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ABSTRACT
Many modern applications rely on Object-Oriented (OO) design
principles, where the basic system components are objects and
classes. They share objects with other processes, store them in
disk/files for future retrieval or transport them over network to
other systems. Object-oriented programs leverage numerous dy-
namic features and design principles such as runtime dispatching
and object-oriented callbacks which allow flexible software design.
Although seemingly innocuous, these features can be abused by
the attackers to hijack the program’s control flow to an undesir-
able behavior. This is referred to as Counterfeit Object-Oriented
Programming (COOP), in which attackers hijack objects in the pro-
gram in order to create a sequence of method calls that introduce a
malicious behavior. COOP is a type of code reuse attack in which
a hacker hijacks objects (gadgets) in the program and use that to
control the program execution flow via manipulating the sequence
of methods and data being passed among these methods (gadget
chains). In this paper, we describe a preliminary empirical investiga-
tion of COOP attacks in real software systems caused by untrusted
object deserialization. In this preliminary study, we investigated
the severity of these attacks, their consequences, and how they
were mitigated by developers. Furthermore, we used the findings
to create a dataset of vulnerable software projects and their fixes.
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1 INTRODUCTION
Many modern applications, whether developed in Java, Python,
PHP or other languages, rely on Object-Oriented (OO) design prin-
ciples [5], where the basic system components are objects and
classes. Many OO architectures [9] directly operate on objects; they
share these objects with other processes [9, 17], store them in disk/-
files for future retrieval [3] or transport them over network to other
systems [9, 15]. The encapsulations provided by object structure,
the concept of classes, and inheritance has increased programs
reusability and extensibility [24]. Polymorphism has enabled sep-
aration of the client class from implementation code, and allows
the object to decide which form of the function to implement at
compile-time (overloading) as well as runtime (overriding).

Object-oriented programs also leverage numerous other dynamic
features and design principles, which allow flexible design. They
commonly use runtime dispatching to implement object polymor-
phism [7]. Dispatching is typically implemented using an indirect
function call. Similarly, program constructs such as reflection allows
an object-oriented program to modify its structure and behavior;
other dynamic mechanisms such as object-oriented callbacks enable
the application to handle subscribed events, arising at runtime,
through a listener interface and respond using predefined concrete
implementations. These features can be abused by the attackers
to hijack the program’s control flow to an undesirable behavior.
This is referred to as Counterfeit Object-Oriented Programming
(COOP) [23, 30]. COOP is a type of code reuse attack in which a
hacker hijacks objects in the program (gadgets) and use them to
control the program execution flow via manipulating the sequence
of methods and data being passed among these methods (gadget
chains).

Counterfeit object vulnerabilities are notoriously difficult to de-
tect and even harder to prevent [30, 35]. Mainly because they do not
exhibit the revealing characteristics of existing attack approaches,
and exhibit control flow and data flow similar to those of benign
code execution [27, 30]. An instance of such attack isDeserialization
of Untrusted Data which is pervasive across Java applications, and
it is also emerging in Python programs due to the use of object
marshaling. Furthermore, there are numerous object-oriented pro-
gramming approaches for transmitting, storing or extending the
behavior of objects that can result in programs vulnerable to COOP
attacks.

The literature had explored COOPs in lower-level languages
such as C++ [23, 30], but these languages do not include metapro-
gramming features. Other languages (e.g., Python, PHP, and Java)
contain programming constructs (e.g., native calls, reflection, and
object serialization) which are used to load classes, invoke meth-
ods, instantiate objects and extend the programs’ functionalities
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at runtime. Although seemingly innocuous, these language con-
structs place the system at the risk of attackers tampering with
objects (gadgets) in order to successfully execute code (e.g., load a
remote class, instantiate objects from it and execute its methods
with a malicious purpose). Therefore, in this paper, we present a
preliminary empirical study of COOP attacks in programs written
in Java. We focused on COOP attacks caused by untrusted object
deserialization.

In this study, we analyzed a total of 17 vulnerability reports
caused by untrusted object deserialization. By collecting and ana-
lyzing several artifacts related to the problem (e.g., released patch),
we investigated the severity of COOP attacks caused by untrusted
object deserialization (RQ1), what are their consequences (RQ2),
and how developers mitigated the problem (RQ3).

We observed that these COOP attacks lead to vulnerabilities
with a high/critical severity. Furthermore, the investigated attacks
always resulted in remote code execution, where an attacker is able
to craft an object in such a way they could invoke arbitrary methods
and execute malicious commands. Finally, we found that developers
mitigate the problem in three differentways: by preventing sensitive
operations to be reachable from deserialization constructs, or by
enforcing the integrity of deserialized objects, or by implementing
compartmentalization.

