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A B S T R A C T

In this paper, we investigate the learning-based adaptive optimal output regulation problem with convergence
rate requirement for disturbed linear continuous-time systems. An adaptive optimal control approach is
proposed based on reinforcement learning and adaptive dynamic programming to learn the optimal regulator
with assured convergence rate. The above-mentioned problem is successfully solved by tackling a static
optimization problem to find the optimal solution to the regulator equations, and a dynamic and constrained
optimization problem to obtain the optimal feedback control gain. Without requiring on the accurate system
dynamics or a stabilizing feedback control gain, a novel online value iteration algorithm is proposed, which can
learn both the optimal feedback control gain and the corresponding feedforward control gain using measurable
data. Moreover, the output of the closed-loop system is guaranteed to converge faster or equal to a predefined
convergence rate set by user. Finally, the numerical analysis on a LCL coupled inverter-based distributed
generation system shows that the proposed approach can achieve desired disturbance rejection and tracking
performance.
1. Introduction

To address an output regulation problem, designers need develop
regulator for the controlled plant to ensure the resultant closed-loop
ystem rejects external disturbances and tracks some desired trajecto-
ies asymptotically. Model-based solutions to output regulation prob-
ems usually require accurate knowledge of the system model (Francis,
977; Francis & Wonham, 1976). Practically, building perfect mathe-
matical models for controlled plants may be hard or even impossible.

Instead of directly relying on the system model, some data-driven
and adaptive approaches have been proposed using online data to adap-
tively tune the controller parameters and structure. For instance, He
et al. (1993), Woo et al. (2000) have developed self-tuning PID con-
trollers based on fuzzy logic. Wang and Huang (2005) have designed
an adaptive dynamic surface control approach for uncertain strict-
feedback nonlinear systems based on the neural networks. Park et al.
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(2009) have proposed an adaptive sliding mode control approach for
nonholonomic wheeled mobile robots via neural network technology
as well.

To guarantee the transient response of the closed-loop control sys-
tems, one usually requires the states asymptotically converge to the
desired trajectory in an optimal sense, reinforcement learning (RL)
and adaptive dynamic programming (ADP) techniques serve as pow-
erful tools and have been introduced to learn an optimal regulator
for unknown systems. See recent book, survey, tutorial and research
papers (Gao et al., 2021; Jiang, Bian, & Gao, 2020; Kamalapurkar et al.,
2018; Kiumarsi et al., 2018; Liu et al., 2021; Vamvoudakis & Kokolakis,
2020; Wang, Ha, & Qiao, 2020; Wang et al., 2017; Wang, Qiao, &
Cheng, 2020). Among different strategies in the RL and ADP, policy
iteration (PI) and value iteration (VI) are two successive approximation
approaches to seek for the optimal control policy. In order to ensure
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its convergence, PI based RL algorithm usually initiates with an ad-
missible control policy, which is stabilizing and ensures a finite cost.
Unfortunately, in practice, it is usually hard to find such a satisfactory
control policy, especially with unknown or inaccurate system dynamics.
A major advantage of VI based RL algorithm is that one can begin with
any control policy, which is more practical.

Generally, there are two alternative formulations to deal with the
concerned adaptive optimal output regulation problem using RL tech-
niques. The first formulation is to construct a linear quadratic tracker
by introducing a discounted cost function. It was adopted in Modares
and Lewis (2014a), Xue et al. (2021) for linear continuous-time (CT)
systems, in Jiang, Fan, Chai, Lewis, and Li (2018), Kiumarsi et al.
(2014), Wu et al. (2019), Xue et al. (2020) for linear discrete-time
DT) systems, in Modares and Lewis (2014b), Wang et al. (2021) for
onlinear CT systems, in Jiang et al. (2019), Jiang, Fan, Chai, Li, and
ewis (2018), Kiumarsi and Lewis (2015) for nonlinear DT systems.
nother formulation to solve this problem is by splitting it into an
daptive optimal feedback control problem and an adaptive optimal
eedforward control problem. This approach was adopted in Chen et al.
2019), Gao and Jiang (2016), Gao et al. (2018) for linear CT systems,
n Fan et al. (2020), Gao and Jiang (2019), Jiang, Kiumarsi, et al.
2020) for linear DT systems, in Gao and Jiang (2018) for nonlinear CT
ystems, in Jiang, Fan, et al. (2020) for nonlinear DT systems. However,
ll the above approaches for linear CT systems are realized by adopt-
ng the PI based RL algorithm, which requires an initial admissible
tabilizing feedback control gain to start learning (Kleinman, 1968).
esides asymptotic tracking, the convergence rate of the closed-loop
ystem is usually required to be fast enough in practice. In Hong et al.
2002), the finite-time control of the robot system was studied through
oth state feedback and dynamic output feedback control. In Huang
t al. (2017), finite-time controllers were proposed for underactuated
pacecraft hovering in the absence of the radial or in-track thrust. In the
bove-mentioned references, the convergence rate is tuned by applying
he finite-time controllers based on the system dynamics. However,
t is not applicable to the case with unknown or inaccurate system
ynamics.
To this end, we will propose a novel data-driven value iteration (VI)

lgorithm to handle the adaptive CT linear optimal output regulation
roblem (𝐿𝑂2𝑅𝑃 ) with assured convergence rate in this paper. The
roposed algorithm adaptively learns both optimal feedback and feed-
orward control gains using online measurable data. Moreover, the state
f the system in closed-loop with the learned regulator is guaranteed
o converge faster or equal to a predefined convergence rate. Notably,
ifferent from the PI based RL algorithms, VI based RL algorithms are
ree from an initial stabilizing control policy to initiate (see Al-Tamimi
t al., 2008; Bian & Jiang, 2016).
This paper is outlined as follows. In Section 2, we formulate the

𝑂2𝑅𝑃 with assured convergence rate. Section 3 provides the model-
ased solution to 𝐿𝑂2𝑅𝑃 and a VI algorithm to approximate the
ptimal feedback control gain. In Section 4, a data-driven VI algo-
ithm is presented to learn the optimal regulator with unknown system
atrices. In Section 5, a numerical analysis based on a LCL cou-
led inverter-based distributed generation system is given to demon-
trate the efficiency of the proposed learning-based output regulation
pproach. Section 6 contains the concluding remarks.

otation. Throughout this paper, R and N denote respectively the
et of real numbers and the set of positive natural numbers. For a
∈ N and two matrices 𝑋, 𝑌 ∈ R𝑛×𝑛, 𝑋 > 0 (𝑋 ≥ 0) means

he matrix 𝑋 is positive definite (positive semi-definite); 𝑋 > 𝑌
𝑋 ≥ 𝑌 ) means 𝑋 − 𝑌 is positive definite (positive semi-definite);
(𝑋) means the complex spectrum of matrix 𝑋. For brevity, denote
𝑛 ∶= R𝑛×1. Moreover, ‖ ⋅ ‖ denotes the Euclidean norm of vectors
nd the Frobenius norm of matrices; ⊗ denotes Kronecker product;
𝑛 denotes the normed space of all 𝑛-by-𝑛 real symmetric matrices;
𝑛 ∶= 𝑃 ∈ P𝑛 ∶ 𝑃 ≥ 0 . For 𝑚, 𝑛 ∈ N and 𝑋 ∈ R𝑚×𝑛, 𝑋T denotes
+ { } f

