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ARTICLE INFO ABSTRACT
Keywords: Day-to-day traffic data has been widely used in transportation planning and management.
Transportation network However, with the emerging of new technologies, one conventional assumption, on which many

Cluster analysis

models rely, that all the day-to-day observations on the network follow a single pattern appears
Data driven

to be questionable. To better understand network flow patterns and their respective similarities,
cluster analysis that partitions the day-to-day data into groups is an effective solution, but
directly applying generic clustering algorithms may not always be appropriate identifying and
interpreting day-to-day pattern changes due to the ignorance of the transportation network
characteristics. In view of this practical issue, we propose a new clustering method that
integrates network flow models, namely a statistical traffic assignment model and a probabilistic
OD travel demand estimation model, into generic clustering algorithms. It essentially examines
the probabilistic characteristics of traffic data by projecting those onto the dimensions of OD
demands. For this reason, it can deal with traffic data where observations on some days and
locations may be missing, or observing locations may change from day to day. The proposed
algorithm embeds the domain knowledge of the transportation network, and is tested on two
toy networks and one real-world network. Numerical experiments show the new clustering
algorithm can effectively identify and interpret patterns that are hard to see by generic
clustering algorithms otherwise, even with missing values or day-varying sensing locations.

1. Introduction

Day-to-day traffic data, such as daily traffic counts and travel speeds of links, are one of the most common for traffic analysis
representing critical information for a transportation network. Such data can reflect recurrent traffic patterns of the network and
thus are widely used in transportation planning and management. Over the past few decades, day-to-day traffic data sources have
been used as inputs of numerous transportation applications such as Advanced Traveler Information Systems/Advanced Traffic Man-
agement Systems (ATIS/ATMS). However, emerging technologies in mobility systems bring new challenges to transportation system
modeling. Ride-hailing vehicles, shared mobility, and new transportation alternatives and policies have led to an unprecedentedly
complicated system revealing various traffic patterns. Moreover, incidents, roadworks, events, and many other factors would affect
transportation network drastically. As a result, it appears to be questionable to assume that there exists a single dominating daily
traffic pattern for a network over a period of time. The challenge is how we can differentiate daily traffic patterns from day to
day provided with a large volume of data collected 24/7, analogous to unsupervised learning in data science. In view of this,
we propose a data-driven clustering framework to discover traffic patterns from day-to-day traffic data. The clustering framework
utilizes underlying network flow physics and system-level travel behaviors to group day-to-day traffic data, which can be further
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used in downstream applications, e.g., estimating OD demands for each pattern, identifying the impact of policies or road closures,
determining patterns from emerging sensors, just to name a few.

Cluster analysis (or clustering) for day-to-day traffic data is to partition a set of days T into several groups by certain criteria
where each group present a typical daily traffic pattern. The traffic data for clustering are collected on each day over a course of
a long period of time. That is, given a data set X = {X, ,}'ET where X; is defined on a high dimension of spatio-temporal data,
we need to find a cluster assignment for each day i € T. For transportation network analysis, it can be used to detect patterns in
the system and then to help at different stages of the whole data analysis workflow. For instance, with the clustering results we
could summarize and compress data collected (Soriguera, 2012), clean noisy data and remove anomalous samples (Weijermars and
Van Berkum, 2005), impute missing data (Ku et al., 2016), detect traffic anomalies, speed up algorithms by applying them in parallel
on different clusters of data, and also design a better validation scheme for model performance evaluation (Asif et al., 2012).

In addition to be used as an auxiliary method in the data-driven analytics, the clustering results could be as well analyzed
directly for transportation management. For example, from the clustering results we could select a few representative patterns and
design different signal timing plans, travel demand management strategies, etc., individually for each pattern. For another example,
clustering results for different periods of time could differ, which may indicate a shift in travelers’ habits and thus guide the design
of transportation improvement projects.

Cluster analysis is not a technique applicable only to traffic network modeling. It indeed has been widely used in data science
across many domains — as part of the exploratory analysis, as a data pre-processing method, among many other applications.
Therefore, it has been actively studied and there exist many generic or domain specific methods for cluster analysis. Based on
those existing methods, classical methods have been adopted to discover patterns in various kinds of data for transportation systems
through cluster analysis. Out of those existing methods, K-means (Hartigan and Wong, 1979), being a simple yet effective clustering
method, has gained popularity in the transportation community. Xia and Chen (2007) applied the K-means algorithm on 15-minute
traffic data of volume, average speed, and occupancy to define traffic flow phases. Gu et al. (2016) used it on arterial traffic flow data
to detect disruptions of roadway network. Chen et al. (2017) applied the Davies-Bouldin index and Silhouette Coefficient to choose
the number of clusters and then employed also the K-means algorithm for license plate recognition data to spatial travel patterns
and temporal changes for different groups of vehicles. Similarly, Gace et al. (2021) used the K-means algorithm on contextually
enriched automotive data to categorize the drivers’ behaviors.

Other classical cluster analysis methods are also adopted for transportation system analysis. Weijermars and Van Berkum (2005)
applied a hierarchical clustering method — Ward’s hierarchical clustering — and discovered different patterns in the daily traffic
profiles on holidays, weekdays, and weekends on a highway. Similarly, Soriguera (2012) used a three-stage hierarchical clustering
method to explore the weekly and seasonal patterns with hourly traffic count data. Chung (2003) adopted the Small Large Ratio
model to classify travel time data during different periods of a day, with the additional information on weather, events, etc.
Guardiola et al. (2014) combined the dimension reduction method, Functional Principal Component Analysis, with the Partitioning
Around Medoids algorithm to achieve better performance on discovering traffic patterns in the daily traffic profiles. Saha et al.
(2019) compares eight clustering methods — K-means, K-prototypes, K-medoids, four variations of hierarchical clustering, and
the combination of Principal Component Analysis for Mixed Data with K-means — for traffic pattern recognition, and provided
recommendations on which method to use, how to choose the hyperparameters, and how to analyze the clustering results.

All existing research work provides valuable insights for applying clustering analysis for transportation management. However,
despite the rich diversity of clustering methods and the data sets used, the information directly from the transportation network has
been almost entirely overlooked. In other words, traffic flow in networks exhibits unique patterns following traffic flow physics and
travel behaviors, which could provide additional information for achieving a better clustering outcome. Unfortunately, all existing
approaches employ some generic distance metric, normally the Euclidean distance with weights, so that they are data-agnostic.
With those algorithms, different features are treated equally (Jain et al., 1999), and the data set to be analyzed is the only source of
information for clustering, without considering unique attributes of a transportation network. To better utilize the domain knowledge
from the transportation network, in this study we inject network models of traffic flow into a classical clustering procedure, which
brings non-trivial benefits for applications in system analysis, as we will show in the following sections.