The contributions of this paper are:
• A preliminary empirical investigation of COOP vulnerabilities
caused by untrusted object deserialization.

• Adiscussion of their consequences, severity, andmitigations, which
gives insights to developers on how they can avoid these vulner-
abilities.

• A dataset [28] of COOP vulnerabilities caused by untrusted object
deserialization.
This paper is organized as follows: Section 2 briefly describes

COOP vulnerabilities to ensure that the essence of the paper can be
understood by a broader audience. Section 3 describes our method-
ology in details. Section 4 presents the qualitative analysis of COOP
vulnerability reports in order to identify their root causes and miti-
gations. Section 5 elaborates on threats to the validity of this work.
Section 6 presents related work, and Section 7 concludes this paper,
including planned future work.

2 BACKGROUND
To perform a COOP attack, attackers need to take control over

one object in the application (the initial object) [30]. The hijacking
takes place by misusing a benign feature in a program that receives
objects outside its trust boundary (e.g., using a serialized object re-
ceived from a socket, manipulating an object created by an external
plug-in, etc.).

This initial object will have its fields initialized with attacker-
controlled data. An object may contain other objects in its fields,
creating potentially complex graph-like object layouts [8]. When
the program later invokes one of its methods, it leads to a sequence
of malicious method calls (gadget chains). The classes involved
in a malicious method execution chain are referred to as gadget
classes.

On one hand, in lower level languages, the attack is performed
by manipulating pointers in the program. For example, in C++, the

attacker manipulates the vtables (virtual method tables) such that
it triggers a sequence of method calls that result in a dangerous
behavior [30]. In Java, on the other hand, attackers are not able to
directly manipulate pointers and memory areas, instead, it would
rely on objects already available in the classpath for use. Moreover,
unlike C++, Java has reflection, a metaprogramming feature that
allows classes to be loaded at runtime, and have their methods
invoked; creating space for attackers to even be able to load remote
classes (i.e., outside the classpath).

Figure 1 contains three COOP attack scenario examples in Java.
These attacks are caused by misusing three commonly used benign
features: object deserialization, Remote Method Invocation (RMI),
and the Java Naming and Directory Interface™ (JNDI). In these
examples, consider that the classes in Listing 1 are available in the
classpath. We explain these attacks in the next subsections.

2.1 Untrusted Object Deserialization
The first attack (Figure 1a) relies on untrusted object deserialization.
Object serialization (also known as “marshaling”) is a mechanism
in which an object is converted to an abstract representation (e.g.,
bytes, XML, JSON, etc.) that models the object’s state (i.e., fields’
values and code). This abstract representation is suitable for net-
work transportation, storage, and inter-process communication.
The receiver of a serialized object has to parse the abstract rep-
resentation in order to reconstruct a new object, a process called
object deserialization (or “unmarshalling”).

Although object serialization seems innocuous, several dese-
rialization mechanisms allow arbitrary types to be deserialized
and invoke methods from the objects’ classes during their recon-
struction (e.g., default constructors, getter/setter methods, callback
methods (also known as “magic methods”, etc.) [19]. Attackers could
leverage these methods invoked during object deserialization to
conduct COOP attacks that can result in resource consumption
(denial-of-service attacks), application crashes and remote code
execution [8, 25].

The class ObjectOutputStream is part of Java’s built-in dese-
rialization API. It reconstructs an object from a byte stream that
contains the object’s fields values. This class can reconstruct any
object, as long as its class implement the java.io.Serializable
interface. If implemented by a Serializable class, the callback
methods listed below are invoked by Java during deserialization.
These methods, henceforth referred to as “magic methods” , are
the ones used by attackers to create a malicious sequence of method
invocations (gadget chain):

(1) void readObject(ObjectInputStream): it customizes the re-
trieval of an object’s state from the stream.

(2) void readObjectNoData(): in the exceptional situation that
a receiver has a subclass in its classpath but not its superclass,
this method is invoked to initialize the object’s state.

(3) Object readResolve(): this is the inverse of writeResolve.
It allows classes to replace a specific instance that is being read
from the stream.