2

he transpose of 𝑋, vec(𝑋) = [𝑥T1 , 𝑥
T
2 ,… , 𝑥T𝑛 ]

T with 𝑥𝑖 ∈ R𝑚 the
olumns of matrix 𝑋. For a symmetric matrix 𝑋 ∈ R𝑛×𝑛, vecs(𝑋) =
𝑥11, 2𝑥12,… , 2𝑥1𝑛, 𝑥22, 2𝑥23,… , 2𝑥(𝑛−1)𝑛, 𝑥𝑛𝑛]T ∈ R(1∕2)𝑛(𝑛+1). For a vec-
or 𝑣 ∈ R𝑛, vecv(𝑣) = [𝑣21, 𝑣1𝑣2,… , 𝑣1𝑣𝑛, 𝑣22, 𝑣2𝑣3,… , 𝑣𝑛−1𝑣𝑛, 𝑣2𝑛]

T ∈
(1∕2)𝑛(𝑛+1).

. Problem formulation

We start from the following disturbed linear time-invariant (LTI) CT
ystem,

̇ (𝑡) =𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) +𝐷𝑣(𝑡), (1)

𝑦(𝑡) =𝐶𝑥(𝑡), (2)

here 𝑥 ∈ R𝑛𝑥 , 𝑢 ∈ R𝑛𝑢 , 𝑣 ∈ R𝑛𝑣 and 𝑦 ∈ R𝑛𝑦 are the state, the
ontrol input, the exostate, and the output, respectively. 𝐴 ∈ R𝑛𝑥×𝑛𝑥 ,
∈ R𝑛𝑥×𝑛𝑢 , 𝐷 ∈ R𝑛𝑥×𝑛𝑣 and 𝐶 ∈ R𝑛𝑦×𝑛𝑥 are constant matrices. Following
he output regulation framework, the exosystem is modeled by a linear
TI CT autonomous systems as follows,

̇ (𝑡) = 𝐸𝑣(𝑡), (3)

here 𝐸 ∈ R𝑛𝑣×𝑛𝑣 is a constant matrix. The reference signal can be
omputed as follows,

𝑑 (𝑡) = −𝐹𝑣(𝑡), (4)

here 𝑦𝑑 ∈ R𝑛𝑦 is the reference signal and 𝐹 ∈ R𝑛𝑦×𝑛𝑣 .
The following standard assumptions are made throughout this pa-

er.

ssumption 1. The pair (𝐴,𝐵) is controllable.

ssumption 2. The exosignal 𝑣(𝑡) is unmeasurable.

ssumption 3. The minimal polynomial of 𝐸 is available.

ssumption 4. rank
([

𝐴 − 𝜆𝐼 𝐵

𝐶 0

])

= 𝑛𝑥 + 𝑛𝑦,∀𝜆 ∈ 𝜎(𝐸).

Under Assumption 3, one can always find a new state 𝑤 ∈ R𝑛𝑤 and
n autonomous system such that 𝑤 and 𝑣 are its state and output, which
s shown as follows,

̇ (𝑡) =𝐸̂𝑤(𝑡), (5)

𝑣(𝑡) =𝐺𝑤(𝑡), (6)

here 𝐸̂ ∈ R𝑛𝑤×𝑛𝑤 and 𝐺 ∈ R𝑛𝑣×𝑛𝑤 are constant matrices. Then, the
ontrolled plant in (1) and its measurement output 𝑒(𝑡) ∶= 𝑦(𝑡) − 𝑦𝑑 (𝑡)
an be formulated as follows,

̇ (𝑡) =𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) + 𝐷̂𝑤(𝑡), (7)

𝑒(𝑡) =𝐶𝑥(𝑡) + 𝐹𝑤(𝑡), (8)

here 𝐷̂ = 𝐷𝐺 and 𝐹 = 𝐹𝐺.
Our control goal is to develop an optimal regulator for the con-

erned disturbed LTI CT system in (7) such that the closed-loop system
s globally asymptotically stable (GAS) in an optimal sense. Moreover,
he convergence rate of the tracking error is fast then e−𝛾𝑡, which means
he following requirement needs to be satisfied,

lim
→∞

e𝛾𝑡𝑒(𝑡) = 0, (9)

here the convergence rate criterion 𝛾 satisfies 0 ≤ 𝛾 < ∞. As a
ypical strategy to deal with output regulation problems, we present
feedback–feedforward controller as follows,

(𝑡) = −𝐾𝑥(𝑡) + 𝐿𝑤(𝑡), (10)

here 𝐾 ∈ R𝑛𝑢×𝑛𝑥 is the feedback control gain and 𝐿 ∈ R𝑛𝑢×𝑛𝑤 is the

eedforward control gain, respectively. As discussed in Francis (1977),
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Huang (2004), 𝐾 is required to be designed to ensure that 𝐴 − 𝐵𝐾 is
Hurwitz and 𝐿 should satisfy the following equation,

𝐿 = 𝑈 +𝐾𝑋, (11)

where 𝑋 ∈ R𝑛𝑥×𝑛𝑤 and 𝑈 ∈ R𝑛𝑢×𝑛𝑤 solves of the following regulator
equations,

𝑋𝐸̂ = 𝐴𝑋 + 𝐵𝑈 + 𝐷̂, (12)

0 = 𝐶𝑋 + 𝐹 . (13)

Under the condition of Assumption 4, Eqs. (12)–(13) is solvable
(Knobloch et al., 2012). The requirements of the 𝐿𝑂2𝑅𝑃 focus on
the following aspects: (1) the asymptotic tracking of the output; (2)
the transient performance and the GAS of the resulting linear closed-
loop control system. To satisfy these requirements, a static optimization
Problem 1 needs to be solved to obtain the optimal solution of regulator
equations (𝑋∗, 𝑈∗), while a dynamic constrained optimization Problem
2 requires solved to obtain the optimal feedback control gain 𝐾∗ and
the corresponding feedforward control gain by 𝐿∗ = 𝑈∗ + 𝐾∗𝑋∗. We
first formulate the Problem 1 as follows:

Problem 1:
min
𝑋̄

𝑋̄T𝑀𝑋̄

s.t. 𝑋𝐸̂ = 𝐴𝑋 + 𝐵𝑈 + 𝐷̂

0 = 𝐶𝑋 + 𝐹 ,

(14)

where 𝑋̄ =
[

(vec(𝑋))T, (vec(𝑈 ))T
]T, 𝑀 = 𝑀T > 0. ■

Under the solutions of (14), by denoting 𝑥̄(𝑡) = e𝛾𝑡(𝑥(𝑡) − 𝑋𝑤(𝑡)),
̄(𝑡) = e𝛾𝑡(𝑢(𝑡) − 𝑈𝑤(𝑡)) and 𝑒(𝑡) = e𝛾𝑡𝑒(𝑡) as the new state, input and
error, respectively, a new CT system can be formulated as follows,

