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COUNTING CLOSED GEODESICS IN STRATA

ALEX ESKIN, MARYAM MIRZAKHANI, AND KASRA RAFI

Abstract. We compute the asymptotic growth rate of the number N (C; R) of closed geodesics of
length R in a connected component C of a stratum of quadratic differentials. We prove that, for
any 0 1, the number of closed geodesics of length at most R such that spendsat least —fraction of
its time outside of a compact subset of C is exponentially smaller than N(C; R). The theorem
follows from a lattice counting statement. For points x;y in the moduli space M(S) of Riemann
surfaces, and for 0 1 we find an upper-bound for the number of geodesic paths of length R in
C which connect a point near x to a point near y and spend at least a —fraction of the time outside
of a compact subset of C.

1. Introduction

Let S = Sg;p be a surface of genus g with p punctures and let M(S) be the moduli space of
Riemann surfaces homeomorphic to S. The co-tangent bundle of M(S) is naturally identified
with QM (S) the space of finite area quadratic differentials on S. Let Q*M(S) be subspace of
quadratic differentials of area 1. There is a natural SL(2; R) action on the Q*M(S). The orbits of

t
the diagonal flow, g: = € 0 eot , projects to geodesics in M(S) equipped with the Teich-

muller metric. For R > 0, let N(R) be the number of closed Teichmuller geodesics of length less
than or equal to R on Q*M(S). It was shown in [EM2] that, as R | 1, the number N (R) is
asymptotic to e"?=hR; where h= 6g 6+ 2p.

The moduli space of quadratic differentials is naturally stratified: to each quadratic differential
(x;q) 2 QM(S) we can associate (q) = (i;:::;k; &) where 1;:::;k are the orders of the zeros and
poles of q, and &2 f 1;1g is equal to 1 if q is the square of an abelian differential and

1 otherwise. For a given tuple , we say a quadratic differential (x;q) 2 QM(S) is of type if (q)
= . The space QM/() of all quadratic differentials in QM (S) of type is called the stratum of
quadratic differentials of type . The stratum QM/() is an analytic orbifold of real dimension 4g +
2k + & 3.

Let Q1 M() be the space of quadratic differentials in QM/() of area 1. It is not necessarily
connected (see [KZ] and [La] for the classification of the connected components), however, each
connected component is SL(2; R) invariant. Let C be a connected component of Q*M(). In this
paper, we study the asymptotic growth rate of the number N (C; R) of closed Teichmiiller geodesics of
length less than or equal to R in C. Our main tool is estimating the number N (Ck; R) of closed
geodesics that stay completely outside of a large compact set K C.

Theorem 1.1. Given > 0 there exists a compact subset K C and Ro > 0 such that for all
R > Ro,
N(Cg; R) el 1*IR.

This result implies that:

Theorem 1.2. As R! 1, we have

hR
e

hR™
where h = ;—[1 +dimg(C)] and the notation A B means that the ratio A=B tends to 1 as R tends to
infinity.

N(C; R)

Remark 1.3. In the case of abelian differentials, h is equal to the dimension of the relative homology
of S with respect to the set of singular points of (x; q) 2 C, otherwise h is one less.
1
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Recurrence of geodesics. We prove a stronger version of Theorem 1.1. Every quadratic differ-
ential defines a singular Euclidean metric on the surface S and for every compact set K C, thereis
a lower bound for the g—length of a saddle connection where q 2 K. Here, we restrict attention to
closed geodesics where more than one simple closed curve or saddle connection is assumed to be
short; in this case the growth rate is of even lower order.

Let T(S) be the Teichmiiller space, the universal cover of M(S). Let QT (S) and QT (S) be
defined similarly. To distinguish between points in the Moduli space and Teichmiiller space, we
use x 2 M(S) and X 2 T(S). Also, we use the notation (x; q) for points in Q*M(S) and (X; q)
for points in QT (S). We denote a geodesic in Q*M(S) by g and a geodesic in QT (S) by G.
The space QT (S) is also naturally stratified. We denote the space of quadratic differentials in
QT (S) of type by QT (). To simplify the notation, let

Q() :=Q'T():

Recall that Extx () denotes the extremal length of a a simple closed curve on the Riemann surface
X 2 T(S). (see Equation (1) for definition). We introduce a notion of extremal length for saddle
connections on quadratic differentials. Essentially, the extremal length of a saddle connection
| in a quadratic differential (X;q) 2 QT (S) with distinct end points p1 and p2 is the extremal
length of the associated curve in the ramified double cover of X with simple ramification points at
only p1 and p2 (see §3.5 for more details).

Definition 1.4. For > 0 and for any quadratic differential (X;q) 2 Q(), let
q() be the set of saddle connections ! so that either Extq(!) or ! appears in a geodesic
representative of asimple closed curve with Extx() . Let Qj;() be the set of quadratic differentials
(X; q) of type S0 that
q() contains at least j disjoint homologically independent saddle connections. When is fixed, we
denote this set simply by Q;;. Let Cj, be the set of points in C whose lift to QT (S) lies in Qj;.
For 0 1, define N(Cj;; R) to be the number of closed geodesics of length at most R in C that spend
at least —fraction of their length in C;j;.

In this paper, we show:

Theorem 1.5. Given > 0, there exist > 0 small enough and R > 0 large enough so that, for
allj 1and 0 1,

N(Cj;; R) el J*IR:

Remark 1.6. The condition on
q() is necessary. Just assuming there are j saddle connections of g—length less than does not
reduce the exponent by j. In fact, for any , there is a closed geodesic g in Q* M(S) where the
number of saddle connections with g—length less than is as large as desired at every quadratic
differential (X; q) along g. This is because the Euclidean size of a subsurface could be as small as
desired (see §3.4) and short saddle connection can intersect.

Lattice counting in Teichmiller space. Let (S) denote the mapping class group of S and let
Br(X) denote the ball of radius R in the Teichmiiller space with respect to the Teichmdller metric
centered at the point X 2 T(S). It is known ([ABEM]) that, forand Y 2 T(S),

(S) Y\ Br(X) 2el®8 ©F;

as R! 1: Here is a constant depending only on the topology of S (See [Du]).

The main theorem in this paper is a partial generalization of this result for the strata of quadratic
differentials. Here we are interested in the case where the Teichmiller geodesic joining X tog Y, for
g2 (S), is assumed to belong to the stratum Q() or stay close to it.

More precisely, for a fix ro > 0 (see §6.2), let N(Qj;; X; Y; R) be the number of pointsZ 2 T (S)
such that (See Fig. 1):

Z 2Br(X)andZ =gV, forsomeg2 (S).
there is a Teichmiller geodesic segment G Q() joining X1 2 Br (X),to Y12 Br (Z), G
spends at least —fraction of the time in Q;;.
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Br(X)

o <

Figure 1. There is a geodesic G in Q() connecting a point near X to a point
near Z 2 Bgr(X) thatis in the orbit of Y.

Also, for a fix o (see §1.3 below), we define Sx to be the set of p—short curves in X and
Y 1
G(X)=1+ . —
2S5y ExX X[
Theorem 1.7. Given > 0, there exist > 0 small enough and R > 0 large enough such that, for
every0 1,j 1and X;Y 2 T(S), we have

N(Qj;; X; Y;R) G(X)G(Y )elh iHIR,
Compare with Theorem 7:2 in [EM2].

1.1. Notes on the proof.

1. Each stratum Q' M() has an affine integral structure, and carries a unique probability measure ,
called the Masur-Veech measure, invariant by the Teichmiller flow which is equivalent to the
Lebesgue measure. Moreover, the restriction of the Teichmiller flow to any connected component C
of Q*M() is mixing with respect to the Lebesgue measure class [Ma], [Ve]. In fact, the Teich-miiller
flow on C is exponentially mixing with respect to [AR], [AGY]. However, we will only use the mixing
property (as stated in Theorem 2.4) in this paper.

2. The main difficulty for proving Theorem 1.2 is the fact that the Teichmiller flow is not uni-
formly hyperbolic. As in [EM2], we show that the Teichmiiller geodesic flow (or more precisely
an associated random walk) is biased toward the part of C that does not contain short saddle
connections (see Lemma 6.4). Similar method has been used in [EM2] where it is enough to use
Minsky’s product region theorem (see §2.5) to prove the necessary estimates. In this paper, since
the projection map from C to M(S) is not easy to understand, we need different and more delicate
methods to obtain similar results.

3. We define a notion of a (q; )—regular triangulation for a quadratic differential (X; q) (Defini-tion
3.11). Such a triangulation captures the geometry of singular Euclidean metric associated to qin a
way that is compatible with the hyperbolic metric associated to X . We will show that a set of disjoint
saddle connections in
q() can be included in a (q; )—regular triangulation (Lemma 3.13).

4. In order to prove Theorem 5.1 (§5) we compute, given the triangulation Ta,, the number of
possible triangulations Ty which have certain bounds on their intersection number with T,. It
turns out that the number of possible triangulations Ty, is related to the number of edges in T, that are
homologically independent. This is the main reason that the growth rate of N(Qj;; X; Y; R) is
related to dimg C. In §3 we establish the basic properties of a (q; )—regular triangulation and in §4 we
establish the necessary bounds on the intersection number between T, and T, needed in §5.
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5. Theorems 1.1 and 1.5 are essentially corollaries of Theorem 1.7. In §6, we use Theorem 5.1 to
prove Theorem 1.7. Here we describe the steps involved in the proof of Theorem 1.7. First, we fix a
net N in M(S) and its lift N if"T (S). For any constant , we note that N(Q;;; X; Y; R) is bounded

i+1 is at most and, for proportion of steps, the segment [i;i+1] can be approximated by a path in
Qj;.

Given i, we bound the number of possible choices for i+1 so that the segment [i;i+1] can be
approximated by a path in Qj;. The bound depends on the geometry of ; (captured by the function
G( ).

On the other hand, if G: [a;b] | Q;; is a geodesic segment with initial and terminal quadratic
differentials (Xa; qa) and (Xb; qp) with jb  aj , one can find a (qa; )-regular triangulation T, and
(gp; )-regular triangulation Ty, so that T, and T, have j nomologically independent edges in common
(See Lemma 6.1 for the precise statement). Then Theorem 5.1 shows that the number of choices for
i+1 is also reduced by a factor e J.

6. To obtain Theorem 1.2, we use the basic properties of the Hodge norm [ABEM] to prove a
closing lemma for the Teichmiller geodesic flow in §8. We remark that the Hodge norm behaves
badly near smaller strata, i.e. near points with degenerating zeros of the quadratic differential,
where quadratic differentials have small geodesic segments.

On the other hand, the set of quadratic differentials with no small geodesic segment is compact
and in any compact subset of C, the geodesic flow is uniformly hyperbolic (See [Ve], [Fo] and §7).
Also, in view of Theorem 1.5, for any 0 1, the number of closed geodesics of length at most R
such that spends at least a —fraction of the time outside of a compact subset of C is exponentially
smaller than N(C; R). Therefore, "most" closed geodesics spend at least (1 )-—fraction of the
time away from the degenerating locus. This allows us to prove Theorem 1.2 following the ideas
from Margulis’ thesis [Mar].

1.2. Further remarks and references.

1. According to the Nielsen-Thurston classification, every irreducible mapping class g 2 (S) of
infinite order has a representative which is a pseudo-Anosov homeomorphism. Let K¢ denote the
dilatation factor of g [Th1]. By a theorem of Bers, every closed geodesic in M(S) is the unique
loop of minimal length in its homotopy class. Also a pseudo-Anosov g 2 (S) gives rise to a
closed geodesic Gg of length log(Kg) in Q*M(S): Hence log(Kg) is the translation length of g as
an isometry of T (S) [Be]. In other words,

L(S) = log(Kg)jg2 (S) pseudo-Anosov

is the length spectrum of M(S) equipped with the Teichmiller metric. By [AY] and [Iv], L(S)
is a discrete subset of R. Hence the number of conjugacy classes of pseudo-Anosov elements of the
group (S) with dilatation factor K e® is finite. We remark that for any pseudo-Anosovg2 (S)
the number K is an algebraic number and log(Kg) is equal to the minimal topological entropy of
any element in the same homotopy class [FLP]. (See [Pe] and [BC] for simple explicit constructions
of pseudo-Anosov mapping classes.) In terms of this notation, N (C; R) is the number of conjugacy
classes of pseudo-Anosov elements g in the mapping class group (S) with expansion factor of at
most e® such that G, C:

2. The first results on this problem are due to Veech [Ve]. He proved that there exists a constant
¢ such that

log N (R log N (R !
h liminf o%limsup og%cj !
RI1

and conjectured that c = h.

Foliations fixed by pseudo-Anosov maps can be characterized by being representable by eventu-
ally periodic "convergent" words [PP1]. Moreover, there is an inequality relating the length of the
repeating part of the word corresponding to a pseudo-Anosov foliation and the dilatation factor
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of a pseudo-Anosov map preserving that foliation [PP2]. However, the estimates obtained using
these inequalities are weaker.

3. The basic idea behind the proof of the main theorem in this paper is proving recurrence results for
Teichmiuller geodesics. Variations on this theme have been used in [EMM], [EM1], [Ath], and
[EM2]. One reason the proof is different from [EM2] is that in general the projection map :
QM() ! M(S) is far from being a fibration: in many cases dim(Q*M()) < dim(M(S)) and dim(
1(X)\ Q*M()) depends on the geometry of X. In this paper, we need to analyze the geometry
of quadratic differentials more carefully. The results obtained in §3 allow us to deal with this issue.

4. Our results are complimentary to the following result:
Theorem 1.8 (Hammenstadt). There exists a compact K C such that for R sufficiently large,
N(Ck;R) el VR

Also, by results in [H2] the normalized geodesic flow invariant measure supported on the set of
closed geodesics of length R in C become equidistributetd with respect to the Lebesgue measure as
R!I 1.

1.3. Choosing constants. We choose our constants as follows: We call a curve short if its ex-
tremal length is less than . This is a constant that depends on the topology of S only (a uniform
constant) and is chosen so that Theorem 2.2 and the estimate in Equation (5) hold. We call any
other constant that depends in the topology of S or the choice of ¢ a uniform constant. Most of
these constants are hidden in notations and (see the notation section below). For the arguments
in §6 to work, we need to choose large enough depending on the value of (see proofs of Theorem 1.5
and Lemma 6.4 in §6). Then is chosen small enough depending on the value of. We need 1= 1() so
that Lemma 3.13 holds and 2 = 2() so that Lemma 6.1 holds. The dependence on the choice of and
is always highlighted and a constant that we call uniform does not depend on or .

1.4. Notation. In this paper, the expression A B means that A < ¢B and A B means A
B + c for some uniform constant ¢ which only depends on the topology of S (a uniform

constant). We write A B if we have both A B and B A. Similarly, A B if both A C and B
A hold. The notation A = O(B) means that A B.

Acknowledgements. We would like to thanks the referee for many useful comments that have
improve the exposition of the paper at several places.

2. Teichmuller Space and Quadratic Differentials

In this section, we recall some definitions and known results about the geometry of M(S)
equipped with the Teichmuller metric. For more details, see [Hu], [FM] and [St].

2.1. Teichmiller space. Let S be a connected oriented surface of genus g with p marked points. A
point in the Teichmiuller space T (S) is a Riemann surface X of genus g with p marked points
equipped with a diffeomorphism f : S | X sending marked points to marked points. The map f
provides a marking on X by S. Two marked surfaces f1: S ! X andf,: S ! Y define the same
point in T (S) if and only if f1 f ) 1. Y | X is isotopic (relative to the marked points) to
a holomorphic map. By the uniformization theorem, each point X in T (S) has a complete metric of
constant curvature 1 with punctures at the marked points. The space T (S) is a complex
manifold of dimension 3g 3+ p, diffeomorphic to a cell. Let (S) denote the mapping class group of
S, the group of isotopy classes of orientation preserving self-homeomorphisms of S fixing the
marked points point-wise. The mapping class group (S) acts on T (S) by changing the marking.
The quotient space
M(S) = T(S)= (S)
is the moduli space of Riemann surfaces homeomorphic to S.
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2.2. Teichmiller distance and Teichmiller’s theorem. The Teichmiller metric on T (S) is
defined by

dr (f1: S ! Xa1);(f2: S ! X3) = %irfn‘log(Kf);

where f : X1 | X, ranges over all quasiconformal maps isotopic to f1 f 21 and K¢ 1 is the
dilatation of f. For convenience, we will often omit the marking and write X 2 T (S). To
distinguish between a marked point and an un-marked point, we use small case letters for pointsin
Moduli space and write x 2 M(S).