(4) void validateObject(): it validates an object after it is dese-
rialized. For this callback to be invoked, the class has to imple-
ment the ObjectInputValidation interface and register the



Counterfeit Object-Oriented Programming Vulnerabilities: An Empirical Study in Java MSR4P&S ’22, November 18, 2022, Singapore, Singapore

class Task implements Runnable,
Serializable {

private String cmd;

public CommandTask(String c) {
this.cmd = c;

}

public void run() { /* sink */
Runtime.getRuntime().exec(cmd);

}
}

class TaskManager implements Serializable {
private Runnable task;
public TaskManager(Runnable t){ this.task = t; }
private void readObject(ObjectInputStream ois){
ois.defaultReadObject();
task.run();

}
}
interface Analyzer extends Remote {
void analyze(Runnable r);
void cleanResults();

}

class AnalyzerImpl implements Analyzer{
private File results;
public AnalyzerImpl(File f){
this.results = f;

}
public void analyze(Runnable r){
r.run();

}
public void cleanResults(){
results.delete(); /* sink */

}
}

Listing 1: “Gadget classes” that can be used in a COOP attack to trigger a remote code execution.

class IndexServlet extends HttpServlet {
protected void doGet(HttpServletRequest rq,

HttpServletResponse rs) {
Cookie c = getCookieByName(rq, "user");
if (c != null) {
byte[] bytes = Base64.getDecoder()
.decode(c.getValue());

ObjectInput in = new ObjectInputStream(
new ByteArrayInputStream(bytes)

);
User u = (User) in.readObject();

} else { /* ... */ }
}

}

(a)

class RMIServer {
public static void main(String a[]){
try {
Analyzer obj = new AnalyzerImpl(null);
Analyzer stub =

(Analyzer) UnicastRemoteObject
.exportObject(obj, 0);

Registry registry =
LocateRegistry.getRegistry();

registry.bind("analyzer", stub);
}catch (Exception e)
{ /* ... */ }

}
}

(b)

class JNDIExample{
public static void main(String[]a){
try {
String name = a[0];
Context ctx =
new InitialContext();

Analyzer analyzer =
(Analyzer) ctx.lookup(name);

analyzer.cleanResults();
} catch (Exception e) {
/* ... */

}
}

}

(c)

Figure 1: COOP attacks that rely on (a) untrusted object deserialization, (b) RMI, and (c) JNDI.

validator by invoking the method registerValidation from
ObjectInputStream class.
As an example, Figure 1a contains a code snippet from a sample

Web application (IndexServlet) that retrieves the “user” cookie
from the HTTP request. This cookie is expected to contain a serial-
ized User object encoded using Base64. An attacker could leverage
the deserialization process to conduct a COOP attack by using two
available serializable classes in the classpath (TaskManager and
Task — gadget classes). An attacker would create a TaskManager
object (taskMgr) as shown in Figure 2a. Then, the attacker serial-
izes and encodes this malicious object in base64 and sends it as the
“user” cookie to the Web application.

When the web application deserializes the object in the cookie,
Java’s deserialization mechanism (ObjectInputStream) invokes the
callback method readObject() from the TaskManager class. It
triggers the chain of method calls listed in Figure 2b. This gadget
chain ends in a “sink”1 – exec() – that executes a command to
remove all files (“rm -rf /”).

Although this request with a malicious serialized object will later
trigger a ClassCastException (because the application attempt
to cast the read object as a User type), the malicious command
was already executed, because the type cast check occurs after the
deserialization process took place.

2.2 RMI-based Attacks
The second example (RMIServer in Figure 1b) includes a sample
Remote Method Invocation (RMI) server that exports an instance
1Sinks are methods in the program’s scope that performs sensitive operations, such as
executing commands and manipulating file

of the AnalyzerImpl class. An attacker can implement an RMI
client that first looks up this object by its name (“analyzer”) on
the RMI server. Subsequently, this malicious client makes a remote
procedure call to the analyzer(Runnable r) method passing as
argument the malicious object task (in Figure 2a). This triggers
the execution shown in Figure 2c which will lead to a recursive
deletion of files in the root directory.

2.3 JNDI-based Attacks
In the third example (JNDIExample in Figure 1c), an application
performs an object lookup by name using Java Naming and Direc-
tory Interface™ (JNDI) [32]. An attacker can implement a malicious
RMI server that export the analyzer object in Figure 2a and binds
it to the name “exploit”. Subsequently, the attacker can invoke the
program making a lookup to “rmi:/exploit”, which will inject the
malicious object and execute the call chain in Figure 2d, resulting
in a deletion of the root directory.

3 METHODOLOGY
In this study, we focused on investigating COOP attacks caused
by untrusted object deserialization (described in Section 2.1). In this
section, we first introduce our research questions (Section 3.1), then
we explain the methodology we followed to answer each of them
(Section 3.2), and finally, we discuss how we compile our artifacts
as a dataset (Section 3.3).

