
Understanding Software Security from Design to Deployment
Mehdi Mirakhorli

Rochester Institute of Technology
Rochester, NY, USA

mehdi@se.rit.edu

Matthias Galster
University of Canterbury

Christchurch, New Zealand

mgalster@ieee.org

Laurie Williams
North Carolina State University

Raleigh, NC, USA

lawilli31@ncsu.edu

ABSTRACT
Analyzing, implementing and maintaining security requirements of
software-intensive systems and achieving truly secure software requires
planning for security from ground up, and continuously assuring that
security is maintained across the software’s lifecycle and even after
deployment when software evolves. Given the increasing complexity of
software systems, new application domains, dynamic and often critical
operating conditions, the distributed nature of many software systems,
and fast moving markets which put pressure on software vendors,
building secure systems from ground up becomes even more
challenging. Security-related issues have previously been targeted in
software engineering sub-communities and venues. In the second
edition of the International Workshop on Security from Design to
Deployment (SEAD) at the International Conference on Automated
Software Engineering (ASE) 2020, we aimed to bring the research and
practitioner communities of requirements engineers, security experts,
architects, developers, and testers together to identify foundations, and
challenges, and to formulate solutions related to automating the
analysis, design, implementation, testing, and maintenance of secure
software systems.

Categories and Subject Descriptors
• Software and its engineering~Software organization and properties •
Software and its engineering~Extra-functional properties • Software and
its engineering~Software creation and management • Software and its
engineering~Designing software

General Terms
Management, Measurement, Performance, Design, Security,
Verification.

Keywords
Software security, requirements, architecture, design, deployment,
workshop, ASE.

1. INTRODUCTION
Security has previously been targeted by various software engineering
sub-communities (e.g., security requirements engineering, software
architecture), as well as different community events, e.g., conferences
related to cybersecurity, networking and internet technologies (e.g., the
International Symposium on Software Reliability Engineering [ISSRE],
the International Conference on Dependable Systems and Networks
[DSN]). Each of these communities have their own paradigms (meta-
models, languages, methods). Architecture conferences, e.g., the
International Conference on Software Architecture (ICSA) focuses
primarily on high-level concepts to implement security (e.g., design or
architecture patterns), while conferences such as the International
Conference on Software Testing (ICST) and the International
Conference on Software Maintenance and Evolution (ICSME) focus on
more specific low-level programming issues.

Many developers are not familiar with secure coding practices and do
not understand their application’s security architecture [1]. This
knowledge gap results in security issues such as an implementation that
deviates from the initial security architecture design, missing security
choices in the code (e.g., architecture tactics) or incorrectly
implementing security countermeasures [2].

The first edition of the International Workshop on Security from Design
to Deployment (SEAD) was co-located with the International
Conference on Software Engineering (ICSE) 2018 in Gothenburg,
Sweden. In this second edition of SEAD held in conjunction with the
International Conference on Automated Software Engineering (ASE) in
San Diego, CA, we aimed to bring the research and practitioner
communities of requirements engineers, security experts, architects,
developers, and testers together to identify foundations, challenges and
formulate solutions related to automating the analysis, design,
implementation, testing, and maintenance of secure software systems.
The workshop website is available online: https://2019.ase-
conferences.org/home/sead-2019.

2. BACKGROUND
Secure design refers to a design that supports and “enforces the
necessary authentication, authorization, confidentiality, data integrity,
accountability, availability, and non-repudiation requirements, even
when the system is under attack” (IEEE Center for Secure Design).1
Security-by-design requires that security awareness is injected into
software development from early inception phases. Also, it is important
to ensure that all stakeholders in all phases of the life cycle of a
software product or service are aware of security requirements, the
current security architecture, threats associated with the system,
potential vulnerabilities and mitigation techniques to address them.
Addressing the current and future needs of is non-trivial. This requires
addressing challenging scientific and engineering problems, but also
vulnerabilities that arise from human behaviors and choices.

There has traditionally been a distinction between high-level
architecting and low-level implementation and maintenance activities
such as coding to ensure that security is not put at risk through
vulnerable implementations in code. In fact, software design,
implementation and testing are established areas in software
engineering research, education and practice. However, problems tend
to occur when there is a mismatch between decisions made in each of
these areas, or inappropriate techniques and tools are used to carry out,
realize and test the decisions from one area to another one. Those who
are developing and maintaining software are often not engaged in early
security design and planning phases of the software. In particular, junior
software developers tend to lack “security thinking” and awareness and
software assurance skills.

3. WORKSHOP GOALS
The goals of SEAD 2019 were:

 Provide an open forum for discussions: We included
discussions around software security, including automated
and lean/agile practices to address security; continuous
development/deployment and DevOps; impact of technology
advances on achieving security; automated validation and
verification in the context of security.

