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Abstract—We consider system identification (learning) problems
for Gaussian hidden Markov models (GHMMs). We propose
an algorithm to tackle the cases where the data is recorded
in aggregate (collective) form generated by a large population
of individuals following a certain dynamics. Our parameter
learning algorithm is built upon the expectation-maximization
algorithm with a novel expectation step proposed recently known
as the collective Gaussian forward-backward algorithm. The
proposed learning algorithm generalizes the traditional Baum-
Welch learning algorithm for GHMMs as it naturally reduces to
the latter in case of individual observations.

Index Terms—Markov process, identification, stochastic systems

I. INTRODUCTION

EARNING and inference from population-level data have

gained great attention lately [1], [2], [3], [4]. In such
settings due to the measurement cost or privacy reasons, the
observations are collected in aggregate form such that the
individual’s association is unknown, as compared to more
traditional setting where individual observations are recorded.
Examples of aggregate data include human ensemble flow
analysis and disease spread analysis [5], [6], among others. Es-
timating model parameters from such aggregate observations
is an important problem and unavailability of individual’s data
association makes parameter learning more challenging.

In this work, we are concerned with the problem of parameter
estimation or learning of continuous state hidden Markov
models with Gaussian densities (also known as Gaussian
hidden Markov models (GHMMs)) from aggregate observa-
tions. GHMMs [7], [4] are popular in modeling the temporal
evolution of agents and has applications in many real-world
problems such as optimal filtering [8], signal classification [7],
and activity detection [9]. Moreover, the well known Kalman-
filter is also for GHMMs. The problem of parameter estimation
of GHMMs from individual observations have been studied
in various works including [10], [11], [7], [12]. However,
the existing techniques are not applicable to aggregate data
settings due to loss of individual’s association in recorded
(noisy) observations.

The learning (system identification) and inference problems
from aggregate data have been studied under the more general
framework of collective graphical models (CGMs) [5]. The
inference algorithms are fundamental to parameter learning
and within the CGM framework, multiple inference algo-
rithms have been proposed including Non-linear belief prop-
agation [13] and Bethe-RDA [14]. However, these methods
assume explicit observation model. A more recent work is
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Sinkhorn belief propagation [15] for general CGMs and it is
under the name of collective forward-backward (CFB) algo-
rithm [3] when specialized to discrete state HMMs. Based on
the CFB algorithm, learning of discrete state HMMs has been
studied in [16]. Most of the existing works on the inference
of collective HMMs are focused on discrete states and can
not be directly applied to GHMMs due to impracticability of
discretization of continuous states for large dimensions. Re-
cently an aggregate inference algorithm applicable to GHMMs
known as the collective Gaussian forward-backward (CGFB)
algorithm [4] has been proposed. The CGFB algorithm is
a message passing type aggregate inference algorithm for
GHMMs and exhibits convergence guarantees.

We propose an algorithm for parameter learning of GHMMs
from aggregate observations. We employ the popular EM
algorithm [17], [18] for this purpose. Based on the continuous
aggregate observations, we use the CGFB algorithm [4] for
estimating a function of the expected values of the latent
variables (the E-step of EM algorithm). Then in the M-step,
the maximum likelihood parameter estimates are computed.
Our proposed learning algorithm also has local convergence
guarantee. Note that the CGFB algorithm is focused on
inference of GHMMs from aggregate data. In contrast, this
work is focused on learning the GHMMs parameters from
aggregate data.

The rest of the paper is organized as follows. Section II
discusses the aggregate inference algorithms for GHMMs and
Section III contains the proposed algorithm. In Section IV,
we provide numerical experiments validating the proposed
algorithm followed by the concluding remarks in Section V.

II. BACKGROUND

HMMs consist of a Markov process describing the evolution of
hidden state over time and a corresponding observation process
corrupted by noise. Let the state variables be X7, X5,... and
corresponding observation variables be O1, O3, .... An HMM
is parameterized by initial distribution p(X;), the transition
probabilities p(X;+1 | X;), and observation probabilities
p(O; | X;) for each time step. The joint distribution of a
length 7" HMM is factorized as

T—1

p(x,0) =p(a1) [ p@ea ) [ plor ), (D)
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where x = {z1,22,...,27} and o = {o01,09,...,01}
represent a particular assignment of hidden and observation
variables, respectively. The state and observation variables
can take either continuous or discrete values. In this paper,
we assume that both state and observation variables take
continuous values. There are two main problems concerning
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Fig. 1: Collective HMMs and messages (shaded nodes repre-
sent aggregate noisy observations).