3.1 Research Questions
We answered the following research questions in this paper:
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Potential CVEs
- CVE-2021-44228 (log4J)

Malicious Objects:
Task task =

new Task("rm -rf /");

TaskManager taskMgr =

new TaskManager(task);

Analyzer analyzer =

new AnalyzerImpl(new File("/"));

Call Stack for Deserialization:

IndexServlet.doGet(…)

java.io.ObjectInputStream.readObject()

TaskManager.readObject(...)

Task.run()

Runtime.exec("rm -rf /")

Call Stack for JNDI:

JNDIExample.main("rmi:/exploit")

AnalyzerImpl.cleanResults()

File.delete()

Call Stack for RMI:

RMIExample.main(...)

AnalyzerImpl.analyze(task)

Task.run()

Runtime.exec("rm -rf /")

(a)
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(b)
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(c)

Potential CVEs
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Call Stack for RMI:

RMIExample.main(...)
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Task.run()

Runtime.exec("rm -rf /")

(d)

Figure 2: (a) Malicious objects crafted by an attacker. Call stacks for a successful COOP attack that relied on (b) object
deserialization, (c) RMI, and (d) JNDI.

RQ1 How severe are COOP attacks caused by untrusted object
deserialization?

We focused on understanding what is the perceived severity of
these problems by developers.

RQ2What are the consequences of COOP attacks related to un-
trusted object deserialization vulnerabilities?

We aimed to identify the faulty behavior observed when an un-
trusted object deserialization vulnerability is successfully executed.

RQ3 How are COOP vulnerabilities related to untrusted object
deserialization mitigated?

We studied the strategies employed by developers to fix these
vulnerabilities in real software systems.

3.2 Answering the Research Questions
To answer these questions, we conducted an in-depth analysis of
vulnerability reports (CVEs) in the National Vulnerability Database
(NVD). NVD is a well-known vulnerability database, which cur-
rently tracks over 191,000 vulnerabilities that exist in a variety of
software products, both open and closed source.

Vulnerabilities disclosed in NVD are assigned a unique identi-
fier known as “CVE ID” (Common Vulnerabilities and Exposure
Identifier). Besides a CVE ID, each entry in NVD includes a short
description of the problem and a list of references, i.e., links to other
Websites (such as issue tracking systems) that may contain more
details about the CVE instance. NVD also indicates the software’s
releases affected by the vulnerability and a severity score.

Some CVE instances may also include CWE tags that indicate the
vulnerability type. These tags are assigned by security analysts from
the entities that reviewed the vulnerability report. The CWE tag
refers to an entry from the Common Weakness Enumeration (CWE)
dictionary [33], which enumerates common software/hardware
weaknesses that may lead to vulnerabilities. A weakness denotes a
family of security defects that share one or more aspect in common,
such as a similar fault (root cause), failure (consequence), or fix
(repair) [22]. Thus, the CWE tag is used by the NVD as a way to
classify vulnerabilities.

Therefore, we first retrieved from NVD all the CVEs that either
contained the keyword “serializ” in its description or whose CWE
tag was equal to CWE-520 (Deserialization of Untrusted Data) [34].
Subsequently, we disregarded CVEs that (i) were in closed source
systems, since there would not be enough public information for us

to answer our research questions; or (ii) were in software systems
implemented in a language other than Java.

We randomly selected a subset of 17 CVEs to identify its severity,
consequences, andmitigation techniques implemented to fix the issue.
Afterwards, we performed a qualitative analysis of these 17 CVEs
and their associated artifacts to answer our research questions. We
performed the following steps:

(1) For each CVE, we extracted its metadata from NVD (description,
CWE tag, references, and severity score).

(2) We relied on the URLs in the references to identify the corre-
sponding entry in the project’s issue tracking system. From the
issue tracking system entry, we then verify whether the vulner-
ability was acknowledged by developers and fixed. If a patch
was publicly released, we collect both the project’s vulnerable
version and fixed version (that includes the fix).

(3) We manually analyzed these collected artifacts in order to cap-
ture information regarding the CVE’s vulnerable version and
fixed version, its severity, its consequences, as well as the mitiga-
tion technique implemented by developers to fix the problem.
We obtained the severity for each CVE based on the CVSS score2
provided by NVD. To identify the consequences, and mitigation
techniques, we performed a qualitative analysis of the vulnera-
bility report and associated artifacts. This qualitative analysis
involved an open coding [21] in which we iteratively reviewed
the artifacts and annotated each vulnerability with codes: one
to indicate the mitigation technique used to fix the problem,
and other(s) to indicate the consequence(s) of the vulnerabil-
ity. During this open coding, we either annotated CVEs with
codes already used or created new codes that emerged from the
data (if the existing codes were not suitable for the CVE being
analyzed). This open coding was performed by the first author,
who has eight years of experience in software security.

