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ABSTRACT

In this work, we examine sampling problems with non-smooth potentials and propose a novel Markov

chain Monte Carlo algorithm for it. We provide a non-asymptotical analysis of our algorithm and establish

a polynomial-time complexity Õ(M2dM
1/2

4 ε−1) to achieve ε error in terms of total variation distance to

a log-concave target density with 4th moment M4 and M-Lipschitz potential, better than most existing

results under the same assumptions. Our method is based on the proximal bundle method and an alternating

sampling framework. The latter framework requires the so-called restricted Gaussian oracle, which can be

viewed as a sampling counterpart of the proximal mapping in convex optimization. One key contribution

of this work is a fast algorithm that realizes the restricted Gaussian oracle for any convex non-smooth

potential with bounded Lipschitz constant.

1 INTRODUCTION

Core to many scientific and engineering problems that face uncertainty is the task of drawing samples

from a given, often unnormalized, probability density. Sampling plays a crucial role in many applications

such as statistical inference/estimation, operations research, physics, biology, and machine learning, etc

(Bertsimas and Vempala 2004; Durmus et al. 2018; Dyer et al. 1991; Gelman et al. 2013; Kannan et al.

1997; Krauth 2006; Sites Jr and Marshall 2003). For instance, in Bayesian statistics, we can sample from

the posterior distribution to infer its mean, covariance, or other important statistics.

A very popular framework for sampling from high dimensional complex distributions is the Markov

chain Monte Carlo (MCMC) method (Chen et al. 2018; Cheng and Bartlett 2018; Cheng et al. 2018;

Durmus et al. 2019; Durmus et al. 2018). Several widely used MCMC methods include Langevin

Monte Carlo (LMC) (Dalalyan 2017; Grenander and Miller 1994; Parisi 1981; Roberts and Tweedie 1996),

Metropolis-adjusted Langevin algorithm (MALA) (Bou-Rabee and Hairer 2013; Roberts and Stramer 2002;

Roberts and Tweedie 1996), and Hamiltonian Monte Carlo (HMC) (Neal 2011). These three methods

use gradient information of the potential (log-density) to construct the Markov chain. They resemble the

gradient-based algorithms in optimization and can be viewed as the sampling counterparts of them. Over

the last few years, many theoretical results (Chen et al. 2020; Dalalyan 2017; Durmus et al. 2019; Dwivedi

et al. 2019; Lee et al. 2021; Lee and Vempala 2017; Roberts and Rosenthal 1998; Roberts and Tweedie

1996) have been established to understand the computational complexities of these MCMC algorithms.

Most existing gradient-based MCMC methods are only applicable to settings with smooth potentials

(Dalalyan 2017; Lee et al. 2021; Bernton 2018b) whose gradient is Lipschitz continuous. However,

non-smooth sampling is also an important problem as many applications of sampling involve non-smooth

potentials. For instance, in Bayesian image deconvolution with total-variation and ℓ1 priors (Durmus et al.

2018), the posterior distribution πX |Z(x | z) given by

πX |Z(x | z) ∝ exp

(

−‖z−Hx‖2

2σ2
−β‖x‖TV

)
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has a non-smooth potential, where σ > 0, β > 0 and H is a convolution kernel. Many problems in deep

learning are also non-smooth, not only due to non-smooth activation functions like ReLU used in the

neural networks, but also due to intrinsic scaling symmetries. Nevertheless, the study of sampling without

smoothness is nascent. This is in sharp contrast to optimization where a plethora of algorithms, e.g.,

subgradient method, proximal algorithm, bundle method have been developed for non-smooth optimization

(Lemaréchal 1975; Liang and Monteiro 2021; Mifflin 1982; Rockafellar 1976; Wolfe 1975).

The goal of this work is to establish an efficient algorithm to draw samples from a distribution with

non-smooth potential. We focus on the case where the potential is convex and Lipschitz continuous. Our

algorithm is based on the alternative sampling framework (ASF) (Lee et al. 2021), which can be viewed

as a sampling counterpart of the proximal point method in optimization (Rockafellar 1976). The key of

the ASF is a step known as the restricted Gaussian oracle (RGO) (see Definition 1) to draw samples

from a potential regularized by a large isotropic quadratic term. To utilize this framework to sample from

general non-smooth potentials with bounded Lipschitz constants, we develop an efficient realization of the

RGO through rejection sampling with a properly designed proposal. A non-smooth optimization technique

known as the proximal bundle method (Lemaréchal 1975; Liang and Monteiro 2021) is used to compute

the proposal. We establish a polynomial-time complexity Õ(M2dM
1/2

4 ε−1) to achieve ε total variation

distance to a log-concave target density with 4th moment M4 and M-Lipschitz potential, better than most

existing results under the same assumptions.

