
A Grounded Theory Based Approach to Characterize So�ware
A�ack Surfaces

Sara Moshtari
Rochester Institute of Technology

Rochester, NY, USA
sm2481@rit.edu

Ahmet Okutan
Rochester Institute of Technology

Rochester, NY, USA
axoeec@rit.edu

Mehdi Mirakhorli
Rochester Institute of Technology

Rochester, NY, USA
mxmvse@rit.edu

ABSTRACT
The notion of Attack Surface refers to the critical points on the
boundary of a software system which are accessible from outside
or contain valuable content for attackers. The ability to identify
attack surface components of software system has a signi�cant role
in e�ectiveness of vulnerability analysis approaches. Most prior
works focus on vulnerability techniques that use an approximation
of attack surfaces and there have not been many attempts to cre-
ate a comprehensive list of attack surface components. Although
limited number of studies have focused on attack surface analysis,
they de�ned attack surface components based on project speci�c
hypotheses to evaluate security risk of speci�c types of software
applications. In this study, we leverage a qualitative analysis ap-
proach to empirically identify an extensive list of attack surface
components. To this end, we conduct a Grounded Theory (GT)
analysis on 1444 previously published vulnerability reports and
weaknesses with a team of three software developers and security
experts. We extract vulnerability information from two publicly
available repositories: 1) Common Vulnerabilities and Exposures
(CVE) and 2) Common Weakness Enumeration (CWE). We ask three
key questions: where the attacks come from, what they target, and
how they emerge, and to help answer these questions we de�ne
three core categories for attack surface components: Entry points,
Targets, andMechanisms. We extract attack surface concepts related
to each category from collected vulnerability information using
the GT analysis and provide a comprehensive categorization that
represents attack surface components of software systems from
various perspectives. The paper introduces 254 new attack surface
components that did not exist in the literature. The comparison of
the proposed attack surface model with prior works indicates that
only 6.7% of the identi�ed Code level attack surface components
are studied before.

KEYWORDS
Software Security, Attack Surface, Grounded Theory, Qualitative
Analysis

1 INTRODUCTION
With thousands of new vulnerabilities being discovered every year,
software security is more increasingly becoming a day-to-day con-
cern for organizations across the world. Software security practi-
tioners use a wide range of security analysis techniques to improve
the con�dentiality, integrity, and availability of software systems.
These techniques often directly or indirectly rely on understanding
application’s attack surfaces —a set of points on the boundary of a
software system, where an attacker can try to enter, cause an e�ect
on, or extract data from [13, 18].

Attack surface analysis—the process of identifying applications’
attack surface components (a.k.a points) plays a key role in numer-
ous methods for security risk analysis [11, 13, 14, 18–20], vulnera-
bility detection [4, 15–17, 28, 31, 35, 36, 38], and software testing
[2]. Prior software vulnerability detection and testing approaches
consider Sink, Source, Entry point, and API/Function calls as parts
of the attack surface, however, these studies primarily focus on
the analysis itself, rather than identifying attack surface compo-
nents. There are a few studies that elaborate on the notion of the
attack surface [11, 13, 14, 18–20, 28], consider entry points, exit
points, channels, etc. as attack surface components, and test and
validate them as existing theories [13, 14, 19, 20, 28]. They focus on
limited-scope and example-based demonstration of attack surfaces
of operating systems [13, 14, 18, 20] and web applications [11] using
the attack surface metaphor. These studies show that applications
with smaller attack surfaces are less vulnerable. While there has
been a signi�cant interest by practitioners and in the literature to
study attack surface components of a given system, unfortunately,
we lack a generic comprehensive guidance to support security re-
search engineers in identifying attack surfaces of a given system.
To the best of our knowledge, there is no prior research that takes a
comprehensive approach to characterize and identify attack surface
components in software systems.

In this paper we take a Grounded Theory (GT)-based approach
[9, 10, 33] to characterize software attack surfaces and develop a
comprehensive attack surface model to be reused by researchers
and practitioners. Grounded theory is a qualitative approach that
extracts theories from unstructured data and leads to discoveries
directly supported by empirical evidence [7–10, 33]. We extract and
analyze 810 vulnerability reports from Common Vulnerabilities and
Exposures (CVE) data published by MITRE Corporation [26]. In ad-
dition, we analyze 634 entries in Common Weakness Enumeration
(CWE) data, an extensive catalog of di�erent types of software and
hardware weaknesses describing root causes of vulnerabilities [27].
We leverage the Grounded Theory to identify high-level concepts
which are related to software systems’ attack surface from vulnera-
bility reports and weaknesses, and use Straussian GT [5, 34] as a
systematic inductive method for conducting qualitative research of
identifying attack surface components. Our GT analysis starts by
asking three key research questions:

• Research Question 1: Where are the critical entry points in a
software system that are used by attackers to get in?

• Research Question 2: What assets or components in a software
system are targeted by attackers?

• Research Question 3: How do attack surfaces emerge, and what
types of mechanisms are utilized to reach the targets?

Sara Moshtari, Ahmet Okutan, and Mehdi Mirakhorli

To answer these research questions we consider three core the-
ories related to each research question, which are Entry Points,
Targets, and Mechanisms, respectively. We extract the concepts re-
lated to each theory from gathered vulnerability data and de�ne a
generic attack surface model based on the emerged concepts. Dur-
ing the GT process we �nd that concepts related to each theory can
be categorized in four major groups: software source code (Code),
its executable (Program), the System, and the Network environment.
Then, we identify attack surface components under each category
and compare the proposed attack surface categorization model with
the literature. The comparison results indicate that almost all at-
tack surface components de�ned in the literature are covered by
the proposed attack surface model, while prior works cover only a
small portion of the concepts identi�ed by our analysis. The result
of quantitative comparison shows that in the best case only 50%
and 20% of the Network and Program level mechanisms and 20% of
the Network level entry points identi�ed by this paper are covered
in the literature. On average, only 6.7% of the studied Code level
attack surface components are covered by previous works.

The remainder of this paper is organized as follows: Section 2
provides an overview of the methodology used in this empirical
study, Section 3 presents the �ndings of our research, and Section 4
compares our results with those in the literature. Section 5 discusses
the results, Section 6 describes veri�ability and threats to validity,
and Section 7 concludes with �nal remarks.

2 METHODOLOGY
Attack surface refers to the amount of code, functionality, and in-
terfaces of a system exposed to attackers [14]. In this study, we
rely on publicly available vulnerability repositories to identify com-
mon attack surface components in software systems. Vulnerability
databases describe vulnerabilities using natural language and do
not include technical data. In order to identify attack surface compo-
nents, we use an approach based on the Grounded Theory (GT)
[9, 10, 33].

The Straussian GT is preferred over the Classic Glaserian GT
approach [7, 8], because the study is led by research questions and
existing concepts in the literature are used during the analysis [5,
32, 34]. The Straussian grounded theory encompasses the following
activities: (1) de�ning research questions, (2) theoretical sampling,
(3) open coding, (4) constant comparisons, (5) memoing, (6) axial
coding, and (7) selective coding. The GT process was performed
by the authors who have had 5, 10, and 15 years of experience in
software design, development, test, and maintenance, and 5, 5, and
10 years of experience in vulnerability analysis and secure by design,
respectively. All three authors involved in all GT steps and the
validation step that is discussed in Section 4. Figure 1 shows how the
Straussian GT was applied. Over one year, the authors met weekly
to discuss, merge and �nalize the codes, concepts, and categories.
All collected data, derived intermediate data that contains codes
and concepts, and the �nal attack surface categories are shared
with the research community through a public GitHub repository
[1].

2.1 Research Questions
In Straussian grounded theory approach [5], researchers may de-
�ne research questions upfront. While following the approach, we
consider broad and open-ended research questions for detecting at-
tack surface components. Getting inspired from the apparent attack
surfaces of a house, research questions are de�ned based on the
past experiences of the authors and concepts from the literature.
For example, in a house, front and back doors, windows, garage
door, climbable trees or tables can be entry points and the attacker
would consider precious items in the house, such as safe box, as
target. There might be some mechanisms in building a house such
as emergency stairs that could make the house more vulnerable.
Using the similarities of a software system and a house from the
perspective of a cyberattacker, we identify the concepts for soft-
ware applications to help de�ne attack surface components. We
focus on three research questions listed in Section 1 during the GT
process and try to do coding in a way that can �nd theories from
data to answer these questions.

2.2 Data Collection
Given the topic of interest of this study, we need access to software
vulnerability reports, the description of these vulnerabilities, in-
depth analysis of how they occurred, as well as vulnerable code
snippets and their patches. Thus, we targeted open data resources
that contain di�erent types of vulnerabilities and vulnerable code
snippets.

