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ABSTRACT

In this paper, we investigate the learning-based adaptive optimal output regulation problem with convergence
rate requirement for disturbed linear continuous-time systems. An adaptive optimal control approach is
proposed based on reinforcement learning and adaptive dynamic programming to learn the optimal regulator
with assured convergence rate. The above-mentioned problem is successfully solved by tackling a static
optimization problem to find the optimal solution to the regulator equations, and a dynamic and constrained
optimization problem to obtain the optimal feedback control gain. Without requiring on the accurate system
dynamics or a stabilizing feedback control gain, a novel online value iteration algorithm is proposed, which can
learn both the optimal feedback control gain and the corresponding feedforward control gain using measurable
data. Moreover, the output of the closed-loop system is guaranteed to converge faster or equal to a predefined
convergence rate set by user. Finally, the numerical analysis on a LCL coupled inverter-based distributed
generation system shows that the proposed approach can achieve desired disturbance rejection and tracking

performance.

1. Introduction

To address an output regulation problem, designers need develop
a regulator for the controlled plant to ensure the resultant closed-loop
system rejects external disturbances and tracks some desired trajecto-
ries asymptotically. Model-based solutions to output regulation prob-
lems usually require accurate knowledge of the system model (Francis,
1977; Francis & Wonham, 1976). Practically, building perfect mathe-
matical models for controlled plants may be hard or even impossible.

Instead of directly relying on the system model, some data-driven
and adaptive approaches have been proposed using online data to adap-
tively tune the controller parameters and structure. For instance, He
et al. (1993), Woo et al. (2000) have developed self-tuning PID con-
trollers based on fuzzy logic. Wang and Huang (2005) have designed
an adaptive dynamic surface control approach for uncertain strict-
feedback nonlinear systems based on the neural networks. Park et al.

(2009) have proposed an adaptive sliding mode control approach for
nonholonomic wheeled mobile robots via neural network technology
as well.

To guarantee the transient response of the closed-loop control sys-
tems, one usually requires the states asymptotically converge to the
desired trajectory in an optimal sense, reinforcement learning (RL)
and adaptive dynamic programming (ADP) techniques serve as pow-
erful tools and have been introduced to learn an optimal regulator
for unknown systems. See recent book, survey, tutorial and research
papers (Gao et al., 2021; Jiang, Bian, & Gao, 2020; Kamalapurkar et al.,
2018; Kiumarsi et al., 2018; Liu et al., 2021; Vamvoudakis & Kokolakis,
2020; Wang, Ha, & Qiao, 2020; Wang et al., 2017; Wang, Qiao, &
Cheng, 2020). Among different strategies in the RL and ADP, policy
iteration (PI) and value iteration (VI) are two successive approximation
approaches to seek for the optimal control policy. In order to ensure
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its convergence, PI based RL algorithm usually initiates with an ad-
missible control policy, which is stabilizing and ensures a finite cost.
Unfortunately, in practice, it is usually hard to find such a satisfactory
control policy, especially with unknown or inaccurate system dynamics.
A major advantage of VI based RL algorithm is that one can begin with
any control policy, which is more practical.

Generally, there are two alternative formulations to deal with the
concerned adaptive optimal output regulation problem using RL tech-
niques. The first formulation is to construct a linear quadratic tracker
by introducing a discounted cost function. It was adopted in Modares
and Lewis (2014a), Xue et al. (2021) for linear continuous-time (CT)
systems, in Jiang, Fan, Chai, Lewis, and Li (2018), Kiumarsi et al.
(2014), Wu et al. (2019), Xue et al. (2020) for linear discrete-time
(DT) systems, in Modares and Lewis (2014b), Wang et al. (2021) for
nonlinear CT systems, in Jiang et al. (2019), Jiang, Fan, Chai, Li, and
Lewis (2018), Kiumarsi and Lewis (2015) for nonlinear DT systems.
Another formulation to solve this problem is by splitting it into an
adaptive optimal feedback control problem and an adaptive optimal
feedforward control problem. This approach was adopted in Chen et al.
(2019), Gao and Jiang (2016), Gao et al. (2018) for linear CT systems,
in Fan et al. (2020), Gao and Jiang (2019), Jiang, Kiumarsi, et al.
(2020) for linear DT systems, in Gao and Jiang (2018) for nonlinear CT
systems, in Jiang, Fan, et al. (2020) for nonlinear DT systems. However,
all the above approaches for linear CT systems are realized by adopt-
ing the PI based RL algorithm, which requires an initial admissible
stabilizing feedback control gain to start learning (Kleinman, 1968).
Besides asymptotic tracking, the convergence rate of the closed-loop
system is usually required to be fast enough in practice. In Hong et al.
(2002), the finite-time control of the robot system was studied through
both state feedback and dynamic output feedback control. In Huang
et al. (2017), finite-time controllers were proposed for underactuated
spacecraft hovering in the absence of the radial or in-track thrust. In the
above-mentioned references, the convergence rate is tuned by applying
the finite-time controllers based on the system dynamics. However,
it is not applicable to the case with unknown or inaccurate system
dynamics.