It is worth noting that theoretically the data collected from a transportation network should inevitably contain information of
the network already, at least to some extent. For example, the correlation among traffic observations on different links could be
used to infer the general topological structure of the network. Therefore, with data pre-processing and augmentation, we could
apply a clustering model without explicitly considering traffic flow attributes, but it may be aware of some information about
the transportation network. Such augmentation work is tedious to do manually, but deep neural networks are well known to be
applicable for such tasks. Li et al. (2018) developed an unsupervised model to cluster naturalistic driving encounters by combining
an auto-encoder with K-means clustering algorithm, which outperformed the original K-means method. The auto-encoder part could
be considered as a data pre-processing step that automatically discovers the underlying correlation among features and augments
the data thereafter. Similarly, Markos and Yu (2020) attached a K-means clustering layer to a pre-trained deep convolutional auto-
encoder and jointly fine-tuned the composite model on GPS trajectory data, which was used to discover transportation modes.
There is no doubt that with sufficient data such sophisticated machine learning models could partially capture the attributes or
information imposed by the network itself. However, using deep models have two major drawbacks comparing to the clustering
method we propose to explicitly model network flow. First, deep models are usually viewed as black boxes and hard to explain. For
transportation management, we often want not only a result, but also a reason and insights. Second, without the explicit constraints
imposed by the network, the modeling tasks for transportation networks are mostly in the “low signal, high noise” category.
Finding “sufficient data” to overcome this issue is generally challenging. Our method does not suffer from those two issues because
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it combines a simple, interpretable clustering algorithm with a domain-specific model explicitly encapsulating characteristics of
transportation networks and network flow.

As for the network flow, we choose to use a probabilistic way for modeling transportation networks. Classical traffic network
models usually treat the system deterministically. For instance, traffic assignment models including the user equilibrium (UE) and
the stochastic user equilibrium (SUE) (Fisk, 1980; Daganzo and Sheffi, 1977) represent a typical day’s traffic pattern averaged from
day to day, thus overlooking the day-to-day variances in OD demands and network flow. Such models indeed take the network
structures and travel costs for links into consideration, but are “incompatible” with random nature of travels and traffic data. On the
contrary, recent studies on transportation networks started to investigate statistical features of traffic data, and model network flow
with probability distributions instead. For the static traffic assignment problem, Watling (2002a,b) proposed a modified SUE model
called stochastic demand generalized stochastic user equilibrium of order 2 which treated OD demands as a binomial distribution and
applied a stochastic route choice model on top of probabilistic demand for traffic assignment. Shao et al. (2006) defined a reliability-
based stochastic user equilibrium model, in which the OD demands were represented with a multivariate normal distribution. Those
models enable the representation of traffic data with probabilistic distributions, which sheds light on understanding network flow
with generic statistical models and makes it possible to design a clustering method tailored for transportation network data. For our
purpose of analyzing day-to-day traffic count data, the generalized statistical traffic assignment (GESTA) framework proposed by Ma
and Qian (2017) generalizes existing statistical traffic assignment models, and considers multiple sources of variances embedded in
the traffic flow data. Besides, a corresponding probabilistic OD demand estimator is provided based on the GESTA framework (Ma
and Qian, 2018). Therefore, we choose to use the GESTA framework as the building block of the clustering algorithm that represents
underlying characteristics of network flow.

To summarize, this paper builds a cluster analysis framework for day-to-day traffic count data. The framework integrates traffic
network models into generic clustering algorithms, with the goal to develop a clustering method tailored for transportation system.
The major contributions of this paper are:

It proposes a cluster analysis framework for discovering patterns regarding recurrent network traffic flows. The framework
embeds probabilistic network flow models, such that the statistical features of a transportation network — OD demand
probability distributions, link/path probability distributions, etc. — can be discovered for each pattern and utilized in the
subsequent analysis.

It sketches a way to guide general statistical models with network flow characteristics, so that the results are tailored for a
transportation network. The incorporation of traffic models does not necessarily lead to superior results in all cases, but are
proven to be useful and interpretable in clustering.

It defines a novel way to measure the similarity of day-to-day general traffic data, particularly counts in this initial study.
Instead of a generic distance metric in Euclidean space, we propose to project the data onto a subspace defined by OD demand
probability distribution. The similarities among data points are then measured in that space where network flow characteristics
are explicitly considered.

It handles traffic pattern clustering or detection using day-to-day data where the sensing location can change from day to day
or data can be incomplete/missing on some days, thanks to the underlying network flow characteristics.

It examines the proposed framework on a large-scale network with real-world data to examine model performance and gain
insights from the solutions.

The remainder of this paper is organized as follows. To begin with, we give three illustrative examples on clustering day-to-day
traffic count data in Section 2. Those examples are meant to show why injecting traffic models into generic clustering algorithms
could be useful. Then in Section 3 we formulate the whole problem as an optimization problem, and in Section 4 we give a solution
algorithm for the problem based on the Expectation-Maximization algorithm (Moon, 1996). After that, in Section 5 we show numeric
experiments for the framework on both hypothetical networks and synthetic data as well as a real-world network and real data.
Finally, we draw conclusions on the behaviors and performance of the framework and discuss the existing issues of it in Section 6.

2. Illustrative examples

In this section, we give three examples on clustering day-to-day traffic count data to show why it is necessary to introduce
traffic network models to generic clustering algorithms. Those examples are theoretical and a bit extreme, but reflect some features
of real-world systems. As a note on the notation, in this section we use {(i, j,...),...} to represent the clustering results, where each
(+) is a cluster and within the parenthesis are the indices of days belonging to that cluster.

The first example is a two-link network shown in Fig. 1. In this hypothetical network, there are one origin node and one
destination node, connected with two identical links. It is expected that the daily traffic counts on the two links would vary a
lot by day. So we come up with a data set of four days’ traffic counts for this network (shown in the table of Fig. 1). In real world
this network structure is too extreme to exist. However, it is not uncommon to have multiple similar paths between one OD pair.

We may measure the distances among the four data points either by applying the Euclidean distance metric directly on the
original data, or by transforming the data into daily OD demands and calculating the Euclidean distances of demands. The results
obtained via both approaches are shown in Table 1.

With the first approach, directly measuring the Euclidean distances, we are focusing on the individual link flows. Based on the
results in Table 1, we may conclude the clusters as {(1),(2,4),(3)}. On the contrary, with the second approach, we are focusing on
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Traffic counts

2
/ \ Day Link1 Link 2
\1/

Fig. 1. A two-link network with two nodes and day-to-day traffic counts on it. The two links are identical so there is a large variance in the traffic counts
observed.

1 100 100
2 150 50
3 50 150
4 150 75

Table 1

Distances among daily traffic counts of the four days in Fig. 1. Distances are measured with two
approaches — directly applying the Euclidean distance metric or applying the Euclidean metric
in the OD demand subspace. d,; means the distance between Day i and Day .

Approach di, di3 diy dy3 dyy dyy
Direct Euclidean distance 70.7 70.7 55.9 141.4 25.0 125.0
Euclidean distance in OD subspace 0.0 0.0 25.0 0.0 25.0 25.0

4
Traffic counts
Day Link1l Link2 Link3 Link 4
100 100 100 50
110 110 110 50

\ / 100 100 100 60
1 3
~
@@

Fig. 2. A two-node network with two paths and day-to-day traffic counts on it.

w N =

Table 2
Distances among daily traffic counts of the three days in Fig. 2. Distances are again measured
with two approaches.