A key contribution of this paper is a fast algorithm for implementing RGO for convex non-smooth

functions. When the potential g is decomposable, e.g., g is an ℓ1 norm or an indicator function of an orthant,

there exists simple sampling algorithms for RGO (Mou et al. 2022). In general, the implementation of

RGO is a difficult algorithmic task, which makes ASF (Lee et al. 2021) a conceptual method without

implementable algorithms in most cases. Our algorithm of implementing the RGO for any convex non-

smooth function broads the applicability of the ASF significantly. In fact, our algorithm for RGO can be

used for any framework, not only ASF, that requires sampling from exp(−g(x)− 1
2η ‖x− y‖2) for any y

and some proper η > 0. From an optimization point of view, our algorithm for RGO provides an efficient

realization of the proximal oracle for a wide range of functions/potentials, solidifying the connections

between the ongoing research at the interface of optimization and sampling (Bernton 2018b).

(?) Over the last few years, several new algorithms and theoretical results in sampling with non-smooth

potentials have been established. In (Mou et al. 2022), sampling for non-smooth composite potentials

is considered. The algorithm needs the proximal sampling oracle that samples from the target potential

regularized by a large isotropic quadratic term as well as computes the corresponding partition function,

which is not realistic for general potentials. In (Lee et al. 2021), algorithms to sample from non-smooth

composite potentials are developed; both are based on the RGO which is similar to the proximal sampling

oracle but do not need to compute the partition function. In (Chatterji et al. 2020), the authors developed

an algorithm to sample from non-smooth potentials by running LMC on the Gaussian smoothing of the

potentials. In (Lehec 2021), the author developed the projected LMC algorithm and analyzed its complexity

for non-smooth potentials. In (Freund et al. 2022), the authors developed a new analysis that leads to

dimension-free complexity for sampling from a composite density which contains a non-smooth component.

In (Durmus et al. 2019), the authors presented an optimization approach to analyze the complexity of

sampling and established a complexity result for sampling with non-smooth composite potentials. In (Lee

and Vempala 2017), the authors studied the complexity of the ball walk to sample from an isotropic

logconcave density from a warm start. In (Bernton 2018a; Wibisono 2019), a proximal algorithm was

proposed. This algorithm resembles the ASF for sampling with a major difference that the RGO is replaced

by proximal point optimization step, which introduces bias for sampling.

To compare our results with (Bernton 2018a) and (Freund et al. 2022), consider sampling from

exp(− f (x)−µ‖x‖2/2) where f is convex and M-Lipschitz continuous. Our complexity (see Theorem 5)

is Õ(M2d/µ), better than O(M2/(µε2)) in (Freund et al. 2022) and Õ(M2d/(µε4)) (albeit in Wasserstein

distance) (Bernton 2018a) when ε < d−1/2. For sampling from non-smooth potentials, compared with
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(Mou et al. 2022; Lee et al. 2021), our algorithm does not require any sampling oracle. Compared with

(Lehec 2021), we consider sampling from a distribution supported on R
d instead of a convex compact set.

Compared with (Chatterji et al. 2020; Durmus et al. 2019), our algorithm has better complexity in terms

of total variation when the target error ε is small. Compared with (Lee and Vempala 2017), we consider

a generic setting where the target distribution can be anisotropic, and our complexity is in general better

in the low resolution region. See Table 1 for the detailed complexity bounds. Note that complexity results

obtained in (Chatterji et al. 2020; Lee and Vempala 2017) and this paper are for the last iterate, while the

bound established in (Durmus et al. 2019) (also (Freund et al. 2022)) is for the average of all iterates.

Table 1: Complexity bounds for sampling from non-smooth densities.

(Chatterji et al. 2020) (Durmus et al. 2019) (Lee and Vempala 2017) this paper

Õ(M6d5M
3/2

4 ε−10) O(M2W 2
2 ε−4) O(d5/2 log(β/ε)) Õ(M2dM

1/2

4 ε−1)

In Table 1, M4 denotes the finite 4th moment of the target distribution, W2 denotes the Wasserstein

distance between the initial and target distributions, and β denotes the warmness of the initial distribution.