To this end, we will propose a novel data-driven value iteration (VI)
algorithm to handle the adaptive CT linear optimal output regulation
problem (LO?RP) with assured convergence rate in this paper. The
proposed algorithm adaptively learns both optimal feedback and feed-
forward control gains using online measurable data. Moreover, the state
of the system in closed-loop with the learned regulator is guaranteed
to converge faster or equal to a predefined convergence rate. Notably,
different from the PI based RL algorithms, VI based RL algorithms are
free from an initial stabilizing control policy to initiate (see Al-Tamimi
et al., 2008; Bian & Jiang, 2016).

This paper is outlined as follows. In Section 2, we formulate the
LO?RP with assured convergence rate. Section 3 provides the model-
based solution to LO?RP and a VI algorithm to approximate the
optimal feedback control gain. In Section 4, a data-driven VI algo-
rithm is presented to learn the optimal regulator with unknown system
matrices. In Section 5, a numerical analysis based on a LCL cou-
pled inverter-based distributed generation system is given to demon-
strate the efficiency of the proposed learning-based output regulation
approach. Section 6 contains the concluding remarks.

Notation. Throughout this paper, R and N denote respectively the
set of real numbers and the set of positive natural numbers. For a
n € N and two matrices X,Y € R™ X > 0 (X > 0) means
the matrix X is positive definite (positive semi-definite); X > Y
(X > Y) means X — Y is positive definite (positive semi-definite);
o(X) means the complex spectrum of matrix X. For brevity, denote
R"” := R™! Moreover, | - || denotes the Euclidean norm of vectors
and the Frobenius norm of matrices; ® denotes Kronecker product;
P" denotes the normed space of all n-by-n real symmetric matrices;
P? := {Pe€P": P>0}. For mn € N and X € R™", XT denotes
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the transpose of X, vec(X) = [xlT,x;,...,xI]T with x; € R™ the
columns of matrix X. For a symmetric matrix X € R"™", vecs(X) =
[X112 25105 o s 2X s X000 2X03, v s 2X () X)L € RU/DM@+D For a vec-
tor v € R", vecv(v) = [0],010y, ..., 010, 03,0203, .., U, 10, 0217 €
R(l/z)n(n+l).

2. Problem formulation

We start from the following disturbed linear time-invariant (LTI) CT
system,
x(t) =Ax(t) + Bu(t) + Du(t), (@D)]
»(t) =Cx(1), ()]

where x € R, u € R, v € R"™ and y € R" are the state, the
control input, the exostate, and the output, respectively. A € R"*"x,
B € R"*" D € R**" and C € R~ are constant matrices. Following
the output regulation framework, the exosystem is modeled by a linear
LTI CT autonomous systems as follows,

o(1) = Ev(), 3

where E € R"*" is a constant matrix. The reference signal can be
computed as follows,

Yq(0) = —Fo(), C)

where y, € R" is the reference signal and F € R"*".
The following standard assumptions are made throughout this pa-
per.

Assumption 1. The pair (4, B) is controllable.
Assumption 2.

The exosignal v(¢) is unmeasurable.

Assumption 3. The minimal polynomial of E is available.

A-Al B
rank =ny +n,, VA € 6(E).
C 0

Under Assumption 3, one can always find a new state w € R"» and
an autonomous system such that w and v are its state and output, which
is shown as follows,

Assumption 4.

() =Ew(), ©)
o) =Gu(r), (6)
where £ € R"%*w and G € R"™*" are constant matrices. Then, the
controlled plant in (1) and its measurement output e(t) := y(t) — y,(?)
can be formulated as follows,
%(t) =Ax() + Bu(t) + Dw(), @)
e(t) =Cx(t) + Fuw(1), (8)
where D = DG and F = FG.