Approach d, dis dys
Direct Euclidean distance 17.3 10.0 20.0
Euclidean in OD subspace 10.0 10.0 14.1

the overall travel demands of the day, and the clusters are perhaps {(1,2,3), (4)}. Both approaches could be useful in transportation
management. Clusters obtained by directly applying the Euclidean metric may help gain insights on travelers’ route choice behaviors,
while clusters in OD subspace usually represent recurrent patterns in the system, such as weekdays, holidays, etc.

The second example is also a network with two nodes and two paths connecting them. However, this time one path consists of
more links than the other, as shown in Fig. 2.

Again we may measure the distances among the three observations in the original space or the in OD demand subspace. The
results are shown in Table 2.

In the network, Link 2,3 are linearly dependent on Link 1 entirely. Therefore, if we directly measure the Euclidean distance in
the original space, we are in some sense artificially amplifying the differences on those links. In a real-world complex network, it
can occur that some link flows are partially dependent due to network structure and/or route choices. However, in the subspace
for OD demands, such issues are resolved automatically. Estimating OD demands could be viewed as an implicit way of examining
dependency among those traffic measures. As for the clustering results, with the direct Euclidean distance we have {(1,3),(2)}, while
in the OD demand subspace we have {(1),(2),(3)}.

The final example is also a three-link network with two nodes, as shown in Fig. 3. Not all links have traffic counts on a daily
basis. On Day 2 there is no observation for Link 1 while on Day 3 there is no observation for Link 2. It can occur when data from
probe sources do not come from the exact same location from day to day, or in some cases fixed location sensors can be placed in
different locations at times, particularly when sensing resources are limited.

This time we cannot directly apply the Euclidean distance metric due to missing entries. However, those missing entries do not
restrict the OD demand estimation at all — because Link 1 and Link 2 are on the same path, the path flow is equal to the link flow of
either one. Therefore, we can calculate the distances among the data points without any issue, and get one single cluster {(1,2,3)}.
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3 Traffic counts
/ \ Day Link1 Link2 Link 3

1 100 100 50
2 - 100 50
3 100 - 50

Fig. 3. A three-link network with two nodes and day-to-day traffic counts on it.

The three examples above illustrate main differences between generic clustering methods and our new method, highlighting
the need of integrating traffic models into generic models. Besides, note that it is possible to achieve similar clustering results
by applying proper data pre-processing methods or manually modifying generic clustering algorithms. However, as mentioned in
Section 1, those methods are ad-hoc and require much work from case to case, which would not generalize or scale in practice.

3. Formulation

In this section, we give a formal definition of the problem. We first list the frequently used notations in this paper, then briefly
review the GESTA model (Ma and Qian, 2017) and Probabilistic OD demand Estimation (PODE) model (Ma and Qian, 2018), which
are the two building blocks of the new clustering method. Finally, we formulate the clustering problem as an optimization problem,
which assigns each data point a cluster.

3.1. Notations

The list of frequently used notations are shown in Table 3. Note that in this paper we use the hatted version of a symbol, *, to
refer to the estimate of the original variable. Besides, in iterative algorithms or formulations, we use -~ to denote the variable in
the previous iteration, and -* to denote the variable for updating in the current iteration.

3.2. Assumptions

The proposed framework is built upon a few assumptions on OD demands and travelers’ behaviors. Because they are essential
to our models and results, we specifically list them here.

OD demands follow a mixture of multivariate normal distributions. For each cluster there is a multivariate normal distribution
that fully describes the OD demands of the cluster, and the realization of OD demands on a day is drawn from the distribution
of the cluster that the day belongs to.

Travelers are atomic players. On each day, all travelers between an OD pair independently and identically make route choices,
which they learn through experience/information over a long time period.

Route choice decisions are made solely based on the perception of the traffic conditions. Travelers are unaware of others’
decisions. Travelers choose a route according to the experience/information on the generalized costs in the network.

The variation of observed day-to-day traffic flows come from three sources as defined in Ma and Qian (2017): variation in OD
demands, randomness in travelers’ route choices, unobserved errors including measurement errors, non-recurrent events, etc.
Unobserved errors follow an isotropic multivariate normal distribution.

3.3. Modeling and estimating probabilistic network conditions

We first need to briefly review the GESTA framework as well as the PODE algorithm. In combination, they are able to recover
the probabilistic conditions of a transportation network based on day-to-day traffic count data. Although they are only applicable
to days within a single cluster, they produce probability distributions of OD demands, path flows, link flows, etc., and will be used
as the building blocks for clustering daily link traffic counts.

GESTA maps the distribution of OD demands Q to the distributions of path flow F, link flow X, and path costs C in the context
of a transportation network, under a statistical equilibrium as defined in Definition 1.

Definition 1 (Statistical Equilibrium). A transportation network is under a statistical equilibrium, if all travelers practice the following
behavior: on each day, each traveler from origin r to destination s independently chooses route k with a deterministic probability
p’r‘S. For a sufficient number of days, this behavior leads to a stabilized distribution, in turn, results in the deterministic probabilities
p = w(6) where y(-) is a general route choice function.
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Table 3
List of notations.
Notation Meaning
A The set of all links.
A° The set of all links with flow observations.
A Path/link incidence matrix.
A° Path/link incidence matrix for links in set A°.

M Path/OD pair incidence matrix.

0 OD demands.

F Path flows between all OD pairs.

X Link flows on all link in set A.

X, Link flow on link a.

° Link flows on links in set A°.

mn Measurable link flows.

Path costs for all paths.

Unknown errors in X™.

Cluster labels for all daily records.

Cluster label for the ith record.

Set of observed link flows { X;’)N , or simply the data set.

Number of records in D.

The ith element of D.

=E(Q) Mean values of Q.

Covariance matrix of Q.

E(F) Mean values of F.

z; Covariance matrix of F.

x = E(X) Mean values of X.

Covariance matrix of X.

x° =R(X9) Mean values of X©.

>, Covariance matrix of X©.

P Route choice probabilities.

Drs Route choice probabilities for all paths between OD pair r, s.

)28 Route choice probability for choosing path k among all paths r,s.

p Transformed p such that E(F | Q) = pO.

=[E(C) Mean values of C.

° Realization of the random variable X°.
Realization of the random variable X?.

(k) All X if Day i is in the cluster k.
Realization of the random variable Z.
Realization of random variable Z;.

OD demands:

Path flows: F ~ MN(5,0)

Link flows:

Link flow observations:

Fig. 4. GESTA as a hierarchical probabilistic model. N (u, X) represents a normal distribution with mean u and covariance X. MN(p,n) means a multinomial
distribution with probability vector p and number of trials n. p = diag(p)B where B is the transition matrix such that E(F | Q) = pQ (Watling, 2002a; Ma and
Qian, 2017).

We may view the GESTA as a hierarchical probabilistic model. Fig. 4 shows the whole structure of such a model.