̇̄ (𝑡) = 𝛾𝑥̄(𝑡) + e𝛾𝑡(𝑥̇(𝑡) −𝑋𝑤̇(𝑡))

= 𝛾𝑥̄(𝑡) + e𝛾𝑡(𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) + 𝐷̂𝑤(𝑡) −𝑋𝐸̂𝑤(𝑡))

= 𝛾𝑥̄(𝑡) + e𝛾𝑡(𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) − (𝐴𝑋 + 𝐵𝑈 )𝑤(𝑡))

= 𝐴̄𝑥̄(𝑡) + 𝐵𝑢̄(𝑡), (15)
𝑒(𝑡) = e𝛾𝑡𝐶𝑥(𝑡) + e𝛾𝑡𝐹𝑤(𝑡)

= e𝛾𝑡𝐶𝑥(𝑡) − e𝛾𝑡𝐶𝑋𝑤(𝑡)

= 𝐶𝑥̄(𝑡), (16)

with 𝐴̄ = 𝐴 + 𝛾𝐼 . Then, one can present the Problem 2 as below:
Problem 2:

min
𝑢̄

∫ ∞
0

(

𝑥̄T(𝜏)𝑄𝑥̄(𝜏) + 𝑢̄T(𝜏)𝑅𝑢̄(𝜏)
)

𝑑𝜏

s.t. ̇̄𝑥(𝑡) = 𝐴̄𝑥̄(𝑡) + 𝐵𝑢̄(𝑡),
(17)

where 𝑄 = 𝑄T > 0 and 𝑅 = 𝑅T > 0. ■

3. Solution to the 𝑳𝑶𝟐𝑹𝑷 with known system matrices

In this section, we present solutions to find 𝐾∗ and 𝐿∗ when the
system matrices are available. That is, the model-driven solutions to
Problems 1–2. To solve the Problem 1, a method of Lagrange multi-
pliers is introduced to convert this problem to a static unconstrained
optimization problem. A model-based VI algorithm is provided to ob-
tain the optimal solution of the Problem 2. The results in this section
will be helpful to develop data-driven VI algorithms to compute the
optimal feedforward control gain and the optimal feedback control gain
in Section 4.

To deal with the Problem 1, inspired by Gao and Jiang (2016),
iang, Kiumarsi, et al. (2020), a Sylvester map 𝛺 ∶ R𝑛𝑥×𝑛𝑤 → R𝑛𝑥×𝑛𝑤 is
ntroduced, which is shown as follows,

(𝑋) = 𝑋𝐸̂ − 𝐴𝑋. (18)

nder the definition of this Sylvester map, a general solution with
ome unknown parameters of (12) can be easily established. Select a

𝑛𝑥×𝑛𝑤
equence 𝑋𝑖 ∈ R with 𝑖 = 0, 1,… , 𝑚 + 1, where 𝑚 = (𝑛𝑥 − 𝑛𝑦)𝑛𝑤, H

3

0 = 0𝑛𝑥×𝑛𝑤 , 𝑋1 ∈ R𝑛𝑥×𝑛𝑤 , so that 𝐶𝑋1 = −𝐹 , and all vec(𝑋𝑖) build a
asis of ker(𝐼𝑛𝑤 ⊗𝐶) with 𝑖 = 2, 3,… , 𝑚 + 1, that is 𝐶𝑋𝑖 = 0. Clearly, a
eneral solution of (13) can be established as the following equation,

= 𝑋0 +𝑋1 +
𝑚+1
∑

𝑖=2
𝛼𝑖𝑋𝑖, (19)

here 𝛼𝑖 ∈ R. Besides, a general solution of (12) can be established as
he following equation,

(𝑋) = 𝛺(𝑋1) +
𝑚+1
∑

𝑖=2
𝛼𝑖𝛺(𝑋𝑖) = 𝐵𝑈 + 𝐷̂. (20)

Thus, the regulator equations (12)–(13) has the following equivalent
orm by using the definition of the Sylvester map in (18) as follows,

𝜒 = 𝜉, (21)

here

=

[

vec(𝛺(𝑋2)) ⋯ vec(𝛺(𝑋𝑚+1)) 0 −𝐼𝑛𝑤 ⊗𝐵

vec(𝑋2) ⋯ vec(𝑋𝑚+1) −𝐼𝑛𝑥𝑛𝑤 0

]

,

𝜒 =
[

𝛼2 ⋯ 𝛼𝑚+1 vec(𝑋)T vec(𝑈 )T
]T,

𝜉 =

[

vec(−𝛺(𝑋1) + 𝐷̂)

−vec(𝑋1)

]

=

[

𝜉1
𝜉2

]

.

hen, by using row operation, Eq. (21) can be rewritten as the following
quation,

𝛬̄11 𝛬̄12

𝛬̄21 𝛬̄22

]

𝜒 =

[

𝜉1
𝜉2

]

, (22)

ith 𝛬̄21 ∈ R𝑚×𝑚 being a nonsingular matrix. Inspired by Gao and Jiang
2016), Jiang, Kiumarsi, et al. (2020), above equation can be rewritten
s the following equation,

𝑋̄ = 𝛹, (23)

here 𝛱 = −𝛬̄11𝛬̄−1
21 𝛬̄22 + 𝛬̄12 and 𝛹 = −𝛬̄11𝛬̄−1

21 𝜉2 + 𝜉1.
By using the method of Lagrange multipliers, the static constrained

ptimization problem in (14) can be converted as a static and uncon-
trained optimization problem, that is,

in
𝑋̄

𝐽 = 𝑋̄T𝑀𝑋̄ + 𝜆T(𝛱𝑋̄ − 𝛹 ). (24)

ccording to the optimization theory, we need to compute the partial
erivative of 𝐽 in (24) with respect to 𝑋̄ and 𝜆, respectively. They are
𝜕𝐽
𝜕𝑋̄

=2𝑀𝑋̄ +𝛱T𝜆, (25)

𝜕𝐽
𝜕𝜆T

=𝛱𝑋̄ − 𝛹. (26)

By setting (25)–(26) equal to 0, one has the optimal solutions of
Problem 1. They are
[

𝑋̄

𝜆

]

=
[

2𝑀 𝛱T

𝛱 0

]−1 [ 0

𝛹

]

. (27)

Problem 2 is a standard linear quadratic regulator (LQR) problem.
By Zhou et al. (2008), the dynamic constrained optimization problem
in (17) can be solved by designing the following controller,

𝑢̄(𝑡) = −𝐾∗𝑥̄(𝑡), (28)

where

𝐾∗ = 𝑅−1𝐵T𝑃 ∗ (29)

and 𝑃 ∗ = (𝑃 ∗)T > 0 is the unique positive definite solution to the
ollowing CT algebraic Riccati equation (ARE),

𝐴̄ + 𝐴̄T𝑃 +𝑄 − 𝑃𝐵𝑅−1𝐵T𝑃 = 0. (30)

One way to compute the 𝐾∗ is to solve the CT ARE (30), directly.

owever, this CT ARE is a nonlinear function with respect to 𝑃 .
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Algorithm 1 Model-based VI Algorithm for 𝐿𝑂2𝑅𝑃 with assured
onvergence rate
Initiation: Start with an arbitrary feedback control gain matrix 𝐾0 and
positive semi-definite matrix 𝑃0. Set 𝑗 ← 0, 𝑞 ← 0. Select a small
hreshold 𝜀 > 0, a sequence 𝑋𝑖 ∈ R𝑛𝑥×𝑛𝑤 , a predefined convergence
ate parameter 𝛾 ≥ 0, bounded sets {𝐵𝑞}∞𝑞=0 with nonempty interiors,
and a sequence {𝜖𝑗}∞𝑗=0 satisfying

𝑞 ⊆ 𝐵𝑞+1, 𝑞 ∈ N, lim
𝑞→∞

𝐵𝑞 = P𝑛
+, (33)

𝑗 > 0,
∞
∑

𝑗=0
𝜖𝑗 = ∞,

∞
∑

𝑗=0
𝜖2𝑗 < ∞. (34)

ptimal feedback control gain computation: Iterate the following
hree steps on 𝑗 until the matrix sequence {𝑃𝑗}∞𝑗=0 converges.