Our control goal is to develop an optimal regulator for the con-
cerned disturbed LTI CT system in (7) such that the closed-loop system
is globally asymptotically stable (GAS) in an optimal sense. Moreover,

the convergence rate of the tracking error is fast then e~?’, which means
the following requirement needs to be satisfied,

lim e”’e(r) = 0, (C)]
=00

where the convergence rate criterion y satisfies 0 < y < 0. As a
typical strategy to deal with output regulation problems, we present
a feedback-feedforward controller as follows,

u(t) = —Kx(t) + Lw(t), (10)

where K € R"*"x is the feedback control gain and L € R"™*"v is the
feedforward control gain, respectively. As discussed in Francis (1977),
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Huang (2004), K is required to be designed to ensure that A — BK is
Hurwitz and L should satisfy the following equation,

L=U+KX, 11

where X € R and U € R"*"w solves of the following regulator
equations,

XE =AX + BU + D, 12)
0=CX+F. 13)

Under the condition of Assumption 4, Egs. (12)-(13) is solvable
(Knobloch et al.,, 2012). The requirements of the LO>RP focus on
the following aspects: (1) the asymptotic tracking of the output; (2)
the transient performance and the GAS of the resulting linear closed-
loop control system. To satisfy these requirements, a static optimization
Problem 1 needs to be solved to obtain the optimal solution of regulator
equations (X*,U*), while a dynamic constrained optimization Problem
2 requires solved to obtain the optimal feedback control gain K* and
the corresponding feedforward control gain by L* = U* + K*X*. We
first formulate the Problem 1 as follows:

Problem 1:
min XTMmMXx
X
st. XE=AX+BU+D a4
0=CX+F,

where X = [(vec(X)T, (vec®)T]", M = MT>0. W

Under the solutions of (14), by denoting x(1) = e’ (x(t) — Xw(?)),
a(t) = e’(u(t) — Uw(r)) and é&(t) = e’e(t) as the new state, input and
error, respectively, a new CT system can be formulated as follows,

X(t) = yx(t) + e’ (x(t) — X (1))

= y%(1) + "' (Ax(?) + Bu(t) + Dw(t) — X Ew(r))

= yX(t) + €' (Ax(t) + Bu(t) — (AX + BU)w(?))

= Ax(t) + Bi(t), (15)
&) = "' Cx(t) + e Fu(r)

=e"Cx(t) — " CXw(t)

= Cx(1), 16)

with A = A+ yI. Then, one can present the Problem 2 as below:
Problem 2:
min /¥ (xT(0)Qx(r) + @' (r)Ri(z)) d=
" _ a7)
s.t. X(t) = Ax(t) + Bi(t),

where 0=0T>0and R=R">0. H
3. Solution to the LO?2RP with known system matrices

In this section, we present solutions to find K* and L* when the
system matrices are available. That is, the model-driven solutions to
Problems 1-2. To solve the Problem 1, a method of Lagrange multi-
pliers is introduced to convert this problem to a static unconstrained
optimization problem. A model-based VI algorithm is provided to ob-
tain the optimal solution of the Problem 2. The results in this section
will be helpful to develop data-driven VI algorithms to compute the
optimal feedforward control gain and the optimal feedback control gain
in Section 4.

To deal with the Problem 1, inspired by Gao and Jiang (2016),
Jiang, Kiumarsi, et al. (2020), a Sylvester map Q : R"*"w — R"x*"w ig
introduced, which is shown as follows,

QX)=XE - AX. (18)

Under the definition of this Sylvester map, a general solution with
some unknown parameters of (12) can be easily established. Select a
sequence X; € R"™*"w with i =0,1,...,m+ 1, where m = (n, — ny )y,
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Xo =0, xn,» X1 € R, 50 that CX; = —F, and all vec(X,) build a
basis of ker([,,w ®C) withi=2,3,...,m+ 1, that is CX; = 0. Clearly, a
general solution of (13) can be established as the following equation,
m+1
X=Xo+ X+ Y aX, 19)
i=2
where «; € R. Besides, a general solution of (12) can be established as
the following equation,
m+1
QX) = QX))+ Z @, 2(X;)=BU + D. (20)
i=2
Thus, the regulator equations (12)-(13) has the following equivalent
form by using the definition of the Sylvester map in (18) as follows,

Ay =¢, 2D
where
Y [ vec(Q(Xy) - vec(Q(Xpp1)) 0 -1, ®B

vec(X,) vee(X,,, 1) =1y, 0

1= a A1 vee(X)T  vec(U)T ]T,

‘e vee(-QXD+D) | | &
- —vec(X)) e |

Then, by using row operation, Eq. (21) can be rewritten as the following
equation,