More specifically, M4 ≈ d2 in the isotropic case, logβ ≈ d if the initial distribution is not warm started,

and W2 ≈
√

d in general. Under these simplifications, our bound is Õ(M2d2ε−1), better than Õ(M6d8ε−10)
in (Chatterji et al. 2020), O(M2dε−4) in (Durmus et al. 2019), and Õ(d7/2) in (Lee and Vempala 2017)

when d is large and ε is relatively small. Note that, for typical problems, M =O(d1/2), but sparsity maybe

exploited to improve this dependence. In any case, our method has better dependence on the dimensional

d than (Lee and Vempala 2017) whose complexity scales as d7/2 when warm start is not available.

For µ > 0, f : Rd → R is said to be µ-strongly convex if f satisfies

f (u)− f (v)−〈 f ′(v),u− v〉 ≥ µ

2
‖u− v‖2, ∀u,v ∈ R

d ,

where f ′ denotes a subgradient of f . For M > 0, f : Rd → R is said to be M-Lipschitz continuous if

‖ f ′(u)− f ′(v)‖ ≤ M‖u− v‖, ∀u,v ∈ R
d .

The rest of this paper is structured as follows. In Section 2 we provide the problem formulation. We

also briefly review ASF on which our algorithm is based. In Section 3 we present our key contribution, an

efficient realization of the RGO for general convex potentials with bounded Lipschitz constants. This is

then combined with the ASF in Section 4 to establish our results for sampling without smoothness. Finally,

we present some concluding remarks and possible extensions in Section 5.

2 PROBLEM FORMULATION AND ALTERNATING SAMPLING FRAMEWORK

The problem of interest is to sample from a distribution on R
d proportional to exp(− f (x)) where the

potential f is convex and M-Lipschitz continuous. Note that the potential f does not need to be smooth.

This violates the smoothness assumption for most existing gradient-based MCMC sampling methods (Lee

et al. 2021; Bernton 2018b).

Our method is built on the ASF introduced in (Lee et al. 2021) (a similar method was developed in

(Vono et al. 2022)), which is a generic framework for sampling from a distribution πX
∝ exp(−g(x)). For

a stepsize η > 0, starting from a given point x ∈ R
d , the ASF repeats the two steps as in Algorithm 1.

Algorithm 1 Alternating Sampling Framework

1. Sample yk ∼ πY |X(y | xk) ∝ exp[− 1
2η ‖xk − y‖2]

2. Sample xk+1 ∼ πX |Y (x | yk) ∝ exp[−g(x)− 1
2η ‖x− yk‖2]
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Clearly, the ASF is itself a special case of Gibbs sampling to sample from the joint distribution

π(x,y) ∝ exp

[

−g(x)− 1

2η
‖x− y‖2

]

.

In Algorithm 1, sampling y in step 1 can be easily done since πY |X is a Gaussian distribution. Sampling x

given y in step 2 corresponds to the restricted Gaussian oracle for g introduced in (Lee et al. 2021).

Definition 1 Given a point y∈R
d and stepsize η > 0, a restricted Gaussian oracle (RGO) for convex g :Rd →

R is a sampling oracle that returns a sample from a distribution proportional to exp(−g(·)−‖·−y‖2/(2η)).

RGO is an analogy of the proximal mapping in convex optimization, which is heavily used in proximal

point methods. RGO is a key algorithmic ingredient used in (Lee et al. 2021) together with the alternating

sampling framework to improve the iteration-complexity bounds for various sampling algorithms. Examples

of a convex function g that admits an computationally efficient RGO have been presented in (Mou et al.

2022; Lee et al. 2021), including coordinate-separable regularizers, ℓ1-norm, and group Lasso.

We recall the main result of (Lee et al. 2021), which gives the complexity of Algorithm 1 in terms of

number of calls to RGO and is useful in this paper.

Theorem 1 (Theorem 1 of (Lee et al. 2021)) Let πX be a distribution on R
d with πX(x) ∝ exp(− foracle (x))

such that foracle is µ-strongly convex, and let ε ∈ (0,1). Let η ≤ 1/µ,T = Θ

(

1
ηµ log d

ηµε

)

. Algorithm 1,

initialized at the minimizer of foracle, runs in T iterations, each querying RGO for foracle with parameter

η a constant number of times, and obtains ε total variation distance to πX .

Note that the above minimizer can be an approximate solution, as long as ‖x̂− xopt‖2 ≤ d/µ where x̂

and xopt are the approximate and exact solutions, respectively.