HMMs: inference of hidden states given the observations along
with the underlying HMM parameters and learning (parameter
estimation) of HMMs from the observations.

A. Collective Hidden Markov Models

Collective (aggregate) HMMs are generative models wherein
a population of M individuals independently follow a certain
Markov chain and the noisy observations are recorded in
aggregate form such that the association to the individuals is
unknown. Let Xt(m) be the random variable representing the
state of m?" individual at time ¢ and Ot(m) be the observation
variable of m!”" individual at time ¢. The observations are
made in aggregate form y;(o;) representing the distribution
of the collective observations for each time step ¢. The goal
of inference in collective HMMs is to estimate the aggregate
state distributions n.(x;) given all the aggregate observation
distributions. A pictorial representation of a collective HMM
is depicted in Figure la. Here, n;(x;) is an estimate of the
state distribution of the )M agents at time step .

Inference in collective HMMs aims to estimate the aggregate
hidden distributions based on the indistinguishable aggre-
gate measurements. Traditional inference algorithms such as
forward-backward algorithms can not be used here due to data
aggregation. The collective forward-backward algorithm [3]
was recently proposed for aggregate inference in HMMs. It is
a message passing type aggregate inference method employing
four different types of messages over the underlying HMM as
shown in Figure 1b, where oy (x;) are messages in the forward
direction and (;(x;) are messages in the backward direction.
Moreover, v;(x:) denote the messages from corresponding
observation nodes to hidden nodes and &;(o;) are the messages
from corresponding hidden nodes to observation nodes. The
CFB algorithm was originally proposed for discrete state
and discrete observation HMMs and its extension to discrete
state and continuous observation settings was studied in [19].
When specialized to collective GHMMs, the CFB algorithm
is termed the collective Gaussian forward-backward (CGFB)
algorithm [4].

B. Collective Gaussian Forward-Backward Algorithm
A GHMM model is characterizated by
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Fig. 2: Messages in the CGFB algorithm.
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with Wy, ~ N(w;0,Q), Vi ~ N(v;0,R), and X7 ~
N (zq; 7, II). We assume the state and observation space
dimensions to be d and s, respectively. Alternatively, GHMMs
can be viewed as special cases of continuous state HMMs
where the model densities take the form

P(Xeq1] X, 0x) = N (w4415 Ay, Q) (3a)
(O Xt,00) = N(o; Cxy, R) (3b)
p(X1]01) = N (157, 10), (3¢)

where 0x = {A,Q}, 0o = {C, R}, and 6, = {m,II} are the
parameters characterizing model densities in the GHMM.

The aggregate observations constitute a total of M tra-
jectories of continuous observations over a single GHMM
characterized by (3). Let the recorded observations be
{ogm),oém), .. .,ogm)}, vm = 1,2,..., M with ogm) being
the continuous observations of the m®" trajectory at time .
The goal of the collective GHMM inference is to estimate
the distributions n(xz;), Vt. It is assumed that the aggregate
observations are approximated by Gaussian densities at each
time step t, that is,

yi(0¢) ~ N (043 fu, By), €]

where [i; and Pt are estimated from the observations. The
messages in collective GHMMs are characterized by the
following theorem.

Algorithm 1 CGFB Algorithm

Initialize all the message parameters
while not converged do
Forward pass:
for t =2,3,...,7 do
i) Update upward parameters A\ and n ")
ii) Update forward parameters Agf ) and ngf )
ii) Update downward parameters Agd)
end for
Backward pass:
fort=T-1,...,1do
i) Update upward parameters Agi)l and nt(i)l
ii) Update backward parameters Agb) and ngb)
ii) Update downward parameters Agd) and r],gd)
end for
end while
Estimate required state density parameters p; and P,

and nt(d)




Theorem 1 ([4]). The forward, backward, upward, and down-
ward messages in collective GHMM are in the form:

ag(x) o< exp <;xTA§f)x + :rTnt(f)> , (5a)
Bi(x) < exp <;xTAEb)x + :ETnt(b)> , (5b)
(x) o< exp (—;xTAE“)x + a:Tm“”) : (5¢)
&(z) < exp (—;mTAEd)J; + xTnt(d)> ) (5d)
fort=1,2,...,T. Here, the message parameters are the fixed

points of the following recursive updates
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n? = ATQTHQ T + Ag?l + Agi)l)_l(ngi)l + 77151)1)
AP =R - RTIC(CTRTIC+ A + AP)TICTRTY
9 = RIOETRIC + 4D + AP 5D 1 4
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with boundary conditions
AP =t g =ntr, AP =0, 9 = 0.
Moreover, the marginals can be computed as
() oc o (@) Be(we)ve(@e) o< N (s e, ),
where
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Pi(nt” 4+ + i),