2.2.1 Theoretical Sampling. It is the data collection process that is
based on the concepts derived from data [3, 5, 34]. In theoretical
data sampling, unlike conventional approaches, all data are not
collected at the beginning. Data collection and analysis is a circular
process. Concepts that are identi�ed in each cycle lead to more data
collection until the saturation occurs [34].

2.2.2 Data Sources. We obtained vulnerability information from
two publicly available vulnerability repositories:

• Common Weakness Enumeration (CWE): CWE enumerates a list
of common security weaknesses and categorizes them based on
di�erent views to help practitioners in securing their applications
[27]. It provides a concise description of the weakness, common
consequences, likelihood of exploitation, demonstrative exam-
ples, and reference to other resources. We reviewed all these
information pieces to extract attack surface components.

• Common Vulnerabilities and Exposures (CVE): The Mitre corpo-
ration CVE is an open platform to list publicly disclosed vulner-
abilities [26]. We used the CVE list and additional information
provided in the National Vulnerability Database (NVD) [29] to
extract vulnerability meta-data.

We used issue tracking systems to obtain further discussions
about CVEs, source code repositories to identify �xes for vulnera-
bilities, and further resources to extract other related information if
existed. Figure 2 shows the information model of the vulnerability
data collected. The summary of the data sources used:

1 Retrieve vulnerabilities from MITRE and NVD: We ob-
tained vulnerability reports from MITRE CVE and NVD by con-
suming their public data feeds. Vulnerabilities disclosed in CVE

A Grounded Theory Based Approach to Characterize So�ware A�ack Surfaces

Topic of Interest
(Attack surface
components)

Memo Writing
(notes related
to entry points,
targets and
mechanism)

Research
Questions ?

Data
Collection

(via
Theoretical
Sampling)
(Random
Selection of
500 CVEs)

Open Coding
(Coding of

CVE Reports)

Axial Coding
(Identifying the
relationship and
links between

codes)

Selective Coding
(Sorting concepts
and put data into
central categories)

Constant
Comparison
(Comparing
Immerged

codes/concepts
with existing

codes/concepts)

Theories
(Attack
Surface

Components)

Memo Writing
(Notes and Mind
maps of the
attack surface
components)

Constant
Comparison
(Comparing
Immerged

codes/concept
s with existing

codes/
concepts)

Data
Collection

(via Theoretical
Sampling)

(Selection of
200 CVEs and
634 CWEs)

Axial Coding
(Identifying the
relationship and
links between

codes)

Memo Writing
(Notes and Mind
maps of the
attack surface
components)

Constant
Comparison
(Comparing
Immerged

codes/concept
s with existing

codes/
concepts)

Data
Collection

(via Theoretical
Sampling)

(Search-based
Selection of
110 CVEs)

Figure 1: The Grounded Theory approach applied to our work

are assigned a unique Identi�er (CVE ID), a concise description,
a list of a�ected software releases, and a list of references that
can be used to obtain further details about the CVE, such as Issue
Tracking Systems.
2 Obtain vulnerability details from issue tracking sys-
tems: Although CVE reports provide information about di�erent
attributes of a vulnerability, they do not contain enough infor-
mation to identify attack surface components at code level. Thus,
we reviewed associated issue tracking systems for vulnerabilities
that are related to open source projects. We leveraged the list of
“references” to identify URLs to the corresponding bug entry of
the issue tracking system and we read the developers’ discussion
about the problem, original code fragments, and their proposed
solution(s).
3 Gather patches fromcode repositories:To retrieve patches
that �xed vulnerabilities, we gathered the commits whose mes-
sage explicitly mentioned the related bug id in the issue tracking
systems or directly referred to the associated CVE. These patches
often contained more information about the vulnerability, and
the �les that were a�ected, i.e., modi�ed, added or removed dur-
ing the �x. Identifying patches helped us to identify entry points,
targets and mechanisms at the code level.
4 Collect vulnerability details from other references: In
addition to information that are provided in CVE website, we
analyzed all the URLs that are provided as references for each
vulnerability. These references include links to vulnerability re-
ports, advisories or exploit information. These references provide
more information for attack surface analysis of the vulnerability.
5 Get vulnerability details from related CWEs We identi-
�ed related CWEs for each vulnerability. The CWEs helped us
to understand the security issue of the CVE and extract attack
surface components.

2.2.3 Data Collection Process. Number of vulnerabilities reported
by NVD has increased from 6500 in 2016 to above 18000 in 2020 [30].
We focused on the vulnerabilities that have been reported during
last �ve years (from 2016 to 2020 inclusive) to cover di�erent types
of weaknesses. For a more comprehensive attack surface analysis,
we also collected data from Introduced During Design/Implementa-
tion views [21, 22] in CWE [27].
First stage: At the beginning, we selected 100 random vulnerabil-
ities from each year (a total of 500) and collected their attributes.

CVE List
(MITRE)

CVE

- ID
- Description
- References
- CWE-ID

Issue Tracking System

- Bug ID
- Affected Components

Advisories

- Description
- References

Exploits

- Description
- Sample Exploit Code

Patch

- Source File
- Diff code
- Comments

CWE

- ID
- Description
- Examples

CVE
(NVD)

<<refers to>>

<<refers to>>

<<refers to>>

<<refers to>>

<<refers to>>

<<contains>>

1 0..*

1
1 0..*

CWE
(MITRE)

1
0..*

0..*

0..* 0..*
1

1

1
0..* 0..*

Figure 2: Information Model for the Collected Data

For some of these vulnerabilities only a CVE description was avail-
able (without any patch or advisory info), therefore, we were able
to collect limited amount of information from the descriptions of
such vulnerabilities. During the �rst stage of data collection, we
performed coding process and extracted initial concepts.
Second stage: During this stage, we randomly selected 200 CVEs
from 2016-2020 but omitted the areas that were theoretically satu-
rated [3] during the �rst stage of the analysis. Therefore, we didn’t
do coding for the CVEs that were related to vulnerabilities such as
SQL injection, Bu�er Over�ow, Cross-site scripting, and Command
injection (36 CVEs), because reviewing more data related to these
types of vulnerabilities no longer provided new theoretical insights
about attack surface components at the end of the �rst stage. We
noticed that CVEs collected during the �rst stage, covered limited
number of CWE branches (70 CWE IDs), therefore we also col-
lected data from Introduced During Design and Introduced During
Implementation views [21, 22] in CWE (which totally contain 634
weaknesses after removing their common CWE IDs) to be more
comprehensive. During our analysis in the second stage, we de-
�ned all components that can be part of an Entry Point, Target or
Mechanism.
Third stage: In this stage, to identify new CVEs for emerged con-
cepts that seemed incomplete and needed further analysis, we per-
formed keyword-based selection of CVEs. We selected 110 CVEs
related to these concepts. For example, for program architecture cat-
egory we searched CVEs based on ”Architecture”, ”Model”, ”Event
Driven”, ”Master Slave”, ”Client Server”, etc.

2.3 Open Coding
Open coding process analyzes collected data for each vulnerabil-
ity and annotates them with codes (concepts) [5, 10]. We review

Sara Moshtari, Ahmet Okutan, and Mehdi Mirakhorli

CVE-2020-7248

Description: libubox in OpenWrt before 18.06.7 and 19.x be-
fore 19.07.1 has a tagged binary data JSON serialization
vulnerability that may cause a stack based bu�er over�ow.
References:
https://github.com/openwrt/openwrt/commits/master
https://openwrt.org/advisory/2020-01-31-2
Related CWE:
CWE-787: Out-of-bounds Write
...

Codes ! Entry Point:“...”; Target:“stack memory”, “mem-
orymanipulation statement”;Mechanism: “Serialization/De-
serialization”.

Security Advisory 2020-01-31-2

Description: Possibly exploitable vulnerability exists in the
libubox library of OpenWrt, speci�cally in the parts related to
JSON conversion of tagged binary data, so called blobs.
An attacker could possibly exploit this behavior by providing
specially crafted binary blob or JSONwhich would then be
translated into blob internally. This malicious blobmsg in-
putblobmsg input would contain blob attribute holding large
enough numeric value of type double which then processed
by blobmsg_format_json would over�ow the bu�er ar-
ray designated for JSON output allocated on the stack.
The libubox library is a core component in the OpenWrt
project and utilized in other parts of the project. Those in-
terdependencies are visible by looking up of the above men-
tioned vulnerable blobmsg_format_json function in the
project’s LXR[1], which reveals references in netifd, procd,
ubus, rpcd, uhttpd. libubox in OpenWrt before 18.06.7 and
19.x before 19.07.1 has a tagged binary data JSON serial-
ization vulnerability that may cause a stack based bu�er
over�ow.
Exploit Info:
In order to exploit this vulnerability, a malicious attacker
would need to provide specially crafted binary blobs or
JSON input to blobmsg_format_json, thus creating stack
based over�ow condition during serialization of the dou-
ble value into the JSON bu�er. It was veri�ed, that its pos-
sible to crash rpcd by following shell command:
ubus call luci getFeatures {́ ”banik”:
00192200197600198000198100200400.1922 }´
Mitigations: To �x this issue, update the a�ected libubox us-
ing the command below.
opkg update; opkg upgrade libubox
References:
https://lxr.openwrt.org/ident?i=blobmsg_format_json
https://github.com/openwrt/packages/blob/master/utils
/auc/src/auc.c

Codes ! Entry point:“service request”, “ubus command”
,“binary blob/json (input data)”; Target:“stack memory”,
“bu�er array”;Mechanism:“JSON Serialization”.