[/f” ’S”]F[%], (22)
Ay Ay )
with A, € R"™" being a nonsingular matrix. Inspired by Gao and Jiang

(2016), Jiang, Kiumarsi, et al. (2020), above equation can be rewritten
as the following equation,

nx=v, (23)
where IT = —A} A7l Ay + Ay and W = -4 AS]E + &,
By using the method of Lagrange multipliers, the static constrained

optimization problem in (14) can be converted as a static and uncon-

strained optimization problem, that is,

min J=X"MX+iATUIX - ). 24
X

According to the optimization theory, we need to compute the partial
derivative of J in (24) with respect to X and A, respectively. They are

g—;? —OMX + "4, 25)
% =X - (26)

By setting (25)-(26) equal to O, one has the optimal solutions of
Problem 1. They are

X oM nt 17| o
3] 5T
Problem 2 is a standard linear quadratic regulator (LQR) problem.

By Zhou et al. (2008), the dynamic constrained optimization problem
in (17) can be solved by designing the following controller,

a(t) = —K*x(1), (28)
where
K*=R"'B"P* (29)

and P* = (P*)T > 0 is the unique positive definite solution to the
following CT algebraic Riccati equation (ARE),

PA+A"P+Q-PBR'BTP=0. (30)

One way to compute the K* is to solve the CT ARE (30), directly.
However, this CT ARE is a nonlinear function with respect to P.
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Algorithm 1 Model-based VI Algorithm for LO?RP with assured
convergence rate

Initiation: Start with an arbitrary feedback control gain matrix K, and
a positive semi-definite matrix P,. Set j < 0, ¢ < 0. Select a small
threshold ¢ > 0, a sequence X; € R"~*"w, a predefined convergence
rate parameter y > 0, bounded sets {Bq};’"=0 with nonempty interiors,
and a sequence {¢; };?';0 satisfying

B,C By, €N, lim B =P}, (33)
o0 o0

€; >0, 2€j=oo, Ze?<oo. (34)
=0 =0

Optimal feedback control gain computation: Iterate the following
three steps on j until the matrix sequence {Pj};‘; , converges.

1. Value Evaluation: Solve P, from the following equation

P, =Py +¢;(A"P + PJA+ Q- K RK)); (35)
2. Policy Improvement: Improve the feedback control gain K,

by

K, =R'B'P,; (36)

3. If Py, ¢ By, set P < Py, g < q+1; else if 1By — Pill/e; <,
return P, and K;,, as the approximations of P* and K*; else
Py < f’/ +1> J < j+ 1 and go to the value evaluation.

Optimal feedforward control gain computation: Solve for the solu-
tions (X, U) of the regulator equations (12)—(13) using Eq. (27). Then
calculate the optimal feedforward gain matrix L* = U + K X.

Another way to obtain K* is using some iteration based approaches,
including PI and VI based RL algorithm. In the PI approach (Kleinman,
1968), an initial stabilizing feedback control gain is required to achieve
convergence. In the VI approach, this requirement is relaxed. The
following algorithm shows how to use model-based VI approach to
solve the LO>RP and a lemma is given to show the convergence of
this algorithm.

Lemma 1 (Bian & Jiang 2016). Consider {Pj}!‘?‘;0 and {K; }}?’;0 in
Algorithm 1. Under Assumption 1, one has the following properties,

lim P, = P*, (31)
Jj—oo

lim K, = K*. (32)
Jj=oo

Remark 1. The condition in Assumption 1 implies that (4, B) is

controllable. If Assumption 1 is relaxed by the pair (A, B) is stabilizable,
the convergence rate requirement is still achievable, but y should be
smaller than the opposite number of maximum uncontrollable stable
eigenvalue of A so that (A4, B) is still stabilizable.

Remark 2. Under the condition in Assumption 4, the regulator equa-
tions (12)-(13) are solvable. Based on the conclusion in Lemma 1, one
has that Algorithm 1 can solve the LO?>RP. Moreover, this algorithm
has two advantages. First, a stabilizing feedback control gain is no
longer required to initiate the learning process. Second, compared
with the model-based PI approach (Kleinman, 1968), there is no need
to solve a Lyapunov equation at each iteration, which reduces the
computational burden per iteration.

4. VI based adaptive optimal control for solving LO>RP

We have proposed a model-based solution to the LO?RP in Sec-
tion 3. However, it is computed based on the exact values of the system
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matrices. In this section, we will develop a data-driven VI algorithm to
learn the solution to the LO?RP with known matrices C and F, which
is realized by using the online states data of the concerned disturbed
linear LTI CT system and the exo-system and input data.

