (S ). Then, we consider the random walk f i g i 0  on the points
in N  and apply Theorem 5.1 to show that the projection of this random walk in M ( S )  is biased
towards the compact subset of M ( S ) .  Moreover, we show that quadratic differentials fq ( i ; i +1 )gi 0

(see §2.2) tend not to have short saddle connections. See Lemma 6.4 for the precise formulation.
These estimates imply Theorem 1.1; this is because, roughly speaking, every closed geodesic in

C can be approximated by a path along the net points.

6.1. Short  saddle connections and simple closed curves. For a quadratic differential (X ; q )  2
Q1T (S ), recall the set of short saddle connections
q () (Definition 3.8). Define s(q; ) to denote the maximum number of homologically independent
disjoint saddle connections in
q (). Given
the tuple , define n o

Q j ; ( )  =      (X ; q )  2  Q()   s(q; )  j       Q1T (S ):

For the rest of this section, with fix  and denote Q j ; ( )  simply by Qj ; .  Also, recall the definition of
B (Q( ) ; X ; )  from §4.1 and B j ( Q ( ) ; X ; )  from §5. We would like to refine the definition of
B j (Q() ; X ; ) .  Roughly speaking, we are interested in a ball of radius  centered at X  that is allowed
to move in the direction Q j ;  only. Namely, define B ( Q j ; ; X ; )  to be the set Z  2  T (S )  so that
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 Z  2  B (Q( ) ; X ; )
 for the associated quadratic differential qa, we have s(qa; )  j .

One can similarly define B (Q j ; ; X ; Y ; )  as in §5. Recall the choice of 1 () from Lemma 3.13.

Lemma 6.1. For any  >  0, there is 2 () <  1 () such that for  <  2 (), any integer j   0, and any X ; Y
2  T (S ) ,  we have

(45) B ( Q j ; ; X ; )   B j (Q( ) ; X ; ) ;  and

(46) B (Q j ; ; X ; Y ; )   B j (Q(); X ; Y ; ):

Proof. It is enough to let 2 () =  e 2 
1. Assume, Z  2  B (Q j ; ; X ; ) ,  qa and qb are the associated quadratic

differentials and (b  a) <  . Let !1 ; : : : ; ! j  be disjoint homologically independent saddle connections
counted in s(qa; ). Then, for each i, by Equation (8),

Extq a  ( ! i )
 
  

Extq b  ( ! i

) 
 ;

and by Theorem 2.1 the extremal length of any short curve  containing ! i  changes by at most a
factor of at most e2 . That is, ! i  2
q (1). The arcs ! i  are still disjoint and homologically independent in qb. Hence, the set f ! i g  can
be extended to both a (qa; )–regular triangulation Ta and a (qb; )–regular triangulations Tb (Lemma
3.13). Thus, by the definition Z  2  B j (Q( ) ; X ; ) .  The proof of Equation (46) is similar.

6.2. Choosing a net. By a (c; 2c)–separated net N   M ( S )  we mean a set of points in M ( S )  so
that:

 the Teichmüller distance between any two net points in N  is at least c, and
any point in M ( S )  is within distance 2c of a point in N .

Let
N ( X ; )  =  p ( B ( X ; ) )  \  N :

Then, it is easy to check (see Lemma 3 in [EM2]):

Lemma 6.2. There exists a constant c0 >  0 such that for any c >  c0, and (c; 2c) net N  as above,
we have

(47) jN (X ; )j   3g 3+p :

Let N  =  p  1 (N ). We assume the r  >  2c, where r  is the constant used to define B (Q( ) ; X ; )  (see
§4.1). We denote the intersection of a ball in Teichmüller space, B ( ) ,  with N  by N ( ).  That is, for
X ; Y 2  T (S ),

N (Q() ; X ; )  =  B (Q( ) ; X ; )  \  N ;

N (Q j ; ; X ; )  =  B ( Q j ; ; X ; )  \  N ;