We now describe our approach to sample from non-smooth potentials. We first consider a regularized

density exp(−g(x)) where g(x) = f (x)+µ‖x−x0‖2/2 and x0 ∈R
d is an arbitrary point but preferred to be

close to the minimum set of g. Since g is µ-strongly convex, Algorithm 1 and Theorem 1 are applicable. We

then develop an efficient implementation of the RGO based on the proximal bundle method and rejection

sampling for an arbitrary convex potential with bounded Lipschitz constant. This is the main contribution

of this work. Finally, we justify the sample generated from exp(−g(x)) by using Algorithm 1 and the

implementable RGO with a proper choice of µ is a sample within ε total variation distance to the target

density exp(− f (x)).

3 KEY RESULT: AN IMPLEMENTABLE RESTRICTED GAUSSIAN ORACLE

The bottleneck of applying the alternating sampling framework (Algorithm 1) to sample from general

log-concave distributions is the availability of RGO. In this section, we address this issue by designing a

computationally efficient and implementable RGO for µ-strongly convex g of the form

g = f +
µ

2
‖ ·−x0‖2. (1)

Our algorithm of RGO for g is based on rejection sampling but with a specially designed proposal. With

this proposal and a sufficiently large regularization parameter, the expected number of rejection sampling

steps to obtain one effective sample turns out to be bounded above by a dimension-free constant. To bound

the complexity of the rejection sampling, we develop a novel technique to estimate a modified Gaussian

integral (see Proposition 3).

Let

x∗ = argmin
x∈Rd

{

gη
y (x) := g(x)+

1

2η
‖x− y‖2

}

, (2)

where y is the output of step 1 in Algorithm 1. Note that solving (2) is equivalent to invoking one proximal

mapping of f since g(x) = f (x)+ µ‖x− x0‖2/2; the quadratic term can be combined with that in (2).
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However, the proximal mapping of f is not available in general, for example, f is the maximum of finite

number of affine functions. In this work we only assume f is convex and M-Lipschitz continuous but not

the availability of the proximal mapping of f .

The RGO in each iteration requires sampling from exp(−g
η
y ). Our strategy is rejection sampling with a

proper Gaussian proposal centered at an approximate solution to (2) close to x∗. Since (2) is a non-smooth

optimization, we use Algorithm 3 (see Section A for more details), i.e., the proximal bundle method, to

generate two approximate solutions xJ and x̃J , where J denotes the last iteration index of Algorithm 3. We

define the following two functions that are crucial in the RGO sampling algorithm and its analysis, namely,

h1 :=
1

2ηµ
‖ ·−xJ‖2 +gη

y (x̃J)−δ , (3)

h2 :=
1

2ηµ
‖ ·−x̃J‖2 +

(

2M+

√
2δ

√
ηµ

)

‖ ·−x̃J‖+gη
y (x̃J), (4)

where

ηµ :=
η

1+ηµ
.

The potential g
η
y in RGO is bounded below and above by these two functions as in Lemma 2 below. This

naturally leads to the rejection sampling algorithm (Algorithm 2).

Algorithm 2 RGO Rejection Sampling

1. Compute xJ and x̃J as in Algorithm 3;

2. Generate X ∼ exp(−h1(x));
3. Generate U ∼ U [0,1];
4. If

U ≤ exp(−g
η
y (X))

exp(−h1(X))
,

then accept/return X ; otherwise, reject X and go to step 2.

Lemma 2 Assume f is convex and M-Lipschitz continuous. Let g and g
η
y be as in (1) and (2), respectively.

Then, for every x ∈ R
d , we have

h1(x)≤ gη
y (x)≤ h2(x) (5)

where h1 and h2 are as in (3) and (4), respectively.

Proof. Using Lemma 8(a)-(b) and the definition of g
η
J in (18) in Appendix A , we have

g(x̃J)−g(x)+
1

2ηµ
‖x− xJ‖2 ≤ g(x̃J)−gJ(x)+

1

2ηµ
‖x− xJ‖2

≤ g(x̃J)−g
η
J (xJ)+

1

2η
‖x− y‖2 ≤ δ − 1

2η
‖x̃J − y‖2 +

1

2η
‖x− y‖2.