P =
My =
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Based on Theorem 1, the CGFB algorithm (Algorithm 1) was
proposed in [4] for aggregate inference in collective GHMMs.
The four different messages involved in the algorithm are
illustrated in Figure 2. Moreover, the joint densities are

N1 (Tes Teg1) X p(Tesr |ze) o (@e) e ()

5t+1($t+1)’}’t+1($t+1) (7a)
plot|ze) o () Be () ye (01)
nt,t (fEh Ot) (08 ft(ot) . (7b)

IIT. MAIN RESULTS

In this section, we present our GHMM learning algorithm
based on aggregate measurements. We have aggregate obser-
vations {ogm), ogm), . ogpm)}, Ym = 1,2,..., M following
GHMM model in (3) such that the individuals association is
unknown. We approximate the observations at each time step
as Gaussian distributions given by (4). We are interested in
estimation of the GHMM parameters 6§ = {m,II, A, Q, C, R}
from the aggregate observations. We employ the EM algo-
rithm [18] for this purpose. The EM algorithm involves two

operations: the Expectation-step (E-step) computes the log-
likelihood of the observations given the current estimate of
parameters, and the Maximization-step (M-step) maximizes
the log-likelihood.

Denote the set of hidden distribution for all the time steps
t =1,...,T by n and the set of observation distributions
by vy = {v1i(*),y2("),...,yr(-)}. The E-step required in-
ferring the conditional distribution of n given the aggregate
observations y, its application to collective settings is not
straightforward since the aggregate data likelihood p(n,y;0)
does not have a tractable convex (concave) form. It turns out
that the aggregate data log-likelihood can be approximated by
Bethe free energy [3]

log p(n,y;0) o< —F(n,y;0). ®)

Thus, maximizing log p(n,y; ) is equivalent to minimizing
Bethe energy F(n,y;#). For continuous state HMMs, the
Bethe free energy takes the form

T
F(n,y;0) = _Z/nt,t(xtaot)logp(0t|xt) daxy doy
t=1
T-1
- Z /nt,t+1($t7$t+1)logp($t+1|$t) dry dreiq
t=1
~ [ ogpter) dor— [ mi(en)logni(ar) day
T-1 1
-2 Z /nt(xt) log ng(zy)dxy —/nT(:vT) log ny(xr)dzr
t=2
T-1
+ Z /nt,t+1(l’t,xt+1)10gnt,t+1(xt,$t+1) dzy driq
t=1

T
+Z/nt,t(ilft,Ot)lognt,t(l”t,Ot)dCCt doy. 9
t=1

Based on the above approximation of aggregate data likeli-
hood, we recently proposed CGFB algorithm [4] for inference
in GHMMs. For learning the GHMM parameters, we use the
CGFB algorithm in the E-step to infer hidden distributions n*
given the current estimate of the parameters and then update
the model parameters based on the maximization of completed
data likelihood in the M-step. The sequence of our learning
method is listed in Algorithm 2.

Note that the E-step minimizes the free-energy F(n,y;6)
given by (9) with respect to n. The statistics in the E-step
for GHMM with aggregate observations are characterized by
the following proposition.

Proposition 1. The statistics in the E-step for GHMM with



aggregate observations are computed as

T-1 T-1
Ky = Z Elzizl] = Z P+ el (10a)
t=1 t=1
T-1 T-1
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T-1 T—-1
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T T
Ky =Y Elojof | => (P + fuprf) (10e)
t=1 t=1

with

S = RATQTHQT + A + AT (1)
S0 = PCTRY R+ P — AL (11b)

Algorithm 2 Approximate EM algorithm for GHMM param-
eter learning

Initialize model parameters 0° = {m,II, A, Q, C, R}

for {=1,2,...do
E-step: Obtain hidden densities n* using the CGFB
algorithm with parameters 6!
M-step: Update §¢ = argmin, F(n*,6) using Equa-
tion (12)

end for

Proof. Note that (10a)-(10b) and (10d)-(10e) directly follow
from definitions. We prove (10c) and (10e).