N (Q(); X ; Y ; )  =  B (Q(); X ; Y ; )  \  N ;

and

N (Qj ; ; X ; Y ; )  =  B (Q j ; ; X ; Y ; )  \  N :

6.3. T h e  main inequality. For a real-valued function f  : M ( S )  !  R,  consider the average func-
tion

A j ; f  : T (S )  !  R;

defined by
 

A j ; f ( X )  =  e h
X

f (Z ) :
Z 2 N ( Q j ; ; X ; )
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Here, as before

h =  
dim C +  1

:

Our main tool is the following (2 () is as in Lemma 6.1):

Proposition 6.3. Given  >  0, and  <  2 () we have
(48)

 
A ; G ( X )   m e j  G ( X ) :

where G  is as in Equation (4) and m depends only on the topology of S .

Proof. Enumerate the elements of N ( X ; )  as y1; : : : ; yk and let Yi 2  T (S )  be a pre-image of yi , i
=  1; : : : ; k. By Lemma 2.3, every net point in Z  2  B (Q j ; ; N ; X ; Y i ; )  is near at most G(Yi )

points in B (Qj ; ; X ; Yi ; ) .  That is,
(49) N (Qj ; ; X ; Yi ; )G(Yi )2   B (Q j ; ; X ; Y i ; )

Hence, we have
 

A j ; G ( X )  =  e h
X

G ( Z )
Z 2 N ( Q j ; ; X ; )

=  e h  
X X

G(Yi )

(Equation (49))

( Theorem 5.1 and (46))

(Equation (47))

i = 1  Z 2 N ( Q j ; ; X ; Y i ; )

          h  
X

 B (Qj ; ; X ; Y i ; )  
i = 1

G(Yi )

 e h  
X

j S X j + j S Y  j e(h j )  G ( X )  i = 1

 e j  m G ( X ) :

Here, m =  (9g      9 +  3p)  jS X j  +  jSY  j +  (3g      3 +  p).

Tra jectories of the random walk. Suppose R    and let n be the integer part of R=. By a
trajectory of the random walk we mean a map

: f0; ng !  N   T (S )

such that, for all 0 <  k  n, we have dT (k ; k  1)  , where k  =  (k). Let P  ( X ; R )  denote the set of all
trajectories for which dT (0 ; X )  =  O(1). For j  2  N, let P ;  (Q j ; ; X ; R )  denote the set of all trajectories
2  P  ( X ; R )  so that,

 for 1  k  n
k  2  N (Q() ; k  1; ):

 k j 1  k  n; k  2  B (Q j ; ; k  1 ; N ; )     n:

Given X ; Y  2  T , let P ;  (Qj ; ; X ; Y ; R)  denote the set of all trajectories  2  P ;  ( Q j ; ; X ; R )  such that
dT     p(Y ); p(n ) =  O(1):

We say that a trajectory is almost closed in the quotient if
dT 

 
p(0 ); p(n )

 
=  O(1):

Finally, let P ;  ( Q j ; ; X ; R )  =  P ;  ( Q j ; ; X ; X ; R )  denote the subset of these trajectories starting from
X  which are almost closed in the quotient. Let 2 () be as in Lemma 6.1 and Proposition 6.3.
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Lemma 6.4. For any 0 >  0 there is 0 >  0 so that for  >  0, 0    1 and  <  2(0) we have

(50)

In particular,

(51)

Proof. Define

P ;  (Qj ; ; X ; Y ; R)   e(h j + 0 ) R  
G(Y )

:

P ;  ( Q j ; ; X ; R )   e(h j + 0 ) R :

qk () =  i 1  i   k; i  2  N (Q j ; ; i  1; ) :