The first inequality in (5) holds in view of the definition of h1 in (3). Using the definition of g
η
y in (2) and

the fact that f is M-Lipschtz, we have

gη
y (x)−gη

y (x̃J) = f (x)− f (x̃J)+
µ

2
‖x− x0‖2 − µ

2
‖x̃J − x0‖2 +

1

2η
‖x− y‖2 − 1

2η
‖x̃J − y‖2

≤ M‖x− x̃J‖+
µ

2
‖x− x̃J‖2 +µ〈x− x̃J, x̃J − x0〉+ 1

2η
‖x− x̃J‖2 +

1

η
〈x− x̃J, x̃J − y〉

= M‖x− x̃J‖+
1

2ηµ
‖x− x̃J‖2 +µ〈x− x̃J, x̃J − xJ + xJ − x0〉+ 1

η
〈x− x̃J, x̃J − xJ + xJ − y〉.
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The above inequality, the Cauchy-Schwarz inequality and Lemma 8(c)-(d) imply that

gη
y (x)−gη

y (x̃J)≤ M‖x− x̃J‖+
1

2ηµ
‖x− x̃J‖2 +

1

ηµ
‖x− x̃J‖‖x̃J − xJ‖+‖x− x̃J‖

∥

∥

∥

∥

µ(xJ − x0)+
xJ − y

η

∥

∥

∥

∥

≤ M‖x− x̃J‖+
1

2ηµ
‖x− x̃J‖2 +

√
2δ

√
ηµ

‖x− x̃J‖+M‖x− x̃J‖

=

(

2M+

√
2δ

√
ηµ

)

‖x− x̃J‖+
1

2ηµ
‖x− x̃J‖2.

It follows from the above inequality and the definition of h2 in (4) that the second inequality in (5) holds.

From the expression of h1 in (3), it is clear the proposal distribution is a Gaussian centered at xJ . To

achieve a tight bound on the expected runs of the rejection sampling, we use a function h2 which is not

purely quadratic; the standard choice of quadratic function does not give as tight results due to the lack of

smoothness. To use this h2 in the complexity analysis, we need to estimate the integral
∫

exp(−h2), which

turns out to be a highly nontrivial task. Below we establish a technical result on a modified Gaussian

integral, which will be used later to bound the integral
∫

exp(−h2) and hence the complexity of the RGO

rejection sampling in Algorithm 2.

Proposition 3 For λ > 0, a ≥ 0 and d ≥ 1, if

λ ≤ 1

4a2d
, (6)

then
∫

Rd
exp

(

− 1

2λ
‖x‖2 −a‖x‖

)

dx ≥ (2πλ )d/2

2
. (7)

Proof. Denote r = ‖x‖, then dx= rd−1drdSd−1, where dSd−1 is the surface area of the (d−1)-dimensional

unit sphere. It follows that

∫

Rd
exp

(

− 1

2λ
‖x‖2 −a‖x‖

)

dx =
∫

∞

0

∫

exp

(

− 1

2λ
r2 −ar

)

rd−1drdSd−1

=
2πd/2

Γ
(

d
2

)

∫

∞

0
exp

(

− 1

2λ
r2 −ar

)

rd−1dr. (8)

In the above equation, we have used the fact that the total surface area of a (d−1)-dimensional unit sphere

is 2πd/2/Γ
(

d
2

)

where Γ(·) is the gamma function, i.e.,

Γ(z) =
∫

∞

0
tz−1e−tdt. (9)

Defining

Fd,λ (a) :=
∫

∞

0
exp

(

− 1

2λ
r2 −ar

)

rddr, (10)

to establish (7), it suffices to bound Fd−1,λ (a) from below.

It follows directly from the definition of Fd,λ in (10) that

dFd−1,λ (a)

da
=

∫

∞

0
exp

(

− 1

2λ
r2 −ar

)

(−r)rd−1dr =−Fd,λ (a).
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This implies Fd,λ is monotonically decreasing and thus Fd,λ (a)≤ Fd,λ (0). As a result,
dFd−1,λ (a)

da
≥−Fd,λ (0),

and therefore,

Fd−1,λ (a)≥ Fd−1,λ (0)−aFd,λ (0). (11)

Setting t = r2/(2λ ), we can write

Fd,λ (0) =
∫

∞

0
exp

(

− 1

2λ
r2

)

rddr =
∫

∞

0
e−t(2λ t)

d−1
2 λdt = 2

d−1
2 λ

d+1
2

∫

∞

0
e−tt

d−1
2 dt.

In view of the definition of the gamma function (9), we obtain

Fd,λ (0) = 2
d−1

2 λ
d+1

2 Γ

(

d +1

2

)

. (12)

Recall that the Wendel’s inequality is
Γ(t+1)
Γ(t+s) ≤ (t + s)1−s for 0 < s < 1 and t > 0 (see (Wendel 1948)).