After performing the above steps, we used the collected artifacts
to answer each RQ as follows:

RQ1 We relied on the CVSS score provided by NVD, which is a
number that ranges from 0 (least severe) to 10 (most severe).

RQ2 We answer this question by analyzing the consequences we
observed while performing the open coding of CVEs.

RQ3 Similar to RQ2, this question is answered by inspecting the
results of our open coding, in which we observed the differ-
ent ways developers patched their projects.

2The Common Vulnerability Scoring System (CVSS) is a framework [20] used to
measure the severity of a vulnerability.
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3.3 A Dataset of COOP Vulnerabilities
After our qualitative analysis, we compiled these artifacts as a man-
ually curated dataset of COOP vulnerabilities caused by untrusted
object deserialization. This dataset includes a CSV file with the
following metadata [28]: (i) CVE ID; (ii) the vulnerable and fixed
versions of the project; (iii) consequence; (iv) CVSS score (severity
– low, medium, high, critical); (v) mitigation technique.

4 RESULTS
In the next sections, we discuss our findings and answer our RQs.

4.1 RQ1: Severity
Table 1 presents the breakdown of the severity observed in the
analyzed CVEs. The severity is based on the categorization given
by the CVSS score v3. For two CVEs we analyzed3, however, the
severity score was based on CVSS v2 because there was no score
provided using the version 3.x of the CVSS framework. The CVSS
score ranges from 0 to 10, where a score from 0.1-3.9 is considered
as low severity, 4.0-6.9 as medium severity, 7.0-8.9 as high severity,
and 9.0-10.0 as critical severity.

Table 1: Severity of COOP vulnerabilities related to untrusted
object deserialization

Severity
Critical
(9.0-10.0)

High
(7.0-8.9)

Medium
(4.0-6.9)

# CVEs 6 (35.2%) 9 (52.9%) 1 (5.8%)

We observe from the findings reported in Table 1 that the major-
ity of vulnerabilities are classified as high severity. We also notice
that 6 CVEs (35%) were also categorized as critical vulnerabilities.
None of the vulnerabilities analyzed had a low severity score – the
lowest observed CVSS score was 5.9 (medium) and the highest was
9.8 (critical).

One of the reasons as to why the severity scores were mostly
high/critical was due to the fact that all the vulnerabilities had an
attack vector through the network. That is, a hacker could deploy
the attack remotely, making it easier to conduct successful attacks.
This finding highlights the importance of studying COOP-related
vulnerabilities.

4.2 RQ2: Consequences
Weobserved that all vulnerabilities lead to remote code execution. For
one of the vulnerabilities (CVE-2016-1000031), besides code execu-
tion, an attacker could also manipulate local files (e.g., delete/create
local files).

The main attack vector used by intruders to execute arbitrary
commands was via the use of Java reflection. That is, the gadget
chain lead to a reflection construct that allowed attacks to load
arbitrary classes, create instances, and invoke their methods using
malicious data.

3These CVEs were: CVE-2015-6420 and CVE-2015-8103.

4.3 RQ3: Mitigation Techniques
By scrutinizing these 17 vulnerability reports, we observed that
there were three ways that developers fixed COOP vulnerabilities
caused by untrusted object deserialization: (i) by preventing un-
trusted data to reach a sink (unreachable sinks); (ii) by enforcing
the integrity of serialized and deserialized objects (enforcing in-
tegrity); or (iii) compartmentalization. Themitigation techniques
and their corresponding category is presented in Table 2.

Table 2: Mitigation techniques for untrusted object deserial-
ization

Category Mitigation #CVEs

Unreachable Sinks
M1.1 Allowed/blocked list of classes 7
M1.2 Prevent deserialization of domain objects 4
M1.3 Unsafe classes are no longer serializable 2

Enforcing Integrity
M2.1 Adding the “transient” to a sensitive field 1
M2.2 Authenticate before deserializing an object 1
M2.3 Replace Java’s default deserialization API 2

Compartmentalization M3.1 Deserialize within a sandbox 1

We can observe that developers mostly chose to fix vulnera-
bilities by making the sink unreachable. Among the mitigation
strategies used to achieve this goal, the most used one was to create
a list of classes that are allowed/blocked to be deserialized (M1.1).
Some CVEs implemented multiple mitigations as part of their fix
(e.g., CVE-2015-6420 in Apache commons collections used mitiga-
tions M1.2 and M1.3). In the next subsections, we elaborate on
each of these mitigation techniques.