This keeps track of the number of steps in the trajectory  (amount the first k steps) that can be
approximated by a segment in Qj ; .  For 0 <  r  =  k <  R ,  let P ;  (Qj ; ; X ; Y ; R; r )  be the set of

trajectories obtained from a trajectory  2  P ;  (Qj ; ; X ; Y ; R)  but truncated after k =  r= steps.
Define

V (R; r )  = G(k )e j  q k ( )  :
2 P ;  ( Q j ; ; X ; Y ; R ; r )

Also, let R  =  n, q() =  qn () and

V ( R )  =
X

G(n )ej q ( )  :
2 P ;  ( Q j ; ; X ; Y ; R )

Note that G(Y )  G( n )  and q()  R .  Therefore,

(52) jP;  (Qj ; ; X ; Y ; R)j   
G(Y )e 

)
R

 :

If k + 1  2  N (Qj ; ; k ; )  then q k + 1 ()  =  qk () +  1 and qk + 1 ()  =  qk () otherwise. Hence,

V (R ; r  +  )  =
X

G( k + 1 ) e j q k + 1 ( )  2 P ;

( Q j ; ; X ; Y ; R ; r + )

X
@

X
G( k + 1 )e j ( q k ( ) + 1 )  +

2 P ;  ( Q j ; ; X ; Y ; R ; r ) k + 1 2 N ( Q j ; ; k ; )

+
X

1

G( k + 1 )e j q k ( )  A :
k + 1 2 N ( Q j ; ; k ; )

The two summands inside of the parenthesis are similar to the average defined above. Using
Equation (48), the first term is less than (up to a multiplicative error)

e j ( q k ( ) + 1 )  eh (A ; G)( k )   e j ( q k ( ) + 1 )  eh m e j  G(k ):  and the

second term is less than (again, up to a multiplicative error)

ej q k ( )  eh (A; 0 G)(k )   e j q k ( )  eh m G(k ) :

Note that the right hand sides of the above two equations are the same. Hence,

V (R ; r  +  )   m eh
X

ej q k ( )  G( k )  2 P

( C ; X ; R ; r )

(53) =  m  eh V (R; r ):

Now iterating (53) n =  R=  times we get

(54) V ( R )   ( C  ) m n  G ( X ) e h n  =  G ( X ) e ( h + m ( l o g ( ) + l o g ( C ) )  ) R ;
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where C  >  0; and m 2  N are uniform constants. We choose  large enough so that

m log() +  log(C ) 
<  0:

The lemma follows from Equation (52) and Equation (54).

Let N(Q j ; ; X ; Y ; R)  be the number points Z  2  B (Q() ; X ; Y ; R)  (see §5 for definition) so that
associated geodesic (Xt ; q t )  spends  proportion of time in Qj ; .  Similarly, for x  2  M ( S ) ,  let
N(Cj ; ; x; R)  be the number of conjugacy classes mapping classes associated to closed geodesics g  in
C of length at most R  which pass within a uniformly bounded distance of the point x  and so that for at
least  fraction of the points (xt ; qt ) 2  g, s(qt; )  j  (see §6.1). As we shall see in the proof of the lemma
below, for x  =  p ( X ) ,  N ( Q j ; ; X ; X ; R )  may be much larger than N(Cj ; ; x; R).

Lemma 6.5. For any 1 >  0, there is 1 so that, for  >  1 X  2  T (S )  and any sufficiently large R
(depending only on 1; ) we have
(55) N(Cj ; ; p(X ); (1      1 )R)   P ;  (Q j ; ; X ; R ) ;

and
(56) N(Qj ;; X ; Y ; (1      1 )R)   P ;  (Qj ; ; X ; Y ; R)  G(Y )2:

Proof. Recall the definition of
I X  =  g 2   (S ) dT  (X ; g  X )  =  O(1) :

from Lemma 2.3. Consider a closed geodesic g  in C which intersects a uniformly bounded neigh-
borhood of x  =  p ( X ) .  Let [g] denote the corresponding conjugacy class in  (S ).  Then there are
approximately j I X j  lifts of [g] to Tg which start within a bounded distance of X .  Each lift G is a
geodesic segment of length equal to the length of g.