Although the whole graphic model seems innocent, the complicated interdependencies between F and X make it non-trivial.
Unsurprisingly, X is dependent on F, and F is dependent on OD demand Q and route choice probability p. However, in GESTA p
is dependent on the probability distribution of C = #(X) where #(-) is a path cost function that maps link flows to path costs. For
instance, if we use the random utility model (RUM) as the base route choice model, we have the probability of choosing route k
among all routes between an OD pair (r, s) being

k k : i
prs =P (CrS < IB&IBC;Y> : (1)

As such, there is a circular dependency between X and F. Moreover, here p is not a random variable, but a property of the
distribution of X.

That characteristic makes GESTA challenging to solve, and iterative solution algorithms are proposed to solve GESTA, particularly
modified Method of Successive Averages algorithm. In that algorithm the marginal distribution of F is approximated with a
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multivariate normal distribution,
F~N(f,2Z)), 2)

where f =pq, 2, = X, , +pZ, T, and = 71q 1s the covariance matrix of path flow conditional on Q = ¢. With this simplification, the
marginal distributions of X and X™ also follow multivariate normal distributions,

X ~N(x, X)), 3
X"~ N2+ Z,). “@

The GESTA model in Fig. 4 provides a way to map OD demands Q, a random variable, to the observed link flows X™, another
random variable of which the realization is the observed traffic counts. To project traffic count data to the OD demand subspace,
we actually need to invert this model — given observed traffic counts, estimate the OD demand probability distribution. That can
be done via the probabilistic OD demand estimation (PODE) method by Ma and Qian (2018).

PODE estimates the OD demand distribution by solving an optimization problem,

znén 181 (x(q),X°) + a8, (ZX (q, Zq) , Zxo) s (5)
=q

where x(-), Z.(-,-) are functions that map the mean and covariance of OD demands to the mean and covariance of observed link
flows, and g, (-, -), g(-, -) are functions measuring the discrepancy between two vectors/matrices while «,, a, are weights for the two
terms. They all can be set flexibly depending on the application, but in our case the x(-), Z.(-,-) come from the GESTA framework,
g,(-,+), & (-, -) are Euclidean norm of the element-wise difference between the two vectors/matrices, and «a;,a, are set to equal.

To solve the optimization problem in Eq. (5), we choose Iterative Generalized Least Squares (IGLS). In each iteration, we first
update § while keeping ﬁq by solving

o -1
min n(4”f - £ (£7) Larf -5+ (" —Mf)T(2f> (¢" -Mf), ©

where ¢*! is the historical mean of OD demands and 2 is the feasible set of f, which can be obtained with a traffic assignment
model. After that, we need to update ﬁq with ¢ fixed, which is simply solving another problem,

2

min 57 = Zso - @)
st Do =A830,(40" + 453,540 (®)
Z,=0. (€)

q

The stopping criterion of the algorithm is defined with the discrepancy between the results from two successive iterations,

= D<(g",2;;) : (qnl,ﬁ;;l)>, (10)

where D(-,-) could be any discrepancy measure between two estimations, e.g. Hellinger distance. When 7 is smaller than a chosen
threshold, we consider the algorithm has converged and stop.

3.4. Modeling and estimating the mixture of probabilistic network conditions

GESTA together with PODE solves the problem of estimating the network conditions for one single pattern. An additional
challenge is to identify multiple patterns on top of PODE for each pattern. The data generation process is similar to that of GESTA,
with the exception that one new level of estimates is added to estimates of OD demands and path flows, which is clustering. The
plate diagram for the probabilistic model is shown in Fig. 5.

For any day i, we introduce a new random variable z; for its cluster. The random variable z; follows a categorical distribution
with parameter z. In addition, for each cluster j out of the K clusters we have a separate OD demand probability distribution
parameterized by ¢; and Zé, representing a recurrent traffic pattern.

The whole data generation process under this model is:

For a single day i, draw a cluster index from the categorical distribution z; ~ C(x);
Draw an OD demand for the day Q; from the multivariate normal distribution ¢; ~ N’ (qzi’ Zqz" );

With (qzi,Z;"), there exists a day-to-day stabilized route choice probability p,, which travelers learn from experience/
information;
Draw a path flow F; from the multinomial distribution F; ~ MN (pz’,Q,-) (or from its multivariate normal approximation);

Calculate the link flow X; = AF;;

Draw an unknown error term ¢; from the multivariate normal distribution;

The final path flow observation is then X/ = X; +¢;, which is also the link traffic counts observed on that day from a link set
m (note that m can change from day to day).
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(. R

GESTA

©

@ @ »Q,- F, @ Xy

- J
p
@
q
J=1...K

Fig. 5. Plate diagram for the mixture of GESTA to model transportation network conditions with multiple OD demand patterns. The part surrounded by the
dotted frame is the same as the GESTA model in Fig. 4, while clusters together with the OD demand distributions for each cluster are added.

To estimate the unknown parameters © = (r, g, X), we formulate an optimization problem that maximizes the log likelihood of
observations based on a mixture mode of patterns under GESTA,

N K
7{,{1}?;‘] logg;n’kp (Xi,z,- =k;qk,Z(’l‘>, an
st f=pq, (12)
f e, (13)
Z, =0, 14)

where p(~;qk,2fl‘ ) is the probability distribution of X, obtained from the GESTA model under an OD demand probability
distribution, and € is the feasible set of mean path flow f. With those estimates of parameters, the cluster assignment for any
data point x! is simply
z; = argmax p <xf;qk,25) . (15)
ke(l,....K)

Eq. (11) is all about maximizing the data likelihood under the mixture model in Fig. 5. However, the latent cluster labels Z are
coupled in the probability density function, imposing challenges to effectively solve this problem. Instead, we use the Expectation-
Maximization (EM) algorithm (Moon, 1996). EM algorithm divides the original optimization problem into two sequential steps —
an E-step and an M-step. In the E-step, the subproblem is to calculate the expected complete data likelihood (in log scale),

Q(©:07) = Y p(Z | D.67)logp(D. Z | ). (16)
z

That is, we keep the current estimates of parameters O~ fixed and evaluate the probabilities of all cluster labels, which are later used
to calculate the expected likelihood of the complete data. In the M-step, update the estimates of model parameters © by minimizing
the expected likelihood of data in Eq. (16),

Ot = argmax Q(0;07). 17
e
Solving Eq. (17) is nothing more than solving the optimization problem maxglogp(D,Z | ©). By applying E-step and M-step

repeatedly, the objective defined in Eq. (11) will gradually increase (Dempster et al., 1977) until convergence.
Particularly for this clustering problem, in the E-step, calculate

p(z‘- = k;x”,fr’,q’,Z’). (18)
There are two ways to estimate this probability. The first one is usually called soft assignment,

p(x0:a k)
gy ) (19)
p(z=k) Zlep(Xf;qj,Zé) 19
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while the second one is called hard assignment,

: _ K . J
1, ifk= argmax;_, p <x,.”,qj, Zq) )

p (z‘- = k) = (20)

0, otherwise.