We recall the following important theorem due to Teichmiller. Given any X1; X2 2 T(S), there
exists a unique quasi-conformal map f, called the Teichmiller map and quadratic differentials
(Xi;qi) 2 Q1 (Xi) such that the map f takes zeroes and poles of q1 to zeroes and poles of g2 of the
same order and dt (X1; X2) = 1log(Ks).

2.3. The space of quadratic differentials. Let Q(X) denote the vector space of quadratic
differentials on X with at most simple poles at the marked points of X. The cotangent space of T

(S) at a point X can be identified with Q(X) and the space
n o

QT (S) = (X;9) X 27T(S); a2 Q(X)

can be identified with the cotangent space of T (S).

In local coordinates z, q is the tensor given by q(z)dz?, where q(z) is a meromorphic function
with poles of degree at most one at the punctures of X. In this setting, the Teichmiuller metric
corresponds to the norm 7

kakr= ja(z)jjdzj?
X
on QT (S). Let QT (S) denote the space of (marked) unit area quadratic differentials, or equiva-
lently the unit cotangent bundle over T (S). Define
QM(S) = QT (S)= (S) and Q'M(S) = Q'T(S)= (S):

To simplify the notation, in this paper, we let p denote both projection maps

p: T(S)! M(S); and p: QT (S)! Q'M(s):
Similarly, will denote both projection maps:
cQiM(s) ! M(S); and QIT(S) ! T(S):

2.4. Extremal and hyperbolic lengths of simple closed curves. By a curve we always mean
the free homotopy class of a non-trivial, non-peripheral, simple closed curve on the surface S where
the homotopy is relative to the marked points. We denote the set of curves on S by S to emphasize
that they are simple curves.

Given a curve on the surface S and X 2 T(S), let ‘x () denote the hyperbolic length of the unique
geodesic in the homotopy class of on X. The extremal length of a curve on X is defined by

02
(1) Extx() : SUpArea(X')

where the supremum is taken over all metrics conformally equivalent to X, and ‘() denotes the
infimum of —lengths of representatives of .
Here X can be any Riemann surface, even an open annulus. Recall that the modulus of an

annulus A is defined to 1
Mod(A) := —————
( ) EXtA()
where is the core curve of A.
Given curves and on S, the intersection number i(;) is the minimum number of pointsin

which representatives of and must intersect. In general, by [GM]

(2) i) B0 Bt




COUNTING CLOSED GEODESICS IN STRATA 7

The following result [Ker] relates the ratios of extremal lengths to the Teichmiiller distance:

Theorem 2.1 (Kerckhoff). Given X;Y 2 T(S), the Teichmdller distance between X and Y is
given by |

p____
Extx ()

dr (X;Y) = suplog —
25 Exty ()

The relationship between the extremal length and the hyperbolic length is complicated; in
general, by the definition of extremal length,

%0 et ()
(28 2+ p) '
Also, forany X 2 T (S), the extremal length can be extended continuously to the space of measured
laminations [Ker] such that

Extx(r )= r2Extx():

As a result, since the space of projectivized measured laminations is compact, for every X there
exists a constant cx so that

1, p
—'x() Extx Cx x():x
c
However, by [Mas]
1 Extx() 1.2

3) %) 2 e

Hence, as ‘x() ! O©;
“x()
Extx() !

curves on S and, for a fixed o,
n o
T,(A)= X 2T(S) Extx(i) o; 10 j

Then, using the Fenchel-Nielsen coordinates on T (S), we can define
At T(A) ! (H?)

by

- . 1ot (Y)Y 1
A(X) 1(X); lx(l),...,J(X)"X(j).i

Here, i() is the Fenchel-Nielson twist coordinate around i and represents the x—coordinate in
upper-half plane H and the y—coordinate in H is the reciprocal of the hyperbolic length. Following
Minsky, we get a map

: T,(A) ! (H?)] T(SnA);
where T (S nA) is the quotient Teichmiller space obtained by collapsing all the ;. The product
region theorem [Mi] states that for sufficiently small the Teichmuller metric on T (}A) is within
an additive constant of the supremum metric on (H?)I T(S nA). More precisely, let da(;)
denote the supremum metric on (H2)! T(S nA). Then:

Theorem 2.2 (Minsky). There is ¢ > 0 is small enough and B > 0 depending only on S such
that forall X;Y 2 T O(A),
dr (X;Y) da (X);(Y)< B:

As mentioned in the introduction, we fix o so that the above theorem and the estimate in
Equation (5) hold.
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2.6. Short curves on a surface. For ¢ as above, we say a curve is short on X if Extx() o. From
discussions in [Mi], we know that, if two curves are short in X they can not intersect. Let Sx be the
set of short curves on X. Define G: T(S)! R+ by

Y
(4) G(X)=1+ & p 1 .

25y EXE)(‘;
If dr(X;Y) = O(1) then G(X) G(Y): The function G is (S) invariant and induces a proper
function on M(S). We also recall the following lemma which, for example, follows from [EM?2].

Lemma 2.3. For any X 2 T(S) let
Ix = g2 (S)dr(g X;X) = 0(1) :
be the set of mapping classes that move X by a bounded amount. Then
Ix G(X)2:

2.7. Stratum of quadratic differentials. Although the value of ¢ 2 Q(X) at a point in X
depends on the local coordinates, the zero set of q is well defined. As a result, there is a natural
stratification of the space QT (S) by the multiplicities of zeros of q. For = (1;:::;k; &) define QT
() QT (S) to be the subset consisting of pairs (X; q) of quadratic differentials on X with zeros and

marked points, however, not all marked points have to be poles. The sign &2 f 1;1gis equal to 1 if
q is the square of an abelian differential (an abelian differential). Otherwise, &= 1.Then

QT (s) = g QT (:

It is known that each QT () is an orbifold. See [Ma] and [MS2] for more details.

2.8. Flat lengths of simple closed curves and saddle connections. Let (X; q) be a quadratic
differential. If we represent q locally as q(z)dz?2 then jaj = jq(z)j? jdzj defines a singular Euclidean
metric on X with cone points at zeros and poles. The total angle at a singular point of degree is (2
+ ). (for more details, see [St]). This is not a complete metric space since poles are a finite distance
away. However, one can still talk about the geodesic representative of a curve that may pass through
the poles even though the poles. Namely, for a arc in (X; q), consider the lift of this arc to the
universal cover, take the geodesic representative in the completion of the universal cover and then
project it back to (X; q). Following the discussion in [R1, Page 185], we can ignore this issue and
treat these special geodesics as we would any other geodesic.

The homotopy class of an arc (relative to its endpoints) has a unique g—geodesic representative.
Any curve either has a unique g—geodesic representative or there is flat cylinder of parallel
representatives. In this case, we say is a cylinder curve and we denote the cylinder of geodesics

representatives of by F. We denote the Euclidean length of the g—representative of by ‘4(). A

saddle connection on (X; q) is a g—geodesic segment which connects a pair of singular points

without passing through one in its interior. We denote the Euclidean length of a saddle connection
I onq by ‘q(!).

2.9. Period coordinates on the strata. In general, any saddle connection ! joining two zeros of
a cgJadratic differential g = dz? determines a complex number holg(!) (after choosing a branch of
and an orientation of !) by
0 1 0 1
Z p Z p
holg(!1)= @ < A+ @ |m Aij:

We recall that for any = (;;:::;«; &) the period coordinates gives QT () the structure of an affine
manifold. Consider the first relative homology group H1i(S;; R) of the pair (S;) with jj = k: Let

h=(2g+ k 1)= dim H1i(S;;R)
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if &= 1; and
h=(2g+ k 2)=dim H.(S;;R) 1
if &= 1: We recall that given (X; q) 2 QT () there is a triangulation T of the underlying surface
by saddle connections (see for example [Vo, Proposition 3.1] and [Th2, Proposition 3.1]). One can

map
e QT Ch defined by ral@) = holg(h) )

is a local homeomorphism. For any other geodesic triangulation T?, the map T0.q T;}q is linear.

In case of abelian differentials (& = 1) it is enough to choose a basis for H1(S; ; R) from the

edges of T. Note that for non-orientable differentials (& = 1) there will be a linear relation

between the holonomies of the vectors corresponding to a basis for the relative homology (see

§4.3). In this case, it is enough to choose dim(H1(S;; R)) 1 independent vectors of T. For a
more detailed discussion of the holonomy coordinates see [MS1].

2.10. Teichmiller geodesic flow. We recall that when 3g + p > 4 the Teichmiller metric is not
even Riemannian. However, geodesics in this metric are well understood. A quadratic differential
(X;q) 2 QT (S) with zeros at p1;:::pk is determined by an atlas of charts mapping open subsets of
S fp1;:::;pkg to R? such that the change of coordinates are of the form v ! v + c:Therefore
the group SL(2; R) acts naturally on Q'T (S) by acting on the corresponding atlas; given A 2

SL(2;R), A q 2 QT (S) is determined by the new atlas fA;jg: The action of the diagonal
t
subgroup gt = € eot is the Teichmiller geodesic flow for the Teichmiller metric. In

other words, in holonomy coordinates the Teichmiiller flow is simply defined by
< h0|gt(q)(!i) = et< h0|q(li) ;
and
= holggq(li) = e '= holg(h) :
This action descends to QXM (S) via the projection map p: QT (S) ! Q!M(S). We denote
both actions (on Q1T (S) and Q*M(S)) by g:. The subspaces QT () and Q* M () are invariant under
the Teichmiuller geodesic flow. Moreover, we have ([Ve], [Ma]):

Theorem 2.4 (Veech-Masur). Each connected component C of a stratum QM () carries a unique
probability measure in the Lebesgue measure class such that:

the action of SL(2; R) is volume preserving and ergodic;
Teichmiller geodesic flow is mixing.

3. Geometry of a quadratic differential

In this section, we recall some of the basic geometric properties of a quadratic differential (X; q).
We describe how the extremal length of a curve, which can be calculated from the conformal
structure of X, relates to the singular Euclidean metric associated to (X; q). We also define the
notion of a (q;)-regular triangulation, where > 0 is a large constant. This is a partial
triangulation of (X; q) using the saddle connections that captures the geometry of the singular
Euclidean metric associated to g. The main statement of the section is Lemma 3.13 which shows the
existence of such triangulations. In the rest of the section, we establish some basic properties of
(q; )—regular triangulations which are used in section 5.

3.1. Intersection number. In the hyperbolic metric of X, the geodesic representatives of any two
curves and intersect minimally. Hence, the geometric intersection number between homotopy
classes of curves is equal to the intersection number between their geodesic representatives.

In the singular Euclidean metric jgj, this is not true. First, as mentioned in 2.8, the geodesic
representative might pass through the poles even though the poles are removed from the surface.
Also, the g—geodesic representatives of curves and that have geometric intersection number zero
may intersect. However, these intersections are tangential. That is, and may share an edge, but
they do not cross. By this, we mean that any lifts ~ and to the uniVersal cover q of g
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have end points in the boundary that do no interlock. To simplify the exposition, when we say
and intersect, we always mean that they have an essential intersection not tangential.

We also talk about the intersection number between two saddle connections. Here, we say two
saddle connections are disjoint if they have disjoint interiors or if they are equal. The intersection
number between two saddle connections is the number of interior intersection points. The inter-
section number between a saddle connection and itself is zero. In both cases, (saddle connections
and curves) the intersection number is denoted by i(; ).

If A is an embedded annulus, we distinguish between a curve intersecting A and crossing it. To
intersect A, needs only to enter the interior of A. The curve crosses A if enters one side of A and
exits the other. To be more precise, in the annular cover X o of X aSsociated to A, there is a lift of
connecting the two boundary components of Xa . ~

3.2. Extremal lengths and flat lengths of simple closed curves. One can give an estimate for
the extremal length of a simple closed curve in X by examining the singular Euclidean metric jqgj.
As mentioned before, may not have a unique geodesic representative; different geodesic
representatives of are parallel and foliate a flat cylinder that we refer to as F. Denote the two
boundary curves of F by ¢ and . When F is degenerate, ¢ = 6.

We say an annulus is regular if its boundary curves are equidistant. Let E be the largest
embedded regular annulus with boundary curve ¢ and let G be the largest embedded regular
annulus with boundary curve g. Note that E and G may intersect F and each other. In a
degenerate case, the interior of some or all of these annuli could be empty, for example, the interior of
F is empty when has a unique geodesic representative.

We call g, the shared boundary of E and F, the inner boundary of E (and similarly ¢ is the inner
boundary of G). The annuli E and G are called expanding because the equidistance curves parallel
to the inner boundary get longer as they span E and G. Let | = ‘4() and lete; f and g be the g—
distances between the boundaries of E, F and G respectively. According to [R4], when Extx () o,
(see §1.3 for the discussion of the choice of o) we have the following estimates

(5) Mod(E) + Mod(F) + Mod(G) where

Extx()

(6) Mod(E) Log | Mod(F) = 1 and Mod(G) Log x
f g
Here Log() is a modified logarithm function: -

Log(t) = maxlog(t); 1 :

We intend Log to apply only to large numbers. Of course, the value of either e, f or g could be
zero and the second line will be 1. We use the modified logarithm to avoid this issue.

Note that, a simple closed curve that has a short flat length may not have a small extremal
length. We need to measure what is the largest neighborhood of that still has a simple topology.
Later, we use this idea to define a notion of extremal length for a saddle connection.

3.3. Short simple closed curves. As in §2.6, we say a curve is short in q if Extx() o.Denote
the set of short curves in q by Sq. We say is a cylinder curve if the interior of F is not empty. In
what follows, the cases when 2 Sq is a cylinder curve and F has a large enough modulus will need
special treatments. When the modulus of F is extremely small, behaves essentially like a non-
cylinder curve. We make this precise:

Definition 3.1. Let be a positive real number and let M = e 2. We say a curve 2 Sq is a
large-cylinder curve if Mod(F) M. Denote the set of large-cylinder curves by S; and define

Sq = SqnSg :

For 2 S, , the size s of F is defined to be the distance between the boundaries of F.
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Remark 3.2. The constant , which is determined in §6, is the distance between steps of a ran-dom
walk trajectory. We use M instead of just writing e 2 to highlight the fact that M is a bound for
modulus. There is an implicit assumption that is large enough (say, o for some uniform constant
o). That is, unless otherwise stated, all statements hold with uniform constants independent of as
long as o.

Along Teichmiller geodesics, the length of a curve 2 S ghanges slowly while the modulus of
F remains small. More precisely, let

(Xt; at) = ge(X;a);
where g is the Teichmiller geodesic flow. Assuming 2 Sq and 0 t , we have Modg, (F) 1. As a
consequence of Equations (5) and (6), Modq (G) andtModq (E) changte at most linearly and we have
) 1 1 1
Extx() Extx,() Extx()

3.4. The thick-thin decomposition of quadratic differentials. We call the components of S
n Sq the thick subsurfaces of q. The homotopy class of each such subsurface Q of S has a
representative with g—geodesic boundaries. There is, in fact, a unique such representative that is
disjoint from the interior of cylinders associated to the boundary curves of Q. This can also be
described as the smallest representative of Q with g—geodesic boundaries. We denote this
subsurface by Q as well. Define the size sq of Q to be the g—diameter of this representative. The
following theorem states that the geometry of the subsurface Q is essentially the same as that of the
thick hyperbolic subsurface of X in the homotopy class of Q but scaled down to a size sq:

Theorem 3.3 ([R3]). For every essential closed curve in Q,

R ‘
x()  Extx(T )IQ;
S
In particular, the g—length of shortest essential curve in Q is on the order of sq.

Example 3.4. A quadratic differential can be described as a singular flat structure of a surface plus a
choice of a vertical direction. For example, the surface obtained from the polygon in Fig. 2 with the
given edge identifications is a once punctured genus 2 surface. Assume that the edges 2;3;5 and
6 have a comparable lengths, the edge 1 is significantly shorter and the edge 4 is significantly longer
than the others. Choose an arbitrary vertical direction and let (X; q) be the associated quadratic
differential.

o Ul o U»n

Figure 2. Quadratic differential (X; q) and short curves of X.