1. Value Evaluation: Solve 𝑃𝑗+1 from the following equation

𝑃𝑗+1 = 𝑃𝑗 + 𝜖𝑗 (𝐴̄T𝑃𝑗 + 𝑃𝑗 𝐴̄ +𝑄 −𝐾T
𝑗 𝑅𝐾𝑗 ); (35)

2. Policy Improvement: Improve the feedback control gain 𝐾𝑗+1
by

𝐾𝑗+1 = 𝑅−1𝐵T𝑃𝑗+1; (36)

3. If 𝑃𝑗+1 ∉ 𝐵𝑞 , set 𝑃𝑗+1 ← 𝑃0, 𝑞 ← 𝑞 + 1; else if ‖𝑃𝑗+1 − 𝑃𝑗‖∕𝜖𝑗 < 𝜀,
return 𝑃𝑗+1 and 𝐾𝑗+1 as the approximations of 𝑃 ∗ and 𝐾∗; else
𝑃𝑗+1 ← 𝑃𝑗+1, 𝑗 ← 𝑗 + 1 and go to the value evaluation.

Optimal feedforward control gain computation: Solve for the solu-
tions (𝑋,𝑈 ) of the regulator equations (12)–(13) using Eq. (27). Then
calculate the optimal feedforward gain matrix 𝐿∗ = 𝑈 +𝐾𝑗𝑋.

Another way to obtain 𝐾∗ is using some iteration based approaches,
including PI and VI based RL algorithm. In the PI approach (Kleinman,
1968), an initial stabilizing feedback control gain is required to achieve
convergence. In the VI approach, this requirement is relaxed. The
following algorithm shows how to use model-based VI approach to
solve the 𝐿𝑂2𝑅𝑃 and a lemma is given to show the convergence of
his algorithm.

emma 1 (Bian & Jiang, 2016). Consider {𝑃𝑗}∞𝑗=0 and {𝐾𝑗}∞𝑗=0 in
lgorithm 1. Under Assumption 1, one has the following properties,

lim
𝑗→∞

𝑃𝑗 = 𝑃 ∗, (31)

lim
→∞

𝐾𝑗 = 𝐾∗. (32)

emark 1. The condition in Assumption 1 implies that (𝐴̄, 𝐵) is
ontrollable. If Assumption 1 is relaxed by the pair (𝐴,𝐵) is stabilizable,
he convergence rate requirement is still achievable, but 𝛾 should be
maller than the opposite number of maximum uncontrollable stable
igenvalue of 𝐴 so that (𝐴̄, 𝐵) is still stabilizable.

emark 2. Under the condition in Assumption 4, the regulator equa-
ions (12)–(13) are solvable. Based on the conclusion in Lemma 1, one
as that Algorithm 1 can solve the 𝐿𝑂2𝑅𝑃 . Moreover, this algorithm
as two advantages. First, a stabilizing feedback control gain is no
onger required to initiate the learning process. Second, compared
ith the model-based PI approach (Kleinman, 1968), there is no need
o solve a Lyapunov equation at each iteration, which reduces the
omputational burden per iteration.

. VI based adaptive optimal control for solving 𝑳𝑶𝟐𝑹𝑷

We have proposed a model-based solution to the 𝐿𝑂2𝑅𝑃 in Sec-
ion 3. However, it is computed based on the exact values of the system
4

atrices. In this section, we will develop a data-driven VI algorithm to
earn the solution to the 𝐿𝑂2𝑅𝑃 with known matrices 𝐶 and 𝐹 , which
s realized by using the online states data of the concerned disturbed
inear LTI CT system and the exo-system and input data.
By defining 𝑥̄𝑖(𝑡) = e𝛾𝑡(𝑥(𝑡) − 𝑋𝑖𝑤(𝑡)) for 𝑖 = 0, 1,… , 𝑚 + 1, one has

he following equation,

̇̄ 𝑖(𝑡) =𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) + (𝐷̂ −𝑋𝑖𝐸̂)𝑤(𝑡)

=𝐴𝑥̄𝑖(𝑡) + 𝐵𝑢(𝑡) + (𝐷̂ −𝛺(𝑋𝑖))𝑤(𝑡), (37)

here 𝑤̄(𝑡) = e𝛾𝑡𝑤(𝑡) and 𝑢̂(𝑡) = e𝛾𝑡𝑢(𝑡).
Along with the solutions of (37), one yields the following equation,

𝑑
𝑑𝑡

(

𝑥̄T𝑖 (𝑡)𝑃𝑗 𝑥̄𝑖(𝑡)
)

=
(

𝐴̄𝑥̄𝑖(𝑡) + 𝐵𝑢̂(𝑡) + (𝐷̂ −𝛺(𝑋𝑖))𝑤̄(𝑡)
)T 𝑃𝑗 𝑥̄𝑖(𝑡)

+ 𝑥̄T𝑖 (𝑡)𝑃𝑗
(

𝐴̄𝑥̄𝑖(𝑡) + 𝐵𝑢̂(𝑡) + (𝐷̂ −𝛺(𝑋𝑖))𝑤̄(𝑡)
)

=𝑥̄T𝑖 (𝑡)𝐻𝑗 𝑥̄𝑖(𝑡) + 2𝑢̂T(𝑡)𝑅𝐾𝑗 𝑥̄𝑖(𝑡)

+ 2𝑥̄T𝑖 (𝑡)𝑃𝑗 (𝐷̂ −𝛺(𝑋𝑖))𝑤̄(𝑡), (38)

here 𝐻𝑗 = 𝐴̄T𝑃𝑗 + 𝑃𝑗𝐴̄ and 𝐾𝑗 = 𝑅−1𝐵T𝑃𝑗 .
By taking the integration of Eq. (38), we observe that the following

quation holds,

𝑥̄T𝑖 (𝑡 + 𝛿𝑡)𝑃𝑗 𝑥̄𝑖(𝑡 + 𝛿𝑡) − 𝑥̄T𝑖 (𝑡)𝑃𝑗 𝑥̄𝑖(𝑡)