Openwrt Github

packages/utils/auc/src/auc.c:
...
39 #include <libuboxvlist.h>
40 #include <libuboxblobmsg_json.h>
41 #include <libuboxavl-cmp.h>
. . .
679 DPRINTF("status code: %d\n", cl� >status_code);
680 DPRINTF("headers:\n%s\n",blobmsg_format_json_indent
(cl� >meta, true, 0));
681 blobmsg_parse(header_policy, __H_MAX, tb, blob_data(cl� >meta),
blob_len(cl->meta)); ...

CWE-787

Description: The software writes data past the end, or before
the beginning, of the intended bu�er.
Example:
. . .
In the following example, it is possible to request that mem-
cpy move a much larger segment of memory than assumed:
(bad code)
Example Language: C
int returnChunkSize(void *) {
/* if chunk info is valid, return the size of usable memory,* else,
return -1 to indicate an error*/
...}
int main() {...

memcpy(destBuf, srcBuf, (returnChunk-
Size(destBuf)-1));
...
}
.

Codes ! Entry point:“...”; Target:“memory copy state-
ment”, “memcpy() function”; Mechanism: “Serialization/De-
serialization”.

OpenWrt.org Cross Reference

libuboxblobmsg_json.h
. . . .
40 static inline char *blobmsg_format_json_indent(struct blob_attr *attr,
bool list, int indent)
41 {
42 return blobmsg_format_json_with_cb(attr, list, NULL, NULL, indent);
43 } ...
libuboxblobmsg_json.c
322 char *blobmsg_format_json_with_cb(struct blob_attr *attr, bool list,
blobmsg_json_format_t cb, void *priv, int indent)
323{...
336 blobmsg_format_json_list(&s, blobmsg_data(attr),
blobmsg_data_len(attr), array);
354 ...}
static bool blobmsg_puts(struct strbuf *s, const char *c, int len)
130 {
131 size_t new_len; 132 char *new_buf;
134 if (len <= 0)
135 return true;
146 ...
147 memcpy(s!buf + s!pos, c, len);
148 s!pos += len;
149 return true;
150 }

Codes ! Entry point: “binary blob(input data)”; Target:
“stackmemory”, “memory copy statement”;Mechanism: “Se-
rialization/Deserialization”.

Figure 3: Open coding of data collected for CVE-2020-7248

the information gathered for each vulnerability (description, dis-
cussions, exploitation mechanism, and patches, etc.), annotate the
information that is related to an Entry Point, Target or Mechanism,
and assign code to the annotated key points. Code is a phrase that
summarizes the key point in a descriptive way. De�ned codes are
assigned to the three general groups of attack surface components
based on their relevance. Figure 3 shows how data was collected
for CVE-2020-7248 as an example. In addition to the information
available in MITRE website, we collected data from its security
advisory (for exploit information), related GitHub repository (for
source code), and CWE. The key points that are highlighted in red
were extracted from both source code and descriptions and codes
which are constructed based on key points assigned to the Entry
Point, Target, and Mechanism:

• Entry Point: service request, ubus command, binary blob/json
(input data);

• Target: stack memory, memory manipulation statement, memory
copy statement, memcpy() function, bu�er array;

• Mechanism: Serialization/Deserialization, JSON serialization;

Identi�ed codes are constantly re�ned during the open coding
process, leading to core categories and their associated concepts.

2.4 Constant Comparisons
We annotated vulnerability reports either by using the existing
codes or creating new ones (if existing codes were not suitable
for a newly analyzed vulnerability report). During the analysis of
vulnerability reports, we also compare the existing concepts/cate-
gories against vulnerability reports to evolve categories and data
interpretations. The overall goal of the open coding and constant
comparison analysis is to identify the core concepts and categories
related to the attack surface.

2.5 Memoing
Memos are notes, diagrams, or sketches that aid researchers to
describe their preliminary ideas about properties and conceptual
relationship between categories. After memoing, the researcher has
stacks of memos in hand and puts them in an organized order by
doing memo sorting [5]. Memoing is performed throughout the
entire process of data coding and categorization. We used mind
map diagrams to show the relationship between codes/concepts to
identify core categories.

2.6 Axial Coding
During axial coding, we de�ne new codes as a result of identifying
new relationships [5, 34], and categorize the codes based on their
relationship into higher level concepts. We perform axial coding for

A Grounded Theory Based Approach to Characterize So�ware A�ack Surfaces

Target

Application Code

Application Resource Memory

Memory Manipulation

Array Access

Write Memory

Copy Memory

Heap

Stack

Figure 4: Mindmap example for Targets

Entry Point
Methods Receive Inputs

Input Data

BLOB/JSON

 HTML Tag

Functions Get HTML Tag Attribute

Service/Server Requests
Service Request

 HTML Page

Ubus Command

Figure 5: Mindmap example for Entry Points

each research question separately. For instance, as shown in Figure
4, we categorize codes gathered from CVE-2020-7248 (Figure 3) and
CVE-2016-9424 for the Targets into two higher level concepts: 1)
Application Code (Memory Manipulation, Array Access) and 2) Ap-
plication Resource (Memory). We de�ne three higher level concepts
for the Entry Points: 1) Input data (e.x. BLOB/JSON, HTML Page, and
HTML Tag), 2)Methods Receive Inputs, and 3) Service/Server Requests
(Figure 5). In this step, we also revisited the CVE instances in order
to further re�ne their codes and attack surface components.

2.6.1 Data Analysis Instruments. For the GT analysis, we developed
a custom-built web-based tool to support our coding activities. This
tool presents the information retrieved for each vulnerability report
based on the research questions.

2.7 Selective Coding
In the last step of our analysis, we �nalize the categorizations by
sorting the de�ned concepts and associating them with the central
branches, i.e., the Program (P), Code (C), System (S) and Network
(N) [34]. During this process, we integrate previously identi�ed
concepts and structure them into higher level of abstraction (theo-
ries) if needed. Selective coding re-organizes categories developed
during axial coding.

3 RESULTS OF GROUNDED THEORY
ANALYSIS

Based on the concepts emerged at the end of our analysis, we �nd
that each core category Entry Point, Target, and Mechanism can be
divided into four major groups, i.e., Code (C), Program (P), System
(S), and Network (N). From Where the attackers are entering into a
system (entry points), what they are targeting for (targets) and how
they are reaching the targets (mechanisms) are all related to the
source Code of a software, its executable version named Program,
the System that application is installed on, and the Network that
the system is interacting with. The results of this qualitative study
learned from reviewing CVEs and CWEs are presented based on

three research questions associated with Entry Points, Targets and
Mechanisms:

3.1 Entry Points
Figure 6 shows the key categories we de�ne for entry points based
on the concepts identi�ed at the end of our analysis to answer to
Research Question #1. We de�ne entry points based on four core
categories:

3.1.1 Code. This category represents parts of source code that an
attacker can leverage to enter a system. As shown in Figure 6 they
are categorized into three sub categories:
1 User Interface (UI) de�nes components in the UI that can be
used by attackers to enter a system. For example, an attacker can
interact with an application through components in the graphical
user interface (Input Box, File Upload [11], RSS Feed [11], etc.) or
Console. 2 Methods/Directives de�nes methods or directives
that receive input. They can be parts of the code that directly receive
input (Direct Entry) such as Input Methods [20, 28] that receive
inputs directly from User, Device, or File or Handlers that handle
di�erent requests such as OS Signal (Interrupts) or web requests
(REST API, Java Servlet). Indirect Entry covers parts of the source
code that indirectly receive input by loading Code, reading Indirect
Inputs (such as Environment Variable, System Attributes, etc.) or
User Created Resources. 3 Con�guration File category contains
accessible con�guration �les of an application that can act as an
indirect entry point for software application.