Then the hyperbolic metric on X has two short simple closed curves; Sq = f;g. The curve is
a cylinder curve and has a small extremal length because the flat annulus F (Fig. 3) has alarge
modulus. In fact, is a large-cylinder curve (S = fg). The curve is a non-cylinder curve and it
has a small extremal length because the expanding anhuli E and G (Fig. 3) have large moduli (S
= fg). Note that the g—geodesic representative of is the saddle connection 1 (the end points of
arc 1 are identiffed).
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Figure 3. The maximal expanding annuli E and G and the maximal flat an-
nulus F.

There are two thick subsurfaces. There is a once punctured torus with a boundary curve
whose g-representative is degenerate and is represented in q with a graph of area zero (the union of
arcs 5 and 6). The other is a pair of pants whose boundaries consist of two copies of andone copy
of . The maximal expanding annuli E and G do not necessarily stay inside of the g—representative
of this pair of pants and they may overlap.

The size of a thick subsurface Q is related to the radii of annuli E, F and G for every
boundary curve . We make a few observations that will be useful later.

Lemma 3.5. Let Q be a thick subsurface of (X; q), be a boundary component of Q and E be the
expanding annulus in the direction of Q. Using the notation of Equation (5) we have

(1) I 2sq.

(2) e sq.

(3) max(e; f;8) ‘q(). (4)
(e+ 1) sq.

(5) If Mod(E) 1 then e sq.

Proof. Since is part of Q, its length is less than twice the diameter of Q which is the first
assertion. To see part two, note that if e is larger than sq, then Q is contained in E which is an
annulus. This is a contradiction. Part (3) follows from Equation (6) and the fact that is g—short. Parts
(1) and (2) imply (e + 1) sq. Hence, to prove part (4), we need to show (e + I) sq.

Since E is maximal, its outer boundary self-intersects. Let be the curve constructed as a
concatenation a sub arc of and two arcs connecting to the boundary points of E associated to the
self intersection of E. Note that the inner boundary of E is a geodesic and its outer boundary
has positive curvature, therefore, the interior of E is convex, and the curve must be essential.

Then I+ e ‘4(). If is contained in Q and is essential in Q, then Extx () 1(Q is a thick
subsurface). From Theorem 3.3 we get,

‘q()
s
If is not contained in Q, we show that there exists a closed curve °in Q whose length is not
much longer than .

Assume that exists Q by intersecting a boundary curve ® and returns via a boundary curve @ (°
and © maybe the same curve). By part (3), max(e®; f%; g°) is larger than 1°, max(e®; f; g?) is larger
than I and ‘4() is larger than both. There is a sub-arc | of connecting ®to ®, in particular, ‘4 (!)
‘a(). 1f %= O Jet O be the curve obtained as a concatenation of two copies of ! and a copy of ®and ®
each. This curve is essential in Q unless Q_is a pair of pants, in which case, we take ° to be the curve
that wraps around © twice. If = 9, then let ° be the curve obtained as a concatenation of | and a
sub-arc of °. Again, this curve is essential in Q unless Q. is a pair of pants, in which case, we take °
to be the curve that wraps around © twice. The curve  resides in Q and ‘4(°) ‘(). We have

e+ 1) ‘a0 “4(°) sa:

1 and hence (e+ 1) sQ:Q
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To see part (5), we note that, if
e
Logl— Mod(E) 1 then e (e+ I): Now,

part (5) follows from part (4).

As a corollary we get the following analogue of the collar lemma:
Corollary 3.6. Let 2 Sq be the boundary of a thick subsurface Q and let be any curve crossing .
Then
‘a() sa:

Proof. We have ‘4() max(e;f;g) and by part (3) of Lemma 3.5, max(e;f;g) |. Hence, ‘4()

(e + 1). The corollary now follows from part (4) of Lemma 3.5.
3.5. Extremal lengths and flat lengths of saddle connections. As mentioned above, we
can also define a notion of extremal length for saddle connections. Let | be a saddle connection

connecting two distinct critical points in (X;q). Let E, be the annulus obtained by taking the
largest regular neighborhood of | that is still a topological disk and then cutting a slit open along!.

Let I = ‘4(!) and e be the radius of E| (the g—distance between ! and the boundary of E|). Then,
we define (the second inequality follows from Equation (6))
1 1
Extq(!) :=

Log(e=l) Mod(E:)"

Another interpretation of this notion of extremal length, that would provide roughly the same
result, is to compute the extremal length in a ramified double cover of (X;q). Denote the end
points of | by p1 to p2. There exists a unique ramified double cover : X; | X with simple
ramification points at only p1 and p,. Note thaty = 1! is a simple closed curve on X .

Lemma 3.7. If Extq(!) o, then
Extx, (1) Extq(!):
Proof. Let g1 be the lift of g to X;. Note that ; has a unique geodesic representative in qi
(Mod(F,) = 0) and E, and G, are conformally equivalent to E1. Hence, by Equation (5)
1 1

Mod(E,) + Mod(G,) = 2 Mod(E:) Ext (!):
q

Exty, (1)
Since | and e change at most exponentially fast along a Teichmiller geodesic, similar to Equa-
tion (7), for q: = g:(q) we have
1 1 1
(8) t
Extq(!) Extq, (!) Extq(!)
Definition 3.8. For any 0 < o, let
q() be the set of saddle connections ! of q so that, either
Extq(!) , or
I lies on a geodesic representative for with Extx() .
Later in the text, we will add further restrictions on the value of depending on (see Lemma 3.13 and
Lemma 6.1). We note however that, in all the proofs, making smaller or making larger does not
effect the constants involved in any of our estimates.

In general, knowing ‘4 (!) is small does not imply that ! has a small extremal length. However,
we have the following lemma which is enough to show that Theorem 1.1 follows from Theorem 1.5.

Lemma 3.9. Assume that (X; q) has a saddle connection ! with ‘4(!) 1. Then, either

1 1
—— Llog, —— or —log,
Extq(!) 2 g(1) Extx()  °
some simple closed curve . In particular,

q() is non-empty.
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Proof. Let | = “‘4(!) and e be the radius of E;. Since the boundary of E self intersects (E is
maximal), there is a simple closed curve , obtained by a concatenation of a sub arc of | and two

arcs connecting ! to the boundary of Ei, with ‘4() (e + I).
Assume first that Sq is empty. Then, ‘4() 1. Since, e 1, we have

e (e+ 1) 1 1 e 1

1 | “q(! and Lo Lo :
q( ) Eth(!) gl glq(!
That is, the first inequality holds. Otherwise, we show that, there is a curve 1 2 Sq with ‘4(1)
(e + 1). This is because, either 2 Sy and we can take 1 = or intersects a thick subsurface Q in
which case we let 1 be any boundary component of Q. Using Corollary 3.6 and part one of Lemma
3.5, we get:

(e+ 1) ‘q() sa ‘ql1):

Since the total area of q is 1, there is always a thick subsurface of size comparable to 1. Let

boundary component of Q1, Qi 1 and Q; share a boundary curve ; and s¢ 1. Let i = “‘4(i) and let
So = |1.

Consider G,, the expanding annulus with inner boundary ; in the direction of Q; with radius g;.

For i 1, part (4) of Lemma 3.5 implies, (gi + |i) si and by part (1) si 1 li. Hence, from
Equation (5), we know that

g |

1 max Log ;1 gd0g " - Logt+ ™ Si

Extgt— L= l; —S71 I

That is, the common boundary curve of two surfaces of very different size has a very small extremal

length. Also, (recall that sp = |1 (e + I)):

si!e+l 1 e+ 1

(9) Ye

so | |
Here, the maximum value of k depends only on the topology of S. Therefore, taking the logarithm
of both sides of Equation (9), we conclude that either

there is some i where, ﬁmg | 1 or Log eT—l Log 1T
In the first case, the lemma holds for = i. In second case,
# Log iog € |—+|:eg —
Extq(!) I I “a(h)

Remark 3.10. Note that in both Lemma 3.7 and Lemma 3.9 the implied constants only depend on
the topology of S:

3.6. A (q;)-regular triangulation. We would like to mark a quadratic differential q by a
triangulation where the edges have a bounded length. However, the notion of having a bounded
length should depend on which thick subsurface we are in. That is, we would like the g—length of
an edge to not be longer than the size of the thick subsurfaces it intersects. The complication comes
from the fact that a saddle connection may intersect several thick subsurfaces of various sizes.

Also, as mentioned before, large-cylinder curves will require a special treatment. Hence, we
triangulate only the complement of large-cylinders. Recall that two saddle connections are said to be
disjoint if they have disjoint interiors but they may share one or two end points.

Definition 3.11. Let (X; q) be a quadratic differential. Given a cylinder curve , let be an arc
connecting the boundaries of F that is perpendicular to . By a (q; )-regular triangulation T of q we
mean a collection of disjoint saddle connections satisfying the following conditions:
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(1) For 2 S , denote the interior of a cylinder F by F. Then, T is disjoint from F and it
triangulates their complement

qnkF: ESq

That is, the complement of T is a union of triangles and large-cylinders F, 2 S . an
particular, T contains the boundaries of F.

(2) If an edge ! of T intersects a thick subsurface Q of q then ‘4(!) saq.

(3) If is acylinder curve in S, then intersects T a uniformly bounded number of times.

We shall see that condition 3 means that the triangulation T does not twist around short simple
closed curves.

Remark 3.12. It is important to choose the implied constants in conditions 2 and 3 in Definition 3.11
large enough so that every quadratic differential q has a (q; )-regular triangulation. In fact, we
choose the constants so that the key Lemma 3.13 below holds.

Lemma 3.13. For every there is 1() so that for < 1() the following holds. Let
be a subset of
al) consisting of pairwise disjoint saddle connections. Then
can be extended to a(q; )—regular triangulation T.

Proof. We would like to triangulate each thick piece Q separately and let T be the union of these
triangulations. However, saddle connections in
may intersect a boundary curve of Q. To remedy this, we perturb slightly to a curve thatis a
union of saddle connections, lies in a small neighborhood of and is disjoint from
(see Claim 1). These curves divide the surface into subsurfaces with nearly geodesic boundaries.
We denote the surface associated  to Q with Q. We  then extend
to a triangulation in each Q so that the edge lengths are not much longer than the diameter of Q
which is comparable to sq (see Claim 3) and let T be the union of these triangulations. However,
one needs to be careful that Q does not intersect any subsurface of size much smaller that sq,
otherwise the resulting triangulation would not be (q; )—-regular.

Claim 1: For every 2 Sq, thereis a representative of that is a union of saddle connections, lies in a
(‘q()=2)—-neighborhood of and is disjoint —  from

For ; 2 Sq, and do not intersect. Furthermore; if is a boundary of Q then intersects only
surfaces that are larger than Q, namely, if intersects a thick subsurface Q° we have:

Sqo Sq-

Proof of Claim 1: Let 2 Sq be a common boundary of thick subsurfaces Q and R. Recall thatM =
2 2. If Mod(F) M, we can choose 1 small enough to ensure that is disjoint from
.This is because, if | is part of a short curve %, then ! is disjoint from because short curves and °do
not intersect. Otherwise, ! has to satisfy the first assumption in Definition 3.8. But, F does not
contain any singular points and any arc ! 2
intersecting has to cross F. Therefore, ‘q(!) f (f is the distance between the boundaries of F)
and, for the radius e; of Ei, we ‘

have er ‘q() (otherwise would be contained in E1). But Mod(F) = . 0 Mﬁd thus (the

second inequality follows from Equation (6))

1 1 () e ") al . 1

L Extg(l) OBy HeET losy= 2
which is not possible if 1 is chosen to be small enough. To summarize, if Mod(F) M, then is
already disjoint from -
, we can take = .

If Mod(F) M, then either E or G has a large modulus. The annulus with the larger modulus is
in the direction of the thick surface with the larger size (Lemma 3.5). Assume E, the annulus in the
direction of Q, has a large modulus. Let e be the distance between the boundaries of E. By part (5)
of Lemma 3.5 and the previous assumption we have

e Sq Sr:
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Denote the (‘q()=2)-neighborhood of in E with E. The annulus E may not be contained entirely
in Q and may intersect some thick subsurfaces with very small size. But E does notintersect any
small subsurfaces. To see this, assume Q° intersects E. Since Q° isdisjoint from , it has to enter E
intersecting the outer boundary of E. But e is much larger than ‘4(), and hence:

Sqo 'q(@QO)> e ‘q()=2 sq:

Thus, the last condition of the claim is satisfied as long as Stays in E.

Note that B no arc in
can cross E (intersect both boundaries). This is because, if | is anarc in a curve 2 Sq, then
it does not intersect since and have intersection number zero. Otherwise, Extq(!) is small, which
implies that its length is much less than the injectivity radius of"any point along !. But the
injectivity radius of any point in E is less that 2'4(). Hence, (by choosing small enough) ‘4 (!) is
less than the distance between the boundaries of E with is equal to ‘4()=2.

Consider the union of and the set
of o arcs in
that intersect . The convex hull H of this set in E is an annulus (perhaps degenerate). We
observe that the interior of H does not contain any singular points. Otherwise, there would be a

geodesic quadrilateral, where two edges are subsegments of arcs in

and one edge is a subsegment of , that contains a singular pointin its interior. But this violates
the Gauss-Bonnet theorem. Let be the boundary component of H that is not . Then is in the
homotopy class of and lies inside E. Also, because the interior H does not contain any singular
points, is disjoint from every saddle connection in
. Furthermore, by the triangle inequality, any saddle connection ! that appears in has a g—length
less than or equal to 2/4().

It remains to show that for ; 2 Sy, and are disjoint. Assume ‘q() ‘q(). Then, is
disjoint from E, otherwise, would be contained in E which is an annulus an does not contain
any curve non-homotopic to . This means is disjoint from which is contained in E. Also, since H
contains no singular points, if a saddle connection ! 2 -
intersects then it also intersects . But then ! isin - -

and hence it is disjoint from . Therefore, is disjoint from the convex hull H and thus also from .
This finishes the proof of claim 1.

Next, o - let
be the set of edges that appear in curves for every 2 S. We have shown that saddle connections in
are disjoint from - those in

. After removing the interiors of large cylinders from the quadratic differential (X; q) and cutting
along curves , 2 Sq, we obtains a collection of subsurfaces with nearly geodesic boundaries. Denote
the representative of a thick subsurface Q that is disjoint from curves by Q.

For each 2 S if F is disjoint from every saddle connection in
[
, We choose a saddle connection ! that crosses F, is disjoint from (does not twists around ). In
particular, ! is disjoint from every saddle connection

[
and has a length that is comparable with ‘q(). Let

" denote the set of such saddle connections !.

q ’

Claim 2: Saddle connections in
To =
[
[

n

satisfying conditions (2-3) of Definition 3.11.

Proof of Claim 2: All the conditions follow immediately from the construction, but the argument is
long since we have to look at all the cases. We have already shown that these edges satisfy
condition (1) and arcs in satisfy condition (2). To see that an arc ! 2
satisfies condition (2)
note that if it did not, ! would intersect a thick subsurface Q with ‘4 (!) sq. The radius of E| is
much larger than length of ! (Iog &L %), which implies E1 contains Q. This is a contradiction.
We show that arcs in Tp satisfy condition (3). Namely, if | 2



intersects a cylinder F, we need to show that ! intersects a bounded number of times. In fact, if
they intersect more than once, then ‘4(!) ‘4(). But then E: would contain the curve which is a
contradiction (E is a topological disk). Also, the curve is a convex hull of the union of the curve

which is disjoint
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from F and a bounded number of arcs in -
, each of which intersect at most once. Hence intersects at most-a bounded number of times
and thus arcs in satisfy condition (3).
Since, for every 2 S, , there is a saddle connection in To crossing F, any triangulation
containing To is guaranteed to satisfy the condition (3).

In the next claim, we describe how to add the remaining edges to To while still satisfying
conditions (1) and (2).

Claim 3: A partial triangulation of Q where the length of edges are less than a fixed multiple of sq
can be extended to a triangulation using saddle connections of length less than a larger fixed
multiple of sq.

Proof of claim 3: We prove the claim by induction. Start by cutting Q along the given edges. Each
cutting increases the diameter by at most twice the length of edge being cut. Hence, in the end, we
have several components each with diameter comparable to sq. If all components are triangles, we
are done. Otherwise, some component contains a saddle connection that is not part of its
boundaries or the given triangulation, the shortest such saddle connection has a length less than
the diameter of the component it is in, which is comparable to sq (again, see [Vo, Proposition 3.1]).
The claim follows from the fact that this process ends after a uniformly bounded number of times.
The diameter grows at most multiplicatively each time but still it is uniformly bounded multiple of
sq in the end. We choose the constant in the second condition of a (q; )-regular triangulation large
enough so that the outcome of this algorithm is in fact a (q; )—regular triangulation.