∫

𝑡+𝛿𝑡

𝑡
𝑥̄T𝑖 (𝜏)𝐻𝑗 𝑥̄𝑖(𝜏)𝑑𝜏 + ∫

𝑡+𝛿𝑡

𝑡
2𝑢̂T(𝜏)𝑅𝐾𝑗 𝑥̄𝑖(𝜏)𝑑𝜏

+ ∫

𝑡+𝛿𝑡

𝑡
2𝑥̄T𝑖 (𝜏)𝑃𝑗 (𝐷̂ −𝛺(𝑋𝑖))𝑤̄(𝜏)𝑑𝜏, (39)

here 𝛿𝑡 > 0. Using Kronecker product representation, one obtains the
ollowing equations,

𝑥̄T𝑖 (𝑡)𝑃𝑗 𝑥̄𝑖(𝑡) =
(

𝑥̄T𝑖 (𝑡)⊗ 𝑥̄T𝑖 (𝑡)
)

vec(𝑃𝑗 ),

𝑥̄T𝑖 (𝜏)𝐻𝑗 𝑥̄𝑖(𝜏) =
(

𝑥̄T𝑖 (𝜏)⊗ 𝑥̄T𝑖 (𝜏)
)

vec(𝐻𝑗 ),

𝑢T(𝜏)𝑅𝐾𝑗 𝑥̄𝑖(𝜏) =
(

𝑥̄T𝑖 (𝜏)⊗ 𝑢T(𝜏)𝑅
)

vec(𝐾𝑗 ),

̄T𝑖 (𝜏)𝑃𝑗 (𝐷̂ −𝛺(𝑋𝑖))𝑤(𝜏) =
(

𝑤T(𝜏)⊗ 𝑥̄T𝑖 (𝜏)
)

vec(𝑃𝑗 (𝐷̂ −𝛺(𝑋𝑖))).

Next, for positive integer 𝑠, define the following matrices,

𝜉𝑥̄𝑖 𝑥̄𝑖 =
[

vecv(𝑥̄𝑖(𝑡1)) − vecv(𝑥̄𝑖(𝑡0)), vecv(𝑥̄𝑖(𝑡2))

−vecv(𝑥̄𝑖(𝑡1)),… , vecv(𝑥̄𝑖(𝑡𝑠)) − vecv(𝑥̄𝑖(𝑡𝑠−1))
]T ,

𝑥̄𝑖 𝑥̄𝑖 =

[

∫

𝑡1

𝑡0
vecv(𝑥̄𝑖(𝜏))𝑑𝜏,∫

𝑡2

𝑡1
vecv(𝑥̄𝑖(𝜏))𝑑𝜏,… ,

∫

𝑡𝑠

𝑡𝑠−1
vecv(𝑥̄𝑖(𝜏))𝑑𝜏

]T

,

𝛤𝑥̄𝑖 𝑢̂ =

[

∫

𝑡1

𝑡0
𝑥̄𝑖(𝜏)⊗𝑅𝑢̂(𝜏)𝑑𝜏,∫

𝑡2

𝑡1
𝑥̄𝑖(𝜏)⊗𝑅𝑢̂(𝜏)𝑑𝜏,… ,

∫

𝑡𝑠

𝑡𝑠−1
𝑥̄𝑖(𝜏)⊗𝑅𝑢̂(𝜏)𝑑𝜏

]T

,

𝛤𝑤̄𝑥̄𝑖 =

[

∫

𝑡1

𝑡0
𝑤̄(𝜏)⊗ 𝑥̄𝑖(𝜏)𝑑𝜏,∫

𝑡2

𝑡1
𝑤̄(𝜏)⊗ 𝑥̄𝑖(𝜏)𝑑𝜏,… ,

∫

𝑡𝑠

𝑡𝑠−1
𝑤̄(𝜏)⊗ 𝑥̄𝑖(𝜏)𝑑𝜏

]T

,

where 0 ≤ 𝑡0 < 𝑡1 < ⋯ < 𝑡𝑠.
Using the above matrices, one can rewrite (39) as the following

equation,

[

𝛤𝑥̄𝑖 𝑥̄𝑖 , 2𝛤𝑥̄𝑖 𝑢̂, 2𝛤𝑤̄𝑥̄𝑖

]

⎡

⎢

⎢

⎢

⎣

vecs(𝐻𝑗 )

vec(𝐾𝑗 )

vec(𝑃𝑗 (𝐷̂ −𝛺(𝑋𝑖)))

⎤

⎥

⎥

⎥

⎦

= 𝜉𝑥̄𝑖 𝑥̄𝑖vecs(𝑃𝑗 ). (40)

Note that the solution of (40) is unique if the rank condition
in Lemma 2 is satisfied.
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Lemma 2. For 𝑖 = 0, 1,… , 𝑚 + 1, (40) has an unique solution if the
following rank condition holds,

rank
([

𝛤𝑥̄𝑖 𝑥̄𝑖 , 2𝛤𝑥̄𝑖 𝑢̂, 2𝛤𝑤̄𝑥̄𝑖

])

=
𝑛𝑥(𝑛𝑥 + 1)

2
+ 𝑛𝑥(𝑛𝑢 + 𝑛𝑤).

By Lemma 2, one has that Eq. (40) has an unique solution by using
the least squares (LS) method, that is,

⎡

⎢

⎢

⎢

⎣

vecs(𝐻𝑗 )

vec(𝐾𝑗 )

vec(𝑃𝑗 (𝐷̂ −𝛺(𝑋𝑖)))

⎤

⎥

⎥

⎥

⎦

= 𝛩𝑗𝜉𝑥̄𝑖 𝑥̄𝑖vecs(𝑃𝑗 ), (41)

here 𝛩𝑗 =
(

[

𝛤𝑥̄𝑖 𝑥̄𝑖 , 2𝛤𝑥̄𝑖 𝑢̂, 2𝛤𝑤̄𝑥̄𝑖

]T [
𝛤𝑥̄𝑖 𝑥̄𝑖 , 2𝛤𝑥̄𝑖 𝑢̂, 2𝛤𝑤̄𝑥̄𝑖

]

)−1

𝛤𝑥̄𝑖 𝑥̄𝑖 , 2𝛤𝑥̄𝑖 𝑢̂, 2𝛤𝑤̄𝑥̄𝑖

]T
.