By defining x;(r) = e (x(t) — X,w(®)) for i = 0,1,...,m + 1, one has
the following equation,

%;(1) =Ax(®) + Bu(t) + (D - X, E)w(t)
=A%,(t) + Bu(®) + (D — Q(X,))w(?), 37)

where w(t) = e”w(t) and a(t) = e’'u(t).
Along with the solutions of (37), one yields the following equation,
d . i} o N A EUURY
- (K OPx,(0)) = (A%,(0) + Ba(n) + (D - QX )iw(®) " P%,(0)
+ () P; (AZ,(1) + Bit) + (D — Q(X,)w(r))
=x! (1) H;%,(t) + 20" () RK %, (1)
+ 25} (NP;(D — QX )(1). (38)
where H; = ATP, + P;A and K; = R"'BTP,.
By taking the integration of Eq. (38), we observe that the following
equation holds,
X[ (t+ 80P %,(t + 61) — X] ()P, %,(1)
1+6t 1+6t
= / T (1) H %, (t)dT + / 20" (r)RK ;% (t)d T
t t

t+6t
+ / 257 () Py(D — Q(X))ib(r)d, (39)
t

where 61 > 0. Using Kronecker product representation, one obtains the
following equations,

X[ (OPx;(0) = (X] () ® X (1)) vec(P)),
£/ (D H;%,(1) = (X (1) ® %] (v)) vec(H,),
u'(0)RK;%,(r) = (%] () @ u" () R) vec(K)),

X,-T(T)Pj(f) - QX )w(r) = (w'(r) ® X[ (1)) VeC(Pj(ﬁ — (X))
Next, for positive integer s, define the following matrices,
$ex, = [vecv(ici(tl)) —vecv(x;(ty)), veev(x;(t,))

—vecv(%;(t))), ..., vecv(X;(t,)) — vecv()‘ci(ts_l))]T ,

t t
rx,-;,. = [/ 1 vecv()‘ci(r))dr,/ ’ vecv(x;(r))dr, ...,
fp

1
/ts
1

T
VeCV()_Ci(T))dT:| N

s—1

' t
Iih= / 1 X () ® Rﬁ(r)dr,/ ’ X;(r) ® Ri(r)dz, ...,

/10 1

T
Is
/ X ® Rﬁ(r)d’r:| s

51

1 5]
F'l')?i = / w(r) @ X;(7)dz, / w(r) @ x;(r)dz, ...,
to 1

ts T
/ w(r) ® )_ci(r)dr] s
51

where 0 <7y <t < - <1,
Using the above matrices, one can rewrite (39) as the following
equation,
vecs(H;)
vec(K;)
vec(P;(D — Q(X)))

[Fx,»x, 2%, 2rﬁl] = &, ; vees(P)). (40)

Note that the solution of (40) is unique if the rank condition
in Lemma 2 is satisfied.
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Lemma 2. Fori = 0,1,....,m+ 1, (40) has an unique solution if the
following rank condition holds,

+1
rank ([ XX .2 x,-u’ ]) =2z (n ) + nx(nu + }’lw).

By Lemma 2, one has that Eq. (40) has an unique solution by using
the least squares (LS) method, that is,

vecs(H;)
vec(K;) = 0;&; 5, vecs(P)), (41)
vec(P;(D - Q(X)))
T -1
where @j = <[ X% 2qu’2 wx:| [ xx’zrxu’Z wx])

T
[ Iy 25020 i‘_] .

Then, from Eq. (41), one can calculate
i=0,1,...,m+ 1. For i = 0, we obtain D by D = Pj"Pj(ﬁ - Q(X,));
fori=1,...,m+1, we have Q(X,) by Q(X;) = —Pj‘le(f) -QX,)-D
Moreover, one can calculate B by B = Pj‘lK;.rR. The matrix A in (21)
can be rewritten as follows,

| ey
- vec(X,)

P;, K; and Py(D - Q(X))) for

vec(2(X,,,1)) 0
vee(X,,. 1) -1

Ay XNy,

-1, ® P''KTR

n @ i K; ] , (42)

0

Finally, an online VI based algorithm is given for the LO’>RP as
Algorithm 2, and a theorem is provided to show the convergence of
this algorithm.
Algorithm 2 Online VI Algorithm for the LO?RP with assured
convergence rate

Initiation: Start with an arbitrary feedback control gain matrix K, and
a positive semi-definite matrix P,. Set j < 0, g < 0, i «< 0. Select a small
threshold € > 0, a sequence X; € R™*"w, a predefined convergence
rate parameter y > 0, and a collectlon of bounded sets {B, }°° with
nonempty interiors and a sequence {ej};io satisfying (33) and (34).
Employ u(r) = Kyx(t) + é(¢) as the input on [z, ,].