Applying the Wendel’s inequality with t = d+α−1
2

and s = 1−α
2

yields
Γ( d+1

2 )
Γ( d

2 )
≤
(

d
2

)
1
2 . This inequality, (11),

(12), and the assumption (6) imply that

Fd−1,λ (a)≥ Fd−1,λ (0)−aFd,λ (0) = 2
d
2
−1λ

d
2 Γ

(

d

2

)

−a2
d−1

2 λ
d+1

2 Γ

(

d +1

2

)

= 2
d
2
−1λ

d
2 Γ

(

d

2

)

(

1−a(2λ )
1
2

Γ
(

d+1
2

)

Γ
(

d
2

)

)

≥ 2
d
2
−1λ

d
2 Γ

(

d

2

)

(

1−a(λd)
1
2

)

≥ 1

4
(2λ )

d
2 Γ

(

d

2

)

.

The result (7) then follows from the above inequality and (8).

Based on the modified Gaussian integral in Proposition 3, we establish Proposition 4, the main result

of this section that shows the number of rejections in Algorithm 2 is small in expectation. Hence, the

implementation of RGO for g is computationally efficient. Its proof is postponed to Appendix B. We remark

that even though rejection sampling is an elementary method, how to use it on non-smooth potentials g
η
y of

the form (2) is highly nontrivial. To our best knowledge, our algorithm (Algorithm 2) is the first effective

algorithm to sample from g
η
y with non-smooth g.

Proposition 4 Assume f is convex and M-Lipschitz continuous. Let g be as in (1) and πX |Y (x|y) ∝

exp
(

−g(x)− 1
2η ‖x− y‖2

)

for a fixed y, then X generated by Algorithm 2 satisfies X ∼ πX |Y (x|y). Moreover,

if

ηµ ≤ 1

64M2d
, δ ≤ 1

32d
, (13)

then the expected number of iterations in the rejection sampling is at most 3.

4 SAMPLING FROM NON-SMOOTH POTENTIALS

We now combine our implementation of RGO (Algorithm 2) and the ASF (Algorithm 1) to sample from log-

concave probability densities with non-smooth potentials. This section contains two subsections. Subsection

4.1 presents the iteration-complexity bound for sampling from exp(−g(x)) where g = f + µ‖ ·−x0‖2/2.

Based on this, Subsection 4.2 provides the iteration-complexity for sampling from exp(− f (x)) where f

is convex and Lipschitz continuous. Apart from being a transition step to our final result for sampling

without smoothness, the results in Subsection 4.1 provide an efficient method to sample from composite

potentials of the form f +µ‖ ·−x0‖2/2 and may be of independent interest.
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4.1 Complexity of sampling for regularized convex Lipschitz continuous potentials

Using the efficient implementation of RGO for g developed in Section 3 and the alternating sampling

framework Algorithm 1, we are now able to sample from exp(−g(x)) and establish the complexity for this

sampling task. The following theorem states the iteration-complexity bound for Algorithm 1 using Algorithm

2 as the RGO to sample from exp(−g(x)). Note that this iteration-complexity bound is poly-logarithmic

in the precision ε in terms of total variation.

Theorem 5 Let x0 ∈ R
d , ε > 0, M > 0, and µ > 0 be given. Assume f is convex and M-Lipschitz

continuous and let g be as in (1). Set

δ =
1

64d
, η =

1

64M2d
. (14)

Then the ASF (Algorithm 1) with Algorithm 2 as an RGO achieves ε error in terms of KL divergence

with respect to the target distribution πX
∝ exp(−g) in Õ

(

M2d
µ

)

iterations, and each iteration queries O(1)

subgradient oracles of f and O(1) Gaussian distribution sampling oracles.

Proof. With the parameter choice (14), by Proposition 9 and Proposition 4, Algorithm 2 queries the

subgradient oracle of f and the Gaussian distribution sampling oracle O(1) times to terminate. The total

complexity Õ

(

M2d
µ

)

then follows by plugging (14) into the ASF complexity Θ̃( 1
ηµ ) as in Theorem 1.

4.2 Complexity of sampling for convex Lipschitz continuous potentials

This subsection studies the main problem of this paper, i.e., sampling from exp(− f (x)). Building upon

Theorem 5 for sampling from exp(−g(x)) = exp(− f (x)− µ‖x− x0‖2/2) and a proper choice of µ , the

following theorem establishes the iteration-complexity bound for Algorithm 1 to sample from exp(− f (x)).
Its proof is postponed to Appendix B.