Both are commonly used in clustering analysis. However, considering the complexity of traffic assignment models and the need for
interpretability, we choose hard assignment — a single day always belongs to a cluster deterministically.
Besides, in the E-step we also need p (X 2 = ks gy, Z{’;), which is nothing but an application of GESTA model for a specific
cluster.
For the M-step, the update rule for r is
N
N 1z, = k)
it = L el 1)
which is the fraction of data points for each cluster and the update rules for ¢, >, are

N
max Z 1(z; = k)logp (xf, Qi Z{’;) s (22)
a-Zg iz
which is to find the optimal OD demand’s mean value and covariance under the GESTA framework for each cluster, thanks to
the hard assignment rule. However, finding the optimal ¢, X, for a single cluster is non-trivial because the GESTA model is highly
complex. In the GESTA framework, ¢ and X, are tightly coupled in a convoluted way — the route choice probability p is dependent
on the distribution of X, which in turn depends on p, g, Z,. Therefore, the problem in the M-step is a non-convex problem without
an analytical solution. Moreover, it is also hard to use a gradient-based optimization method because obtaining the gradient with
respect to ¢, X, is not easy either. Therefore, we resort to use the PODE algorithm reviewed in Section 3.3, a heuristic algorithm for
the optimization problem in Eq. (22). That is not an ideal solution, but as what will be shown in Section 5, it can work very well
in practice.
To summarize, in order to estimate the mixture of probabilistic network conditions and obtain the (hard) cluster assignments
for data points, we use an EM algorithm:

+ In the E-step, we update the cluster assignments via GESTA within each cluster using the current estimates of parameters;
+ In the M-step, we update the estimates of parameters via PODE using the current cluster assignments.

4. Solution algorithm

Following Section 3.4, the solution algorithm, in its pseudocode, is listed in Algorithm 1.

As the initialization step, we first run an arbitrary clustering algorithm to initialize an initial cluster assignment z®. With z®
we estimate parameters q©, Z,(IO) to start the algorithm. Note that in Algorithm 1 we extend the PODE algorithm to take z and k for
simplicity. x°, k together act as a mask for the data x° — only data points in x° assigned to cluster & in z are considered for the OD
demand estimation.

Note that the performance of PODE algorithm may be influenced by the stopping criteria as was mentioned in Section 3.3.
However, for the clustering algorithm, the influence of that is only marginal according to our numerical experiments. Specifically,
we tried the Hellinger distance and KL divergence, with and without early termination, and we found that the results of PODE might
vary but the clustering results were always almost the same. The stopping criteria for PODE are about estimating one OD demand
pattern, while clustering is about differentiating different patterns. So the clustering algorithm as a whole is less sensitive to the
differences in the PODE results.

5. Numeric examples

In this section, we show three numerical examples to demonstrate the effectiveness and novelty of the new clustering algorithm.
The first two examples are on synthetic data sets and small toy networks. They are designed to demonstrate the behaviors and
special features of the new method. The last example is on a sizable real-world network to examine the performance of the new
method for real-world applications.

5.1. A three-link network

We first apply the algorithm on a three-link network shown in Fig. 6. There are two OD pairs: (1,3) and (2, 3).

We generate two data sets on this network using the Probit-based GESTA traffic assignment model. The first one is well-separated
and unambiguous while the second one is slightly harder for cluster analysis because some data points are mixed together in the
link flow dimension.
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Algorithm 1: Algorithm for clustering day-to-day traffic counts data using probabilistic network flow models.

Data: Day-to-day traffic counts x°, number of clusters K
Result: Cluster assignments z, parameters g, >, of OD demand distributions

/* Initialization
n <« 0;

/* Get initial clusters with another clustering method

70 « Cluster (x°,K);
for k < 1 to K do
| 4@, 24 « PODE (x°.29, £);
end
/* Main EM iteration
repeat
n<n+1l;
/* E-step: update cluster labels
fori < 1 to N do
for k < 1 to K do
‘ pF < GESTA (x;’,qk“"l),zg("_]));
end
zf.") < argmax,_, g &
end
/* M-step: update parameter estimates
for k < 1 to K do
\ 4. =K — PODE (x*, 2, k);
end
until z"=D = z®;

return z™, g, Zfl”)

x/

*/

*/

RORRC

Link parameters

Link FFTT  Capacity

1 10 360
2 10 360
3 5 360

Fig. 6. A three-link toy network used in Section 5.1. “FFTT” means “free-flow travel time” of a link.
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(a) OD demand distributions.
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(b) Link traffic counts.

Fig. 7. OD demand distributions and the generated well-separated data of link traffic counts on the three-link toy network.
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Fig. 8. Estimated groups of the K-means algorithm and the new clustering algorithm for the generated data shown in Fig. 7. Both algorithms give the same
results.

Table 4
Estimated OD demand distributions from the data shown in Fig. 7. “Group” is the estimated
group of the clustering algorithm and is manually matched to the real groups used for data

generation.
Group q q Z, z,
1 (400.0 600.0)T (400.6 599.9)T ( 16()]9‘20 fsl(fo> ( 15090,;13 1?;&)
2 (10000  3000)" (9833 318.1)" (265;‘50 :23) (2,;3%54 33:)
3 (3000 900.0)" (2998 899.2)" (gg’g 2625;)0) (22? 2529712)

5.1.1. Clustering well-separated data

The first data set is generated using three OD demand distributions shown in Fig. 7(a). For each pattern we generate 500 link
traffic count observations on Link 1 and Link 3. The generated data are shown in Fig. 7(b).

This data set is well-separated in both the link traffic count space and the OD demand space. Therefore, we expect that the
results from both a generic clustering algorithm and the new algorithm should agree to each other if the parameters are properly
chosen. Indeed, if we set the number of clusters K = 3, the K-means algorithm and the new algorithm give exactly the same cluster
labels, which are shown in Fig. 8.

The estimated OD demand probability distributions for the three clusters are presented in Table 4. Those estimates are generally
close to the real values. The clustering method indeed works as a reverse process of the data generation process depicted in Fig. 5.
However, in practice we usually do not have the luxury of knowing the number of patterns and the ground-truth OD demand
probability distributions. Moreover, the traffic flows may not conform to the mixed GESTA model, which is nothing more than yet
another attempt to understand the complicated urban transportation system.

It is worth mentioning that there is a potential use case for the new clustering algorithm, to detect new OD travel demand patterns.
In the case where we have collected sufficient day-to-day data, we may perform the cluster analysis to obtain a set of probability
distributions of OD demand or flow that describe recurrent travelers’ behaviors in this network. When new data on upcoming days
are collected, they can be tested against those distributions to examine whether new data are part of existing clusters. For example,
we generate a few new data points on the network with two different OD travel demand probability distributions, as shown in
Fig. 9.

Now we can use the probability distributions of traffic counts on the two links to calculate the probability densities for those
newly observed data points and compare them with those of the previously collected data in Fig. 7. The maximum log probability
densities among the three estimated distributions of each data point are shown in Fig. 10.