We can mark points distance  apart on G, and replace these points by the nearest net points
in N . (This replacement is the cause of the 1 R  error). This gives a map from lifts of geodesics
to trajectories. If the original geodesic g  has length at most (1   1 )R  and has s(qt ; )  j  for
fraction of its points, then the resulting trajectory belongs to P ;  (Q j ; ; X ; R ) .

If two geodesic segments map to the same trajectory, then the segments fellow travel within
O(1) of each other. In particular if g1 and g2 are the pseudo-Anosov elements corresponding to the
two geodesics, then dT (g g 1 X ; X )  =  O(1), thus g g1 2  I X .

We now consider all possible geodesics contributing to N(Cj;; x; (1   1 )R); for each of these we
consider all the possible lifts which pass near X ,  and then for each lift consider the associated
random walk trajectory. We get:

jI X j N ( Cj ; ; x ; ( 1      1 ) R)   j I X j P ; ( Q j ; ; X ; R ) :

The factor of j I X j  on the left hand side is due to the fact that we are considering all possible lifts
which pass near X ,  and the factor of j I X j  on the right is the maximum possible number of times a
given random walk trajectory can occur as a result of this process. Thus, the factors of j I X j
cancel, and the lemma follows. Note that by Lemma 2.3 (See also, Theorem 5.1) jI (Y )j  G(Y )2. An
argument similar to the proof of the first part implies Equation (56).

We need he following lemma which is due to Veech [Ve].

Lemma 6.6. Suppose g  is a closed geodesic of length at most R  on M ( S ) .  Then for any x  2  g,
any X  so that p ( X )  =  x  and every simple closed curve

E xt X ( )   e (6g 4+ 2p ) R :

Proof of Theorem 1.5. Let  >  0. Choose 0; 1  =3. Now choose   maxf0; 1g and let R  be large
enough so that Equations (51) and (55) hold. We get,

(57) N(Cj ; ; x; R)   e(h j + 2= 3 ) R :
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N(C j ; R )   
X  

N(Qj ; ; x ; R);
x 2 N

where N  is the net chosen above. In view of Lemma 6.6 and Lemma 6.2, the number of relevant
points in the net is at most polynomial in R .  However, for R  large enough, this polynomial is less
than eR=3. Thus Theorem 1.5 follows.

Proof of Theorem 1.1. Let g  be a closed geodesic in C n K .  By taking K  large enough we can
assure that every quadratic differential along g  has an arbitrary short saddle connection. We
choose K  so that Lemma 3.9 implies that any such quadratic differential (x; q),
q () is non-empty for   2(). Hence the number of disjoint homologically independent saddle
connections in
q () is at least one. That is, g  is counted in N(C j ; ; R)  for j  =  1 and  =  1. The theorem now follows
from Theorem 1.5.

Proof of Theorem 1.7. We can use the argument applied in the proof of Theorem 1.5. Let 0 <  0; 1

=3. Choose a net satisfying Lemma 6.2. Then choose   maxf0; 1g and let R  be large enough so that
Equations (50) and (56) hold. As in the proof of Theorem 1.5, Equation (1.7) follows from
Lemma 6.2 and Lemma 6.6.

7. The Hodge N o r m  and the Hodge Distance.

In this section, we use the Hodge norm [Fo] to show that in any compact subset of C the geodesic
flow is uniformly hyperbolic: see [ABEM] and Remark 7.5 below. There are many approaches to
proving hyperbolic like behavior for the Teichmüller geodesic flow in different settings, see for
example [ AG Y,  AG,  Fo, H2, Ve].

Let H1 T (S )  be the bundle of area one abelian differentials over T (S ). We also denote by gt the
geodesic flow on H1 T (S )  (where we square an abelian differential to get a quadratic differential).