3.1.2 Program. This category considers an application as an exe-
cutable and de�nes attack surface components related to that:
1 Components refer to special software components that open
the doors for attackers, such as application components which are
designed during the design phase of software development. For
example, Plugin, Installer Components, Chatting Component, and
Authentication/login components are software components that
can be considered as entry points at the design level. 2 Mainte-
nance/Deployment category covers any action that is performed
during Deployment or Maintenance of programs that can open the
doors for attackers. Install, Con�guration, and Update operations
are de�ned in this category. 3 Direct Input category covers data
that is sent to the program. Application can receive Direct Input
from User, Device, Operating System (OS), or as Messaging Object
from other components/applications (Intent in Android). It can
also receive 4 Indirect Input by reading/loading Environment
Variables, DLL Files, OMX bu�er, System Properties, Virtual Machine
Properties, and Cookies [11].

3.1.3 System. As a platform for running software applications, can
provide entry points:
1 System input contains both Direct Input and Indirect Input.
Direct Input represents the requests that are sent to the system and is
categorized into Connection Requests (SSH request), OS Commands,
and Service Requests. Indirect Inputs represent the types of data
imported by the system such as Load Driver. 2 Access Control
contains actions that may open the door for attackers. It contains
Local Access to the system or Improper Access Control.

Sara Moshtari, Ahmet Okutan, and Mehdi Mirakhorli

Entry Point

Service Request
Connection Request

Improper Access
Control Access Control

S
Network Time Protocol
Packets

TCP Segments

SMB File Transfer

Packet

APDU Command
Response

Protocol Fragments

IPV6 Packet

IPSec Packets
TCP Reset (RST)

UDP Datagram

Port

Video Codec

N

Protocol

Local Access

Socket

Access Control

P

Direct Input

User Input

General

Command Line
Arguments

Streams

Files

Web-Based

Get Request Parameter
Post Request
Parameter

Hidden Form Fields
HTTP Header

JSON

 Certificates

Device Input
OS Input

Messaging Object

Components

Plugin
Installer Components
Chatting Component

Authentication and
Login

Indirect Input

Environment Variables DLL Files OMX Buffer Font Command Input Buffer Virtual Machine
Properties

C

System Properties

Maintenance/
Deployment

User Attribute Cookies

User-Interface (UI)
GUI

General
Input Box
File Upload

Load User Created
Resource

Web-Based

RSS Feed
CSS Techniques

Deployment

Form Validation

Maintenance

HTML Tag

Console
General Console

Install

Web-Based Web Console

Method / Directive

Direct Entry

Input Methods
Input from User
Input from Devices

Configuration File

Update

Handlers
OS Signal
Firmware Message Handler
Web API

Indirect Entry

Load Code

Database Config
Other Settings

Application
Configuration

TCP
UDP

Read File/Stream

Repositories

C

P

N

S
System Input

Direct Input

Indirect InputLoad Drivers Network

System

Program

Code

Local Access

X509
SSL

URL

EDS
PDF
XML
ICS

Load Indirect Inputs

Remote Access

OS Command

Border Gateway
Protocol (BGP)

Others

Others

Figure 6: Identi�ed Entry Points during attack surface analysis

3.1.4 Network. category contains the Packet, Port, Protocol, Socket,
and Access Control sub categories : 1 Packet represents the input
data at the network level. 2 Socket [14, 18, 20], 3 Port, and 4
Protocol [11, 14, 20] could provide entry points at the network
level. 5 Access Control contains actions that open the doors for
attackers such as Local Access to the network.

3.2 Targets
Figure 7 represents the categorization model created for Targets to
answer to Research Question #2.

3.2.1 Code. This category de�nes source code related components
that can be target of attacks. Attacker might try to access parts of
source code to do malicious action. As shown in Figure 7 these com-
ponents are categorized into two categories: 1 User Interface
(UI) category refers to components in the user interface that can
be target of an attack. The analysis identi�ed target components
in this category such as Validators and HTML/Webscript that are
related to Web-Based applications. 2 Method/Code Fragment
represents methods or other related parts of the code that can be

target of attacks. As shown in Figure 7, parts of source code that han-
dle requests (Handlers), execute Commands (Database or OS [28]),
do Memory Manipulation, Serialization/Deserialization, Re�ection,
Dangerous Operations such as Type Casting, Integer Operations, En-
coding/Decoding, etc.can be attractive targets for attackers. Besides
that, code fragments such as Exit points [20, 28], Critical Section,
some Special Objects such as Gadget Classes, Cryptography Objects,
and Path are other targets at the code Level.

3.2.2 Program. The concepts under Program are categorized into
two general categories: 1 Resource contains resources allocated
or used by the application such as Memory. Stack, Heap, Cache,
Shared Memory [14] and other memory types that are allocated,
used, or read by the application. 2 Data covers important appli-
cation data that are identi�ed as target during GT analysis. This
category considers application data from two perspectives: 1) Data
Resource which represents the location where data is stored (Data-
base, File, etc.) and 2) Sensitive Information that represents various
kinds of important data that an attacker may look for. We found
important �les that can be target of attacks such as Lock File, Log
File, Certi�cate, and Keystore File. Credentials such as User, Used
Service (Notarization Service), and Database credentials, Application

A Grounded Theory Based Approach to Characterize So�ware A�ack Surfaces

Ta
rg

et

PS

N

C

D
at

a

R
es

ou
rc

e

U
se

r I
nt

er
fa

ce
(U

I)

M
et

ho
ds

 /
C

od
e

Fr
ag

m
en

ts

C
om

m
an

ds

M
em

or
y

M
an

ip
lu

la
tio

n

S
er

ia
liz

at
io

n/
D

es
er

ia
liz

at
io

n

R
ef

le
ct

io
n

Fi
le

M
an

ip
ul

at
io

n

E
xi

t P
oi

nt
s

D
an

ge
ro

us
O

pe
ra

tio
ns

S
pe

ci
al

O
bj

ec
ts

/
C

om
po

ne
nt

s

C
rit

ic
al

 S
ec

tio
n

H
an

dl
er

O
pe

ra
tin

g
S

ys
te

m
C

om
m

an
ds

D

at
ab

as
e

C
om

m
an

ds

U
ni

ni
tia

liz
ed

M
em

or
y

M
em

or
y

A
llo

ca
tio

n
M

em
or

y
R

ea
llo

ca
tio

n
M

em
or

y
D

ea
llo

ca
tio

n
M

em
or

y
C

op
y

Lo
op

 C
ou

nt
in

g
B

uf
fe

r S
iz

e
B

uf
fe

r
A

cc
es

s

P
oi

nt
er

M
an

ip
ul

at
io

n

P
oi

nt
er

In
cr

em
en

t/
D

ec
re

m
en

t
S

et
tin

g
A

dd
re

ss
Va

ria
bl

e
S

er
ia

liz
e/

D
es

er
ia

liz
e

A
P

Is
D

es
er

ia
liz

in
g

P
ol

ym
or

ph
ic

C
la

ss

R
ea

d
Fi

le
W

rit
e

to
 F

ile
/

Lo
g

O
ut

pu
t

M
et

ho
d/

A
P

I
C

al
ls

W
rit

e
to

 L
og

Fi
le

W
eb

-B
as

ed

H
TT

P
R

es
po

ns
e

Ty
pe

 C
as

tin
g

In
te

ge
r

O
pe

ra
tio

ns

E
nc

od
in

g/
D

ec
od

in
g

A
P

I C
al

ls
 fr

om
th

ird
-p

ar
ty

Li
br

ar
y

W
eb

-B
as

ed

R
es

ou
rc

e
A

llo
ca

tio
n

Li
st

en
in

g
to

 a
P

or
t

 T
yp

e
C

as
tin

g
A

rit
hm

et
ic

O
pe

ra
tio

ns

D
yn

am
ic

 C
od

e
E

xe
cu

tio
n

S
oc

ke
t

Th
re

ad
D

at
ab

as
e

C
on

ne
ct

io
n

W
eb

-B
as

ed

Va
lid

at
or

s
H

TM
L/

W
eb

sc
rip

t

G
en

er
al

W
eb

-B
as

ed

G
ad

ge
t

C
la

ss
es

C
ry

pt
og

ra
ph

ic
O

bj
ec

ts
C

lo
na

bl
e

C
la

ss
C

on
ta

in
s

S
en

si
tiv

e
In

fo
rm

at
io

n
S

er
ia

liz
ab

le
C

la
ss

 C
on

ta
in

s
S

en
si

tiv
e

In
fo

rm
at

io
n

O
bj

ec
ts

 in
D

O
M

D
yn

am
ic

 C
od

e
In

cl
us

io
n

E
xc

ep
tio

n
H

an
dl

er
s

O
S

 S
ig

na
l

H
an

dl
er

s
W

eb
 R

eq
ue

st
H

an
dl

er
s

D
at

a
R

es
ou

rc
e

S
en

si
tiv

e
In

fo
rm

at
io

n

D
at

aB
as

e

Fi
le

C
on

fig
ur

at
io

n
Fi

le
Lo

ck
 F

ile
Lo

g
Fi

le
In

c
Fi

le
C

S
V

C
er

tif
ic

at
e

Te
m

po
ra

ry
 F

ile
B

ac
ku

p
Fi

le
K

ey
st

or
e

Fi
le

W
eb

-B
as

ed

C
oo

ki
e

E
rr

or
 P

ag
e

A
ut

he
nt

ic
at

io
n

To
ke

n

C
re

de
nt

ia
ls

A
pp

lic
at

io
n

C
on

fig
ur

at
io

n
D

at
a

E
nc

ry
pt

io
n

K
ey

s

U
se

r
U

se
d

S
er

vi
ce

s

M
em

or
y

S
oc

ke
t B

uf
fe

rS
ta

ck
 M

em
or

y
H

ea
p

M
em

or
y

C
ac

he

C
ol

la
bo

ra
tin

g
A

pp
lic

at
io

ns
'