The triangulation T is now defined to be the union of all the saddle connections in Tp and those
coming from claim 3. The newly added edges in Q have a g—length less than a fixed multiple of sq
and, for any thick subsurface R that Q intersects, we have sq sr. Hence, the condition (2) in
Definition 3.11 is satisfied. Therefore, the resulting triangulation T is (q; )-regular.

3.7. Twisting and extremal lengths. In this section we define several notions of twisting and
discuss how they relate to each other. This is essentially the definition introduced by Minsky
extended to a slightly more general setting. We denote the relative twisting of two objects or
structures around a curve by twist (;). This is often only coarsely defined, that is, the value

of twist(; ) is determined up to a uniformly bounded additive error.

In the simplest case, let A be an annulus with core curve and let and be homotopy classes of
arcs connecting the boundaries of A (here, homotopy is relative to the end points of an arc).
The relative twisting of and around, twist(;), is defined to be the geometric intersection number
between and .

Now consider a more general case where is a curve on the surface S and and are two
transverse curves to . Let S Be the annular cover of S associated to and denote the core curve of
S again By . Let and ~ be the lifts of and to S (respectively)“that connect the boundaries of S.
Note that freely homotopic curves lift to arcs that are homotopic relative their endpoints. The arc
is not uniquely defined, however any pair of lifts are disjoint. We now define

twist(;) = twist(;~);

using the previous case. This is well defined up to an additive error of 2 (see [Mi]).

We can generalize this further and define twisting between any two structures on S as long
as the structures in question provide a (nearly) canonical choice of a homotopy class of an arc
connecting the boundaries of S. “Then we say the given structure defines a notion of zero
twisting around . The relative twisting between two structures is the relative twisting between
the associated arcs in S Here are a few examples:

Let X be a Riemann surface. Then ~can be taken to be the geodesic in X that is
perpendicular to in the Poincare metric of X. Alternatively, we can pick a shortest curve
transverse to and let be the lift’ of that connects the boundaries of X. In any case, the
choice of is not unique,~but any two such transverse arcs have bounded
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geometric intersection number (see [Mi]) and the associated relative twisting twist(; X) is
well defined up to an additive error.

Let g be a quadratic differential. As before, can be taken to be the geodesic in ¢ that is
perpendicular to in the Euclidean metric coming from g or a lift of a g—shortest curve
transverse to (see [CSR]). We denote the associated relative twisting with twist(; q).

Let T be a (q;)-regular triangulation of (X; q) and 2 S . Then we can choose a curve
transverse to that is carried by T and has a bounded cdmbinatorial length in T and let

the lift of to the annular cover of define zero twisting. Since curves with bounded
combinatorial length intersect a bounded number of times, the associated relative twisting
twist(; T), is again well defined up to an additive error.

The expression “fix a notion of zero twisting around ” for a curve in S means “choose a
homotopy class of arcs connecting the boundaries of S.”

3.8. Intersection and twisting estimates. In this section we establish some statements relating
Extremal length, twisting and intersection number. We start with a theorem of Minsky giving an
estimate for the extremal length of a curve. For a X 2 T(S), let Sx be a set of g—short simple
closed curves in X. There is a uniform constant B depending on ¢ and the topology of S so that, for
every X, any curve not in Sx intersects a curve with Extx() B. That is, the curves with
extremal length at most B fill every complementary component of Sx. Let Bx be the set of curves
with extremal length at most B.

Theorem 3.14. (Minsky, [Mi, Theorem 5.1]) Given X 2 T(S) and a simple closed curve 2 S

(10) Extx() mazxsi(; )2 + iwistz(;X)Eth() + max i(;)z:;'he

Eth( B X

multiplicative constant depends only on the topology of S.

It follows from the definition of twisting and elementary hyperbolic geometry that if twist(; X) is
large (that is, if twists around a lot), then Extx() Extx().

Corollary 3.15. For every curve and any X 2 T(S), there is a curve so that,

B N
EXtx (T Extx() i(;) and twist(X;) = O(1):
Note that the reverse of first inequality always holds (Equation (2)).

Proof. If 2 Sx, then we choose to be a curve that intersects once or twice, is disjoint from
other curves in Sx, where twist(; X) is bounded and where i(; ) = O(1) for 2 Bx. Applying
Equation (10) to we have Extx () %, which implies that the corollary holds for and . If is
not short in X, Theorem 3.14 abplies to . Since the number of elements in Sx and By

is uniformly bounded, Extx () is comparable to one the following terms:

i(;)?

Y] . . .12,
Exty () i(;)2 twist(; X) Extx() or i(;)%:

In the fist two cases 2 Sx and in the third case 2 Bx. We argue in 3 cases.

If Extx() '@ mﬁm’.then the corollary holds for = (the second conclusion follows from
the fact that the twisting number of a short curve around a long curve is uniformly bounded).

In the second case, we take to be a curve transverse to with (see above) Extx () 1—() anaxl —

twist(; X) = O(1). In particular

Ext

(11) twist(; X) twist(;):

The curve also intersects and hence Exty () Extl__(')_ Extx (). Thus, twist around at most a
. . X . . .
uniformly bounded number of times. Also, every strand of intersecting intersects
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at least twist(;) times (up to an additive error). In this case twist(;) is large and the additive
error can be replaced by a multiplicative error to obtain

(12) i(;) twist(;) i(;):
Therefore,
(Assumption on ) Extx () i(;)? twist(; X) Extx()
i(;) twst(;) Bxtx ()
(Equation (11)) i(;)?
Extx() ’

(Equation (12))
which implies the corollary.

The last case is when 2 Bx and Exty () i(;)2. In this case, we take = . Since has bounded
length in X,

twist(; X) = O(1) and Extx() 1:

Again, the corollary follows.

We also recall the following lemma ([R2, Theorem 4.3]):

Lemma 3.16 (Rafi). For a quadratic differential (X; q) and a Riemann surface Y 2 T(S) with
dr (X;Y) = 0O(1), we have
1

twist(Y; q) ExtW

3.9. Geometry of quadratic differentials and (q;)—regular triangulations. As we men-
tioned at the beginning of the section, a (q;)-regular triangulation is supposed to capture the
geometry of q. We make this explicit in the following two lemmas. In Lemma 3.17, we relate the
length of a saddle connection to its intersection number with a (q; )-regular triangulation. Lemma
3.18 shows that the notion of zero twisting coming from q or T is the same. These are used to
prove Lemma 3.19 but more essentially they are needed in §4.

Lemma 3.17. Let T be a (q;)-regular triangulation and !t be an edge of T. Let s be the
minimum of sq where Q is a thick subsurface of g that intersects !t . Let | be any other saddle
connection in q so that, for every curve 2 S, , twist(!;q) = O(1). Then

|
i(lr; 1) 9+

“(s

Proof. Condition (2) in the definition of a (q; )-regular triangulation implies that ‘q(!t) s. Itis
sufficient to prove the lemma for a subsegment of ! 1 with a g—length less than s=7, because !t
can be covered but uniformly bounded number of such segments. Hence, without loss of generality,
we assume ‘q(!1) s=7.

Consider the s=7-neighborhood N of !t. Then ! \ N has at most O % components.
Hence, it is sufficient to show, for every component lof | \ N, that

i(tr;¥=0(1):

First, we claim that any non-trivial curve in N is homotopic to some curve in Sq. This is
because, any nontrivial loop in N has a g—length of at most 3s=7. By the definition of s, it can
not be an essential curve in any subsurface Q that ! 1 intersects. Assume it intersects curves 1;2 2
Sq that are boundary curves of Q1 (1 may equal 2). Then, ‘4(1) and ‘4(1) are much smaller than ‘4()
which is at most 3s=7. But, the sum of ‘4(1), ‘q(2) and twice the distance between 1 and > (the sum
is less than s) is an upper-bound for the size of Q which is assumed to be larger than s. The
contradiction proves the claim.
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Qs

Figure 4. The arc !t intersects curves 1;2 2 S and thick subsurfaces Qi; Qz
and Qz. Each component lof | \ N intersects !t only a bounded num-ber of times
outside of cylinders F  and F . Thia numbeg of intersection points inside of F, is
bounded because of the assumption on the twisting.

We have shown that a closed curve in N cannon intersect curves in Sq. However, the saddle
connection !t may still intersects some curve 2 S (in fact more than one, see Fig. 4). As before,
let be an arc in F that connects the boundaries of F 4nd is perpendicular to them.

First we observe that the number of intersection points between !t and !inside of F is
uniformly bounded. This is because both !t and !lintersect a uniformly bounded number of times.
(This follows from the definition (q; )-regular triangulation and the twisting assumptionon !.) If
two arcs inside of a cylinder have a large intersection number, at least one of them has to twist
around F a large number of times.

It remains to show that the number of intersection points outside of all cylinders F is bounded. To
see this we observe that, for any thick subsurface Q, it is not possible to have a subsegment of !y
and a subsegment of ! that are contained in Q and have the same endpoint. Otherwise, the
concatenation would create a two segment curve that is non-trivial in N. Hence, it has to be
homotopic to some curve 2 Sq. Which means, and create a cylinder with total negative curvature
which contradicts the Gauss-Bonnet theorem. (See [CSR, Lemma 5.6] for a more detailed discussion.)

Since the number of thick components Q is uniformly bounded and !t and ! can intersect at
most once in each Q we conclude that the total intersection number outside of cylinders F is
uniformly bounded as well. This finishes the proof.

Lemma 3.18. For a quadratic differential (X;q), 2 S gnd a (q; )—regular triangulation T we
have

twist(T; q) = O(1):

Proof. Let Qi1 and Qy be the thick subsurfaces of (X; q) glued along the cylinder F (which by
assumption, has a modulus at most M ), and let be an essential curve in Q1 [ F [ Q2 that is
transverse to and has the shortest combinatorial T—length. A representative for the curve can be
constructed using edges of T that intersect either Qi or Q. Consider such a representative
traversing the minimum possible number of edges. Let be a curve transverse to with the
shortest g—length. From the definition of relative twisting,

+

twist(T; q) i(;): Hence, it

is sufficient to show that i(; ) is uniformly bounded.
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The curve intersects once if Q1 = Q2 and twice otherwise. Its restriction to Q; has a length
bounded by O(sq,) and its restriction to F has a length bounded by ‘q() (Mod(F) is bounded and
there is no twisting around ) which is less than both sq and sa - An argument similar to that of
Lemma 3.17 implies that intersects any edge of T at most a bounded number of times.

On the other hand, each edge of T appears at most twice along the representative of , otherwise a
surgery argument would reduce the length of . Also, the total number of edges of T is bounded by
the topology of S. Hence, i(;) is uniformly bounded.

3.10. The number of (q;)—regular triangulation. We now count the number of (q;)-regular
triangulations near a point in Teichmiller space. We can think of a (q; )-regular triangulations on
(X; q) as topological objects on S, after being pulled back by the marking map fx : S ! X, up
to homotopy. That is, we say a (q;)-regular triangulation T on (X;q) is equivalent to a q°-
regular triangulation T? on (X°; q°) if the pre images f 1(')I(') and f l('[/'(00) are homotopic on S. The
homotopy does not have to fix the vertices of T. For a multi-curve So, we say T is equivalentto T® up
twisting around So if, T is equivalent to (T°) where is a multi-twist with support on curves in Sg.

Lemma 3.19. Let U be a ball of radius one in T (S) centered at Xo. Then the number of equiv-
alence classes, up to twisting around Sx , of (q;)-regular triangulations T on a quadratic differ-
ential (X; q) where X 2 U is uniformly bounded.

Proof. We start with a topological counting statement. Let So = S¢ [ Src‘) be a system of curves
on S. For every subsurface Q in S nSo, let @ be a marking for the subsurface Q in the sense of

i k. Each is contained in Q, intersects i once or twice and is disjoint from j, j = i. Also, for 2 '
S", let be a curve transverse to that is disjoint from all other curves in So andi(; q) = O(1).
Define 0

M=[ al Sol fgasn:a

0
Claim: Given a set M as above, there is a uniformly bounded number of possibilities for the

homotopy class of a triangulation T, triangulating S n S5, where the curves in M and T have
representatives with the following properties:

(1) curves in M have no self intersections and intersect each other minimally.

(2) forany 2 S€,,i(T;)= 0.

(3) forany 2 q, i(T;) = O(1).

(4) for 2 S" twist(T;) = O(1), and i(T;) = O(1).
To see the claim, note that the curves in M divide S into a uniformly bounded number of com-
plementary regions, each one is either a polygon or an annulus parallel to a curve 2 S¢.,,Choose a
representative of the homotopy class of T that intersects curves in M minimally. There are a
uniformly bounded number of possibilities for the location of vertices of T. Once the vertices of T are
fixed, there are a uniformly bounded number of possibilities for any given arc, with end points on
these vertices, that can appear as an edge of T. This is because there are a uniformly bounded
number of possibilities for the intersection pattern of the given arc with the complementary regions.
Also, each region is either a polygon where there is a unique arc (up to homotopy) connecting any
two edges (or a vertex to an edge) or an annulus neighborhood of a curve 2 S¢ where there are two
possibilities (edges of T are simple and disjoint from curves in S€).

It remains to show, that for every (q; )-regular triangulation Tq on (X; q) where X 2 U, thereis
a set of simple closed curves Mg so that Tq and Mg satisfy the above properties and then to
bound the number of possibilities for the set M.

Let (X; q) be a quadratic differential so that X 2 U. We construct Mq as follows: The curves
Sq = S [ S have a uniformly bounded length in Xo hence there are a uniformly bounded
numberof possﬁbilities for these sets. For each thick subsurface Q of g, choose a g—short marking q in
Q. Curves in q have a uniformly bounded length on X and hence a uniformly bounded length in Xo.
Hence there are only a uniformly bounded number of choices for these as well. Now for each ,
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Hedce—

0

let ¢ be the shortest g transverse curve to . Lemma 3.16 implies that twist(Xo; %) ¢,., -

the number of possible choices for 9 is of the order of ; 1. Define—
Xo

[
Mg= a [ Sql f9g%:qa

Bu construction, the total number of possible sets Mq chosen as above is of the order of G(Xo).
However, up to twisting around Sx_ there are only finitely many choices. For a (q;)-regular
triangulation Tq in (X; q), we need to check that the conditions (1)-(4) hold for T4 and Mq. Perturb
the g—geodesic representative of curves in Mq so that they have no self-intersections, intersect each
other minimally and the intersection number with T does not increase. Condition (2) follows from
the construction of (q; )-regular triangulations. Condition (3) follows from Lemma 3.17. The first
part of condition (4) is a consequence of Lemma 3.18 and the second part again follows from Lemma
3.17.

4. Intersection bounds between regular triangulations

As before, let Q() be the stratum of quadratic differentials of type . In this section, we
establish some intersection bounds for (q; )-regular triangulations associated to a pair of quadratic
differentials that appear at the end points of a geodesic segment in Q().

Recall, from Remark 3.2, that there is an implicit assumption that the constant is large. That
is, there is a uniform constant ¢ so that all statements in this section hold as long as o¢. In
particular, the implied constant in our estimates do not get worst as gets larger.

4.1. Notation. First we need to establish some notations.

1. For a fixed constant ro, define B(Q(); X; ) to be the set of points Z 2 T(S) so that there is a
Teichmiller geodesic

Gz: [a;b] ! Q'T(); Gz(t) = (X¢; ae);
such that
dr (Xa; X) ro; dr (Xb; Z) ro; b a:
and

(Xe; at) 2 Q():
One could think of B(Q(); X; ) as a ball of radius centered at X, except that one is allowed only to
move in the direction of Q(). Since ro is fixed, we refer to any constant that depends on rp as a
uniform constant. The value of ro will be determined in §6.2 depending on the choice of the net
N.