7.1. Ho dge norm. F ix  a point ( X ; )  in H1 T (S ), where X  2  T (S )  and  is an abelian differential
on X .  Let : H1 T (S )  !  T (S )  and p : H1 T (S )  !  H 1 M ( S )  be natural maps as in §2.3. Let

kkH ;t denote the Hodge norm on the surface X t  =  (gt ). Also, for each abelian differential , let
<( ) ; = ( )  2  H 1 ( X ; R )  be forms obtained by the real part and the imaginary part of the holonomy.
The following fundamental result is due to Forni [Fo, §2]:

Theorem 7.1. For any  2  H 1 ( X ; R )  and any t  0, kkH;t

etkkH;0:

If, in addition, ^ < ( )  =  ^ = ( )  =  0 and, for some compact subset K  of H 1 M ( S ) ,  the segment [; gt]
starts and ends in p  1 (K )  and spends at least half the time in p  1 (K) ,  then we have

kkH;t   e(1 )t kkH;0 ; where

>  0 depends only on K .

Theorem 7.1 gives a partial hyperbolicity property of the geodesic flow on spaces of abelian
differentials. In our application, we need a similar property for compact subsets of the spaces
Q 1 M ( )  of quadratic differentials.

7.2. Quadratic  and abelian differentials. Here, we briefly treat the case when q 2  Q M ( S )  is
not the global square of an abelian differential. A  standard construction, given X  2  T (S )  and q a
quadratic differential on X ,  is to pass to the possibly ramified double cover on which the foliation
defined by q is orientable. More precisely, we consider the canonical (ramified) double cover : X  !
X  such that (q) =  2. (See the proof of Lemma 4.8 for the explicit construction.) The set of critical
values of  coincides with the set of zeros of q with odd degree.

This yields a surface X  with an abelian differential . However, even if p ( X )  belongs to a
compact subset of M ( S ) ,  there may be a curve that has a very small extremal length in X .  This
may occur since the flat structure defined by q may have an arbitrarily short saddle connection
connecting distinct zeroes. Such a saddle connection lifts to a very short loop in the double cover.
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Let ‘m i n ( q )  denote the length of the shortest saddle connection in the flat metric defined by q. We
have,

‘m i n ( )   ‘m i n (q ):

That is, if q does not have any short saddle connection, then  also does not have any short saddle
connections.

7.3. T h e  Ho dge norm on relative cohomology. Let (X ; q )  2  Q1T ()  and let  be the set of
singularities of q. Let X  be as before and  be the pre-image of . On X ,  q~ has a canonical square root
which we denote by . To  simplify the notation, if q is a square of an abelian differential, let
X  =  X ;   =  .

Let j : H 1 (X ; ; R)  !  H 1 ( X ; R )  denote the natural map. We define a norm kk on the relative
cohomology group H 1 (X ; ; R)  as follows:

Z
(58) kk =  kj()kH  +            (       h);

(p;p0 )2 p ; p 0

where k kH denotes the Hodge norm on H 1 (X ; R) ,  h is the harmonic representative of the coho-
mology class j ( )  and p;p0 is any path connecting the zeroes p and p0. Since j ( )  and h represent the
same class in H 1 (X ; R) ,  the Equation (58) does not depend on the choice of p;p0 .

Let qt, X t  and t  be defined as usual and let k kt denote the norm (58) on the surface X t  =
(gt ). We have the following analogue of Theorem 7.1:

Theorem 7.2. Let K  be a compact subset Q 1 M ( ) .  Then there is t0 >  0 so that for t >  t0 the
following holds. Suppose p(q0 ); p(qt ) 2  K  and that the geodesic segment [q0; qt] spends at least half the
time in p  1 (K) .  Suppose  2  H 1 (X ; ; R)  with

j()  ^  < ( )  =  j ( )  ^  = ( )  =  0:

Then we have

kkt  e(1 )tkk0;

where  >  0 depends only on K .