Theorem 6 Let πX be a distribution onRd satisfying πX(x)∝ exp(− f (x))where f is convex and M-Lipschitz

continuous on R
d . Let x0 ∈ R

d and ε > 0 be given and

µ =
ε√

2
(√

M4 +‖x0 − xmin‖2
) (15)

where M4 =
∫

x∈Rd ‖x− xmin‖4dπX(x) and xmin = argmin{ f (x) : x ∈ R
d}. Choose δ and η as in (14) and

consider Algorithm 1 using Algorithm 2 as an RGO for step 1, applied to g = f +µ‖ ·−x0‖2/2. Then, the

iteration-complexity bound to achieve ε error to πX in terms of total variation is

Õ

(

M2d
(√

M4 +‖x0 − xmin‖2
)

εδ

)

. (16)

Remark 7 The strategy we use to sample from a non-smooth potential f by considering a regularized one

g = f + µ‖ ·−x0‖2/2 first is not the only option. The reason we do so is that the complexity bound for

ASF in (Lee et al. 2021) requires the potential to be strongly convex. This convergence result for ASF can,

however, be extended. Following a similar argument as in (Lee et al. 2021), in particular Proposition 2

and Lemma 2, one can establish the complexity bound O( 1
ηψ2 log

β
ε ) for ASF with convex potential where

ψ is the isoperimetry constant of the target distribution and β is a warm start constant. Combining this

with our RGO implementation (Algorithm 2) yields a method to sample from non-smooth potential f with

complexity O(M2d
ψ2 log

β
ε ). This is better than O(d5/2 log

β
ε ) in (Lee and Vempala 2017), even in the high

accuracy region, if M scales slower than
√

d, which is typical if sparsity exists.
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5 CONCLUSION

This paper presents an algorithm based on the alternating sampling framework for sampling from non-

smooth potentials and establishes a complexity bound Õ(M2dM
1/2

4 ε−1) to achieve ε accuracy in terms of

total variation distance to the target density. The key contribution of this paper is a computationally efficient

implementation of RGO for any convex non-smooth function. One direct extension of the paper is to apply

the proposed algorithm to sample from semi-smooth densities, which include smooth and non-smooth

densities as two extreme cases. Another possible extension of our analysis in this paper is to consider

sampling from composite densities proportional to exp(− f (x)−h(x)) where f is convex and smooth, and

h is convex and semi-smooth.
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A REVIEW OF THE PROXIMAL BUNDLE METHOD

The proximal bundle method (Liang and Monteiro 2021) is an efficient algorithm for solving convex

non-smooth optimization problems. In this section, we briefly review an approach to solve the subproblem

considered in the proximal bundle method, the properties of the solution to the subproblem, and the

iteration-complexity for solving the subproblem.

Consider the optimization subproblem (recall (2))

gη
y (x

∗) = min

{

gη
y (x) := g(x)+

1

2η
‖x− y‖2 : x ∈ R

d

}

, (17)

and we aim at obtaining a δ -solution (i.e., a point x̄ such that g
η
y (x̄)−g

η
y (x∗)≤ δ ) to (17). The algorithm

is summarized in Algorithm 3.

Algorithm 3 Proximal Bundle Method

1. Let y, η > 0 and δ > 0 be given, and set x0 = x̃0 = y, C1 = {y} and j = 1

2. Update f j = max
{

f (x)+ 〈 f ′(x), ·− x〉 : x ∈C j

}

;

3. Define g j := f j +µ‖ ·−x0‖2/2 and compute

x j = argmin
u∈Rn

{

g
η
j (u) := g j(u)+

1

2η
‖u− y‖2

}

, (18)

x̃ j = argmin
{

gη
y (u) : u ∈ {x j, x̃ j−1}

}

4. If g
η
y (x̃ j)−g

η
j (x j)≤ δ , then stop and return J = j,xJ, x̃J; else, go to step 5

5. Set C j+1 =C j ∪{x j} and j ← j+1, and go to step 2

The basic idea of Algorithm 3 is to approximate the non-smooth part of the objective function g
η
y with

piece-wise affine functions constructed by a collection of cutting-planes and solve the resulting simplified

problem. Note that (18) can be reformulated into a convex quadratic programming with affine constraints

and the number of constraints is equal to the cardinality of C j.

The following lemma contains technical results about Algorithm 3 that are useful in the complexity

analysis in Section 4.