Optimal feedback control gain computation: Iterate the following
three steps on j until the matrix sequence {P;} ;"; o converges.

1. Solve for matrices H; and K; using (40), then calculate (35) by
using the following equation,

P =P +e¢;(H +0-

T .
. K RK)); (43)

2. 1f P & B, set P,y « Py, g — q+1; elseif | Py, — Pll/e; <,
return P; and K; as the approximations of P* and K*; else

Py < P 41, J < j+ 1 and go to the value evaluation.

Optimal feedforward control gain computation: Let j* « ; and
i « i+1, repeat solving 2(X;) by using (41) until i = m+ 1. Then, solve
for the solutions (X, U) of the regulator equations (12)—(13) using (27)
and (42). At last, calculate the optimal feedforward gain L* = U+K X

Theorem 1. Consider {P;}?  and {K;}% 0 obtained by Algorithm 2.
Under Assumptions 1 and 4, if Lemma 2 is satisfied, one has the following
properties,

lim P; = P*, (44)
j—oo
lim K; = K*. (45)
j—oo

Proof. Under the rank condition in Lemma 2, Eq. (41) has a unique
solution. Then, H;, K; and Pj(ﬁ—Q(X ;) obtained by Algorithm 2 must
satisfy Eq. (39). This implies that P,,; and P,,, are equivalent to the
ones in the model-based VI Algorithm 1. By Lemma 1, the convergences
of P; and K; is ensured. The proof of Theorem 1 is completed. []
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Theorem 1 shows the convergence of the online VI algorithm, which
uses online data to approximate the optimal feedback control gain and
the corresponding feedforward control gain. Under the obtained control
gains, one can design an approximate optimal controller to solve the
LO?RP. We will present the main results in the following theorem.

Theorem 2. Consider the disturbed CT linear system in (1)—(2) with the
exosystem in (3) and the reference signal in (4). Under Assumptions 1-4,
the closed-loop system with the learned controller u(t) = —K ;. x(t) + L*w(t)
by Algorithm 2 is GAS. Moreover, the convergence rate of the state and
tracking error is ensured to be no slower than e~"'.

Proof. The system (1)—(2) with the controller u(t) = —K X+ L w() is
equivalent to the following system

(1) = (A — BK)X(1), (46)
é(t) = Cx(f) + (CX + F (). (47)

Given a stabilizing feedback control gain matrix K;, one has that
lim,_, o, X(r) = 0. This implies that lim,_, &) = lim, ., Cx(r) = 0 and
the convergence rate of x(r) and e(?) is no slower than e~"’. The proof
of Theorem 2 is completed. |

Remark 3. The probing noise &(¢) introduced in the control input as-
sures the rank condition in Lemma 2 is satisfied. Moreover, Algorithm 2
is subject to off-policy RL algorithms. The control policy that generates
the online data is different from the control policy that is evaluated
and improved, and interestingly the probing noise does not affect the
accuracy of solutions at each iteration (Jiang, Kiumarsi, et al., 2020;
Jiang et al., 2021; Kiumarsi et al., 2017; Li et al., 2018).

5. Application on a LCL coupled inverter-based distributed gener-
ation system

In the last bidecade, the distributed generation system has been
under extensive investigations due to its short build time (see Ahmed
et al., 2010, and references therein). In order to ensure the distributed
generation system operates smoothly in the grid-connected mode, pas-
sive power LCL filters are usually introduced to connect the grid and
the inverter, which formulates LCL-coupled inverter-based distributed
generation systems. The control goal of these systems is designing a
controller such that (1) the output current asymptotically follows the
desired trajectory, (2) the effect from the grid voltage, the disturbance,
is rejected. When the dynamics of distributed generation system model
are accurately known, one can use the approaches developed in Ahmed
et al. (2010) to realize the control goal. However, to identify the system
dynamics and measure the grid voltage perfectly is almost impossible
in practice due to the resistance, the inductance and the capacitance
vary with circuit operation and temperature. Notably, the proposed VI
algorithm is a good candidate to control distributed generation systems
in an optimal sense with unknown system model and unmeasurable
disturbance (see Figs. 5 and 6). Therefore, in this section, we apply
the proposed approach to a LCL coupled inverter-based distributed
generation system to illustrate the effectiveness. The system dynamics
is shown as follows (Ahmed et al., 2010) and illustrated in Fig. 1,