This theorem is essentially in [AF]  (Lemma 4:4). We reproduce the proof here for the convenience
of the reader.

Proof of Theorem 7.2. Since K  is compact, quadratic differentials in K  have no short saddle con-
nections. Hence, for u 2  [0; t], p(qu ) 2  K  implies that X u  is thick (has no curves with short
extremal lengths). Therefore, there exist a constant c K  such that for any u with p(qu ) 2  K ,  any
harmonic 2  H 1 ( X u ; R )  and any arc  on X u  with end points in ,

(59)
Z

  c K  k kH ; u
 

1 +  ‘u ();

where ‘u ( )  is the length of  in flat metric associated to u .
Under the assumptions of Theorem 7.2, there exists s 2  [0:1t; 0:9t] such that p(qs ) 2  K .  F ix  p; p0

2  . Since X 0  is thick, there exists a path 0 connecting p and p0 with ‘0 (0 ) =  O(1). Similarly,
since X s  and X t  are thick there are paths s  and t  connecting p and p0 such that ‘ s ( s )  =  O(1),
‘ t ( t )  =  O(1). Then,

‘0 (s )  =  O(es ) and ‘ s ( t )  =  O(et s ):
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Suppose  2  H 1 (X ; ; R)  with j ()  ^  < ( )  =  j ( )  ^  = ( )  =  0. Let =  j(). For 0  u  t, let u  denote
the harmonic representative of the cohomology class on X u .  We have

kkt      kk0  k kH ; t       k kH;0 +
X Z

t   0
p;p0 2       p ; p 0

(60)  e(1 )t k kH;0 + t   0;
p;p0 2       p ; p 0

where we have used Theorem 7.1. Since the integral in Equation (60) is independent of the choice
of p;p0 , we use p;p0 =  s . Then, by Equation (59),

(61) 0
 
 c K  k kH;0 (1 +  ‘0 (s ))   c K  k kH;0 es: s

Also,
Z 

s

Z Z
t  =  

Zs  t          

t  +  
Zt         

t  =

s  +            t

Zs  t Z t       Z
  

 
s  +   

t          

s  +   
t          

t

 c K      k kH ; s  +  k kH ;s et  s  +  k kH ; t      :

where to pass from the first line to the second we used the fact that     s  and     t  represent the same
cohomology class in H 1 (X ; R) ,  and in the last line we used Equation (59) to estimate each term.
Then, using Equation (61), we have

Z
t   0  c K      k kH ; s  +  k kH ;s et  s  +  k kH ; t  +  k kH;0 es

s

 c K      e(1 ) s  +  e(1 ) s + t  s  +  e(1 ) t  +  es    
 k kH ;0  c K

e(1 0:1)tk kH;0 ;

where in the second line we used Theorem 7.1 and in the last line we use the fact that s 2  [0:1t; 0:9t].
Substituting into Equation (60) we get

kkt      kk0  c K  e(1 0:1)tk kH;0  c K  e(1 0:1)tkk0:

Assuming t is large enough, we can assume that the multiplicative error is less than e0 t for some 0
0:1. The theorem then holds for   (0:1      0).

7.4. T h e  Ho dge Distance. Let gt be the Teichmüller flow on Q 1 M() .  To  each quadratic
differential q, we associate its imaginary and real measured foliations     

 (q), and + (q ).
The flow gt admits the following foliations:

(1) F s s ,  whose leaves are sets of the form     (X ; q )  j + ( q )  =  const ;
(2) F u u ,  whose leaves are sets of the form     (X ; q )  j      (q) =  const .