2. We use the notation of Equation (5) for qa and denote the flat and expanding annuli associated to
acurve by E?, F2 and G? and distances between their boundaries by e?, f? and g?. Let, be an
arc of length 2 connecting the boundaries of F. Also, let I = “q () and let d® = max(e?; f?; g?)
be the maximum distance between the boundaries of these annuli. As a consequence of Equations (5)
and (6) we have

1 d? 1 fe

(13) Exte() I and T

3. Let T, be a(ga; )-regular triangulation and Ty be a (qp; )—regular triangulation. The geodesic flow
induces a one-to-one correspondence between saddle connections of g, and q,. Hence, we can
consider Ty as a union of saddle connections in g,. Then T, and T, have identical vertex sets and
their edges are either identical or intersect transversally. The slope of a saddle connection in ga (or
in gp) is a well defined number in the interval [0; 1].
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Definition 4.1. Let !5 be a saddle connection in ga and let !, be a saddle connection in qp.
We say !}, intersects !, positively, if when considering them both in ga (or qb), the slope of !}, is
larger than the slope of !|,. We say !}, intersects !, essentially positively if either !, intersects !,
positively or i(!s;!ps) = O(1). We use similar terminology for intersection between a saddle
connection and a cylinder curve and two cylinder curves.

4.2. Intersection and twisting bounds between T, and Ty. For the rest of this subsection,
we assume that g, and g, Ta and Ty, are as described in the beginning of the section.

Lemma 4.2. let 2S,,,!s 2 Tpandp 2 Sz, then
twist(qa; !p) = O(1) and twist(qga; b) = O(1):

Similarly, let 2 S la 2 Ta and 5 2 Sx, then

9p ’
twist(qp; !'a) = O(1) and twist(qp; a) = O(1):

Proof. Let be the arc connecting the boundaries of F 2 and is perpendicular to them. Then, by

definition of S, ,

4;"“(())- Mod(F?) e 2:q.

‘

Therefore s
lQb()
()
That is, twists around in g, a bounded number of times. But the same is true for !y. This gives a
bound on i(!p; ) and thus on twist(qa; !b). Also, the curve p is short in Z and hencein gp. A short
curve can not twist around any other curve. Hence i(p;) is uniformly bounded. Which means
twist(qga; b) is uniformly bounded. The proofs of the other two assertions are similar.

1

Remark 4.3. The main consequence of this lemma is that the twisting condition of Lemma 3.17 is
satisfied and can be applied freely.

Lemma 4.4. Let !, and !y be edges of T, and Ty, respectively. Then ! intersects !, essentially
positively and

i(la; 1p) e:
Proof. Let Q, be the thick subsurface of g, with the smallest size that intersects ! ; and let s, be the
size of the subsurface Q,. Recall that, by the definition of a (qa; )—regular triangulation, we have
‘q.(1a) sa:
We denote the horizontal and the vertical lengths of |, by x, and y,. Let Qu, sb, Xp and y, be
similarly defined. The length of |, in Q is

P (xae )2+ (yae )% xae + yae

If i(!a; !v) = O(1) we are done. Otherwise, Considering !, and !, in Qp, in view of Remark 4.3,
Lemma 3.17 implies that
(

. Iq la)
i(la;lp) "2" 4 O(1):b

‘ap (1a)

s
However, since i(!a; 'v) is large, is large and we can incorporate the additive error into the

multiplicative error. That is,

‘ |
(14) i(a; !p) qb(-a) Xa€ + y€ o

S

Similarly, considering !5 and !, in Q, we ge?
‘ ! +
(15) i(10;15) 0'b) Y€ * Voe
s s
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Observing that xa;ya Sa and Xp;yb Sb, We can multiply the two inequalities and take a
square root to get i(!a; !p) e.

Now assume that !, does not intersect !, positively. This means that the slope of !, in qp is
larger than the slope of I,. That is

Ya€ Yb

2
= X e X .
- . ) aYb bYa

From the product of inequalities in Equation (14) and Equation (15), we have

2 2
1. |b)2 XaXp + YaYb + XaYp €~ + XpYa€
ca, -

i ab
XaVbe? XpYa > a
areE "R - 0(1):
Sbs SaSb

For a simple closed curve and a triangulation T, we say T intersects essentially positively if
any saddle connection in T intersects any saddle connection in the geodesic representative of
essentially positively.

Lemma 4.5. If 2 Sx and 2 Sz then intersects T, essentially positively and
e
twist(X;2)i(; Ty) g —_—
EXtX ‘ ’
Similarly, if 2 Sz and 2 Sx then intersects T, essentially positively and
e

Eth‘j.

Proof. Let be a simple closed curve in Sx nSz. Applying Lemma 3.16 to the pair X and q, and
to the pair Z and qp, we get

twist(X; 2)i(; Ta) g

1
EXtX () ’
(The term *is omitted from the right hand side because it is bounded and can be absorbed in
z
the multiplicative error.) Hence, to prove the lemma, it is sufficient to show that the expression
p%ls an upper-bounds for both

(16) twist(X; Z) twist(ga; qb) +

i(; o)

Extx ()

Let !, be an edge of Ty andtetQpbe the thick subsurface of g with the smallest size intersecting !.

Let sp be the size of Qp (thus ‘g (!b)bsb, by the definition of a (qv; )—regular triangulation). Applying
Lemma 3.17 to !p and in qp, we get

and twist(qa; qb) i(; Tb):

(17) i(; ') O(1) lqb()—efzb b

Also, each subsegment of !, with end points in has 3 length Iasrger than d?. Hence,

e lqa(!b) Sb .
I(I!b) 1 da . dia

Multiplying these two equations, taking the square root we and summing over all arcs in T, we get
r
Ia

iGTe) O(1) e

FER
In view of Equation (13), we obtain
i;Te) O(1) e " EX&OT
Dividing both sides by Extx () we obtain
(18) i(; Tp) e+ O(1) e
Extx () Extx() Extx ()

]
o]
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This is the first estimate we required.

We now find an upper-bound for twist(qa;qp)i(; Tw) by finding separate upper bounds for
twist(qga; gp) and i(; Tp). The argument involved in this new upper bound for i(; Tp) is somewhat
similar to above, but the two bounds do not imply each other. We need to consider the image of F 2
in gpb under the Teichmiiller geodesic flow. Denote this cylinder by F°, the distance between its
boundaries by f° and let ® be an arc of length f° connecting the boundaries of F®. LetI°= ‘g, ().
Note that the area of F2 and F® are equal, that is

12F2 = I°f°:
Consider again the arc !y in Ty of gp—length of order s,. Then the gy,—length of every component
of Iy \ FP is larger than f2. Therefore

b
" Sp Syl
(o) , 2, 2
As before, applying Lemma 3.17 to !, and in g, we have
b b
i) ko)
Sb Sb
The reason we can ignore the additive errors here is that since is not shortin Z, it has to either be an
essential curve in Qp, or intersect some boundary curve of Q. In either case, I° sp, in the first case
by definition of the size and in the second case by Corollary 3.6. Hence, the additive error can be
absorbed into the fraction ! . I\/Iultlpl\!mg the last two inequalities, taking the square root and
summing over all arcs in T,, we obtain
b

(19) i To) #

a f.a_i—

We now argue that a component of !, \ F can intersect atbmost a uniformly bounded number of
times: since is not short in Z, ‘4 () Sb and ‘4 (') Sb, which means the intersection number
“ab ( o) o O( ) Therefore, the relative twisting of g, and

gp around is comparable to the |ntersec3c'10n number between @ and ® which is at most the ga—
length of divitled by the g.—length of . That is

between !, and is at most

b
twist(qa; go)  O(1) i(?;°) ef :

|a
Taking a product and using the second part of Equation (13) we get:
|fo 1

(20) twist(ga; qu) i(; To)  O(i(; Tp)) er e Vet
e g e —
o TEXT T

By Equation (18), we have i(; Tp) is much smaller than pﬁHence,
XTx

e
Ethr)'i
The estimate in the Lemma follows from Equations (16), (18) and (21).

It remains to show that !, and intersect essentially positively. Let !, be a saddle connection
of that intersects !, many times. Then, by Lemma 3.17, ‘q,(!a) s». However, ‘g, (!s) spand
hence ‘4, (!a) lg,('s). If the slope of ! was smaller than Iy (say in qp») then we would also have ‘g
('a) ‘g ('p). Hence, !5 intersects !y at most twice (its length is less than d®). This proves
that !p intersects’! essentially positively. But this is true for every saddle connection of . Thus
Iy intersects essentially positively. The case when 2 Sz can be treated similarly.

(21) twist(da; ab) i(; To) #

Lemma 4.6. Let 2 Sx and o2 Sz. Then
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(1) If o=, then

i(; 0) twist, (X; Z) twist(X; Z) o €
Extx () Extz (o)
(2) If = o, then twist(X; Z)
PExty () Exty (o) ——
Proof. It is enough to prove that
(22) twist(X; Z2) pl:thUl:thU €.

If = o; this is equivalent to Equation (2). Also, if = g and 2 Sz, then the inequality (1) trivially
holds (the left hand side is 0). Otherwise, from Theorem 3.14 (estimating Extz()) we have

(23) i;0) Extz(o) twist,(X; Z) ) Extz():

Multiplying the above equation to Equation (22) we obtain part (1) of the lemma.
By Corollary 3.15, (replace X with Z, with and with o) there always exits a simple
closed curve ¢ so that twist(p;Z) = O(1) and

(24) P EXTZ{oTEXTZII TT; o): On the

other hand, from Theorem 2.1 we have

(25) P Extx(o) e TEXTONT

and from Theorem 3.14 (this time estimating the length of s X) we have

(26) i(;o)tWiSt(X;o)pEth() pEth(o)i

Since twist(o;Z) = O(1), we can replace twist(X; o) with twist(X; Z) in the above inequality. Now,
Equation (22) is obtained by successive substitution using Equations (23), (24), (25) and (26).

4.3. Relations between intersections numbers. So far, we have provided upper-bounds for
the intersection numbers between the edges of T, and the edges of T,. But these intersection
numbers are not independent. The fact that the edges in T, intersect edges in Ty essentially
positively allows us to find relations between these intersection numbers. In this section we will
describe these relations. There are two kinds of relations.

Lemma 4.7. For every triangle in T, with edges !1, !> and !3 , there are sings &;;8;&; 2
f 1;+1g so that, for every edge !y, in Ty (respectively, for any , 2 S, ), we have the relation:

0 1
X X

(27) &i(li; 1p) = O(1) @respectively, &i(li;p) = O(1)A:
i=1;2;3 i=1;2;3

The additive error depends on the constant involved in the definition of essential positively.

Proof. There is a leaf of the vertical foliation that passes through a vertex of the given triangle
before entering it. Assume this leaf intersects the interior of !3 and makes an acute angle with !
inside of the triangle. We claim that, since !, intersects !1 essentially positively, the number of
sub-arcs of !y going from !1 to !2 is uniformly bounded. This is because either the slope of !y
is larger than the slope of !1 and every time !, intersects !1 it has to intersect !3 next, or it
intersect |1 a bounded number of times. Hence, we have

i(te; te) + i(l2; ) = i(!3; 1p) + O(1):

Note that the signs & = 1, & = 1 and & = 1 depend only on the triangle and are independent
of Iy. The proof for  is similar.
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For each 2 S, , consider a saddle connection connecting the boundaries of F. Let
[
Us= Ta :2s

We can choose the arcs so that twist(qa; Ua) = O(1). After orienting the arcs in U,, we can think of
them as elements of H1(S;) where is the set critical points of g.. In fact, arcs in U, generate
H1(S;).

Lemma 4.8. Assume that the vertical foliation of g, is not orientable. Then, there is a set B of
edges of U, and for ! 2 B there is a sign & 2 f 1;+1g so that, for every !, in Ty (respectively, for

any p 2 S ), we have the relation:
b |

X X

(28) &i(!; 1) = O(1) respectively, &i(!;p) = O(1)
12B 128

Furthermore, this relation is independent of all the relations in Lemma 4.7.

Proof. Choose a minimum number of edges of U, so that the complement is simply connected.
Denote the set of all these edges by B and orient them in some arbitrary way. Minimality implies
that the compliment P is connected. We can visualize P as a polygon in C with the vertical
foliation parallel to the imaginary axis. Each edge of B has two representatives in the boundary of
P. The two vectors are equal up to a multiplication by 1. Let B be the subset of B where the two
representatives are negatives of each other (Fig. 5). Note that B is non-empty since the vertical
foliation in g, is not orientable.

Figure 5. Polynomial P. The set B = fa;b; cg.

Now consider a double cover of g constructed as follows. Take a second copy P° of P. Glue the
edges that were not in B as before and glue the edges in B to the corresponding edge in P°. Let B b@
the set of lifts of edges in B to this cover. We now orient edges in B so tleat, for every* 2 B, P is &n
the same side of * (say, the left side). Denote this double cover by ¢ = P [ ,P°.

Let & be the underlying surface for ¢ an@ be the pre-image of . Considering oriented saddle
connections as elements of H1 (S¢) ave let i(; hdenote the algebraic intersection number. Note that ¢
is the unique double cover of g, where q is a square of an abelian differential. Hence, for every two
orientéd saddle connections * and 1° in q, all’ the intersection points have the same signature.
That is, °

i(4;1%) = ja(;10);:

Consider ! 2 B and its lift . Note that* has an orientation and hence is identified with vector
in C. We define & to be +1 if ¥ has a positive x—coordinate and 1 otherwise. Let !y, 2 Tp and
let t, be a lift of . We choose an orientation for t, so it has a positive y—coordinate. We will
show that

&i(!; 1y) = O(1):
128

Consider an intersection point of *, and * where & = 1. If the absolute value of the slope of

Yy is larger than that of * then *ty, is to the left of * and hence * intersects *, with a positive
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b e [

Figure 6. Polynomials P and P°. The set B= fa;a% b; b’ c; g.

signature. Otherwise, * and %t} intersect a uniformly bounded number of times (*, and * intersect
essentially positively). The opposite of this is true if & = 1; either * intersects *, with a negative

signature or a uniformly bounded number of times. If ¥;%% 2 Be are lifts of the same arc ! 2 B
then, choosing orientations for ¥ and *° as above, we have

(29) (1 1p) = i(t;%p) + i(1%4n) & i(®;tn) + i(F0;1y)

To reiterate, this is because the number of intersection points that do not have the same sign as
& is uniformly bounded.

But arcs in B separate q,. Thus, X

Nt ) 1
TR
This is because every time *p exits P it intersects the boundary with the opposite signature than
when it enters it. The sum is not necessarily zero because *, may start inside P and end in P°.
Therefore, summing Equation (29) over ! 2 B, we get

128
The proof for the case of a simple closed curve 2 S, bis similar.
Finally, we note that the relations of the type (27) are also relations in the relative homology
with Z,—coefficients. But the edges in B are independent in Z,—relative homology. Hence, this new
relation is independent from the previous ones.

5. Main counting statement

This section contains the main combinatorial counting arguments with the goal of proving
Theorem 5.1. Recall the definition of B(Q(); X; ) from §4.1. Define

B;(Q(); X;) B(Q(); X;)

to be the set of points Z 2 T (S) so that, for the associated quadratic differentials q; and qp, there
is a (ga; )-regular triangulation T, and a (qp; )-regular triangulation T, that have j common
homologically independent saddle connections. Now let,

B(Q(); X;Y;) = B(Q(); X;)\  (S) Y;
and

Bi(Q(); X;Y;) = Bi(Q(); X;)\  (S) Y:
That is, Bj(Q(); X; Y;) is the intersection of the orbit of Y with B;(Q(); X; ). Also, recall from
§2.6 that (when Sx is empty, G(X) = 2):

Y 1 Y 1
G(X)=1+ P £ —
25, EXt ) s, Ext 0 «x




Notice that if g Y 2 Bj(Q(); X;Y;) then g * X 2 Bj(Q();Y;X;
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Thus, the number of points
)

).
in Bj(Q(); X;Y;) is the same as the number of points in Bj(Q(); Y; X;). We prove the following
upper-bound for the size of Bj(Q(); Y; X; ):

Theorem 5.1. Consider the stratum Q(). Given X;Y 2 T(S)

where h =

Bi(Q(); X;Y;) I el NG (X)G(V );

dimQ()
—_—

Remark 5.2. First we make a few remarks

(1)

(2)

If, in the definition of Bj(Q(); X; Y; ), we replace the assumption on the number of com-
mon homologically independent saddle connections with an assumption on the number of
common homologically independent simple closed curves, the same statement would still
holds. However, the theorem is strictly stronger. For example, assume Sx \ Sy contains
only one homologically trivial simple closed curves . We can still conclude that j 1
because the geodesic representative of in any quadratic differential g contains a (homo-
logically) non-trivial arc. That is, the number points Y, where the geodesic connecting X
to Y follows Q() and contains a short curve throughout, is smaller than expected even
when is a homologically trivial curve.

The statement appears to be correct even without the term i$xi*iSvi However, the proof
would become significantly more complicated.