4.3.1 Group 1: Unreachable sinks. It contains mitigation techniques
that make the sink unreachable. These mitigation techniques are:
M1.1 Allowed/Blocked list of classes: It maintains a list of

classes that may or may not be deserialized (allow list and
block list, respectively). When using Java’s default deseri-
alization API, this can be implemented by creating a sub-
class of ObjectInputStream that overrides the resolve-
Class(ObjectStreamClass o)method. Thismethod throws
an exception when the object type is either in the block list
or not in the allow list [31].
Example: For instance, theCVE-2019-12384 is fixed by adding
a gadget class into a list of blocked classes that cannot be
deserialized, as shown below in the “unidiff” of the com-
mit [13]. This commit blocks the serialization of instances
of the class DriverManagerConnectionSource.

src/main/java/com/fasterxml/jackson/databind/jsontype/impl/SubTypeValidator.java
// [databind#2326] (2.7.9.6): one more 3rd party gadget
s.add("com.mysql.cj.jdbc.admin.MiniAdmin");

+
+ // [databind#2334] (2.9.9.1): logback-core
+ s.add("ch.qos.logback.core.db.DriverManagerConnectionSource");

DEFAULT_NO_DESER_CLASS_NAMES = Collections.unmodifiableSet(s);
}

Wealso observed thatmost of the fixes involved using a list of
“blocked classes” (5 times) compared to the use of “allow lists”,
which was observed in only one CVE. In another remaining
vulnerability instance (CVE-2017-15693), we observed that it
had a configuration mechanism that allowed users to create
a list of blocked and allowed classes.
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Although the use of “blocked classes” was the most common
mitigation technique implemented, it is inherently problem-
atic. New gadget classes, that are not in the list, can be found
over time by attackers and be used to conduct malicious at-
tacks. In fact, the CVE-2019-12384 with the fix shown above
was due to not having a class from the logback core project
in the malicious list.
One of the reasons as to why this occurs is because the use
of blocked lists is easier to implement while minimizing the
chances of backwards compatibility. The use of allow lists
make the program more strict about what classes can be
deserialized, making genuine program flows to be disrupted
with the fix.

M1.2 Prevent deserialization of domain objects: This miti-
gation is typically used when the application has a class
that extends another serializable class (directly or indirectly)
which provides concrete implementations to callback meth-
ods (i.e., “magic methods”). Therefore, to prevent malicious
uses of these subclasses, the application breaks the chain
of method calls by throwing an exception. Hence, the dan-
gerous sink is unreachable because the chain of calls from
a magic method – e.g., readObject(ObjectInputStream)–
to a sink method is broken due to a thrown exception.
Example: The jython project has a class named PyFunction
that extends the class PyObject, which in turn implements
the java.io.Serializable interface. This inheritance re-
lationship makes the PyFunction class to be serializable
too. In CVE-2016-4000, the PyFunction class was found to
be used in successful COOP attacks. Hence, the fix imple-
mented by developers prevents the class Handler to be de-
serialized. This is implemented by overriding the method
readResolve() and making it throw an exception [1], as
shown in the unidiff below for the fix:

src/org/python/core/PyFunction.java
@Override
public boolean isSequenceType() { return false; }

+ private Object readResolve() {
+ throw new UnsupportedOperationException();
+ }

/* Traverseproc implementation */
@Override

M1.3 Unsafe classes are no longer serializable: This mitiga-
tion technique involves making a gadget class no longer
serializable. This is implemented by removing the “extends
Serializable” from the class definition.
Example: In the Apache Commons FileUpload project ver-
sion 1.3.2, a class named DiskFileItem implements the in-
terface FileItem, which extends the java.io.Serializable
interface. As a result, the DiskFileItem class also becomes
serializable. In CVE-2016-1000031, researchers found that
the DiskFileItem has a magic method (invoked during de-
serialization) that allowed an attacker to manipulate files.
The project’s developers fixed this problem by making Disk-
FileItem no longer serializable, as shown in the commit
diff below [10]:

src/main/java/org/apache/commons/fileupload/FileItem.java
-public interface FileItem extends Serializable,FileItemHeadersSupport{
+public interface FileItem extends FileItemHeadersSupport {

4.3.2 Group 2: Enforcing object integrity. It encompasses the miti-
gation approaches below that enforce the integrity of the object:

M2.1 Add transient to a “sensitive” field: To prevent serializing
fields with sensitive information (e.g., passwords) or that are
used as part of a gadget chain, applications enforce that these
fields are not included when the object is serialized. This
is achieved by adding the keyword transient to the field
declaration [25]. By doing that, Java’s built-in deserialization
class ignores the field and does not write/read its value when
serializing/deserializing the object.
Example: The beanshell project version 2.0b5 contains a se-
rializable class named XThis that has a field named invo-
cationHandler. This field is instantiated with a concrete
implementation for the java.lang.InvocationHandler in-
terface that uses reflection to invoke methods. An attacker
relied on this class (Handler) to invoke arbitrary methods
in the program (CVE-2016-2510). To fix this issue, the devel-
opers made the Handler class non-serializable (M1.3) and
the invocationHandler field to be transient [11], as shown
in the commit below:

src/bsh/XThis.java
- InvocationHandler invocationHandler = new Handler();
+ transient InvocationHandler invocationHandler = new Handler();
...
- class Handler implements InvocationHandler, java.io.Serializable
+ class Handler implements InvocationHandler

M2.2 Authenticate before deserializing an object: This mitiga-
tion is used when: (i) the application has to transmit objects,
(ii) it does have a secure transport channel (e.g., SSL) that
can be used for authentication, and (iii) these objects need
to be received in its entirety. In this case, marking fields as
“transient” would not fulfill the application’s needs [18]. This
mitigation involves authenticating the remote source before
receiving objects from it.
Example: In CVE-2016-3737 affecting the server in Red Hat
JBoss Operations Network (JON) before 3.3.6, an attacker
could craft a malicious object and send it to the server to
trigger remote code execution. Since removing serialization
and/or classes would not be a feasible mitigation, the fix
for this issue involved manually configuring the JON to use
SSL client authentication between servers and agents. The
released version updated its documentation to guide the
users on how to properly perform this configuration.

M2.3 Replace Java’s default deserialization API: Java’s built-
in (de)serialization API allows arbitrary object types to be
serialized/deserialized as long as it implements the Seria-
lizable interface. Since this API invokes methods from the
objects’ classes during their reconstruction (i.e., magic meth-
ods), this built-in mechanism is deemed as inherently inse-
cure [2]. Consequently, some applications decide to replace
(or disable) this feature entirely to prevent vulnerabilities.
Example: In CVE-2017-1000034, the akka project disables
Java’s default serialization API and replaces it with its own
(safer) serialization implementation [12].

4.3.3 Group 3: Compartmentalization. This category includes miti-
gation approaches in which the system enforces policies at runtime
to prevent object deserialization misuse.
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M3.1 Deserializewithin a sandbox: A sandbox is usedwhenever
an object is deserialized. This sandbox is configured with a
set of policies that are enforced at runtime. Thus, if the dese-
rialized object triggers an operation forbidden by the policy,
the object reconstruction is stopped [14, 29]. Sandboxes are
usually implemented using Java’s SecurityManager class.
This built-in class throws a SecurityException when it
detects that a process is executing an operation not allowed
by the security policy in place.
Example: To fix CVE-2018-1000058 (Jenkins project), devel-
opers made the deserialization of objects to be executed
under a sandbox. Thus, an attacker is not able to execute ar-
bitrary code in the pipeline. A (partial) implementation of the
fix is shown in the code snippet below. The SandboxedUn-
marshaller wraps the execution of all the deserialization
operations such that they all run with sandbox protection.

org/jenkinsci/plugins/workflow/support/pickles/serialization/RiverReader.java
+ /** Applies {@link GroovySandbox} to a delegate unmarshaller. */
+ private static final class SandboxedUnmarshaller ... {
+
+ private final Unmarshaller delegate;
+
+ SandboxedUnmarshaller(Unmarshaller delegate) {
+ this.delegate = delegate;
+ }
+ ...
+
+ @Override public Object readObject() throws /* ... */ {
+ return sandbox(() -> delegate.readObject());
+ }
+
+ @Override public Object readObjectUnshared() throws /* ... */ {
+ return sandbox(() -> delegate.readObjectUnshared());
+ }
+ ...
+ }

4.4 Discussion
The key takeaways from our results are:

• COOP attacks can lead to severe vulnerabilities: This ini-
tial empirical study highlighted the importance of investigating
COOP attacks. In our findings, we observed that CVEs related
to untrusted object deserialization, a type of COOP attack, were
often assigned by security analysts a high/critical severity score.
One of the reasons being that attackers could deploy their attacks
remotely, making it easier to reproduce attacks.