In other words, for (X0 ; q0 ) 2  Q(), a leaf of F s s  is given by
ss (X0 ; q0 ) =  f (X ; q )  2  Q()  j + ( q )  =  + (q0 )g; and

a leaf of F u u  is given by
uu (X0 ; q0 ) =  f (X ; q )  2  Q()  j      (q) =       (q0)g:

Note that the foliations F s s ,  F u u  are invariant under both gt and  (S ); in particular, they descend
to the moduli space Q 1 M() .
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We also consider the foliation F u  whose leaves are defined by
u (q ) = gt

uu (q) t 2 R

and F s  whose leaves are defined by
s (q) =  

[  
gt

ss (q):
t 2 R

If C is a subset of moduli space of abelian differentials, we can locally identify a leaf of F s s  (or
F u u )  with a subspace W  (or W + )  of H 1 (X ; ; R).  In fact, for 2  W  (or 2  W + ),  we have

(62) j (  )  ^  = (  )  =  0     and     j (  )  ^  < (  )  =  0:

See x1 and x2 of [Fo] for more details.
If  is a map from [0; r] into some leaf of F s s ,  then we define the Hodge length ‘ ( )  of  as

0 k0(t)k dt, where kk is the Hodge norm. Finally:
 If two abelian differentials  and 0 belong to the same leaf of F s s ,  then we define dH (; 0) to be the

infimum of ‘ ( )  where  varies over paths connecting  and 0 and staying in the leaf of F s s   Q().
We make the same definition if  and 0 are on the same leaf of F u u .

 By taking a ramified double cover (see §7.2), we can define dH (q; q0) for any q; q0 on the
same leaf of F s s  in Q().

Lemma 7.3. Let K  be a compact subset of C. Suppose (X; q); (X 0 ; q 0 ) 2  p  1 (K )  are in the same leaf
of F s s .  Let  be a Hodge length minimizing path connecting q to q0. Suppose t >  t0 is such that for
all q0 0

 2  ,

(63) s 2  [0; t] j gsq00 2  p  1 (K )   t=2:
Then

dH (gtq; gtq0)  e c
 
tdH (q; q0);

where c depend only on K .

Proof. This follows from Theorem 7.2 and Equation (62).

We now show that the above condition holds whenever the projections of gtq and gtq0 to C are
also close. See also Lemma 5:4 of [EM2].

Lemma 7.4. Let K  be a compact subset of C. Then there is a larger compact subset K0  C and a
covering of K  with a finite family of open sets U so that the following holds. Let U1; U2  Q()  be
connected open sets so that p(Ui ) 2  U , i  =  1; 2. Let (X; q); (X 0 ; q 0 ) 2  U1 and t >  0 be such that
gt(q); gt(q0) 2  U2. Further, assume that

(64) s 2  [0; t] j p(gs q) 2  K   t=2:

Then,

(65) s 2  [0; t] j p(gsq0) 2  K
0
     

 

 t=2:

Proof. Let  >  0: We can find an open cover U of K  so that the following holds. Let U be connected open
sets so that p(U ) 2  U, and let (X1 ; q1 ); (X2 ; q2 ) 2  U. Then for any saddle connection ! ,  we have

(66) ‘q 1  ( ! )   ‘q 2  ( ! )   ‘q 1  ( ! ) :
Let U1; U2  Q()  be connected open sets so that p(Ui ) 2  U, i  =  1; 2. Let (X; q); (X 0 ; q 0 ) 2  U1 and t >
0 be such that gt(q); gt(q0) 2  U2. We first claim that (66) is true for quadratic differentials qs =  gs (q)
and qs =  gs(q0) as well for a larger constant 0 =  2. Assume, for contradiction that

‘q s  ( ! )  >  0 ‘qs ( ! ) :

for some s 2  [0; t]. Assume !  is mostly vertical in qs. That is,

=(holq s  ( ! ) )  >  
2
‘q s  ( ! ) :
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Then

‘ q ( ! )   =(holq (! ))
=  es =(holqs  ( ! ) )

>  
2

es ‘q s  ( ! )

>  
2

es0 ‘q 0  ( ! )   
2

0 ‘q 0  ( ! ) :

Which contradicts Equation (66). In case !  is mostly horizontal, we move forward in time and
argue the same way. This proves the claim.