Then, from Eq. (41), one can calculate 𝑃𝑗 , 𝐾𝑗 and 𝑃𝑗 (𝐷̂−𝛺(𝑋𝑖)) for
= 0, 1,… , 𝑚 + 1. For 𝑖 = 0, we obtain 𝐷̂ by 𝐷̂ = 𝑃−1

𝑗 𝑃𝑗 (𝐷̂ − 𝛺(𝑋𝑖));
or 𝑖 = 1,… , 𝑚 + 1, we have 𝛺(𝑋𝑖) by 𝛺(𝑋𝑖) = −𝑃−1

𝑗 𝑃𝑗 (𝐷̂ −𝛺(𝑋𝑖)) − 𝐷̂.
oreover, one can calculate 𝐵 by 𝐵 = 𝑃−1

𝑗 𝐾T
𝑗 𝑅. The matrix 𝛬 in (21)

an be rewritten as follows,

=

[

vec(𝛺(𝑋2)) ⋯ vec(𝛺(𝑋𝑚+1)) 0

vec(𝑋2) ⋯ vec(𝑋𝑚+1) −𝐼𝑛𝑥×𝑛𝑤
−𝐼𝑛𝑤 ⊗ 𝑃−1

𝑗 𝐾T
𝑗 𝑅

0

]

. (42)

Finally, an online VI based algorithm is given for the 𝐿𝑂2𝑅𝑃 as
lgorithm 2, and a theorem is provided to show the convergence of
his algorithm.
Algorithm 2 Online VI Algorithm for the 𝐿𝑂2𝑅𝑃 with assured
onvergence rate
Initiation: Start with an arbitrary feedback control gain matrix 𝐾0 and
positive semi-definite matrix 𝑃0. Set 𝑗 ← 0, 𝑞 ← 0, 𝑖 ← 0. Select a small
hreshold 𝜀 > 0, a sequence 𝑋𝑖 ∈ R𝑛𝑥×𝑛𝑤 , a predefined convergence
ate parameter 𝛾 ≥ 0, and a collection of bounded sets {𝐵𝑞}∞𝑞=0 with
onempty interiors and a sequence {𝜖𝑗}∞𝑗=0 satisfying (33) and (34).
mploy 𝑢(𝑡) = 𝐾0𝑥(𝑡) + 𝑒(𝑡) as the input on [𝑡0, 𝑡𝑠].
ptimal feedback control gain computation: Iterate the following
hree steps on 𝑗 until the matrix sequence {𝑃𝑗}∞𝑗=0 converges.

1. Solve for matrices 𝐻𝑗 and 𝐾𝑗 using (40), then calculate (35) by
using the following equation,

𝑃𝑗+1 = 𝑃𝑗 + 𝜖𝑗 (𝐻𝑗 +𝑄 −𝐾T
𝑗 𝑅𝐾𝑗 ); (43)

2. If 𝑃𝑗+1 ∉ 𝐵𝑞 , set 𝑃𝑗+1 ← 𝑃0, 𝑞 ← 𝑞 + 1; else if ‖𝑃𝑗+1 − 𝑃𝑗‖∕𝜖𝑗 < 𝜀,
return 𝑃𝑗 and 𝐾𝑗 as the approximations of 𝑃 ∗ and 𝐾∗; else
𝑃𝑗+1 ← 𝑃𝑗+1, 𝑗 ← 𝑗 + 1 and go to the value evaluation.

ptimal feedforward control gain computation: Let 𝑗∗ ← 𝑗 and
← 𝑖+1, repeat solving 𝛺(𝑋𝑖) by using (41) until 𝑖 = 𝑚+1. Then, solve
or the solutions (𝑋,𝑈 ) of the regulator equations (12)–(13) using (27)
nd (42). At last, calculate the optimal feedforward gain 𝐿∗ = 𝑈+𝐾𝑗∗𝑋.

Theorem 1. Consider {𝑃𝑗}∞𝑗=0 and {𝐾𝑗}∞𝑗=0 obtained by Algorithm 2.
Under Assumptions 1 and 4, if Lemma 2 is satisfied, one has the following
properties,

lim
𝑗→∞

𝑃𝑗 = 𝑃 ∗, (44)

lim
𝑗→∞

𝐾𝑗 = 𝐾∗. (45)

Proof. Under the rank condition in Lemma 2, Eq. (41) has a unique
solution. Then, 𝐻𝑗 , 𝐾𝑗 and 𝑃𝑗 (𝐷̂−𝛺(𝑋𝑖)) obtained by Algorithm 2 must
satisfy Eq. (39). This implies that 𝑃𝑗+1 and 𝑃𝑗+1 are equivalent to the
ones in the model-based VI Algorithm 1. By Lemma 1, the convergences

of 𝑃𝑗 and 𝐾𝑗 is ensured. The proof of Theorem 1 is completed. □ 𝑥

5

Theorem 1 shows the convergence of the online VI algorithm, which
uses online data to approximate the optimal feedback control gain and
the corresponding feedforward control gain. Under the obtained control
gains, one can design an approximate optimal controller to solve the
𝐿𝑂2𝑅𝑃 . We will present the main results in the following theorem.

Theorem 2. Consider the disturbed CT linear system in (1)–(2) with the
exosystem in (3) and the reference signal in (4). Under Assumptions 1–4,
the closed-loop system with the learned controller 𝑢(𝑡) = −𝐾𝑗∗𝑥(𝑡) +𝐿∗𝑤(𝑡)
by Algorithm 2 is GAS. Moreover, the convergence rate of the state and
tracking error is ensured to be no slower than e−𝛾𝑡.

Proof. The system (1)–(2) with the controller 𝑢(𝑡) = −𝐾𝑗𝑥(𝑡) +𝐿∗𝑤(𝑡) is
quivalent to the following system

̇̄ (𝑡) = (𝐴̄ − 𝐵𝐾𝑗 )𝑥̄(𝑡), (46)

𝑒(𝑡) = 𝐶𝑥̄(𝑡) + (𝐶𝑋 + 𝐹 )𝑤̄(𝑡). (47)

iven a stabilizing feedback control gain matrix 𝐾𝑗 , one has that
im𝑡→∞ 𝑥̄(𝑡) = 0. This implies that lim𝑡→∞ 𝑒(𝑡) = lim𝑡→∞ 𝐶𝑥̄(𝑡) = 0 and
he convergence rate of 𝑥(𝑡) and 𝑒(𝑡) is no slower than e−𝛾𝑡. The proof
f Theorem 2 is completed. ■

emark 3. The probing noise 𝑒(𝑡) introduced in the control input as-
ures the rank condition in Lemma 2 is satisfied. Moreover, Algorithm 2
s subject to off-policy RL algorithms. The control policy that generates
he online data is different from the control policy that is evaluated
nd improved, and interestingly the probing noise does not affect the
ccuracy of solutions at each iteration (Jiang, Kiumarsi, et al., 2020;
iang et al., 2021; Kiumarsi et al., 2017; Li et al., 2018).

. Application on a LCL coupled inverter-based distributed gener-
tion system

In the last bidecade, the distributed generation system has been
nder extensive investigations due to its short build time (see Ahmed
t al., 2010, and references therein). In order to ensure the distributed
eneration system operates smoothly in the grid-connected mode, pas-
ive power LCL filters are usually introduced to connect the grid and
he inverter, which formulates LCL-coupled inverter-based distributed
eneration systems. The control goal of these systems is designing a
ontroller such that (1) the output current asymptotically follows the
esired trajectory, (2) the effect from the grid voltage, the disturbance,
s rejected. When the dynamics of distributed generation system model
re accurately known, one can use the approaches developed in Ahmed
t al. (2010) to realize the control goal. However, to identify the system
ynamics and measure the grid voltage perfectly is almost impossible
n practice due to the resistance, the inductance and the capacitance
ary with circuit operation and temperature. Notably, the proposed VI
lgorithm is a good candidate to control distributed generation systems
n an optimal sense with unknown system model and unmeasurable
isturbance (see Figs. 5 and 6). Therefore, in this section, we apply
he proposed approach to a LCL coupled inverter-based distributed
eneration system to illustrate the effectiveness. The system dynamics
s shown as follows (Ahmed et al., 2010) and illustrated in Fig. 1,