• Developers may use inherently flawed/improper mitiga-
tions: We observed that developers often used “blocked lists”
(M1.1 discussed in Section 4.3) as a way to fix their vulnerabil-
ity. The key problem, however, is that manually curating a list
of dangerous classes lead to missing unknown gadget classes.
That is, developers hardcode this list of dangerous classes based
on prior knowledge of existing attacks. As new attacks are de-
ployed, developers then have to patch the code by adding other
class signatures to their list of blocked classes. This is a reactive
mitigation strategy rather than a proactive approach.

• There are trade-offs involved in the choice of employing
a specific mitigation strategy: We observed that there are
multiple ways that developers fixed COOP vulnerabilities. The
chosen mitigation strategy will often be a trade-off between the
efforts required in changing the software, as well as backward
compatibility considerations. As presented in Section 4.3, some

mitigation strategies, such as replacing Java’s default deserial-
ization API (M2.3) would require extensive implementation and
testing efforts. For that reason, developers often relied on a sim-
pler solution, such as using a list of blocked classes that cannot be
deserialized (M1.1). The use of “allow lists” is a safer alternative
to the use of “blocked lists”. However, this mitigation could also
prevent the deserialization of genuine payloads, affecting the sys-
tem’s intended functionality. Therefore. although inherently less
secure, the use of blocked lists was the most frequently employed
strategy because it is easier to implement and reduce backward
compatibility problems.

5 THREATS TO VALIDITY
One threat concerns the construct validity of our work; that is, to
what extent the operational measurements we used are suitable for
the purpose of our study [26]. In this context, two related threats are
that (i) our analysis heavily depends on the accuracy of the collected
reports (i.e., CVEs, and patches, as described in Section 3.2) and (ii)
the open coding of vulnerability reports. We mitigate this threat
by following a systematic process in which we manually inspected
each CVE and associated artifacts for completeness and accuracy.
Moreover, this manual analysis was performed by one of the authors
who has over 8 years of software security experience.

Another threat relates to the generalizability of the findings of the
work (external validity [26]). We studied only the COOP attacks that
are related to object deserialization and in Java programs. Since we
analyzed a random sample that included only 17 vulnerabilities, we
acknowledge the results may not generalize to other languages (e.g.,
Python) and COOP attack types (e.g., RMI-based COOP attacks). It
is nonetheless important to highlight that our study’s scope was
not to find generalizable findings, but rather to give insights on
this under-explored type of attacks and create a manually curated
dataset that could help other researchers and practitioners.

6 RELATEDWORK
The literature explored COOPs in lower-level languages such as
C++ [4, 23, 30, 35], but these languages do not include metapro-
gramming features. Other languages (e.g., Python, PHP, and Java)
contain programming constructs (e.g., native calls, reflection, and
object serialization) which are used to load classes, invoke methods,
create objects and extend the programs’ functionalities at runtime.
Although seemingly innocuous, these mechanisms place the system
at the risk of attackers tampering with objects (gadgets) in order
to successfully execute code (e.g., load a remote class, instantiate
objects from it and execute its methods with a malicious purpose).

Prior empirical studies explored vulnerabilities rooted in im-
proper input validation problems, such as SQL injection, and buffer
overflows [6, 16, 37] as well as language-specific vulnerabilities [36].
COOP vulnerabilities, however, are very different from these ex-
plored vulnerabilities. First, “dangerous operations” (i.e., sinks) can
be anywhere in the program’s scope (i.e., the language’s built-in
classes, library classes and the application code itself). Second,
COOP attacks rely on dynamic programming features. Third, un-
like these other classes of injection problems, in which the input
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is a primitive or string, the input provided by the attacker is a spe-
cially crafted object. Hence, this study aimed to provide insights to
developers on how to spot these problems and fix them.

7 CONCLUSION & FUTUREWORK
In this paper, we studied COOP attacks caused by untrusted object
deserialization in Java programs. We investigated their severity,
typical consequences, and mitigation techniques used by develop-
ers to prevent the attacks. Among our findings, we observed that
deserialization-related COOP attacks were often flagged with a
high severity. We also observed that one of the reasons for this
high/critical severity was due to the fact that these attacks lead
to remote code execution. We also found 7 different mitigation
strategies employed by developers to prevent COOP attacks.

In the future, we plan to cover more vulnerabilities related to
not only object deserialization, but also other COOP attack vectors
(e.g., RMI-based). Hence, we plan to (i) extract CVEs from NVD
that are related to COOP, (ii) analyze publicly available exploits
(iii) review the source code of open source systems with dynamic
features such as deserialization, RMI, JNDI, Dependency Injection,
Java Management Extensions (JMX) API and others that can enable
counterfeit Object-Oriented programming attacks.
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