R
es

ou
rc

es

W
eb

-B
as

ed
W

eb
 B

ro
w

se
r

C
ac

he
S

es
si

on

O
pe

ra
tin

g
S

ys
te

m

Fi
rm

w
ar

e

Av
ai

la
bi

lit
y

 D
at

a

S
er

vi
ce

s/
S

er
ve

rD
at

a
R

es
ou

rc
e

S
en

si
tiv

e
In

fo
rm

at
io

nS
ys

te
m

D
at

ab
as

e

Fi
le

/D
ire

ct
or

y

C
rit

ic
al

D
ire

ct
or

y

U
se

r A
cc

ou
nt

P
ro

ce
ss

In
fo

rm
at

io
n

C
on

ne
ct

io
n

P
oo

l

D
at

a

D
ev

ic
e

Av
ai

la
bi

lit
y

A
cc

es
s

D
ev

ic
e

In
fo

rm
at

io
n

P
ac

ke
t

N
et

w
or

k
D

ev
ic

e
O

S

P
ro

ce
ss

C P

C
od

e

P
ro

gr
am

S
S

ys
te

m

N
N

et
w

or
k

R
ed

ire
ctA
ss

er
t

R
eg

ul
ar

E
xp

re
ss

io
n P

at
h

D
ow

nl
oa

d

C
on

ta
in

S
en

si
tiv

e
In

fo
rm

at
io

n
S

ha
re

d
D

ire
ct

or
y

S
ym

Li
nk

/
S

ho
rtc

ut
Fi

le
 S

ys
te

m
s'

S
pe

ci
fic

 F
ile

S
ys

te
m

/S
er

ve
r

C
rit

ic
al

 F
ile

s

D
at

ab
as

e
R

ec
ur

si
ve

Fu
nc

tio
n

S
ha

re
d

M
em

or
y

 D
ev

ic
e

S
et

tin
gs

D
ev

ic
e

D
at

a

Figure 7: Identi�ed Targets during attack surface analysis

Con�guration Data, and Encryption Keys (ECDSA Secret, Master
Key, etc.) are types of sensitive information identi�ed during the
coding process.

3.2.3 System. This category de�nes components in the OS or
�rmware that can be target of attacks. They can be directly ac-
cessed through attacks against the system or indirectly through at-
tacks against software programs that use these components. These
components are categorized into two major categories:
1 Operating System (OS) contains OS and server related target
components. They are categorized into di�erent abstraction levels.
System Availability covers actions that a�ect the availability of
systems. For instance, a malicious System Reboot could interrupt a
system and a�ect its availability. System Data categorizes di�erent
types of data in a system that can be target of attacks. It categorizes
System Data based on the resource it is stored (Data Resource) and
the type of the data (Sensitive Information). Data Resources can be a
database on the OS (likeWindows Registry [14, 20]) or an important
File/Directory on the �le system. Critical Directory may contain
sensitive information (like etc/passwd in Linux), Symlinks/Shortcuts
(like Unix Hard Link or Symbolic Link [18] and Windows Shortcut),
File System Speci�c Files (like Data/Resource Fork of a File in HFS+
�le system, Alternate Data Streams (ADS) in NTFS �le system, etc.),
and System/Server Critical Files (WSDL File in Web Server, Zone File

in DNS Server, Node Catalogue in Distributed System, etc.). User
Account information, Process Information, and Connection Pool are
Sensitive Information in a system. Services/Server de�nes types of
servers or services on a system that are usually target of attacks. For
instance, SSL and NAS Servers are identi�ed as targets in various
vulnerability reports [23, 25].
2 Firmware. category covers parts of �rmware that contain De-
vice Information or control Device.

3.2.4 Network. 1 Packets and information on 2 Network De-
vicesOS such as Process (Routing Engine on Routers),Device Setting,
and Device Data, and also 3 Socket Bu�er could be the target of
attacks at the network level.

3.3 Mechanisms
This category answers the Research Question #3 by discussing
mechanisms that are used at the source code, program, system,
and network level that could lead to the emergence of vulnerable
attack surfaces. Figure 8 represents the categorization model for
Mechanism. We brie�y summarize the mechanisms:

3.3.1 Code. Mechanisms used at the code level are categorized in
three major categories:
1 User Interface (UI) de�nes mechanisms used in the UI to open
the doors for attackers. The concepts under this category are related

Sara Moshtari, Ahmet Okutan, and Mehdi Mirakhorli

Mechanism C

P

S

N

Methods / Code
Fragments

Web-Based

Using Unsafe Techniques

CSS Filters RSS Feeds

Using third-party Library

Unsafe Channel/Protocol

Insecure
Implementation

Serialization/
Deserialization

Error Handling
Race Condition

Unsafe Actions

Target Function/Code
Fragments Controlled by
Input

Polymorphic
Deserialization

Allow Location Access

Install Add-on
Add Plugins

Add Extension

Connecting to Other
Servers

Development Framework
Improper Configuration

Installing Package
Installers

Encryption

Load Multiple
Certificates together

Open File in High
Privilege Mode

Security Mechanism

Dangerous Service/
Server

Improper Configuration

Accessible Private
Network

Permission/Access Level

Enable Specific Feature

 Server Configuration

Enabled Dangerous
Feature

Configuration

Active Content

Permission/Access Level

Install Dangerous
Program

Special Servers
Unsafe Services/Server

Creating Debug binary

User Interface (UI)

Reflection

Design

Architecture

Interaction

Deployment

Unsafe Workflow

Web Widget

Improper Security Check

Improper Input
Validation
Weak Encryption

Number of Request
Authentication Method

Authentication Location
Web-basedDomain

Interacting with Other
Applications

Authentication
Implementation

C

S

Code

Program

System

Network N

P

Figure 8: Identi�ed Mechanisms during attack surface analysis

to Using Unsafe Techniques inWeb-Based applications such as CSS
Filters, RSS Feeds [11], Active Content [11], and Web Widget.
2 Methods/Code Fragments category discusses vulnerablemech-
anisms used during coding such as Using Third-party Library, Se-
rialization/Deserialization, Polymorphic Deserialization, Improper
Security Check, and Authentication, etc. Improper Security Check
focuses on security mechanisms that are missed or implemented
incorrectly such as Improper Input Validation [11], Weak Encryp-
tion, Load Multiple Certi�cates (like system and SSL certi�cate), and
Number of Requests. Authentication category contains Authentica-
tion Methods (Password, Token-based, Certi�cate-based, etc.) and
Authentication Implementation mechanisms such as Location (No
Server Side Authentication) and Insecure Implementation (use ==
operator instead of === for Hash Comparison or unsafe info such
as IP address for Authentication). 3 Development Framework
category discusses vulnerable mechanisms which are related to
the software development frameworks, like Improper Con�gura-
tion (Creating Debug Binary or Improper Encryption) and Installing
Package Installers.

3.3.2 Program. This category categorizes the mechanism that are
related to the design and deployment phase of a software system: 1
Design category discusses mechanisms related to the design such
as program Architecture (Client/Server, etc.), Interaction (connecting
to Other Servers or Other Applications), and insecurely designed
Work�ow. 2 Deployment category covers mechanisms during
program deployment such as improper Con�guration and Unsafe

Actions that users can do on a system such as Install Add-on and
Enable Dangerous Features [14].