 Share knowledge and experiences: The workshop offered an
opportunity to become familiar with how security affects
development processes and practices, what current challenges

1https://www.computer.org/cms/CYBSI/docs/Top-10-Flaws.pdf

DOI: 3385678.3385687
http://doi.org/3385678.3385687

ACM SIGSOFT Software Engineering Notes April 2020 Volume 45 Number 2

https://2019.ase-conferences.org/home/sead-2019
https://2019.ase-conferences.org/home/sead-2019
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3385678.3385687&domain=pdf&date_stamp=2020-05-03

are and how to address these challenges. In particular, the
workshop discussed how to bring “security thinking” into
daily development activities. We discussed problems,
solutions and share lessons learned.

 Grow community: This is the second edition of SEAD, we
grew a cross-cutting multi-disciplinary community. We
discussed secure software in a broader context of software
engineering and across application and technology domains to
leverage experiences made in different communities.

 Build a corpus of artefacts: Since security is defined quite
broadly, we not only aim at sharpened our understanding of
what types of systems are there and how to build and maintain
them, but also started building a corpus of artifacts that can
support the automated design, implementation and
maintenance of such systems (see below). This corpus can
include architectures, designs, code, etc.

4. KEYNOTE
The workshop started with a keynote by Hamid Bagheri from the
University of Nebraska-Lincoln, USA on Automating Pragmatic
Software Dependability. Hamid argued that the inherent complexity of
large-scale software systems has always posed a significant challenge to
software practitioners. On top of this, the ever increasing expansion of
software into nearly every aspect of modern life is making its
dependability more critical than ever. Automating the cumbersome and
error-prone software engineering activities is paramount for achieving
dependable software. Lightweight formal methods which are
automated, yet provide formally-precise analysis capabilities, have
recently received a lot of attention in the software engineering
community. Hamid presented ongoing research which explores the
possibility of leveraging such formally rigorous techniques that rely on
recent advancements in constraint solving technologies for automated
and practical dependability analysis of widely-used software systems.

5. DISCUSSIONS
After the keynote and six paper presentations, participants discussed
various topics related to security from design to deployment:

 Security metrics and how to measure improvements in the
security of software systems

 Security data, including access to security data and how to
collect high-quality security data

 Insider threat detection (i.e., the human aspects related to the
intentional and unintentional behavior of software developers
when implementing security)

 Hardware-vulnerability-aware software (i.e., mitigating
hardware vulnerability threats in software)

 Security versus other quality attributes (e.g., usability) and
trade-offs between security and other quality attributes

 Cost-effective secure software development and the
economics of secure software

 Tools and techniques for “Security by Design”
 Security in specific domains (e.g., threat modelling,

benchmarking in cyber-physical systems [CPS], defense
mechanisms in CPS, incidence response in CPS, fuzz testing

to detect vulnerabilities and design flaws [e.g., in Android,
blockchain/smart contracts])

 Composability of security analysis (e.g., plug-in architecture,
systems-of-systems, ecosystems) and how security in
different components impacts system security

 Security mining (for early security awareness and for the
comparison of different software versions regarding security)

These topics could provide the starting point for defining an agenda or
roadmap for future work on ensuring security from design to
deployment.

Furthermore, participants started to create a “Call for Collaborators” for
potential work related to the workshop. The “call” included topics,
problems, research questions and requests for help with solving
security-related research problems (e.g., data analysis, labeling, coding).
Some examples are provided below:

 Effective automatic labeling of high quality data
 Vulnerability descriptions and representing vulnerabilities in

source code (for machine learning)
 Automating attack and defense synthesis techniques in cyber-

physical systems
 Incident response and recovery in cyber-physical systems
 Improving conventional Human-Machine Interfaces (HMI)

with security mechanisms; human factors and usability in
cyber-physical systems

Finally, participants started to create a list of publicly available data and
tools that might be useful for other researchers and practitioners:

 Vulnerability Detection Dataset (VDD), labeled for the five
most common CWEs, including more than 1,3 million code
snippets/examples at method level: https://osf.io/d45bw/

 Dataset to support research in the design of secure CPS:
https://itrust.sutd.edu.sg/itrust-labs_datasets/

The above lists are available online in a shared spreadsheet:
https://docs.google.com/spreadsheets/d/1rk2HibAWNGeFgLayEExiOr
N3CNBdDqCosAkh2GhUx1o/edit?usp=sharing

6. ACKNOWLEDGMENTS
We thank workshop participants and all authors for submitting their
work to SEAD 2019. We also thank the members of the international
program committee and the ASE workshop chairs and organizers for
supporting our workshop.

7. REFERENCES
[1] J. Santos et al., “Understanding Software Vulnerabilities Related to

Architectural Security Tactics: An Empirical Investigation of
Chromium, PHP and Thunderbird”, IEEE International Conference
on Software Architecture (ICSA) 2017.

[2] J. Santos et al., “A Catalog of Security Architecture Weaknesses”,
IEEE International Conference on Software Architecture
Workshops (ICSAW) 2017.

ACM SIGSOFT Software Engineering Notes April 2020 Volume 45 Number 2