First, using (7a), the joint density n ;41 (¢, x141) equals

1 1
T T
Nt,t41(Te, Teg1) O exp (—th Anzy — §xt+11\22wt+1

1 1
+§$tT+1A2133t + 2$tTA12$t+1)
with A11 = ATQilA + Agf) + Agu), A12 = 7ATQ71,
Ay = —Q A, and Aoe = Q71 + Ag?l + Agi)l. Using these
partitioned precision matrices, the covariance matrices can be
computed as

o1 2o Aoy

X1
Ao

212] _ {Au A12} -

Considering concatenated vector [z} ,z7,;]7, and taking ex-
pectation over the joint distribution

Elzex{\ 1] = Sio + sty

where Y15 is the covariance between variables z; and =4 .
Next, using (7b), the joint density 7, ¢(x, 0;) becomes

1 +- 1 +-
Ny (T, 04) X exp (—Qx?Auxt — §OtTA220t

1 4= 1 +-

505A21.’Et —+ 2$;TA120¢)

with Ayy = CTRICH+AY) + AP Ay = —CTR™1, Ay =
—R7IC,and Mgy = R~14+P;7 ' —A!?. Using these partitioned
precision matrices, the covariance matrices can be computed

as
Si0 ] _ [An Aw]
221 222 A21 A22 '

Considering concatenated vector [x] , 017, and taking expec-

tation over the joint distribution
T 3 AT
E[zio; | = Y12 + pefiy
where Y15 is the covariance between variables z; and o;. [
Based on the statistics computed in the E-step, the M-step

updates in Algorithm 2 are characterized by the following
theorem.

Theorem 2. The M-step updates in GHMM learning from
aggregate data are given by

r=m, =P (12a)
A=Ky (Kp)™ (12b)
Q= % (K2 — Kot K7 K15 (12¢)
C=KnuKg! (124d)
R = % (K22 — Kmf_(ﬂlkm] (12e)

where K and K are computed in the E-step using Proposi-
tion 1.

Proof. In the expression of Bethe free energy (9), keeping only
the model parameter terms, it can be decomposed into three

terms as
F(n,y;0) = F1 + Fx + Fo, (13)

where I corresponds to initial density parameters, F'x repre-
sents transition density parameter terms, and Fp corresponds
to observation density parameters.

The updates for initial density parameters 6, = {r, II} follows
directly by minimizing

F = —/nl(xl)logp(xl) dzy

= f/N(zl;,ul,Pl)log (N(z1;m,10)) dxy.

d 1 1 » .
= —log2m + 5 log |TT| + 3 (Te{IT " (P + papt )}

T2
+uf (=20 ) + 7T ). (14)

Differentiating I, with respect to m and II~! and equating to
zero, we get (12a).



The updates for transition density parameters 0x = {4, Q}
are obtained by minimizing

T-1
Fx=-> /nt,t+1(wt,xt+1) log p(zi41]2e) day dayis.
t=1

Expanding — log p(z¢4+1|2¢) so that

1. /1
Fy =-1 -1 .
=31+ X (3ol

In the above equation,

5)

T-1
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t=1

— J?szTQill't_i_l — IZ;lelet) d.I‘t dJUt+1
T-1
= Z [Te{ATQ™ A(P: + e )}

t=1
FTr{Q ™ (Peg1 + peg1i1)}
—Elzf ATQ a1 + 21, Q Ay
:TI‘{ATQ_lAKll} + T‘I‘{Q_lKQQ}

—Tr{Q 'AK} — Tr{ATQ 'Ky }. (16)

Clearly, Fx is convex in A and Q~'. In the view of (16),
differentiating (15) with respect to A and Q~' and equating
to zero, we arrive at (12b) and (12c).

The updates for observation density parameters 8o = {C, R}
are obtained by minimizing

T
Fo = —Z/nt,t(l’t70t)10gp(0t|$t) dzs doy
t=1

Expanding — log p(o¢|z¢) so that

1. 1<
Fo = §J+§t:2110g\R|, (17)
where
T
J :Z/ntvt(xt, 0)) (I CTR™'Cxy + ol R0,
t=1
— :EtTCTRflot — otTRflc:ct) dxy doy
ZTI'{CTR_lc’Kll} + Tr{R_ll_(QQ}
—Tr{R'CKs} — Tr{CTR'Ky}.  (18)

Clearly, Fp is convex in C and R~ In the view of (18),
differentiating (17) with respect to C' and R~! and equating
to zero, we arrive at (12d) and (12e). ]

Since the CGFB algorithm employed in the E-step of the
algorithm is guaranteed to convergence [4], our algorithm also
exhibits convergence guarantees at least locally. The conver-
gence can be argued due to the convergence of coordinate
descent. Since the E-step and M-step in Algorithm 2 are coor-
dinate descent updates of free energy F(n,y;6) with respect
to n and # and thus it decreases monotonically. Moreover, the
free energy F(n,y;6) equals the Kullback-Leibler divergence

between the inferred distribution and the distribution induced
by the prior HMM dynamics over the space of trajectories and
is thus bounded below by 0. There two properties ensures the
local convergence of our algorithm. Note that the parameters
are not unique in terms of measurement data likelihood, i.e.,
there exist multiple sets of parameters which result in the same
data likelihood.