5.1. Sketch of the proof Theorem 5.1. Here is a an outline of our strategy :

(1)

(2)

(3)

We define a notion of a marking for the surface S and what it means for a marking to have
a bounded length in a Riemann surface X. A marking contains a partial triangulation of
S, a set of short simple closed curves with their lengths and some twisting information.
Fixing a Riemann surface X, every quadratic differential g where the underlying conformal
structure is near X defines a marking that has a bounded length in X. A marking takes the
lengths of the short simple closed curves and the twisting information around short cylinder
curves from X and the triangulation and twisting around the non-cylinder short simple
closed curves from gq. Up to some twisting information, there are a uniformly bounded
number of markings that have bounded length in a given Riemann surface X.

Fixing a marking o, a relation is a formal linear combination of edges of o with integer
coefficients. Given g and 1 and a set of relations R we will define a set Mg(o; 1;)
consisting of all markings such that is a homeomorphic image of 1, its weighted
intersection number with g is less than e and so that the intersection patterns between
and o satisfy the relations in R. The weights depend on the length and the twisting
information of each short simple closed curve. This is similar to assuming that there is a
geodesic segment in a the stratum Q() starting near X and ending near Y. Lemma 5.8
provides and upper-bound for the number of elements in Mg(o; 1; ).

We then let R be the set of relation of the type described in Lemma 4.7 and Lemma 4.8.
Each Z 2 B;(Q(); X;Y;) can then be mapped to a marking in 2 Mg(o;1;) for some
marking 1 that has bounded length in Y and some marking ¢ that has both a bounded
length and a bounded twisting in X. This map is finite-to-one except for some twisting
information. An estimate for the number of possible markings o and 1 provides the desired
upper-bound for the size of B;(Q(); X; Y; R).

As is apparent from the outline, the main complication is to keep careful track of all the different
twisting informations. Otherwise, the argument is relatively elementary.

5.2. Markings on S. Fix a set of points on S. A partial triangulation T of S with the vertex set is
an embedding of a graph to S where vertices are mapped onto and the complementary components
are either triangles or annuli. Even though the vertex set is fixed, we think of T as representing
a free homotopy class of triangulations. We say a curve is carried by T if the free homotopy class of
can be represented by tracing the edges of T. We define a combinatorial
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length of a simple closed curve in S to be the minimum number of arcs of T that can appear ina
representative of and we denote it by ‘1 ().

Recall that a set of curves fill a subsurface Q os S if every essential curve in Q intersects one of
these curves. We say a partial triangulation T fills a subsurface Q of S if, again, every essential
curve in Q intersects T (their free homotopy classes do not have disjoint representatives). The two
notions are related:

Lemma 5.3. There is a constant B such that, if T fills a subsurface Q of S, then the set of simple
closed curves carried by T with ‘v () B also fill the subsurface Q.

Definition 5.4. A marking = S;fE()g; T forS is:
a free homotopy class of oriented curve system S (pairwise disjoint curves) together with
a notion of zero twisting for each curve 2 S, (that is, the expression twist(; ) makes
sense),
a length E () associated to each simple closed curve 2 S, and
a homotopy class of a partial triangulation T with the vertex set such that the core
curve of any annulus in the complement of T isin S.
for each 2 S intersecting T, twist(; T) = O(1).
We denote the set of simple closed curves that are disjoint from T by S€ and the remaining curvesin
S by S™ (the set S€ is a place holder for large cylinder curves and the set S" is a place holder for
non-cylinder curves or small cylinder curves).
We say a marking = S;fE()g; T has a bounded length in X if:
(1) S = Sx.
(2) For 2'S, E() = Extx().
(3) For 2 S°¢, twist(; X) = O(1).
(4) For each simple closed curve 2 Sx that is disjoint from Sx, ‘x() ‘71 ().
We say has bounded length in X with —bounded twist if we further have (5)

For 2 S, twist(; X) = O().
Example 5.5. We continue Example 3.4 of a surface (X; q) described by a gluing of a polygonin

R2. As it was discussed, there are two thick subsurfaces in the complement of curves and (Fig.
2). A (q;)-regular triangulation of (X; q) is depicted in Fig. 7. Here S = fg anqd Sq = fg.

3 4
) 5
*
6
®
2 5
®
6
1 3 1 4

Figure 7. A (q;)-regular triangulation.

Here a marking that has bounded length in X can be obtained as follows: The set S is the set
f; g of short curves in X (depicted as blue curves in Fig. 8), the triangulation T is the (q; )-regular
triangulation (depicted as the red triangulation) and E () and E () are the extremal length of and in
X respectively. The condition (4) for to have a bounded length in X is a consequence of T being a
(g; )-regular triangulation.

Lemma 5.6. Let M (X; ) be the set of markings that have a bounded length in X with —bounded
twist. Then

IM(X;)j 7540
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1 ) &l

Figure 8. The curves and the triangulation in the marking .

Proof. The set S and the lengths fE()g and the twisting around curves in S¢ are determined by
definition. By Lemma 3.19, there is a uniformly bounded number of possibilities for T up to
twisting around curves in S". But each of these twisting parameters is bounded by multiple of
(condition (5) in the definition Definition 5.4). This finishes the proof.

Definition 5.7. Consider the markings
= fS;fE()g; Tg and o= fSo;fEo(o)g; Tog:

Recall that T and Tg have the same vertex set . For every 2 S€, let be an arc with end point
in and disjoint from T that crosses so that T[ has bounded twisting around . Denote

U=T][
2s¢
Let R[U] be the vector space of formal sums with real coefficient of edges in U. Let R be a finite
subset of R[U] with integer coefficients. We define the set

Mk(; 0;)
to be the set of markings = fS; fE()g; T g such that:
(1) “is a homeomorphic image of o, and for every 2 S* that is the image of o 2 Sy, we have
Eolo) = E(). ~— —
(I1) For every element © a, ! 2 R and every arc -2 T (respectively, 2 S7); we have

X X )
ari(!; 1) = 0(1); respectively, ai(l;r=0(1) :
12U 1

(1) Given 2 S°¢; 275,71 2 T and ! 2°T; we have the following bounds on the intersection

numbers:
(30) i) e
(31) _ oSt EQ IGT) e
(32) twist;B—E0-i(; T e(33)

J(;) twist(;)iwg‘ tG) E(E() e
and finally if = 275¢\ S we have: B
aQ
(34) twist(;) E()E() ei —

Note that the partial triangulations in and are defined up to homotopy. By above intersection
bounds we mean that the homotopy class of two partial triangulations have representations with
vertex set so that the above bounds hold simultaneously.

Let hRi be the subspace of R[U] generated by elements in R. We give the following upper
bound for such markings:
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Lemma 5.8. Let hg = dim(R[U]=hRi). Then
Y 1 Y 1

I3 P :
25¢ E()OZSO EO(O) c

Proof. For 2 Mg(;0;) consider the weighted graphs W = T

iMg(;0;)j e

where the weights on the edges of T are 1 and the weight m(;J 2 N are defined to be
P P q p——
m(;) = twist(;) —E() : -

Define W to be the set of weighted graphs induced by elements of Mg(;0;): n
o)
= W 2 Mre(;o0;)

The weighted graph W essentially determines except that, for 2 S the value of m(; ) determines

twist(; ) only up to 1&:() = P possibitities-(vke-have used the floor function in defining m(;)).
Hence, -
: . Yo .1
(35) iMr(;05)j B JWHWe-
,2s. Eolod

proceed in two steps:

Step 1. Consider the set E U that forms a basis for the space R[U]=hRi. First, we claim that

the map
l:W! NP&; W!  i(W;!)
12E

is finite to one, where i(W; !) is defined to be

_ X X _
i(W; 1) = i)+ m()i(; )T
_ - s

Note that in general a weighted graph W is determined by the intersection numbers of its edges
with all the edges of U. The map | records the intersection number with arcs in E. To prove the
claim, we need to show that, there are only finitely many possibilities for the intersection number of
W with the other edges of U.

We can consider an 2 U as the element 1 2 R[U]. Then can be written as a linear
combination elements in the generating set E (which generates R[U ]=hRi)) and R (the relations).
That is, there are constants c; and dr so that

X X
= ci! + drR:
12E R2R

But the intersection number is linear hence, for every -2 W, we have
|
X X
i(; 7= ci(l;!Iy+ 0O dr

12E R2R

But the constants dr depend only on the set R and otherwise are uniformly bounded. Hence,
there are only finite number of possibilities for i(; !J= This proves the claim.
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Step 2. We bound the size of (W) N" by obtaining upper bounds on intersection numbers of
W with arcs | 2 E.

First, if | 2 T, Equation (30) implies that
(36) i(T;!) e:

Also, for 2 S S°¢ the Equation (31) implies
m(;) TG ) —twist(;) EQi(;!) &

Hence,
(37) i(W;!) e:

For arc 2 U where 2 S¢, and arc ! 2 W by Equation (32) we have

_ _ — e

(38) i(;1) () twist(;) p—E():And for=z=s"

S¢, by Equation (33) we have

q__
_ 1= e

(39) m(;)i(;) twist(;) E()H(;) p—E() : Finally, if = 25<\

s°, by Equation (34)

— e

40 i) B :
(40) m(;)i(;) 9E()

Now from Equations (37), (38), (39) and (40), we get:

Y o Y
iWj jH(W)j | p—— e
55 < E() 12T\E
2E
R 1
e QF:
2s°¢
Now, applying Equation (35), we get
Y 1Y 1

hr

iMr(;0;)j e

s £ ;
25¢ E()OZSC 0 O) 0

which is as we claimed.

Proof of Theorem 5.1. Let Z 2 B;(Q(); X;Y;) and let (Xa; ga) and (X»; qp) be the initial and the
terminal quadratic differentials for the Teichmuller geodesic in Q() starting near X and finishing
nearZ 2 Y, as before. There may be many choices for these quadratic differentials. We need to
be a bit careful.

Claim: We can choose (Xa; qa) and (Xo; qb) so that forany 2 S, ,
(41) twist(X; qa) = O():

Proof of claim. Assume (Xa; qa) and (X»; qg) are some choice of initial and terminal points with
associated regular triangulations Ts and “I'."that have j common saddle connection. But, assume
that they do not satisfy Equation (41). We define (Xa; ga) to be the image of (Xs; ga) under an
appropriate number of Dehn twists around curves in S, to ensure (41) and let (Xp; qs) be the
image of (Xa; ga) under the same homeomorphism. We will show that X, and X, are still near X
and Z. b b

For 2 S, if ExtLQ —by Lemma 3.16.

1

twist(Xa; T —
wist(Xa; qa) Exty ()
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Hence, using the triangle inequality and Theorem 2.2
(42) twist(X; ga) twist(X; Xa) + twist(Xa;qa) = O

Therefore, (41) is holds and no modification is required.
Now, assume g 1. Since is a non-cylinder curve, Extx—”_cl:i?nges at most linearly with

time (Equation (7)). Hence, for large enough, we have

1 1
Eth() Eth()
Again by Lemma 3.16, the number of Dehn twists n around that needs to be applied to ga to

ensure Equation (41) is at most O(1=Ext, ()). That is,

Y
Xa= D’qu;
2Sq,

(43)

where D is a Dehn twist around and n Extx().—BJy,—'Fheorem 2.2

X
dr (Xa; Xa) nExtx() 1:2s,,

and X 25,
dT(YB;Xb) nEth() 1:

Hence, (Xa; ga) and (Xp; qp) are as desired. Also, the images T, and Ty of Ta and Ty are still
regular triangulations and have j arcs in common.

For the rest of the proof, we assume Equation (41) holds. To the pair (Xas; qa) we associate the
marking = fS;fE()g; T g as follows:
Let S be the set of short curve in X and set E() = Extx().
Let T be the (ga;)-regular triangulation T, which has j edges in common with the
triangulation Tp.
If 2 S,, then set the twisting around in so that

twist(; X) = O(1):
If 2 S,, then set the twisting around in so that
twist(; T) = O(1):

The result is a marking that has bounded length in X and (by Equation (41)) has —bounded twist
in X. Also, note that S®= S, andS" = S, .

We can similarly associate a marking to the pair (Xb; qn). Here we can only conclude that is
bounded in Z (not with bounded twist); this is because the inequality (41) does not necessarily
hold for Z and q,. Instead, similar to Equation (42), we have

. 1
(44) twist{Z; qp) Ext; ()
Assume Z = g(Y), forg2 (S). Leto= g (). Then o in boundedin Y. Also, let R be the elements
in R[U] coming from Lemma 4.7, (and Lemma 4.8 in case quadratic differentials in Q() are not
orientable) and the j edges in T that are present in the (qp; )-regular triangulation Ty. Taking this
Ty is the partial triangulation in , we have 2 Mg(; 0; ). The number of possible choices for is O (13¢1)
(Lemma 5.6) and there are finitely many choices of for the homeomorphism type of 5. Lemma 5.8
provides an upper-bound for the size of the set Mg (; 0; ). Also, using the fact that is bounded in Z
and EquationT44), similar to Lemma 5.6, we can conclude that

the association Z ! is at most O st ch"tl__ﬁ'z =to-one.
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To summarize, we have defined a map from B;(Q(); X; Y;) to the union of sets of markings
M-r(; 0; ), where is bounded X with —bounded twist and ¢ is bounded in Y. The map is not one-to-
one but we have a bound on the multiplicity.

The size of Bj(Q(); X; Y; ) is comparable to the product of the following: the number of choices for
, the number of choices for the homeomorphism class of o, the maximum multiplicity of the

association Z | "and the size of Mg(;0;). That is,
. o . Y 1 .
iBi(Q(); X;Y;)j iM(X;)j O(1) Extz () IMR(; 0;)j
284 ,

isxi 1 ohe Y o 1Y o 25

Extz() )5 E()OZSO Eolo) .

ap
JSxi+iSvighs N ! as,

E() e Eolo)

. . , . Q
The last line follows from the previous line because, for every term in the product ;bthTr\}de_
either have Extl-n—z——O() or, as in Equation (43),
1 1 1

Extr— Extrf—fcyrt——:
That is, each term can either be counted in the power of in the beginning of last line or it can be
divided into a term in each of the last two products. The proof is finished after checking that hg
= (h j). This is true because all the relations in Lemma 4.7 are also relations in H1(S; ). The fact
that the j arcs we have fixed in T, are homologically independent implies that these arcs and the
other relations in homology are independent in R[U]. In fact, Lemma 4.8 is used only when &=

1. But this is accounted for in the definition of h (see §2.9). Hence, the dimension of R[U]=hRi is
exactly j less than h = dimC+1

and 2S5 \S; =S"\s",

2
6. Geodesics in the thin part of moduli space

In this section we prove Theorem 1.1 and Theorem 1.5. The main idea, which is due to Margulis,
is to prove an inequality, which shows that the flow (or more precisely an associated random walk)
is biased toward a compact part of the space. Consider the stratum Q(). We discretize the
projection

(Q()) T(s);

by fixing an appropriate net N€in T(S). Then, we consider the random walk figio on the points
in N and &ply Theorem 5.1 to show that the projection of this random walk in M(S) is biased
towards the compact subset of M(S). Moreover, we show that quadratic differentials fq(i; i+1)gio
(see §2.2) tend not to have short saddle connections. See Lemma 6.4 for the precise formulation.

These estimates imply Theorem 1.1; this is because, roughly speaking, every closed geodesic in
C can be approximated by a path along the net points.

6.1. Short saddle connections and simple closed curves. For a quadratic differential (X; q) 2

QT (S), recall the set of short saddle connections
q() (Definition 3.8). Define s(q;) to denote the maximum number of homologically independent
disjoint saddle connections in
q(). Given

the tuple , define n o
Q;;()= (X;9)2Q() s(a;) j  Q'T(S):

For the rest of this section, with fix and denote Qj;() simply by Q;j;. Also, recall the definition of
B(Q(); X;) from 8§4.1 and B;(Q(); X;) from §5. We would like to refine the definition of

Bj(Q(); X; ). Roughly speaking, we are interested in a ball of radius centered at X that is allowed
to move in the direction Q;; only. Namely, define B(Qj;; X; ) to be the set Z 2 T(S) so that
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Z 2 B(Q(); X;)
for the associated quadratic differential qa, we have s(qa;) j.