Now let  be such that the length of any saddle connection in q 2  K  is larger than , and let K0 be
the compact subset of C consisting of quadratic differentials where the length of every saddle
connection is larger than 0 =  =0. Then (65) follows from the above length comparison.

Remark 7.5. We have essentially shown that under the assumption Equation (64) we have expo-
nential contraction along the foliation F s s  (and similarly exponential expansion along the foliation
F u u ) .

8. Out l ine  o f  the p ro o f  o f  Theorem 1.2

In this section, we prove Theorem 1.2. We only outline the arguments here since they are well
known a more detailed version is already present in [H2]. We essentially follow the work of Margulis
[Mar]. First, we need a closing lemma.

Lemma 8.1 (Closing Lemma). Let K  be a compact subset of C consisting of non-orbifold points.
Given a quadratic differential (x; q) 2  K  and  >  0, there exist constants L 0  >  0, and open
neighborhoods U  U0  C of (x; q) with the following property.     For L  >  L 0 ,  suppose that g  : [0; L]
!  C is a Teichmüller geodesic segment such that

(a) g(0); g(L)  2  U and
(b) g  spends more than half of its length in K .

Let g1 be the closed path in C which is the union of g  and a segment connecting g ( L )  to g(0) in
U . Then there exists a unique closed geodesic g0  C with the following properties:

( I )  g0 and g1 have lifts in T (S )  which stay –close with respect to the Teichmüller metric.
( I I )  The length of g0 is within  of L ,

( I I I )  g0 passes through U0.

Remark 8.2. We remark that in Lemma 8.1 if we remove the assumption that K  consists of non-
orbifold points then there are at most a uniformly bounded number of closed geodesics satisfying
conditions (I–I I I). A  version of the closing lemma can be found in [H2].

Outline of the proof of Lemma 8.1. Consider the stable and unstable foliations for the geodesic
flow. Our goal is to show that if U is small enough, the first return map on these foliations will
define a contraction with respect to the Hodge distance function. As a result, we find a fixed point for
the first return map in U0; this is the same as a closed geodesic going through U0.

In view of Lemma 7.3 and Lemma 7.4 there is in fact a neighborhood of (x; q) such that the
time L  geodesic flow restricted to the neighborhood expands along the leaves of F u u  and contracts
along the leaves of F s s .

Then, the contraction mapping principle (applied first to the map on F s s  and then to the inverse
of the map on F u u )  allows us to find a fixed point for the geodesic flow near (x; q) (in a slightly
bigger neighboorhood). In other words, there are neighborhoods U  U0 of (x; q) such that:

 if g  : [0; L] !  C satisfies properties (a) and (b) then in view of the hyperbolicity statement
(Lemma 7.3)

the time L  geodesic flow restricted to U expands along the leaves of F u u  and contracts
along the leaves of F s s ,  in the metric dH ,

 for any q1; q2 2  U; if q1 2  F s s (q2 )  or q1 2  F u u (q2 )  then dH (q1; q2)  .
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We can apply the contraction mapping principle to F s s  to find (x0; q0) 2  U0 such that gL (q0 ) 2
F u u q0 . Now we can consider the first return map of the map g t  on F u u (q0 ).

Proof of Theorem 1.2. Note that by the bound proved in Theorem 1.5, we only need to consider
the set of closed geodesics going through a fixed compact subset of C. We have

 by Theorem 2.4, the geodesic flow on C is mixing, and
 on a fixed compact subset of Q 1 M ( S ; )  the geodesic flow is uniformly hyperbolic.
every nearly closed orbit approximates a close orbit (Lemma 8.1).

Hence, all the ingredients are in place to drive Theorem 1.2 following the work of Margulis [Mar].
(See also x20:6 in [KH].)
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