Lemma 8 Assume f is convex and M-Lipschitz continuous and let g be as in (1). Let J,xJ, x̃J be the

outputs of Algorithm 3, then the following statements hold:
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a) fJ ≤ f , gJ ≤ g and g
η
J (xJ)+‖x− xJ‖2/(2ηµ)≤ g

η
J (x) for every x ∈ R

d ;

b) g
η
y (x̃J)−g

η
J (xJ)≤ δ ;

c)
∥

∥µ(xJ − x0)+(xJ − y)/η
∥

∥≤ M;

d) ‖xJ − x̃J‖2 ≤ 2ηµδ .

Proof. a) The first two inequalities directly follow from the convexity of f , and the definitions of g and

gJ . The third inequality follows from (18).

b) This statement immediately follows from step 3 of Algorithm 3.

c) It follows from the optimality condition of (18) and the definition of gJ that

−µ(xJ − x0)− xJ − y

η
∈ ∂ fJ(xJ).

This inclusion and the fact that ‖ f ′(x)‖ ≤ M imply that c) holds.

d) The last inequality in (a) with x = x̃J and (b) imply this statement.

The following result states the iteration-complexity bound for Algorithm 3 to obtain a δ -solution to

the subproblem (17). We have omitted the proof since it is relatively technical and beyond the scope of

this paper, however, a complete proof can be found in Section 4 of (Liang and Monteiro 2021).

Proposition 9 Algorithm 3 takes Õ(ηµM2/δ + 1) iterations to terminate, and each iteration solves an

affinely constrained convex quadratic programming problem.

B MISSING PROOFS

Proof of Proposition 4: It is a well-known result for rejection sampling that X ∼ πX |Y (x|y) and the

probability that X is accepted is

P

(

U ≤ exp(−g
η
y (X))

exp(−h1(X))

)

=

∫

exp(−g
η
y (x))dx

∫

exp(−h1(x))dx
.

We observe that the assumption (13) implies that 2
√

ηµM +
√

2δ ≤ 1

2
√

d
, which satisfies the assumption

in Proposition 3 with λ = ηµ ,a = 2M+
√

2δ√
ηµ

. Using the definition of h2 in (4) and Proposition 3, we have

∫

Rd
exp(−h2(x))dx ≥ 1

2
exp(−gη

y (x̃ j))(2πηµ)
d/2.

It follows from the definition of h1 in (3) and the Gaussian integral that

∫

exp(−h1(x))dx = exp
(

−gη
y (x̃ j)+δ

)

(2πηµ)
d/2.

We conclude that

P

(

U ≤ exp(−g
η
y (X))

exp(−h1(X))

)

=

∫

exp(−g
η
y (x))dx

∫

exp(−h1(x))dx
≥

∫

exp(−h2(x))dx

exp
(

−g
η
y (x̃ j)+δ

)

(2πηµ)d/2
≥ 1

2
exp(−δ ),

and the expected number of the iterations is

1

P

(

U ≤ exp(−g
η
y (X))

exp(− f (X))

) ≤ 2exp(δ )≤ 2(1+2δ )≤ 2

(

1+
1

16d

)

≤ 3

where the last two inequalities are due to the second inequality in (13).
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Proof of Theorem 6: Let ρ denote the distribution of the points generated by Algorithm 1 using Algorithm

2 as an RGO, and let π̂X denote the distribution proportional to exp(−g(x)). Following the proof of

Corollary 4.1 of (Chatterji, Diakonikolas, Jordan, and Bartlett 2020), we similarly have ‖ρ −πX‖TV ≤
‖ρ − π̂X‖TV +‖π̂X −πX‖TV and

‖π̂X −πX‖TV ≤ 1

2

(

∫

Rd
[ f (x)−g(x)]2dπX(x)

)1/2

=
1

2

(

∫

Rd

(µ

2
‖x− x0‖2

)2

dπX(x)

)1/2

≤ µ

2

(

∫

Rd

(

‖x− xmin‖2 +‖xmin − x0‖2
)2

dπX(x)

)1/2

≤ µ

2

(

∫

Rd

(

2‖x− xmin‖4 +2‖xmin − x0‖4
)

dπX(x)

)1/2

=

√
2µ

2

(

M4 +‖xmin − x0‖4
)1/2 ≤

√
2µ

2

(

√

M4 +‖x0 − xmin‖2
)

=
ε

2

where the last identity is due to the definition of µ in (15). Hence, it suffices to derive the iteration-complexity

bound for Algorithm 1 to obtain ‖ρ − π̂X‖TV ≤ ε
2
, which is (16) in view of Theorem 5 with µ as in (15).
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