a1,
V[ :ILRI +L1d—+VC,
dVe

I; =1p+C—,
L o dt

dl,
Ve =1IoRy + L—2 + Vg,

where the physical significance and the value of parameters V;, I;, R,

Ly, Ve, Ip, C, Ry, L, and V; can be found in Table 1. By considering
x =, Ve, IplT, y :i=Tpand u :=V},d :=[0,0,—-V;/L,]" as the state
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L L,
6 k[ E [
™ o
-5 —_—
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I | | | Ip

Fig. 1. Block diagram of LCL coupled inverter-based distributed generation system.

Table 1

Physical meaning and value of parameter.
Parameter Physical meaning Value Unit
v, Input voltage - \Y
Iy Inductor current - A
R, Filter resistor 0.2 Q
L, Filter inductor 2.5 mH
Ve Capacitor voltage - A
I, Output current - A
C Capacitor 30 pF
R, Transformer resistor 2.5 Q
L, Transformer inductor 5.5 mH
Ve Grid voltage - A

vector, output, input and disturbance, one can obtain the following
disturbed LTI CT state-space model,

oo 0 L
= L0 L o+ 0 |uw+do.
e(t) =x3(t) — (1),
with A, B and C in system (1)-(2) being
—008 —04 0 0.4

A= 3333 0 -3333 |,B= 0 |,
0 0.1818 -0.5
c=[0 0 1].
The reference signal y,(7) is chosen as y,(t) = —10sin(100zt + 7/3);
V; is the sum of sinusoidal waves with unknown phase and amplitude,

but the frequencies are known and assumed to be 50 Hz and 60 Hz.
Therefore, the exosystem (5) has the following form,

0 —100r 0 0
_ 100r 0 0 0

wo=y 0 o —iox |“"
0 0 1200 0

The initial condition is w(0) = [1,0,1,0]T, and F is
F=[5V3,5,0,0".

Beside, in this section, we assume that V; = [1,0,2,0]Jw(?) and hence D
is

0 0 0 0
D= 0 0 0 O
05 0 -1 0

Note that D is only used to generate online data, and is unknown
when implementing the Algorithm 2. We select the parameters in (14)
and (17)asQ=0 =1, R=R=1and y = 0.5. Therefore, the solutions
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Fig. 2. Trajectories of output y(r) and reference y,(r) via Algorithm 2.

of the regulator equations (12)-(13), and the idea values of P, K and
L are

8.6229 47131 0  —0.0622
X =| 304419 -39638 5.5 0 ,
| 8.6603 5 0 0
U= 35887 -9.7936 54414 —0.0124 |,
[ 265395 1341 164614
P*=| 1341 05421 -04992 |,
| —16.4614 04992  45.3882
K*=[ 10.6158 0.5364 —6.5845 |,
L* = 86.7127 5.1906 8.3916 —0.6727 |.

In the simulation experiment result, the parameters are selected as
follows: € = 0.01, ¢; = 0.1/+/j, B, = {X > O[|X|| < 30(g + 1)}, s = 40,
&(1) = 0.2 sin(15¢) + sin(5¢) sin(81), K, = [—1,0,0], x(0) = [0,0,0]", X; are

00 0 0 [ 0 0 0 O
Xo= 0 0 0 o |.x,=| 0 0 0 0|
[ 0 0 0 0 | [ 5v3 5 0 0
[1 0 0 o] [0 1 0 0]
X,=| 0 0 0 0 [,X3=] 0 0 0 0|,
[0 0 0 0 | [0 0 0 0 |
[0 0 1 0] [0 0 0 1]
X,=| 0 0 0 0 [,Xs=| 0 0 0 0 |,
[0 0 0 0 | [ 0 0 0 0 |
[0 0 0 0] [0 0 0 0]
Xe=| 1 0 0 0 [,Lx,=]{ 0 1 0 0|,
[ 0 0 0 0| [ 0 0 0 0|
[0 0 0 0] [0 0 0 0]
Xg=| 0 0 1 0 [,Xg=| 0 0 0 1
[ 00 0 0 000 0|