𝑉𝐼 = 𝐼𝐿𝑅1 + 𝐿1
𝑑𝐼𝐿
𝑑𝑡

+ 𝑉𝐶 ,

𝐼𝐿 = 𝐼𝑂 + 𝐶
𝑑𝑉𝐶
𝑑𝑡

,

𝑉𝐶 = 𝐼𝑂𝑅2 + 𝐿2
𝑑𝐼𝑂
𝑑𝑡

+ 𝑉𝐺 ,

where the physical significance and the value of parameters 𝑉𝐼 , 𝐼𝐿, 𝑅1,
1, 𝑉𝐶 , 𝐼𝑂, 𝐶, 𝑅2, 𝐿2 and 𝑉𝐺 can be found in Table 1. By considering
∶= [𝐼 , 𝑉 , 𝐼 ]T, 𝑦 ∶= 𝐼 and 𝑢 ∶= 𝑉 , 𝑑 ∶= [0, 0,−𝑉 ∕𝐿 ]T as the state
𝐿 𝐶 𝑂 𝑂 𝐼 𝐺 2
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Fig. 1. Block diagram of LCL coupled inverter-based distributed generation system.

Table 1
Physical meaning and value of parameter.
Parameter Physical meaning Value Unit

𝑉𝐼 Input voltage – V
𝐼𝐿 Inductor current – A
𝑅1 Filter resistor 0.2 Ω
𝐿1 Filter inductor 2.5 mH
𝑉𝐶 Capacitor voltage – V
𝐼𝑂 Output current – A
𝐶 Capacitor 30 μF
𝑅2 Transformer resistor 2.5 Ω
𝐿2 Transformer inductor 5.5 mH
𝑉𝐺 Grid voltage – V

vector, output, input and disturbance, one can obtain the following
disturbed LTI CT state-space model,

̇ (𝑡) =

⎡

⎢

⎢

⎢

⎢

⎣

−𝑅1
𝐿1

− 1
𝐿1

0
1
𝐶 0 − 1

𝐶

0 1
𝐿2

−𝑅2
𝐿2

⎤

⎥

⎥

⎥

⎥

⎦

𝑥(𝑡) +

⎡

⎢

⎢

⎢

⎣

1
𝐿1
0
0

⎤

⎥

⎥

⎥

⎦

𝑢(𝑡) + 𝑑(𝑡),

𝑒(𝑡) =𝑥3(𝑡) − 𝑦𝑑 (𝑡),

ith 𝐴, 𝐵 and 𝐶 in system (1)–(2) being

𝐴 =

⎡

⎢

⎢

⎢

⎣

−0.08 −0.4 0

33.33 0 −33.33

0 0.1818 −0.5

⎤

⎥

⎥

⎥

⎦

, 𝐵 =

⎡

⎢

⎢

⎢

⎣

0.4

0

0

⎤

⎥

⎥

⎥

⎦

,

=
[

0 0 1
]

.

The reference signal 𝑦𝑑 (𝑡) is chosen as 𝑦𝑑 (𝑡) = −10 sin(100𝜋𝑡 + 𝜋∕3);
𝐺 is the sum of sinusoidal waves with unknown phase and amplitude,
ut the frequencies are known and assumed to be 50 Hz and 60 Hz.
herefore, the exosystem (5) has the following form,

̇ (𝑡) =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0 −100𝜋 0 0

100𝜋 0 0 0

0 0 0 −120𝜋

0 0 120𝜋 0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

𝑤(𝑡).

he initial condition is 𝑤(0) = [1, 0, 1, 0]T, and 𝐹 is

̂ = [5
√

3, 5, 0, 0]T.

Beside, in this section, we assume that 𝑉𝐺 = [1, 0, 2, 0]𝑤(𝑡) and hence 𝐷̂
is

𝐷̂ =

⎡

⎢

⎢

⎢

⎣

0 0 0 0

0 0 0 0

−0.5 0 −1 0

⎤

⎥

⎥

⎥

⎦

.

Note that 𝐷̂ is only used to generate online data, and is unknown
hen implementing the Algorithm 2. We select the parameters in (14)
nd (17) as 𝑄 = 𝑄̄ = 𝐼 , 𝑅 = 𝑅̄ = 1 and 𝛾 = 0.5. Therefore, the solutions
 t

6

Fig. 2. Trajectories of output 𝑦(𝑡) and reference 𝑦𝑑 (𝑡) via Algorithm 2.

f the regulator equations (12)–(13), and the idea values of 𝑃 , 𝐾 and
are

𝑋 =

⎡

⎢

⎢

⎢

⎣

8.6229 4.7131 0 −0.0622

30.4419 −3.9638 5.5 0

8.6603 5 0 0

⎤

⎥

⎥

⎥

⎦

,

𝑈 =
[

35.8687 −9.7936 5.4414 −0.0124
]

,

𝑃 ∗ =

⎡

⎢

⎢

⎢

⎣

26.5395 1.341 −16.4614

1.341 0.5421 −0.4992

−16.4614 −0.4992 45.3882

⎤

⎥

⎥

⎥

⎦

,

∗ =
[

10.6158 0.5364 −6.5845
]

,

𝐿∗ =
[

86.7127 5.1906 8.3916 −0.6727
]

.

In the simulation experiment result, the parameters are selected as
ollows: 𝜀 = 0.01, 𝜖𝑗 = 0.1∕

√

𝑗, 𝐵𝑞 = {𝑋 > 0|‖𝑋‖ < 30(𝑞 + 1)}, 𝑠 = 40,
̂(𝑡) = 0.2 sin(15𝑡) + sin(5𝑡) sin(8𝑡), 𝐾0 = [−1, 0, 0], 𝑥(0) = [0, 0, 0]T, 𝑋𝑖 are

0 =

⎡

⎢

⎢

⎢

⎣

0 0 0 0

0 0 0 0

0 0 0 0

⎤

⎥

⎥

⎥

⎦

, 𝑋1 =

⎡

⎢

⎢

⎢

⎣

0 0 0 0

0 0 0 0

5
√

3 5 0 0

⎤

⎥

⎥

⎥

⎦

,

𝑋2 =

⎡

⎢

⎢

⎢

⎣

1 0 0 0

0 0 0 0

0 0 0 0

⎤

⎥

⎥

⎥

⎦

, 𝑋3 =

⎡

⎢

⎢

⎢

⎣

0 1 0 0

0 0 0 0

0 0 0 0

⎤

⎥

⎥

⎥

⎦

,

𝑋4 =

⎡

⎢

⎢

⎢

⎣

0 0 1 0

0 0 0 0

0 0 0 0

⎤

⎥

⎥

⎥

⎦

, 𝑋5 =

⎡

⎢

⎢

⎢

⎣

0 0 0 1

0 0 0 0

0 0 0 0

⎤

⎥

⎥

⎥

⎦

,

𝑋6 =

⎡

⎢

⎢

⎢

⎣

0 0 0 0

1 0 0 0

0 0 0 0

⎤

⎥

⎥

⎥

⎦

, 𝑋7 =

⎡

⎢

⎢

⎢

⎣

0 0 0 0

0 1 0 0

0 0 0 0

⎤

⎥

⎥

⎥

⎦

,

𝑋8 =

⎡

⎢

⎢

⎢

⎣

0 0 0 0

0 0 1 0

0 0 0 0

⎤

⎥

⎥

⎥

⎦

, 𝑋9 =

⎡

⎢

⎢

⎢

⎣

0 0 0 0

0 0 0 1

0 0 0 0

⎤

⎥

⎥

⎥

⎦

.