One can similarly define B(Q;j;; X; Y;) as in §5. Recall the choice of 1() from Lemma 3.13.
Lemma 6.1. For any > 0, there is 2() < 1() such that for < (), any integer j 0, andany X;Y
2 T(S), we have

(45) B(Qj;; X;) Bj(Q(); X;); and

(46) B(Qj;; X;Y;) Bj(Q(); X;Y;):

Proof. It is enough to let 2() = e 21. Assume, Z 2 B(Q;;; X; ), ga and gy are the associated quadratic

counted in s(qga; ). Then, for each i, by Equation (8),
1 1),
Equa(-i' Ethb‘-i
and by Theorem 2.1 the extremal length of any short curve containing !; changes by at most a
factor of at most , e? . That is, I 2
q (1). The arcs ! are still disjoint and homologically independent in g,. Hence, the set flig can

be extended to both a (qa; )-regular triangulation T, and a (qp; )-regular triangulations T, (Lemma
3.13). Thus, by the definition Z 2 Bj(Q(); X; ). The proof of Equation (46) is similar.

6.2. Choosing a net. By a (c;2c)-separated net N M (S) we mean a set of points in M(S) so
that:

the Teichmiller distance between any two net points in N is at least c, and
any point in M (S) is within distance 2c of a point in N.

Let
N(X;) = p(B(X;))\ N:
Then, it is easy to check (see Lemma 3 in [EM2]):

Lemma 6.2. There exists a constant co > 0 such that for any ¢ > co, and (c; 2c) net N2 as above,
we have

(47) IN(X;)j 8 3P

Let = p (N). We assume ther o> 2c, where r js the constant used to define B(Q(); X; ) (see
§4.1). We denote the intersection of a ball in Teichmiller space, B(), with N by & (). €hat is, for
X;Y 2T(S),

€ N(Q();X;) = B(Q(); X;)\ N;€
EN(Qj; X;) = B(Qj;;X;)\ N3¢
€ N(Q();X;Y;)=B(Q();X;Y;)\ N; €
and
M(Qj; X;Y;) = B(Qj; X;Y;)\ N: €
6.3. The main inequality. For a real-valued function f : M(S) ! R, consider the average func-

tion

A

pf tT(S)! R;

defined by X
A f(X)=e?" f(z):

Z2N(Qj;;5X;)
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Here, as before
dimC+ 1

5 :
Our main tool is the following (2() is as in Lemma 6.1):

h =

Proposition 6.3. Given > 0, and < () we have
(48) A.G(X) Me TG(X):

j
where G is as in Equation (4) and m depends only on the topology of S.

= 1;:::;k. By Lemma 2.3, every net point in Z 2 B(Qj;;N; X;Yj;) is near at most G(Y;)

points in B(Qj;; X; Yi; ). That is,

(49) N&Qj;; X; Yi;)G(Yi)? B(Qj; X; Yi;)
Hence, we have
h X
A;.G(X)=e G(Z)
Z2Ne(Qj;;X;)
X k X
=e" G(Yi)

i=1z2R(Q;;X;Yi;)
Cx e BlQIS XY )
(Equation (49)) e —6tY—

X k
e h JSXJ+J5vJe(h ”G(X)i=1

( Theorem 5.1 and (46)) e 1MG(X):

(Equation (47))
Here, m= (9g 9+ 3p) jSxj+ jSvyj+ (3g 3+ p).

Trajectories of the random walk. Suppose R and let n be the integer part of R=. By a
trajectory of the random walk we mean a map

: fO;ng ! N €T (S)

such that, for all 0 < k n, we have dt (k; k 1) , where x = (k). Let P (X; R) denote the set of all
trajectories for which dr (0; X) = O(1). For j 2 N, let P, (Q;;; X; R) denote the set of all trajectories
2 P (X; R) so that,

forl k n
k2 NR();« 1;):

kjl k n; « 2 B(Qj;;« 1;N;)  r®
Given X;Y 2 T, let P, (Qj;; X; Y; R) denote the set of all trajectories 2 P, (Qj;; X; R) such that

dr p(Y);p(a) = O(1):
We say that a trajectory is almost closed in the quotient if
dr plo); p(n) = O(1):

Finally, let P, (Q;;; X; R) = P, (Qj;; X; X; R) denote the subset of these trajectories starting from
X which are almost closed in the quotient. Let 2() be as in Lemma 6.1 and Proposition 6.3.
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Lemma 6.4. For any o > 0 there is o > 0 so that for > ¢, 0 1 and < 2(p) we have
P. o X:Y:R (h j+o)R . G(X)

(50) ,(QJ:! L] ) € G(Y) _—

In particular,

(51) Pb(Qj;; X; R) elh J*o)R:

Proof. Define 0= 110k 12 N(Qi )

This keeps track of the number of steps in the trajectory (amount the first k steps) that can be
approximated by a segment in Q;;. For 0< r = k < R, It P.(Qj;; X; Y; R; r) be the set of

trajectories obtained from a trajectory 2 P,§Q;;; X; Y; R) but truncated after k = r= steps.
Define

X .
V(R;r) = G(k)el o0
2P; (Qj;;X;Y;5R;r)

Also, let R = n, q() = qn() and

X .
V(R) = G(n)el0:

ZP;(QJ;}X}Y;R)
Note that G(Y ) G(n) and q() R. Therefore,

v (R

(52) iP;(Qy;; X5 Y5 R)j G(Y)ET

If ke1 2 NEQj;; ;) then grs1() = aqe() + 1 and gk+1() = qk() otherwise. Hence,

X )
V(R;r+ )= G(ke1)el @2l pp,

(Qj;; X5 YR r+)

0
X X )

@ G(k+1)eJ(qk()+1)+

2P; (Qj;;X;Y;R;r) k+12N (€Q5;5k;) 1

X A
+ G(k+1)eJQk()A:
k+12N (Qj;5k;)

The two summands inside of the parenthesis are similar to the average defined above. Using
Equation (48), the first term is less than (up to a multiplicative error)

ilak()+1) gh jlak()+1) ghmg j .
eltak e"(A,G)(k) e e"Me ! G(k): and the
second term is less than (again, up to a multiplicative error)

ejqk()eh(A;oG)(k) ejqk()ehmG(k):

Note that the right hand sides of the above two equations are the same. Hence,

X )
V(R;r+ ) Me" el 0 G(y) 20
(C;X;R;r)
(53) = MehM V(R;r):

Now iterating (53) n = R= times we get

(54) V(R) (C)™ G(X)eM = G(x)elh+ ! Hestha—

’
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where C > 0; and m 2 N are uniform constants. We choose large enough so that

m log() + log(C)

The lemma follows from Equation (52) and Equation (54).

Let N(Qj;; X; Y; R) be the number points Z 2 B(Q(); X; Y; R) (see §5 for definition) so that
associated geodesic (Xt; qt) spends proportion of time in Q;;. Similarly, for x 2 M(S), let
N(Cj;; x; R) be the number of conjugacy classes mapping classes associated to closed geodesics g in
C of length at most R which pass within a uniformly bounded distance of the point x and so that for at
least fraction of the points (xt; qt) 2 g, s(qt;) j (see §6.1). As we shall see in the proof of the lemma
below, for x = p(X), N(Qj;; X; X; R) may be much larger than N(Cj;; x; R).

Lemma 6.5. For any 1 > 0, there is 1 so that, for > 1 X 2 T(S) and any sufficiently large R
(depending only on 1;) we have

(55) N(Cj;; p(X); (1 1)R) P;(Qj;; X; R);
and
(56) N(Qj; X;Y; (1 1)R) P;(Qj; X; Y;R) G(Y)*:

Proof. Recall the definition of
Ix = g2 (S)dr(X;g X) = 0(1) :

from Lemma 2.3. Consider a closed geodesic g in C which intersects a uniformly bounded neigh-
borhood of x = p(X). Let [g] denote the corresponding conjugacy class in (S). Then there are
approximately jlxj lifts of [g] to Tg which start within a bounded distance of X. Each lift G is a
geodesic segment of length equal to the length of g.

We can mark points distance apart on G, and replace these points by the nearest net points
in . (This replacement is the cause of the 1R error). This gives a map from lifts of geodesics
to trajectories. If the original geodesic g has length at most (1 1)R and has s(qt;) j for
fraction of its points, then the resulting trajectory belongs to P; (Q;;; X; R).

If two geodesic segments map to the same trajectory, then the segments fellow travel within
O(1) of each other. In particular if g1 and g, are the pseudo-Anosov elements corresponding to the
two geodesics, then dr (g ,'g1X; X) = O(1), thus g, 'g1 2 Ix.

We now consider all possible geodesics contributing to N(Cj;; x; (1 1)R); for each of these we
consider all the possible lifts which pass near X, and then for each lift consider the associated
random walk trajectory. We get:

i'xiN(c;x; (1 JR) jIgiPQ; ;X R):

The factor of jlxj on the left hand side is due to the fact that we are considering all possible lifts
which pass near X, and the factor of jlxj on the right is the maximum possible number of times a
given random walk trajectory can occur as a result of this process. Thus, the factors of jlxj
cancel, and the lemma follows. Note that by Lemma 2.3 (See also, Theorem 5.1) jI(Y )j G(Y ). An
argument similar to the proof of the first part implies Equation (56).

We need he following lemma which is due to Veech [Ve].

Lemma 6.6. Suppose g is a closed geodesic of length at most R on M(S). Then for any x 2 g,
any X so that p(X) = x and every simple closed curve

Eth() e (6g 4+2p)R:

Proof of Theorem 1.5. Let > 0. Choose o;1 =3. Now choose maxfp;1g and let R be large
enough so that Equations (51) and (55) hold. We get,

(57) N(Cj;; x; R) el 1*273)R;
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Finally X
N(Cj;R) N(Qj;; x; R);

x2N
where N is the net chosen above. In view of Lemma 6.6 and Lemma 6.2, the number of relevant
points in the net is at most polynomial in R. However, for R large enough, this polynomial is less
than ef=3. Thus Theorem 1.5 follows.

Proof of Theorem 1.1. Let g be a closed geodesic in C n K. By taking K large enough we can
assure that every quadratic differential along g has an arbitrary short saddle connection. We
choose K so that Lemma 3.9 implies that any such quadratic differential (x;q),
q() is non-empty for 2(). Hence the number of disjoint homologically independent saddle
connections in
q() is at least one. That is, g is counted in N(Cj;; R) forj = 1 and = 1. The theorem now follows
from Theorem 1.5.

Proof of Theorem 1.7. We can use the argument applied in the proof of Theorem 1.5. Let 0 < ¢;1
=3. Choose a net satisfying Lemma 6.2. Then choose maxfp;1g and let R be large enough so that
Equations (50) and (56) hold. As in the proof of Theorem 1.5, Equation (1.7) follows from
Lemma 6.2 and Lemma 6.6.

7. The Hodge Norm and the Hodge Distance.

In this section, we use the Hodge norm [Fo] to show that in any compact subset of C the geodesic
flow is uniformly hyperbolic: see [ABEM] and Remark 7.5 below. There are many approaches to
proving hyperbolic like behavior for the Teichmiiller geodesic flow in different settings, see for
example [AGY, AG, Fo, H2, Ve].

Let HXT (S) be the bundle of area one abelian differentials over T (S). We also denote by g the
geodesic flow on H1T (S) (where we square an abelian differential to get a quadratic differential).

7.1. Hodge norm. Fix a point (X;) in H'T (S), where X 2 T(S) and is an abelian differential
on X. Let : HXT(S) ! T(S) and p: HIT(S) ! HYM(S) be natural maps as in §2.3. Let
kkn;t denote the Hodge norm on the surface X: = (g:). Also, for each abelian differential , let
<(); =() 2 H(X; R) be forms obtained by the real part and the imaginary part of the holonomy.
The following fundamental result is due to Forni [Fo, §2]:

Theorem 7.1. For any 2 H'(X;R) and any t 0, kkn:t
etkkH;o:

If, in addition, A <() = A~ =() = 0 and, for some compact subset K of HLM(S), the segment [; g:]
starts and ends in p 1(K) and spends at least half the time in p 1(K), then we have

kkn;e e kky.o; where
> 0 depends only on K.

Theorem 7.1 gives a partial hyperbolicity property of the geodesic flow on spaces of abelian
differentials. In our application, we need a similar property for compact subsets of the spaces
Q!M() of quadratic differentials.

7.2. Quadratic and abelian differentials. Here, we briefly treat the case when g 2 QM(S) is
not the global square of an abelian differential. A standard construction, given X 2 T(S) andq a
guadratic differential on X, is to pass to the possibly ramified double cover on which the foliation
defined by g is orientable. More precisely, we consider the canonical (ramified) double cover: X !
X such th3t (q) = 2. (See the proof of Lemma 4.8 for the explicit construction.) The set of critical
values of coincides with the set of zeros of q with odd degree.

This yields a surface X with an abelian differential . However, even if p(X) belongs to a
compact subset of M(S), there may be a curve that has a very small extremal length in X'. This
may occur since the flat structure defined by q may have an arbitrarily short saddle connection
connecting distinct zeroes. Such a saddle connection lifts to a very short loop in the double cover.
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Let “min(q) denote the length of the shortest saddle connection in the flat metric defined by q. We
have,

lmin() lmin(q):

That is, if g does not have any short saddle connection, then also does not have any short saddle
connections.

7.3. The Hodge norm on relative cohomology. Let (X;q) 2 QT () and let be the set of
singularities of . Let X~ be as before and Be the pre-image of . On X, ¢'has a canonical square root
which we denote by . To simplify the notation, if q is a square of an abelian differential, let
X =X; =.

Let j: HY(X%R) ! H(X;R) denote the natural map. We define a norm kk on the relative
cohomology group H1 (X% ;R) as follows:

(58) kk = kj()ku + X ( h);

(p;p%)2 pip

where kky denotes the Hodge norm on H (X% R), h is the harmonic representative of the coho-
mology class j() and p;po is any path connecting the zeroes p and p°. Since j() and h represent the
same class in H1(X; R}y the Equation (58) does not depend on the choice of p:p0.

Let q:, Xt and + be defined as usual and let k ki denote the norm (58) on the surface X~=
(gt). We have the following analogue of Theorem 7.1:

Theorem 7.2. Let K be a compact subset Q*M(). Then there is to > 0 so that for t > to the
following holds. Suppose p(qo); p(q:) 2 K and that the geodesic segment [qo; gt] spends at least half the
time in p 1(K). Suppose 2 H(X;;RJ with

i0r<()=j0nr=()=0:
Then we have
kke et* tkko;
where > 0 depends only on K.

This theorem is essentially in [AF] (Lemma 4:4). We reproduce the proof here for the convenience
of the reader.

Proof of Theorem 7.2. Since K is compact, quadratic differentials in K have no short saddle con-
nections. Hence, for u 2 [0;t], p(qu) 2 K implies that X, is thick (has no curves with short
extremal lengths). Therefore, there exist a constant ck such that for any u with p(qu) 2 K, any
harmonic 2 H!(Xy; R) and any arc on X § with end points in , ~

(59) ck k ku;u 1+ “W();

where ‘4 () is the length of in flat metric associated to .

Under the assumptions of Theorem 7.2, there exists s 2 [0:1t; 0:9t] such that p(qs) 2 K. Fix p;p°
2 . Since Xo is thick, there exists a path o connecting p and p® with ‘0(0) = O(1). Similarly,
since Xs and X ~are thick there are paths s and : connecting p and p° such that ‘s(s) = O(1),
‘t(t) = O(1). Then,

‘o(s) = O(e®) and ‘s(t) = O(e' °):
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Suppose 2 HY(X; R) with j() » <() = j() » =() = 0. Let = j(). For 0 u t, let, denote
the harmonic representative of the cohomology class on X,. We have
X z
kki  kko k k:t k ko + t 0
p;p°2  pip?
(1)t X 4
(60) e k kH;O + t 0;
p;p°2  pp?

where we have used Theorem 7.1. Since the integral in Equation (60) is independent of the choice
of p;po, We use p;p0 = 5. Then, by Equation (59),

(61) A 0 CKk kH;O(1+ lo(s)) CKk kH;oeS:S
Also,
Z Z Z
s t = t + t =
Zs t zt
+ t
s
AR zZ' Z
s + s + t

Ck k kH;5+ k kH;Set S+ k kH;t

where to pass from the first line to the second we used the fact that s and  represent the same
cohomology class in H1(X; R), and in the last line we used Equation (59) to estimate each term.
Then, using Equation (61), we have
VA
t o Ck k kH;s+ k |(|-|;_<,et S+ k kH;t+ k kH;oeS

Ck e(1 )s+ e(1 )s+t S 4 e(1 )t+ eS k kH;O Ck
e(1 0:1)tk kH;O,'

where in the second line we used Theorem 7.1 and in the last line we use the fact that s 2 [0:1t; 0:9t].
Substituting into Equation (60) we get
kke kko cx e Otk ky.o ck el Otkko:
Assuming t is large enough, we can assume that the multiplicative error is less than e°! for some o
0:1. The theorem then holds for (0:1 o).