We can see from Fig. 10 that the “old” data, which are used to estimate the link traffic count distributions, generally have the
maximum log probability density at around —10, while the data points from the new emerging patterns have the maximum log
probability density at around —800. Therefore, it can be concluded that those new data points represent different OD travel demand
patterns from the previously estimated clusters. In practice, hypothesis test theories can be developed out of testing new data on
existing patterns of probability distributions of OD demands or path/link flow, which would rigorously identify whether a new data
point is likely a seen pattern or new pattern.
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(a) OD demand distributions. (b) Link traffic counts.

Fig. 9. New emerging OD demand distributions and the resulting link traffic counts on the three-link toy network.
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Fig. 10. Maximum log probability densities among the three estimated distributions for the data points in both Figs. 7 and 9.

5.1.2. Clustering mixed data

Another interesting point to note is that in Table 4, the estimates for the second group is slightly worse than those of the other
two groups. This is due to the non-unique solutions to the OD demand estimation problem. To see this we generate a new data set
on the same network in Fig. 6 but with different OD demands. The OD demand probability distributions and the generated link
flow data are shown in Fig. 11.

From Fig. 11, we can see that two OD demand probability distributions far apart (namely groups 2 and 3) could generate similar
link flows on the observing links. Therefore, for this network under the “true” GESTA model, the regime near the lower right corner
of Fig. 11(a) is an ambiguous zone. Many OD demand distributions could lead to similar blobs of data points in Fig. 11(b) — that is
why in Table 4 the ODE is worse for group 3 than the other two. Unless additional information is provided, there is no way that
the ODE can recover the “true” probability distribution in this case.

In addition, Fig. 11 also gives an interesting data set for examining a clustering algorithm. Some data points are mixed together
in the link flow space, so we cannot expect a generic clustering algorithm to perfectly recover the original groups that those points
belong to. That statement also holds for the new clustering algorithm because in the boundary regime between groups 2 and 3 in
Fig. 11(b) the underlying OD probability distributions may not be perfectly recovered from mixed link flow data. Therefore, we
conduct another cluster analysis on this data set and the results are shown in Fig. 12(a). The results from K-means algorithm are
also included in Fig. 12(b) for comparison.

This time the results given by the two algorithms are similar except for a few points near the boundary of groups 1 and 3.
Because of the introduction of probabilistic traffic assignment models, the new algorithm is aware of the correlation between the
two links, which could “see” the differences in terms of the OD demand patterns, whereas the K-means algorithm would have
difficulty placing those into the right group.

12
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(a) OD demand distributions. (b) Link traffic counts.

Fig. 11. OD demand distributions and the generated data of link traffic counts on the three-link toy network. Note that this time two blobs of the data points
for traffic counts are mixed together.
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(a) Results using the new algorithm. (b) Results using the K-means algorithm.

Fig. 12. Clustering results using both the new algorithm and K-means algorithm. The number of desired clusters is again set to 3.

Note that this time neither of the two algorithms perfectly recovers the real groups shown in Fig. 11(b), which is expected as
mentioned above. Recovering the “real groups” of traffic data — if that exists — is not the goal of cluster analysis and perhaps is
not possible either using cluster analysis. When doing cluster analysis, we have no prior information at all on the desired clusters.
The algorithm analyzes the given data and discover the patterns in the data based on how between/within group distances are
defined. With the results, in Fig. 12 we are not trying to show that the new algorithm is always superior to the K-means algorithm.
Instead, we would like to highlight the differences in the results from the two algorithms. That means the new algorithm is able

to discover new and sensible patterns in the data and in certain cases it could be more appropriate and interpretable than other
classical algorithms.

5.2. A two-link network

Now we apply the algorithm on another toy network shown in Fig. 13. There are only one OD pair (1,2) and two identical links.
On this network, we expect to see high variances in the link count data because the two paths are interchangeable. We
deliberately set the network so in order to understand and demonstrate the features and uniqueness of the new clustering algorithm.

However, note that even though we probably will never see exactly such a network in the real world, it is not uncommon that
multiple routes between an OD pair exhibit similar attributes.

13
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Fig. 13. A two-link toy network used in Section 5.2. “FFTT” means “free-flow travel time” of a link.
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Fig. 14. OD demand distribution and the generated data of link traffic counts on the two-link toy network.

We generate two different data sets on this network again using the Probit-based GESTA model. Each of the two data sets is
designed to demonstrate certain interesting features of the clustering method.

5.2.1. Clustering data with a single pattern

The first data set is generated using only one OD demand distribution shown in Fig. 14(a). For this distribution we generate
1000 link traffic count observations on both links. The generated data are shown in Fig. 14(b).

Visually we may spot either one or two clusters from the data in Fig. 14(b), depending on how we define patterns. Therefore, it
would be interesting to see what the algorithm gives if we ask it to return more than one clusters.

This time we set the desired number of clusters K = 2. For the initial assignment we use both random assignment and K-means
clustering. Also, for comparison we run the K-means algorithm and the Gaussian mixture model on the same data set as well. The
results for the four cases are shown in Fig. 15.

The results of K-means algorithm in Fig. 15(c) and the results of GMM in Fig. 15(d) are similar and match our expectation.
However, the results from our network-based clustering algorithm shown in Figs. 15(a) and 15(b) are unusual — with random
initialization it generates a non-compact cluster while with K-means initialization it generates two clusters differently from generic
clustering methods. As was mentioned in Section 2, those results are because of the information imposed by the traffic assignment
model. We now investigate the underlying probability distributions estimated during the clustering process to understand such
behaviors of the algorithm.

Fig. 16 shows the estimated OD demand probability distributions. With random initialization, the two estimated distributions
have almost the same mean value, but different variances, representing one way of differentiating traffic patterns. While with
K-means initialization, the two probability distributions have similar variances but different mean values. Those are two ways to
decompose the “true” demand probability distribution from Fig. 14(a).

Fig. 17 shows the estimated link traffic count distributions. For comparison the results from GMM is also included. The embedded
traffic assignment model injects the domain knowledge to the clustering process. Therefore, no matter how we initialize the clusters,
the final clusters will always reflect the underlying correlation between the two links, instead of blindly maximize the data likelihood
as what GMM does here in Fig. 17(c).

For Fig. 17(a), we can see that the “true” probability distribution is decomposed into two components — one that captures the
strong correlation between the two links and one that captures the variability in the data. Fig. 17(b) instead shows a different way

14
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Fig. 15. Clustering results of the proposed algorithm with two different initialization methods, the K-means algorithm, and GMM for the data in Fig. 14.

0.12

Probability density
o o
8 8

o
o
@

550

600
OD travel demand

650

(a) Estimated distributions with random initialization.

o o o
o o o
(¥ @ IS

Probability density

o
o
=

570

600
OD travel demand

630

(b) Estimated distributions with K-means initialization.

Fig. 16. Estimated OD demand distributions of the proposed algorithm for the data in Fig. 14.
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Fig. 17. Estimated link traffic count distributions of the proposed algorithm and GMM for the data in Fig. 14.
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Fig. 18. OD demand distributions and the generated full data set of link traffic counts on the two-link network.