3.3.3 System Level. category covers the following concepts:
1 Dangerous Services/Server category refers to activating spe-
cial Servers (e.x. SSL, NAS, and Mail) or installing/activating Unsafe
Services/Server (like Unsafe FTP server) that can lead to emergence
of attacks. 2 Dangerous Program refers to installing special pro-
grams that can open the door for attackers (e.x. Android application
that allows disabling/enabling WIFI to co-located apps [24]). 3
Improper Con�guration refers to the con�guration mechanisms
that make the system vulnerable. These include Permission/Access
Level (for File, Registery, etc.) [14, 18, 20], improper Server Con-
�guration, Security Mechanism (Non-strict Security Mechanism
in Firewall or Proxy), Enable Speci�c Feature, and Allow Location
Access.

3.3.4 Network Level. mechanisms include 1 Accessible Private
Network and 2 Using Unsafe Channel/Protocol [11, 14, 20]
(using HTTP instead of HTTPS).

4 COMPARING TO RELATEDWORK
The search strategy of our systematic literature review [39] con-
sists of a manual search of �ve sources: the ACM Digital Library,
IEEE Explore Library, ScienceDirect, Springer Link, and Google
Scholar. Our inclusion criteria are as follows: the work is (i) a full
paper; and (ii) focus on discussing software system attack surface.

A Grounded Theory Based Approach to Characterize So�ware A�ack Surfaces

Exclusion criteria are (i) position papers, short papers, keynotes,
reviews, tutorial summaries, and panel discussions; (ii) not fully
written in English; (iii) duplicated study; (iv) focused on attack
surface outside the domain of software system; and (v) focused on
attack surface of a speci�c type of system (e.x. IoT). We use the
following search query: (Software OR Application) AND (Attack
Surface OR Attack-Surface). From our manual search, we collected
a total of 2,150 papers. We applied our inclusion and exclusion
criteria through reading the paper’s title, abstract, and keywords (if
present), resulting in 30 papers. Then, in this round we applied the
inclusion and exclusion criteria by reading the full papers, resulting
in a remaining 8 papers. Some of the papers that were removed
for further analysis, have misused the term “attack surface” (e.g.
referring to software vulnerabilities). The remaining papers were
carefully reviewed, to verify the extent to which the �ndings from
our study were supported by the literature or were complementary.
Limited studies have been proposed for identifying attack surface
of a software system.

Howard et al [14] described an approach for measuring the rela-
tive attack surfaces of two systems with regard to certain dimen-
sions. This study measures relative attack surface in three abstract
and limited dimensions which are targets and enablers, channels
and protocols, and access rights. Targets and enablers are resources
that attackers can use such as process and data. For channels, they
considered two types of channels: message passing and shared
memory. They also considered account, privilege level and trust-
relationship as access rights. They added three attack vectors to the
17 attack vectors that Howard [13] identi�ed for windows system.
Authors argue that their approach does not attempt to provide a
comprehensive way of measuring the attack surfaces, but rather
provides a relative way for comparing two versions of a system.
This study is system level because they considered the services that
run on a system.

Similarly, Manadhata and Wing in their work [18–20] proposed
an attack surface metric to compare the security of two versions
of a system to reason whether one is more secure than the other
with respect to the attack surface metric. They proposed a model
of a system and its environment using a state machine and consid-
ered any component that can be used to send/receive data to/from
environment as an attack surface. They considered methods of the
system, channels, and data items as resources. They used the model
to identify the accessible subset of resources (in terms of access
rights) that contribute to the system’s attack surface. They de�ned
attackability of a resource based on its potential damage and the ef-
fort required to acquire access. However, similar to prior work they
did not aim to de�ne concrete and comprehensive attack surfaces.
This study mainly focuses on metrics as approximations and shows
the size of their metrics decreases when a vulnerability is patched.

Huemann et al. [11] de�ned the components of the attack sur-
face for web applications. They proposed the attack surface of web
application as a vector that has 22 dimensions that are categorized
in 7 groups and considered weights for each components. They pro-
posed Euclidean norm of the vector as an attack surface indicator.

Nuthan and Meneely [28] proposed function and �le level at-
tack surface metrics. They considered entry and exit points and
also dangerous system calls as attack surface components. They
provided static and static+dynamic call graphs and calculated the

proximity and risky walk metrics based on the call graph. They
proposed three proximity-based metrics which are proximity to
entry points, exit points and dangerous points.

Theisen et al. [37] performed a systematic literature review on
attack surface de�nitions. They categorized the attack surface into
6 categories which are methods, adversaries, �ows, features, barri-
ers, and reachable vulnerabilities. However, they mainly discussed
granularity levels and concepts de�ned in previous works.

To evaluate the proposed attack surface categorization, we com-
pare it with the attack surface components proposed in the litera-
ture. The comparison results (Table 1) show that the categorization
provided by this paper covers all attack surface components in-
troduced in the literature. The concepts which are missed in our
categorization such as Search in Program and RPC and Named Pipe
in Network level entry points are speci�c concepts that can be
covered by the proposed core categories. The comparison results
indicate that the proposed attack surface model di�ers from the
previously introduced components in that it:

• Provides a comprehensive attack surface categorization that con-
siders di�erent aspects in System, Network, Program, and Source
levels. Previous works mostly focused on de�ning attack surface
components by low level concepts.

• De�nes clear concepts that can be part of an attack surface. For
instance, Data Item which is de�ned as an attack surface compo-
nent in [20] is a vague concept. Based on the examples mentioned
for it, our categorization clearly indicates that the data item could
be program or system data.

• Provides comprehensive Code Level attack surface components.
For example, previous studies considered I/O methods as Entry
Points [20, 28] at the source level, however, we �nd that di�er-
ent Handlers and Indirect Entry Points can also be part of an
attack surface. Nuthan and Meeneely [28] de�ned System Calls
as Dangerous Points, however, we identify additional concepts as
Dangerous Points such as Type Casting, Integer Operations, and
Encryption/Decryption. We also de�ne other code fragments such
as Serialization/Deserialization, Re�ection, etc.that can be target of
attacks. Heumann et al. [11] de�ne URL Parameters and Hidden
Fields as input vectors, however, some other important input vec-
tors such as Post Request Parameter, HTTP Header, and Certi�cate
identi�ed in our GT analysis are missed.

We compare the concepts de�ned by our GT analysis with the
concepts de�ned in the literature. The comparison results are shown
in Table 2. The results indicate that the literature covers a small
percentage of Code level entry points, targets, and mechanisms, i.e.,
10%, 3.4%, and 10%, respectively. On average, at the Code level only
8 of the 119 concepts (6.7%) are covered by the literature. Network
and Program level mechanisms, and Network level entry points are
major categories that are covered in the literature with 50%, 20%,
and 20%, respectively. In summary, the model proposed by this
paper covers previously studied attack surface components and
introduces 254 new concrete components that did not exist int the
literature (

Õ
8 (#8 � #!8) in Table 2).

Sara Moshtari, Ahmet Okutan, and Mehdi Mirakhorli

Core Category Low Level Concepts

En
tr
y
Po

in
ts

C

UI GUI: General (Input Box, File Upload [11]), Web-Based (RSS Feed [11], CSS Techniques, Form Validation, HTML Tag)
Console: General (Console), Web-Based (Web Console)

Method [20]/ Directive Direct Entry: Input Methods [11, 20, 28] (Input from User, Input from Devices, Read File/Stream), Handlers (OS Signal Handler,
Firmware (Message Handler), Web (API))
Indirect Entry: (Load Code, Load Indirect Inputs, Load User Created Resources (Repositories))

Con�g. File Database Con�g, Other Settings

P

Components Plugin, Installer Components, Chatting Component, Authentication and Login, Search [11]
Maintenance/ Deployment Deployment: Install, Application Con�guration

Maintenance: Update
Direct Input User Input: General (Command Line Arguments, Streams, Files (EDS, PDF, XML, ICS)), Web-Based (Get Request Parameter [11], Post

Request Parameter, URL, Hidden Form Fields [11], HTTP Header, JSON, Certi�cates (X509, SSL))
Device Input, OS Input, Messaging Object

Indirect Input Environment Variables, DLL Files, OMX Bu�er, Font, Command Input Bu�er, Virtual Machine Properties, System Properties, User
Attribute, Cookies [11, 20]

S System Input Direct Input: (Connection Requests, Service Requests), Indirect Input: Load Drivers
Access Control [14, 20] Improper Access Control, Local Access

N

Packet IPV6 Packet, UDP Datagram, IPSec Packets, TCP Segments, TCP Reset (RST) Packet, Network Time Protocol Packets
Port
Protocol [11, 14, 20] SMB File Transfer, Video Codec, Border Gateway Protocol (BGP), APDU Command Response, Protocol Fragments
Socket [14, 18, 19] TCP [14, 18, 19], UDP [14, 18], RPC endpoint, named pipe [14, 19]
Access Control Local Access, Remote Access