7.4. The Hodge Distance. Let gt be the Teichmiller flow on Q*M(). To each quadratic
differential q, we associate its imaginary and real measured foliations (q), and *(q).
The flow g: admits the following foliations:

(1) F*®, whose leaves are sets of the form (X;q)j*(q) = const ;
(2) FYY, whose leaves are sets of the form (X;q)j (q) = const .

In other words, for (Xo; qo) 2 Q(), a leaf of F** is given by

**(Xo; q0) = f(X;q) 2 Q()j "(q) = *(qo0)g; and
a leaf of FYY is given by

““(Xo;q0) = f(X;a) 2Q()j ()= (aols:

Note that the foliations F**, FY" are invariant under both g and (S); in particular, they descend
to the moduli space Q1 M().
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We also consider the foliation F " whose leaves are defined by

[
“(a) = gt"(q) t2r
and F* whose leaves are defined by [
*(a) = g&(a):
t2R
If C is a subset of moduli space of abelian differentials, we can locally identify a leaf of F*5 (or
FuY) with a subspace W (or W *) of H1(X;; R). In fact, for 2W (or 2 W), we have
(62) it)r=()=0 and j( )*<( )=0:

See x1 and x2 of [Fo] for more details.
If is a map from [0; r] into some leaf of F*5, then we define the Hodge length ‘() of as
5 kO(t)k dt, where kk is the Hodge norm. Finally:

If two abelian differentials and ®belong to the same leaf of F %, then we define du (; °) to be the
infimum of ‘() where varies over paths connecting and ?and staying in the leaf of F** Q().
We make the same definition if and ?are on the same leaf of FU!.

By taking a ramified double cover (see §7.2), we can define dun(q; q°) for any g;¢° on the
same leaf of F*° in Q().

Lemma 7.3. Let K be a compact subset of C. Suppose (X; q); (X°;9°) 2 p 1(K) are in the same leaf
of F*%. Let be a Hodge length minimizing path connecting q to q°. Suppose t > tg is such that for
all gy 2,
(63) s2[0;t]jga®2 p *(K) t=2:
Then
dn(gta; 8:0°) e “'du(g;q°);
where ¢ depend only on K.
Proof. This follows from Theorem 7.2 and Equation (62).

We now show that the above condition holds whenever the projections of giq and g:q° to C are
also close. See also Lemma 5:4 of [EM2].

Lemma 7.4. Let K be a compact subset of C. Then there is a larger compact subset K° C and a
covering of K with a finite family of open sets U so that the following holds. Let Ui; U, Q() be

connected open sets so that p(Ui) 2 U, i = 1;2. Let (X;q); (X% q°) 2 Uy and t > O be such that
g:(a); 8t(a°) 2 Uz. Further, assume that
(64) s2 [0;t]jp(gsq) 2 K t=2:
Then,
0
(65) s2[0;t]jp(gsa’) 2K t=2:

Proof. Let > 0: We can find an open cover U of K so that the following holds. Let U be connected open
sets so that p(U) 2 U, and let (X1;q1); (X2;92) 2 U. Then for any saddle connection !, we have

(66) L0 “a(1) ‘e ()):

Let U1;U> Q() be connected open sets so that p(Ui) 2 U, i = 1;2. Let (X;q); (X% q%) 2 Ujandt>
0 be such that gi(q); g:(q°) 2 U>. We first claim that (66) is true for quadratic differentials qs = gs(q)
and g, = g:(q°) ds well for a larger constant °= 2. Assume, for contradiction that

‘a.(1) > % 61):

for some s 2 [0;t]. Assume ! is mostly vertical in gs. That is,

=(holg (1)) > %'qs(!):
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Then

‘(1) =(holq(1))
e*=(holg, (1))

1 ‘
> Ees a. (1)

1 0« 011 .
> Ees a(!) 2 o (!):

Which contradicts Equation (66). In case ! is mostly horizontal, we move forward in time and
argue the same way. This proves the claim.

Now let be such that the length of any saddle connection in q 2 K is larger than , and let K® be
the compact subset of C consisting of quadratic differentials where the length of every saddle
connection is larger than = =% Then (65) follows from the above length comparison.

Remark 7.5. We have essentially shown that under the assumption Equation (64) we have expo-
nential contraction along the foliation F ** (and similarly exponential expansion along the foliation
Fuv).

8. Outline of the proof of Theorem 1.2

In this section, we prove Theorem 1.2. We only outline the arguments here since they are well
known a more detailed version is already present in [H2]. We essentially follow the work of Margulis
[Mar]. First, we need a closing lemma.

Lemma 8.1 (Closing Lemma). Let K be a compact subset of C consisting of non-orbifold points.
Given a quadratic differential (x;q) 2 K and > 0, there exist constants Lo > 0, and open

neighborhoods U U® C of (x; q) with the following property. For L > Lo, suppose thatg : [0; L]
I Cis a Teichmuller geodesic segment such that

(a) g(0);g(L) 2 U and

(b) g spends more than half of its length in K.
Let g1 be the closed path in C which is the union of g and a segment connecting g(L) to g(0) in
U. Then there exists a unique closed geodesic g° C with the following properties:

(1) g° and g1 have lifts in T (S) which stay —close with respect to the Teichmiiller metric.
(11) The length of g% is within of L,
(111) g° passes through U°.

Remark 8.2. We remark that in Lemma 8.1 if we remove the assumption that K consists of non-
orbifold points then there are at most a uniformly bounded number of closed geodesics satisfying
conditions (I-111). A version of the closing lemma can be found in [H2].

Outline of the proof of Lemma 8.1. Consider the stable and unstable foliations for the geodesic
flow. Our goal is to show that if U is small enough, the first return map on these foliations will
define a contraction with respect to the Hodge distance function. As a result, we find a fixed point for
the first return map in U%; this is the same as a closed geodesic going through U°.

In view of Lemma 7.3 and Lemma 7.4 there is in fact a neighborhood of (x;q) such that the
time L geodesic flow restricted to the neighborhood expands along the leaves of F“YY and contracts
along the leaves of F**.

Then, the contraction mapping principle (applied first to the map on F ** and then to the inverse
of the map on FYY) allows us to find a fixed point for the geodesic flow near (x; q) (in a slightly
bigger neighboorhood). In other words, there are neighborhoods U U? of (x; q) such that:

if g : [0;L] ! C satisfies properties (a) and (b) then in view of the hyperbolicity statement
(Lemma 7.3)
the time L geodesic flow restricted to U expands along the leaves of F"" and contracts
along the leaves of F*%, in the metric dy,
for any q1;02 2 U; if g1 2 F*(q2) or g1 2 F'Y(q2) then du(q1; q2) .
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We can apply the contraction mapping principle to F*° to find (xo0;qo) 2 U° such that gi(qo) 2
FY“go. Now we can consider the first return map of the map g + on F'"(qo).

Proof of Theorem 1.2. Note that by the bound proved in Theorem 1.5, we only need to consider
the set of closed geodesics going through a fixed compact subset of C. We have
by Theorem 2.4, the geodesic flow on C is mixing, and
on a fixed compact subset of Q' M(S; ) the geodesic flow is uniformly hyperbolic.
every nearly closed orbit approximates a close orbit (Lemma 8.1).
Hence, all the ingredients are in place to drive Theorem 1.2 following the work of Margulis [Mar].
(See also x20:6 in [KH].)

References

[AY] P. Arnoux, J. Yoccoz, Construction de difféomorphismes pseudo-Anosov, C. R. Acad. Sci. Paris Sér. |
Math. 292 (1981), no 1, 75-78.

[AGY] A. Avila, S. Gouezel, and J.-C. Yoccoz, Exponential mixing for the Teichmdller flow, Publ. Math. IHES,
104 (2006), 143-211.

[AR] A. Avila, Maria Jodo Resende, Exponential Mixing for the Teichmiuller flow in the Space of Quadratic
Differentials, Preprint.

[Ath] J. Athreya, Quantitative recurrence and large deviations for Teichmiller geodesic flow, Geom. Dedicata

119 (2006), 121-140.
[ABEM] J. Athreya, A. Bufetov, A. Eskin and M. Mirzakhani, Lattice Point Asymptotics and Volume Growth on
Teichmuller space, Duke Math. J. 161 (2012), no 6, 1055-1111.

[AF] J. Athreya, G. Forni, Deviation of ergodic averages for rational polygonal billiards, Duke Math. J. 144
(2008), no 2, 285-319.

[AG] A. Avila, S. Gouézel, Small eigenvalues of the Laplacian for algebraic measures in moduli space, and
mixing properties of the Teichmdller flow, Ann. of Math. (2) 178 (2013), no. 2, 385—442.

[AGY] A. Avila, S. Gouézel, and J-C. Yoccoz, Exponential mixing for the Teichmiller flow, Publ. Math. Inst.
Hautes Etudes Sci. 104 (2006), 143-211.

[Be] L. Bers, An extremal problem for quasiconformal maps and a theorem by Thurston, Acta Math. 141
(1978), 73-98.

[BC] S. Bleiler, A. Casson, Automorphisms of surfaces after Nielsen and Thurston, Volume 9 of London
Mathematical Society Student Texts, Cambridge University Press, Cambridge, (1988).

[Bu] A. Bufetov, Logarithmic asymptotics for the number of periodic orbits of the Teichmueller flow on Veech’s
space of zippered rectangles, Mosc. Math. J. 9 (2009), no. 2, 245-261.

[CSR] Y. Choi, C. Series, K. Rafi, Lines of minima and Teichmilcer geodesics, Geom. Funct. Anal. 18 (2008),
no. 3, 698-754.

[Du] D. Dumas, Skinning Maps are Finite-to-one, Preprint.

[EMM] A. Eskin, G. Margulis, S. Mozes, Upper bounds and asymptotics in a quantitative version of the Oppen-
heim conjecture, Ann. of Math. (2) 147 (1998), no. 1, 93-141.

[EM1] A. Eskin and H. Masur, Asymptotic formulas on flat surfaces, Ergodic Theory Dynam. Systems, 21
(2001), 443-478.

[EM2] A. Eskin and M. Mirzakhani, Counting closed geodesics in moduli space, Journal of Modern Dynamics ,
1, (2011), 71-105.

[FM] B. Farb and D. Margalit, A primer on mapping class groups, Princeton Mathematical Series 49 (2012).

[FLP] A. Fathi, F. Laudenbach, and V. Poénaru, Travaux de Thurston sur les surfaces, Astérisque, 66 and 67
(1979).

[Fo] G. Forni, Deviation of ergodic averages for area-preserving flows on surfaces of higher genus, Ann. of
Math. (2), 155 (2002), no. 1, 1-103.

[GM] F. Gardiner and H. Masur, Extremal length geometry of Teichmiiller space, Complex Variables Theory
Appl. 16 (1991), no. 2-3, 209-237.

[H1] U. Hamenstadt, Dynamics of the Teichmueller flow on compact invariant sets, J. Mod. Dynamics 4
(2010), 393-418.

[H2] U. Hamenstddt, Bowen’s construction for the Teichmiueller flow, J. Mod. Dynamics 7 (2013), 489-526.

[HP] J. L. Harer and R. C. Penner, Combinatorics of Train Tracks, Annals of Mathematics Studies 125,
(1992).

[Hu] J. Hubbard, Teichmiller theory and applications to geometry, Topology, and Dynamics |, Matrix Edi-
tions, (2006).

[Iv] N. V. Ivanov, Coefficients of expansion of pseudo-Anosov homeomorphisms, Zap. Nauchn. Sem.
Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 167 (1988), Issled. Topol. 6, 111-116, 191.

[KZ] M. Kontsevich and A. Zorich, Connected components of spaces of Abelian differentials with prescribed

singularities, Inventiones Math 153 (2003) 631-683.



46

[KH]

[Ker]
[La]

[Mar]
[Mas]
[Ma]
[MM]
[MS1]
[MS2]
[Mi]
[PP1]
[PP2]
[Pe]
[R1]
[R2]
[R3]
[R4]
[R5]
[St]
[Th1]

[Th2]

[Ve]
[Vo]

A. ESKIN, M. MIRZAKHANI, AND K. RAFI

A. Katok, B. Hasselblat, Introduction to the Modern Theory of Dynamical Systems, Cambridge Univer-
sity Press, (1995).

S. Kerckhoff, The asymptotic geometry of Teichmiller space, Topology 19(1980), 23—-41.

E. Lanneau, Connected components of the strata of the moduli spaces of quadratic diferentials with
prescribed singularities, Ann. Sci. Ecole Norm. Sup. (4) 41 (2008), 1-56.

G.A. Margulis, On some aspects of the theory of Anosov flows, Ph.D. Thesis, (1970), Springer, (2003).
B. Maskit, Comparison of hyperbolic and extremal lengths, Ann. Acad. Sci. Fenn., 10 (1985), 381-386.
H. Masur, Interval exchange transformations and measured foliations, Ann. of Math. (2) 115 (1982), no.
1, 169-200.

H. Masur, Y. Minsky, Geometry of the complex of curves. Il. Hierarchical structure, Geom. Funct. Anal.
10 (2000), no. 4, 902-974.

H. Masur and J. Smillie, Hausdorff Dimension of Sets of Nonergodic Measured Foliations, Ann. of Math.,
Second Series, 134, No. 3 (Nov., 1991), 455-543.

H. Masur and J. Smillie, Quadratic differentials with prescribed singularities and pseudo-Anosov diffeo-
morphisms, Commentarii Mathematics Helevetici, 68, Number 1 (1993), 289-307.

Y. Minsky, Extremal length estimates and product regions in Teichmiller space, Duke Math. J. 83 (1996),
no. 2, 249-286.

A. Papadopoulos and R. Penner, A characterization of pseudo-Anosov foliations, Pacific J. Math., 130
(1987), 359-377.

A. Papadopoulos and R. Penner, Enumerating pseudo-Anosov foliations, Pacific J. Math. 142, no.1
(1990), 159-173.

R. Penner, A construction of pseudo-Anosov homeomorphisms, Trans. Amer. Math. Soc., 310, no.1.
(1988) 179-197.

K. Rafi, A characterization of short curves of a Teichmuller geodesic, Geometry & Topology 9 (2005)
179-202.

K. Rafi, A combinatorial model for the Teichmduller metric, Geom. Funct. Anal 17 (2007), no. 3, pp.
936-959.

K. Rafi, Thick-thin decomposition of quadratic differentials, Math. Res. Lett. 14 (2007), no. 2, 333-341.
K. Rafi, Hyperbolicity in Teichmiller space, Geometry & Topology 18-5 (2014) 3025-3053.

K. Rafi, Closed geodesics in the thin part of moduli space, In preparation.

K. Strebel, Quadratic differentials, Ergebnisse der Math 5, Springer-Verlag (1984).

W. Thurston, On the geometry and dynamics of diffeomorphisms of surfaces, Bull. Amer. Math. Soc.
(N.S.) 19 (1988), no. 2, 417-431.

W. Thurston, Shapes of polyhedra and triangulations of the sphere, (English summary) The Epstein
birthday schrift, 5119549, Geom. Topol. Monogr., 1, Geom. Topol. Publ., Coventry, 1998.

W. Veech, The Teichmiller geodesic flow, Ann. of Math. (2) 124 (1986), no. 3, 441-530.

Y. Vorobets, Periodic geodesics on generic translation surfaces, (English summary) Algebraic and topo-
logical dynamics, 2050258, Contemp. Math., 385, Amer. Math. Soc., Providence, RI, 2005.

Dept. of Mathematics, University of Chicago, Chicago, Illinois 60637

http://math.uchicago.edu/eskin/

E-mail address: eskin@math.uchicago.edu

Department of Mathematics, Stanford University, Building 380, Stanford, California 94305
E-mail address: mmirzakh@math.stanford.edu

Department of Mathematics, University of Toronto, Toronto, Ontario, Canada M5S 2E4
http://www.math.toronto.edu/rafi/
E-mail address: rafi@math.toronto.edu


http://math.uchicago.edu/~eskin/
http://www.math.toronto.edu/~rafi/