— each of the two is responsible for a subset of all data points. The two clusters with K-means initialization have almost the same
shape and only the centroids differ. Both show that the targeted number of clusters K = 2 is larger than ideal. Note that specifically
for this case, a non-parametric clustering algorithm (e.g., the mixture of Dirichlet process model Antoniak, 1974) could also give
us such a hint, i.e., there is only one cluster in the data. Also, a non-parametric model might give more sensible results. However,
using the knowledge on the network is still worthwhile in real world cases for clustering robustness. Besides, it might be possible
to turn this algorithm into a non-parametric one.

Also note that here with random initialization the algorithm may not always give the results in Fig. 17(a). Occasionally it would
also cluster the data points in the way shown in Fig. 17(b) because of the randomness of the initialization, OD demands, and route
choices. However, the results shown here is still representative and shows insights on the behavior of the algorithm. To reproduce
the results here, multiple runs with different random states might be required.

5.2.2. Clustering incomplete data

Now we demonstrate another important feature of the proposed algorithm, i.e., its ability to handle an incomplete data set
directly. As was mentioned in Section 2, it is not uncommon in real world that the set of observing links in the data set changes
over time. To simulate that, we generate 1500 link traffic count observations using two OD demand probability distributions, shown
in Fig. 18.

The two OD demand probability distributions are far apart and thus generated data points are clearly separated into two clusters.
Then we randomly mask the observations on Link 2 for 500 data points, and the observations on Link 1 for another 500 data points.
The remaining 500 points have traffic counts on both links. The resulting data set is shown in Fig. 19.

We can see that even after masking one dimension the data points are still well-separated, and it is not challenging to get a
meaningful cluster assignment on each of the three subsets. However, instead we want to conduct clustering analysis on the combined
data set of the three subsets as a whole. Generic clustering algorithms cannot handle this case directly. However, the proposed new
clustering algorithm is able to infer demand patterns from partial observations, thanks to the embedded traffic network model and
OD demand estimation. The results are shown in Fig. 20.
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Fig. 19. Data sets of link traffic counts based on the data in Fig. 18(b). Two of those data sets have one of the two links masked.
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Fig. 20. Clusters returned by the proposed algorithm for the incomplete data in Fig. 19. The estimated groups are also shown with the original complete data

for demonstration.

The algorithm is able to produce sensible clustering results without any specific pre-processing required to impute the data set. In
addition to the convenience of no explicit pre-processing, combining different data sets could also improve the model performance,
which can be seen from the estimated OD demand distributions using different data sets in Table 5.

In Table 5, combining the complete subset with the two incomplete data sets indeed helps with the accuracy in general. The
additional information from the two incomplete subsets improves the estimates for Group 2, for which using only the complete
subset does not perform well. Moreover, in our experiment, using only one of the incomplete subsets is even insufficient for an
estimate, but combining the two subsets could provide, albeit not superior, reasonable results. Therefore, we suppose embedding
traffic network models in the clustering process also enables better utilization of heterogeneous data sets.
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Table 5

Estimated OD demand distributions for Fig. 18(a) using different data sets. “Complete data set”
means the one in Fig. 18(b), without masking any features; “All three subsets” means to use
all the three data sets shown in Fig. 19; “Complete subset only” means to use only the one in
Fig. 19(a), which contains link traffic counts on both links; “Two incomplete subsets” means to
use the two incomplete data sets in Figs. 19(b) and 19(c). KL divergence is calculated against
the corresponding real distribution.

Data Group q ﬁq KL divergence
Complete data set 1 599.54 99.33 0.0011

2 300.44 207.16 0.0008
All three subsets 1 598.53 92.80 0.0131

2 300.29 169.02 0.0077
Complete subset only 1 599.09 102.61 0.0042

2 301.19 249.78 0.0143
Two incomplete subsets 1 598.38 42.50 0.2795

2 299.64 158.06 0.0154
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Fig. 21. TAZs in the Sacramento Regional Network.

5.3. A real-world network

Finally, we apply the clustering algorithm to conduct an analysis on a real-world network, the Sacramento Regional Network.
Unlike the other numerical examples, this experiment is more of a demonstration of a common workflow for clustering analysis
than a specifically constructed case to understand the proposed algorithm. Therefore, for this experiment we mainly focus on the
high-level clustering results and how to use this algorithm for real-world applications.

The target network consists of two highways, I-5 and Hwy-90, towards Sacramento. The entire region is divided into 9 traffic
analysis zones (TAZs) as shown in Fig. 21. Each of the 9 TAZs is treated as one origin as well as one destination in the network.
Northern region of TAZ 1 is excluded from the network because there are many local roads in that region and our data do not suffice
for modeling the travel demand profile. Considering there are few resident areas in the northern region of TAZ 1, this simplification
should not impact the results much.

The raw daily link traffic counts are obtained through Caltrans Performance Measurement System (PeMS). The data set contains five-
minute traffic counts on 86 road segments for three years — from January 1, 2014 to December 31, 2016 — with three days missing.
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Fig. 23. Results of exploratory analysis for data in Fig. 22. Those are meant to guide the choice of the desired number of clusters for the following cluster
analysis.

The raw data set is a combination of data from multiple sources including inductive loops, side-fire radar, and magnetometers. We
keep only the data points within the morning peak (8 AM to 10 AM) and take the average for traffic counts from all available
sources. The resulting data set contains 1094 entries of daily traffic counts on the 86 segments. Fig. 22 shows the processed daily
link traffic count data.

The first step is to select a desired number of clusters. Visually based on Fig. 22, we can spot one dominating pattern and a few
other minor patterns. However, on such a high dimension, it is unreliable to determine the number of clusters visually. Therefore,
we use the Uniform Manifold Approximation and Projection (UMAP) model (McInnes et al., 2020) to reduce the dimension of the data
to two. The results are shown in Fig. 23(a). Besides, we also run the clustering algorithms with number of clustering being 2 to 7
and examine the data likelihood as shown in Fig. 23(b).

In the embedding space given by UMAP in Fig. 23(a) we can see roughly 5 to 7 clusters. Note that the UMAP model ignores
the information from the network, so the embedding space discovered may not be necessarily desirable. Therefore, we look at the
data log likelihood of the algorithm using different numbers of clusters in Fig. 23(b). Using 4 to 7 clusters gives similar outcomes.
Normally we choose the value at the “elbow” of this curve. However, as was mentioned before, the proposed algorithm does not
accurately maximize the data likelihood so we decide to combine both results in Fig. 23 and set K = 5. The resulting clusters are
shown in Fig. 24.

Fig. 24(a) shows the mean values of day-to-day link traffic counts within each cluster, and Fig. 24(b) gives the ranges between
the first and third quartiles of link counts for each cluster. Except for Group 4, all the groups are similar on the majority of the links
while in Group 4 the link traffic counts are generally smaller. Besides, traffic counts on a few links are apparently different across
groups, for example, on link 120894322, the traffic counts in Group 1 are larger than other groups.