M
ec
ha

ni
sm

s

C

UI Web-Based: Using Unsafe Techniques (CSS Filters, RSS Feeds [11], Active Content [11], Web Widget)
Methods / Code Fragments Using third-party Library, Serialization/Deserialization, Polymorphic deserialization, Re�ection, Error Handling, Race Condition,

Target Function/Code Fragments Controlled by Input, Open File in High Privilege Mode, Improper Security Check (Improper Input
Validation [11], Weak Encryption, Load Multiple, Certi�cates together, Number of Request), Authentication (Authentication Method,
Authentication Implementation (Location, Insecure Implementation))

Development Framework Improper Con�guration (Creating Debug binary, Encryption), Installing Package Installers

P
Design Architecture, Interaction (Connecting to Other Servers, Interacting with Other Applications), Unsafe Work�ow
Deployment Con�guration: (Permission/Access Level, Web-Based (Domain) [11]), Unsafe Actions: (Install Add-on (Add Plugins, Add Extension) ,

Enabled Dangerous Feature [14])

S
Dangerous Services/Server Special Servers, Unsafe Services/Server
Install Dangerous Program
Improper Con�guration Permission/Access Level [14, 18, 20], Server Con�guration , Security Mechanism, Enable Speci�c Feature, Allow Location Access

N Accessible Private Network
Unsafe Channel/ProtocoL [11]

Ta
rg
et
s

C

UI Web-Based: Validators, HTML/Webscript
Methods / Code Fragments Handler (Exception Handlers, OS Signal Handlers, Web Request Handlers), Commands (Operating System Commands [28] , Database

Commands), Memory Manipulation (Uninitialized Memory, Memory Allocation, Memory Reallocation, Memory Deallocation,
Memory Copy, Loop Counting Bu�er Size, Bu�er Access, Pointer Manipulation (Pointer Increment/Decrement, Setting Address
Variable)), Serialization/Deserialization (Serialize/Deserialize APIs, Deserializing Polymorphic Class), Re�ection, File manipulation
(Read File, Write to File/Log), Exit Points (Output Method/API Calls [20, 28], Write to Log File, Web-Based (HTTP Response, Assert,
Download)), Dangerous operations (Type Casting, Integer Operations (Type Casting, Arithmetic Operations), Encoding/Decoding,
API calls from third-party Library, Resource Allocation (Socket, Thread, Database Connection), Listening to a Port, Web-Based
(Dynamic Code Execution, Dynamic Code Inclusion , Redirect), Recursive Function), Critical Section, Special Objects/Components
(General (Gadget Classes, Cryptographic Objects, Clonable Class Contains Sensitive Information, Serializable Class Contains Sensitive
Information, Regular Expression, Path), Web-Based (Objects in DOM))

P

Resource Memory: Stack Memory, Heap Memory, Cache, Shared Memory [14], Collaborating Application Resources, Web-Based (Web Browser
Cache, Session)

Data Data Resource: Database , File (Con�guration File, Lock File, Log File, Inc File, CSV, Certi�cate, Temporary File, Backup File, Keystore
File, Web-Based (Cookie [11, 20], Error Page, Authentication Token))
Sensitive Information: Credentials (User , Used Service, Database), Application Con�guration Data, Encryption Keys

S

Operating System Availability, Data (Data Resource (System Database [14, 20], File/Directory (Critical Directory (Contain Sensitive Information, Shared
Directory), SymLink/Shortcut [18], File Systems’ Speci�c File, System/Server Critical Files), Sensitive Information (User Account,
Process Information, Connection Pool)), Services/Server

Firmware Data: Device Information, Device: (Access, Availability)

N
Packet
Network Device OS Process, Device Settings, Device Data
Socket Bu�er

Table 1: Comparison of the concepts in the proposed attack surface model with the literature

5 DISCUSSION
Our analysis provides a very clear and comprehensive way to
evaluate attack surface components at the System, Network, Pro-
gram, and Code levels. While previous attack surface analysis works
usually focus on speci�c types of systems like operating systems
[13, 14, 18, 20] or web applications [11], this work de�nes a generic
attack surface model that can be used to identify the attack surface
components of di�erent types of systems. Our work comprises at-
tack surface components identi�ed by earlier works [11, 14, 20, 28]
and can be used to organize previously proposed concepts with
more clear abstraction levels.

Proposed attack surface model represents critical parts of a soft-
ware system that can be considered in various software analysis
approaches. In Requirement/Design phase, the model can support
threat modeling and identi�cation of abuse cases initiated from
entry points. In Design, software architects can use the catalog to
measure and reduce attack surfaces, identify design decisions (e.x.
connecting to other servers) or components (e.x plugins) that open
new attack surfaces, increasing the risk of the system being attacked.
Developers can use it during security code reviews to identify entry
points and critical parts of code (target/mechanism) and verify the
existence of security controls/patterns to secure those critical parts.

A Grounded Theory Based Approach to Characterize So�ware A�ack Surfaces

Category Level N NL PL

Entry
Points

C 30 3 10
P 42 3 7.14
S 10 1 10
N 20 4 20

Targets

C 59 2 3.4
P 32 2 6.2
S 23 2 8.7
N 6 0 0

Mechanisms

C 30 3 10
P 15 3 20
S 10 1 10
N 2 1 50

Table 2: Quantitative comparison of the concepts in the pro-
posed attack surface model with the literature. N shows the
number of concepts identi�ed in the model. NL and PL rep-
resent the number and percentage of concepts covered in lit-
erature, respectively

Testers can prioritize tests that examine the entry-points/targets.
Pen-testers can use our catalogs as cheat-sheet to guide their testing
activities.

6 VERIFIABILITY AND THREATS TO
VALIDITY

While the aim of a GT study is to generate new theory, the veri-
�ability of the theory can be inferred from the soundness of the
research method. In this study, GT was strictly followed, each step
was peer-reviewed and linked to the intermediary data to enable
the reproducibility of �ndings. During the GT process, we imple-
mented the triangulation concept to enhance the process validity
[6]:

(1) Data triangulation: We collected data from a diverse set of CVEs
which report real vulnerabilities from a variety of domains and
also CWE that describes software security weaknesses. Addi-
tionally, as shown in Figure 3, for each CVE we looked at three
interrelated data: vulnerability description from the product
advisory, patches (source code), and exploit information.

(2) Investigator triangulation: Three authors worked together and
performed the same GT steps. Over a period of one year, the
authors met weekly, discussed, peer-reviewed, and �nalized the
code, memos, and emerged concepts.

The main limitation of our study is related to the GT method itself,
because the validation phase of the GT process is challenging [12].
We mitigate this challenge partially by using literature as a source
of validation. We evaluate the identi�ed concepts by conducting a
systematic literature review to explore how well these concepts �t
to the previously studied software attack surfaces. The GT analysis
includes an extensive manual analysis process and such manual
analysis can be prone to biases. To help mitigate this threat, we
followed the investigator triangulation method. Another limitation
of this study is that the proposed model may re�ect attack surfaces
from recent vulnerability exposures, because the analysis covers
CVEs between 2016 and 2020. To mitigate this threat partially, we

included CWEs which are not time dependent as an additional data
source.

7 CONCLUSIONS
Getting inspired from the similarity between the attack surfaces
of a house/building and a software system, and asking three key
questions (Where the attacks come from, What they target, and
How they emerge), this paper develops a comprehensive attack
surface model based on the Entry Points (Where), Targets (What),
and Mechanisms (How) leveraged by cyberattackers. We follow a
grounded theory-based approach to study attack surface compo-
nents of software systems. Speci�cally, we focus on the software
Entry Points , Targets, and Mechanisms to de�ne the attack surface
components in our model. We �nd that there are four major cate-
gories for each of these three branches, i.e., Code, Program, System,
and Network, and conduct a systematic literature review to verify to
what extent previous studies corroborate with our �ndings. Prelim-
inary results show that all attack surface components de�ned in the
literature are covered by the proposed attack surface model, while
prior works cover only a small portion of the concepts identi�ed
by our analysis. In the best case, the literature covers only 50% of
Network level mechanisms, 20% of Program level mechanisms, and
20% of Network level entry points studied in this paper.

REFERENCES
[1] 2022. Attack Surface Analysis. https://github.com/SoftwareDesignLab/attack_

surface_analysis. (Accessed on 1/30/2022).
[2] Cristian Cadar, Patrice Godefroid, Sarfraz Khurshid, Corina S Pasareanu, Koushik

Sen, Nikolai Tillmann, and Willem Visser. 2011. Symbolic execution for software
testing in practice: preliminary assessment. In 2011 33rd International Conference
on Software Engineering (ICSE). IEEE, 1066–1071.

[3] Kathy Charmaz. 2006. Constructing grounded theory: A practical guide through
qualitative analysis. Sage Publication.