Our algorithm scales well with the problem dimension. In
particular, the complexity of each iteration increases linearly
with the length T of the model. Moreover, the worst case
complexity in each iteration is O(d?) in terms of the state
dimension d due to matrix inversion.

Remark 1. In case of an ensemble of aggregate observation
distributions {y’ 3-]:1, we find these J number of hidden
distribution sets {n’}_, in the E-step. Then the parameter

updates in the M-step are given by
1 1

m=Sul, T=—P/ (19a)
A=K () (19b)
@= ﬁ Ky — K5, () K| (190
C= I_(le (Ki]1)_1 (19d)
R=75 [f% — K (K Ki’z} , (19)
where the terms with superscript pi = Z}]:l /iji, P =

7 P!, and K7, = K with a,b € {1,2}.
j=1"1 ab j=1""ab

Remark 2. When the aggregate observations are in Dirac
form, corresponding to individual observations, our learning
algorithm naturally reduces to the standard Baum-Welch [17],
[10] learning algorithm for GHMM:s.

IV. NUMERICAL EXAMPLES

We perform multiple experiments to evaluate the performance
of our proposed learning algorithm. First, we consider a system
with true GHMM parameters:

]l

1 At
A= [—At 1 —O.BAt] , C=10 Al
01 0
QAt{O 0.1}’ R=At[0.7],

where At is set to 0.05 for all our experiments. Based on
the above GHMM parameters, M number of trajectories are
generated and the observations are recorded in aggregate form
{0(1”7”),0(217%)7 . ,ogqm)}, Ym=1,2,..., M.

For testing purpose, we generate another set of trajectories
(of same length and same population size as in training) and
record aggregate observations. We evaluate the performance
in terms of difference in negative log likelihoods of test data
based on the learned parameters and the ground truth:

ANLL = NLL(6) — NLL(6"), (20)



where 6 is the set of learned parameters and 6* represents
ground truth parameters. We normalize ANLL by the HMM
length. Figure 3(a) shows the performance of our algorithm
for different population sizes. A better performance can be
observed in case of large population. We further test the per-
formance of our algorithm with different ensemble sizes. We
divide the total population M into J number of ensembles and
use our algorithm as mentioned in Remark 1. In Figure 3(b),
we plot the behavior with different ensemble sizes. It can be
observed that small amount of aggregation (J = 5) has better
performance as compared with full aggregation of observations
(J=1).
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Fig. 3: (a) A NLL with 7" = 200 and different population
size M. (b) A NLL for an ensemble of observations with
T = 200 and M = 1000. The results are averaged over 5
different random seeds.

In our next example, we consider a GHMM model with

s

[03] , 11 = Atlg,
13

Ao I3 Atls

- —At([g + OlD) (1 — 0.5At)]3 ’
C = [Atl; 03], Q =0.1Atls, R = 0.2AtI3.
At

Here = 0.05, I and 0 respectively denote identity
matrix and zero matrix of dimension k, and 0, and 1,
represent zero vector and one vector of dimension k. The
matrix D is randomly generated whose elements belong to
the interval [0, 1]. The performance of our algorithm over this
6-dimensional system with varying M is shown in Figure 4,
from which a convergent behavior is observed.
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Fig. 4: A NLL with 7' = 200 and different M (d = 6).

V. CONCLUSION

In this paper, we proposed an algorithm for learning GHMMs.
Our algorithms is based on the EM algorithm wherein we

utilized collective Gaussian forward-backward algorithm for
data completion in the E-step and derived the parameter
updates for the M-step. To the best of our knowledge, our
proposed learning algorithm is the first effort towards learning
continuous state HMMSs from aggregate observations. Our
algorithm is restricted to GHMM:s and only ensures local con-
vergence. A future direction is to study learning parameters for
general models such as mixed-mode GHMMs from aggregate
observations [7]. Another interesting direction is to utilize the
proposed algorithm to identify models of miniature systems
such as bacterial or cell.
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