Then, one can compute the eigenvalues of the matrix 𝐴 − 𝐵𝐾0 are
0.048 + 4.391𝑖, 0.048 − 4.391𝑖 and −0.176. Clearly, the initial feedback
ontrol gain matrix 𝐾0 is not admissible stabilizing. In the simulation
xperiment, 𝑡0 = 0s, 𝑡1 = 0.5s, 𝑡2 = 1s, . . . , 𝑡𝑠 = 20s. Therefore, the
ontrol input is 𝑢(𝑡) = 𝐾0𝑥(𝑡)+𝑒(𝑡) when 𝑡 ∈ [0, 20] and updated as 𝑢(𝑡) =
−𝐾𝑗∗𝑥(𝑡)+𝐿∗𝑤(𝑡) after 20s. Moreover, when 𝑡 > 100, the 60 Hz wave in
he grid voltage disappears and hence 𝑤3(𝑡) = 0 and 𝑤4(𝑡) = 0. Based on

hese parameters and situations descriptions, the simulation experiment



Y. Jiang, W. Gao, J. Na et al. Control Engineering Practice 121 (2022) 105042

(
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a
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s
a
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Fig. 3. Trajectory of input 𝑢(𝑡) via Algorithm 2.

Fig. 4. Trajectory of 𝑤(𝑡).

result is shown. Figs. 2–3 show trajectories of output 𝑦(𝑡), reference
𝑦𝑑 (𝑡) and input 𝑢(𝑡) via Algorithm 2. Fig. 4 shows the trajectory of 𝑤(𝑡)
while Fig. 5 shows the trajectory of ‖𝑃𝑗 − 𝑃 ∗

‖ via Algorithm 2. It can
be observed that the output of the controlled plant can be regulated via
the learned feedback control gain and the learned feedforward control
gain by Algorithm 2 even with 𝑤(𝑡) suddenly changing. The learned
solutions of the regulator equations (12)–(13), and the learned values
of 𝑋, 𝑈 , 𝑃𝑗 , 𝐾𝑗 and 𝐿 are

𝑋 =

⎡

⎢

⎢

⎢

⎣

8.6229 4.7131 0 −0.0622

30.4419 −3.9638 5.5 0

8.6603 5 0 0

⎤

⎥

⎥

⎥

⎦

,

𝑈 =
[

35.8687 −9.7936 5.4414 −0.0124
]

,

𝑃𝑗 =

⎡

⎢

⎢

⎢

⎣

26.5372 1.3408 −16.4681

1.3408 0.5421 −0.4999

−16.4681 −0.4999 45.3885

⎤

⎥

⎥

⎥

⎦

,

𝐾𝑗 =
[

10.6149 0.5363 −6.5873
]

,

𝐿 =
[

86.6787 5.1733 8.3911 −0.6727
]

.

Then, we provide a compared simulation experiment with standard
PI based approach in Gao and Jiang (2016) to show that the proposed
approach can tune the convergence rate of 𝑒(𝑡) by regulating the
convergence rate criterion 𝛾, which has been proved in Theorem 2.

If the initial control feedback gain is selected such that 𝐴 − 𝐵𝐾0 is

7

Fig. 5. Trajectory of ‖𝑃𝑗 − 𝑃 ∗
‖ via Algorithm 2.

Fig. 6. Compared simulation results with standard PI based approach in Gao and Jiang
2016) and different convergence rate criterion 𝛾.

ot Hurwitz, cannot learn the optimal feedback control gain and the
olutions of the regulator equations (12)–(13). Therefore, we select an
dmissible initial control feedback gain for the compared approach.
n the compared simulation, there are four tracking errors based on
tandard PI based approach in Gao and Jiang (2016) and the proposed
pproach with different convergence rate criterion 𝛾, and we choose the
ame initial conditions as 𝑥(0) = [0, 0, 0]T and 𝑤(0) = [1, 0, 1, 0]T. The
compared simulation results with standard PI based approach in Gao
and Jiang (2016) and different convergence rate criterion 𝛾 are de-
picted in Fig. 6. It can be observed from Fig. 6 that: (1) the convergence
rate of the tracking errors based on the proposed approach is faster
then that of the tracking error based on the compared approach; (2)
the convergence rate of the tracking errors can be tuned by choosing
different convergence rate criterion 𝛾 and is faster then e−𝛾𝑡.

At last, we provide a compared simulation experiment with linear
quadratic tracking control approach in Modares and Lewis (2014a) to
show that the proposed approach can result in performance advantages.
In Modares and Lewis (2014a), the controller has the following form,

𝑢(𝑡) = − 𝐾̄

[

𝑥(𝑡)

𝑤(𝑡)

]

=𝑅−1𝐵̄T𝑃 ∗

[

𝑥(𝑡)

𝑤(𝑡)

]

,
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Fig. 7. Compared simulation results with linear quadratic tracking control approach
n Modares and Lewis (2014a).

here 𝑃 ∗ is the positive definite solution of the following linear
uadratic tracking ARE,

̄𝑇 + 𝑇 T𝑃 + 𝐶̄T𝑄̄𝐶̄ − 𝑃 𝐵̄𝑅−1𝐵̄T𝑃 = 0,

with

𝑇 =

[

𝐴 𝐷̂

0 𝐸̂

]

− 0.5𝛼𝐼, 𝐵̄ =

[

𝐵

0

]

, 𝐶̄ =
[

𝐶 𝐹
]

, 𝑄̄ > 0.

In the compared simulation experiment, we select the parameters as
𝛼 = 0.2 and 𝑄̄ = 100000 and we choose the same initial conditions
as 𝑥(0) = [0, 0, 0]T and 𝑤(0) = [1, 0, 1, 0]T. The compared simulation
results with linear quadratic tracking control approach in Modares and
Lewis (2014a) are depicted in Fig. 7. It can be observed from Fig. 7
that the output of the controlled plant can be regulated via Algorithm
2 while the compared approach in Modares and Lewis (2014a) can at-
enuate the disturbance but not make the tracking error asymptotically
onverge to zero.

. Conclusion

In this paper, we studied the 𝐿𝑂2𝑅𝑃 with assured convergence
ate requirement under the challenges from the unknown system and
xosystem dynamics. Without relying on the knowledge of system
ynamics and initial stabilizing feedback control gain, a novel VI algo-
ithm is proposed, which is capable of learning the optimal regulator
sing online data with a guaranteed convergence rate. An application
o a LCL coupled inverter-based distributed generation system shows
he efficiency of the learning-based output regulation approach.
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