[4] Deng Chen, Yan-duo Zhang, Wei Wei, Shi-xun Wang, Ru-bing Huang, Xiao-lin
Li, Bin-bin Qu, and Sheng Jiang. 2017. E�cient vulnerability detection based on
an optimized rule-checking static analysis technique. Frontiers of Information
Technology & Electronic Engineering 18, 3 (2017), 332–345.

[5] Juliet Corbin and Anselm Strauss. 2014. Basics of qualitative research: Techniques
and procedures for developing grounded theory. Sage publications.

[6] Patricia Fusch, Gene E Fusch, and Lawrence R Ness. 2018. Denzin’s paradigm
shift: Revisiting triangulation in qualitative research. Journal of social change 10,
1 (2018), 2.

[7] B.G. Glaser. 1978. Theoretical Sensitivity: Advances in the Methodology of Grounded
Theory. Sociology Press. https://books.google.com/books?id=73-2AAAAIAAJ

[8] Barney G Glaser. 1992. Basics of grounded theory analysis: Emergence vs forcing.
Sociology press.

[9] Barney G Glaser and Anselm L Strauss. 2017. Discovery of grounded theory:
Strategies for qualitative research. Routledge Publication.

[10] G Glaser Barney and L Strauss Anselm. 1967. The discovery of grounded theory:
strategies for qualitative research. New York, Adline de Gruyter (1967).

[11] Thomas Heumann, Jörg Keller, and Sven Türpe. 2010. Quantifying the attack
surface of a web application. Sicherheit 2010. Sicherheit, Schutz und Zuverlässigkeit
(2010).

[12] Rashina Hoda, James Noble, and Stuart Marshall. 2012. Developing a grounded
theory to explain the practices of self-organizing Agile teams. Empirical Software
Engineering 17, 6 (2012), 609–639.

[13] Michael Howard. 2003. Fending o� future attacks by reducing attack surface.
[14] Michael Howard, Jon Pincus, and Jeannette M Wing. 2005. Measuring relative

attack surfaces. In Computer security in the 21st century. Springer, 109–137.
[15] Nenad Jovanovic, Christopher Kruegel, and Engin Kirda. 2006. Pixy: A static anal-

ysis tool for detecting web application vulnerabilities. In 2006 IEEE Symposium
on Security and Privacy (S&P’06). IEEE, 6–pp.

[16] Zhen Li, Deqing Zou, Shouhuai Xu, Hai Jin, Yawei Zhu, and Zhaoxuan Chen. 2018.
Sysevr: A framework for using deep learning to detect software vulnerabilities.
arXiv preprint arXiv:1807.06756 (2018).

[17] Zhen Li, Deqing Zou, Shouhuai Xu, Xinyu Ou, Hai Jin, Sujuan Wang, Zhijun
Deng, and Yuyi Zhong. 2018. Vuldeepecker: A deep learning-based system for
vulnerability detection. arXiv preprint arXiv:1801.01681 (2018).

https://github.com/SoftwareDesignLab/attack_surface_analysis
https://github.com/SoftwareDesignLab/attack_surface_analysis
https://books.google.com/books?id=73-2AAAAIAAJ

Sara Moshtari, Ahmet Okutan, and Mehdi Mirakhorli

[18] Pratyusa Manadhata and Jeannette M Wing. 2004. Measuring a system’s at-
tack surface. Technical Report. Carnegie-Mellon Univ Pittsburgh pa School of
Computer Science.

[19] Pratyusa K Manadhata and Jeannette M Wing. 2010. An attack surface metric.
IEEE Transactions on Software Engineering 37, 3 (2010), 371–386.

[20] Pratyusa K Manadhata and Jeannette M Wing. 2011. A formal model for a
system’s attack surface. In Moving Target Defense. Springer, 1–28.

[21] MITRE. 2008. CWE VIEW: Weaknesses Introduced During Design. https://cwe.
mitre.org/data/de�nitions/701.html. (Accessed on 08/14/2021).

[22] MITRE. 2008. CWE VIEW: Weaknesses Introduced During Implementation.
https://cwe.mitre.org/data/de�nitions/702.html. (Accessed on 08/14/2021).

[23] MITRE. 2017. CVE-2016-10259. https://cve.mitre.org/cgi-bin/cvename.cgi?name=
2016-10259. (Accessed on 08/14/2021).

[24] MITRE. 2019. CVE-2019-15336. https://cve.mitre.org/cgi-bin/cvename.cgi?name=
2019-15336. (Accessed on 08/14/2021).

[25] MITRE. 2020. CVE-2020-5319. https://cve.mitre.org/cgi-bin/cvename.cgi?name=
2020-5319. (Accessed on 08/14/2021).

[26] MITRE. 2021. Common Vulnerabilities and Exposures. https://cve.mitre.org.
(Accessed on 08/14/2021).

[27] MITRE. 2022. CommonWeakness Enumeration. https://cwe.mitre.org/index.html.
(Accessed on 08/14/2021).

[28] Nuthan Munaiah and Andrew Meneely. 2016. Beyond the attack surface: As-
sessing security risk with random walks on call graphs. In Proceeding of the 2016
ACM Workshop on Software PROtection. 3–14.

[29] NIST. 2022. National Vulnerability Database. https://nvd.nist.gov. (Accessed on
08/14/2021).

[30] NVD. 2021. Statistics Results. https://nvd.nist.gov/vuln/search. [Online; accessed
02-April-2021].

[31] Bindu Madhavi Padmanabhuni and Hee Beng Kuan Tan. 2016. Auditing bu�er
over�ow vulnerabilities using hybrid static–dynamic analysis. IET Software 10, 2

(2016), 54–61.
[32] Kendra L Rieger. 2019. Discriminating among grounded theory approaches.

Nursing Inquiry 26, 1 (2019), e12261.
[33] Leonardo Sousa, Anderson Oliveira, Willian Oizumi, Simone Barbosa, Alessandro

Garcia, Jaejoon Lee, Marcos Kalinowski, Rafael de Mello, Baldoino Fonseca,
Roberto Oliveira, et al. 2018. Identifying design problems in the source code: A
grounded theory. In Proceedings of the 40th International Conference on Software
Engineering. 921–931.

[34] Klaas-Jan Stol, Paul Ralph, and Brian Fitzgerald. 2016. Grounded theory in
software engineering research: a critical review and guidelines. In Proceedings of
the 38th International Conference on Software Engineering. 120–131.

[35] Christopher Theisen, Kim Herzig, Patrick Morrison, Brendan Murphy, and Lau-
rie Williams. 2015. Approximating attack surfaces with stack traces. In 2015
IEEE/ACM 37th IEEE International Conference on Software Engineering, Vol. 2.
IEEE, 199–208.

[36] Christopher Theisen, Kim Herzig, Brendan Murphy, and Laurie Williams. 2017.
Risk-based attack surface approximation: how much data is enough?. In 2017
IEEE/ACM 39th International Conference on Software Engineering: Software Engi-
neering in Practice Track (ICSE-SEIP). IEEE, 273–282.

[37] Christopher Theisen, Nuthan Munaiah, Mahran Al-Zyoud, Je�rey C. Carver,
Andrew Meneely, and Laurie Williams. 2018. Attack surface de�nitions: A
systematic literature review. Information and Software Technology 104 (2018),
94–103. https://doi.org/10.1016/j.infsof.2018.07.008

[38] Yaohui Wang, Dan Wang, Wenbing Zhao, and Yuan Liu. 2015. Detecting SQL
vulnerability attack based on the dynamic and static analysis technology. In 2015
IEEE 39th Annual Computer Software and Applications Conference, Vol. 3. IEEE,
604–607.

[39] He Zhang, Muhammad Ali Babar, and Paolo Tell. 2011. Identifying relevant
studies in software engineering. Information and Software Technology 53, 6 (2011),
625–637.

https://cwe.mitre.org/data/definitions/701.html
https://cwe.mitre.org/data/definitions/701.html
https://cwe.mitre.org/data/definitions/702.html
https://cve.mitre.org/cgi-bin/cvename.cgi?name=2016-10259
https://cve.mitre.org/cgi-bin/cvename.cgi?name=2016-10259
https://cve.mitre.org/cgi-bin/cvename.cgi?name=2019-15336
https://cve.mitre.org/cgi-bin/cvename.cgi?name=2019-15336
https://cve.mitre.org/cgi-bin/cvename.cgi?name=2020-5319
https://cve.mitre.org/cgi-bin/cvename.cgi?name=2020-5319
https://cve.mitre.org
https://cwe.mitre.org/index.html
https://nvd.nist.gov
https://nvd.nist.gov/vuln/search
https://doi.org/10.1016/j.infsof.2018.07.008