For comparison, we also run K-means algorithm with K = 5 on this data set, and the results are shown in Fig. 25. Unsurprisingly,
the results are similar to Fig. 24 considering that the Sacramento network is rather “regular” - the differences in the OD demand
space are also well reflected in the link flow space. There are still some differences on certain links, which could be because of the
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(b) Quartiles of day-to-day link traffic counts for all clusters. The lines and dots show the medians while the
vertical bars give the ranges between the first and third quartiles. Certain links are shaded in gray to highlight
differences among links.

Fig. 24. Clustering results using the proposed algorithm for the data shown in Fig. 22.

embedded traffic network models. We cannot say the outcome from either model is superior to the other, but the differences in the
results show that the proposed algorithm provides a more interpretable way consistent with network flow to understand the data
and warrant its usefulness in real-world applications.

We also inspect the estimated OD demand probability distributions, which are shown in Fig. 26. Due to the high dimensionality,
those figures are challenging to understand, but we may still spot a few interesting patterns. For example, according to Fig. 26(a)
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TAZ 1 is important in this network as both an origin and a destination, TAZ 5 has unusually high “loopback” demands, and TAZ
7 and TAZ 9 are relatively closely related. For another example, in Fig. 26(b), we can see that in Group 3 the OD demands have
relatively high variability. Those observations, while are not directly from the clustering results, could be helpful when we are
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(b) Quartiles of day-to-day link traffic counts for all clusters discovered by K-means algorithm. The lines and

dots show the medians while the vertical bars give the ranges between the first and third quartiles.

Fig. 25. Clustering results using K-means algorithm for the data shown in Fig. 22.

understanding, interpreting, and utilizing the results.

Finally, we show a small example on using the results for transportation management. Once we get the clusters, a natural next
step is to find the similarities within each cluster and differences among clusters. In this case of analyzing recurrent traffic patterns,

21



P. Zhang et al. Transportation Research Part C 144 (2022) 103882

Group 1 Group 2 Group 3 Group 4 Group 5

9

s Mean demand
X7
2. 4000
§ 3000
=5

<
£4 2000
3
83 1000

2 0

1

123456789 123456789 123456789 123456789 1223458672839
Origin TAZ

(a) Mean values of OD demands among all TAZs.

Group 1 Group 2 Group 3 Group 4

Covariance

20

OD pair 1

(b) Covariance matrices of OD demands among all TAZ pairs. Certain axis labels are hidden for visualization, but for both axes the
OD pairs are arranged in increasing order of the origin and destination TAZ numbers.

Fig. 26. Estimated OD demand mean values and covariance matrices for the results in Fig. 24.
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Fig. 27. Numbers of days of the week in each of the groups shown in Fig. 24(a).

oftentimes those patterns are associated with days of the week. For instance, people may tend to use certain roadways more on the
weekends. Therefore, we examine the numbers of different days of the week in each of the five groups, shown in Fig. 27. We find that
Group 1 and Group 2 contain mainly the weekdays while Group 4 contains almost exclusively weekends. Many Saturdays fall into
Group 3 while Sundays are almost always in Group 3 and Group 4. In combination with the results in Fig. 24, those observations are
presumably helpful for setting up traffic management strategies tailored for each pattern. For instance, in Group 4, which contains
mostly Sundays, links have relatively smaller traffic volume than other groups, so new policies could be issued to migrate certain
travel demands from weekdays to Sundays and help alleviate congestion.

6. Conclusion

We propose a novel clustering algorithm for analyzing day-to-day traffic data and discovering traffic patterns in the space of the
OD demands, rather than in the space of traffic data directly. This is done through integrating the probabilistic OD demand estimation
and statistical traffic assignment into classical generic clustering process. The proposed clustering method features awareness of the
topological structure, roadway attributes, and travelers’ route choices, of a transportation network and hence often gives new but
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sensible ways to partition high-dimensional link traffic count data in comparison with generic clustering algorithms, such as K-
means, GMM, etc. While patterns from unsupervised learning algorithm are somewhat subjective depending on how an algorithm
sees the difference between data points, the new clustering algorithm provides an interpretable approach to better understand
transportation network data, useful for transportation planning and management.

With the proposed algorithm, network conditions are characterized with a mixture of OD demand probability distributions and
a probabilistic graphic model that maps OD demand probability distributions to link flow probability distributions. Then an EM
algorithm is used to estimate the underlying OD demand probability distributions from daily traffic counts and a group assignment
is performed in the OD demand space. In this paper, we use the GESTA model and the PODE model, respectively, in the E-step and
M-step. However, the new clustering algorithm is flexible, and other traffic assignment models and OD demand estimation models
could be applicable as well.

We examine the model with two hypothetical networks and four synthetic data sets as well as one real data set on a sizable
real-world network, the Sacramento regional network. On the regular three-link toy network our algorithm is able to give sensible
clusters for both a well-separated data set and a somewhat challenging data set. On the unusual two-link network the two numerical
experiments demonstrate the uniqueness of the algorithm - it has knowledge on the correlation among links and is able to handle
incomplete data directly. Finally, we conduct an experiment on the real-world network to demonstrate a typical cluster analysis
workflow and to show that our algorithm is useful in practice.

Admittedly the algorithm is still in its imperfection and there are two limitations. First, it requires intensive computation due to
the complexity of the embedded network models. Many transportation network models are computationally costly to use, let alone
multiple such models are employed in this clustering framework. On the Sacramento regional network the algorithm takes around
20 min to discover five clusters while K-means takes less than one minute to run on the same machine. In real-world applications
we often need to analyze data sets on much larger networks and identify much more clusters. Therefore, the performance issue is
for sure not negligible. Second, the algorithm is hard to train and requires excessive hyperparameter tuning. In addition to the EM
algorithm, it uses two non-trivial network models. Therefore, in order to output sensible results, we need to tune all the three sets of
parameters together, leading to potentially the unstability of the EM algorithm, analogous to other classical clustering algorithms.
In the experiments on the Sacramento network, it is common that the algorithm oscillates among a few local optima, and we have
to tweak the termination condition specifically.

Both limitations are because the clustering algorithm amplifies the complexity of the embedded networks models. Considering
the flexibility of the framework, it is possible to mitigate the two issues by using other simpler network models. For example, if
run time complexity is more of a concern than model performance and intepretability, we can pre-train two black box models to
approximate the GESTA and PODE models respectively, and use them in the clustering framework instead. Besides, regarding the
desired number of clusters, it is possible and a future research direction to use the non-parametric clustering process with this
framework and turn the hyperparameter, number of clusters, into a random variable by adding another level in the graphic model
(Neal, 2000; Escobar and West, 1995). In that way, the number of clusters could also be automatically selected by balancing between
lowering the number of clusters and maximizing data likelihoods.

To conclude, the algorithm frames a new way to inject domain knowledge of the transportation network into data-driven
approaches. It demonstrates that it is possible, actionable, and valuable to tightly couple the transportation models with generic
data analytics models. This would shed lights on future applications of data science to transportation planning and management in
practice.
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