Then, one can compute the eigenvalues of the matrix A — BK,, are
0.048 + 4.391i, 0.048 — 4.391i and —0.176. Clearly, the initial feedback
control gain matrix K, is not admissible stabilizing. In the simulation
experiment, t, = 0s, 1, = 0.5s, t, = 1s, ..., t;, = 20s. Therefore, the
control input is u(t) = Kyx(1)+é(t) when t € [0,20] and updated as u(r) =
=K x () + L*w(t) after 20s. Moreover, when ¢ > 100, the 60 Hz wave in
the grid voltage disappears and hence w;(¢) = 0 and w,(r) = 0. Based on
these parameters and situations descriptions, the simulation experiment
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Fig. 3. Trajectory of input u(r) via Algorithm 2.
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Fig. 4. Trajectory of w(t).

result is shown. Figs. 2-3 show trajectories of output y(r), reference
y4(?) and input u(r) via Algorithm 2. Fig. 4 shows the trajectory of w(r)
while Fig. 5 shows the trajectory of || P; — P*|| via Algorithm 2. It can
be observed that the output of the controlled plant can be regulated via
the learned feedback control gain and the learned feedforward control
gain by Algorithm 2 even with w(f) suddenly changing. The learned
solutions of the regulator equations (12)—(13), and the learned values
of X, U, P;, K; and L are

8.6229 47131 0 —0.0622
X =| 304419 -3.9638 55 0 :
| 8.6603 5 0 0
U=[ 358687 -9.7936 54414 -0.0124 |,
[ 265372 1.3408  -16.4681
P =| 13408 05421  —0.4999 |,
| 164681 —0.4999  45.3885
K; =[ 106149 0.5363 —6.5873 |,
L=[ 866787 51733 83911 —0.6727 |.

Then, we provide a compared simulation experiment with standard
PI based approach in Gao and Jiang (2016) to show that the proposed
approach can tune the convergence rate of e(f) by regulating the
convergence rate criterion y, which has been proved in Theorem 2.
If the initial control feedback gain is selected such that A — BK|, is
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Fig. 5. Trajectory of || P, — P*| via Algorithm 2.
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Fig. 6. Compared simulation results with standard PI based approach in Gao and Jiang
(2016) and different convergence rate criterion y.

not Hurwitz, cannot learn the optimal feedback control gain and the
solutions of the regulator equations (12)-(13). Therefore, we select an
admissible initial control feedback gain for the compared approach.
In the compared simulation, there are four tracking errors based on
standard PI based approach in Gao and Jiang (2016) and the proposed
approach with different convergence rate criterion y, and we choose the
same initial conditions as x(0) = [0,0,0]T and w(0) = [1,0,1,0]T. The
compared simulation results with standard PI based approach in Gao
and Jiang (2016) and different convergence rate criterion y are de-
picted in Fig. 6. It can be observed from Fig. 6 that: (1) the convergence
rate of the tracking errors based on the proposed approach is faster
then that of the tracking error based on the compared approach; (2)
the convergence rate of the tracking errors can be tuned by choosing
different convergence rate criterion y and is faster then e™"’.

At last, we provide a compared simulation experiment with linear
quadratic tracking control approach in Modares and Lewis (2014a) to
show that the proposed approach can result in performance advantages.
In Modares and Lewis (2014a), the controller has the following form,

ut) =—-K [ x®) ]
w(t)

-
w) |’
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Fig. 7. Compared simulation results with linear quadratic tracking control approach
in Modares and Lewis (2014a).

where P* is the positive definite solution of the following linear
quadratic tracking ARE,

PT+T"P+C"QC - PBR'BTP =0,
with

A D _ B
T= .| —0.5al,B= .C=[cC
0 E 0
In the compared simulation experiment, we select the parameters as
a = 0.2 and O = 100000 and we choose the same initial conditions
as x(0) = [0,0,0]T and w(0) = [1,0,1,0]T. The compared simulation
results with linear quadratic tracking control approach in Modares and
Lewis (2014a) are depicted in Fig. 7. It can be observed from Fig. 7
that the output of the controlled plant can be regulated via Algorithm
2 while the compared approach in Modares and Lewis (2014a) can at-
tenuate the disturbance but not make the tracking error asymptotically
converge to zero.

6. Conclusion

In this paper, we studied the LO?RP with assured convergence
rate requirement under the challenges from the unknown system and
exosystem dynamics. Without relying on the knowledge of system
dynamics and initial stabilizing feedback control gain, a novel VI algo-
rithm is proposed, which is capable of learning the optimal regulator
using online data with a guaranteed convergence rate. An application
to a LCL coupled inverter-based distributed generation system shows
the efficiency of the learning-based output regulation approach.
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