

Brief paper

Adaptive optimal output regulation of linear discrete-time systems based on event-triggered output-feedback[☆]

Fuyu Zhao^a, Weinan Gao^{b,*}, Tengfei Liu^a, Zhong-Ping Jiang^c

^a State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University, Shenyang, 110004, China

^b Department of Mechanical and Civil Engineering, College of Engineering and Science, Florida Institute of Technology, Melbourne, FL, 32901, USA

^c Department of Electrical and Computer Engineering, New York University, Six Metrotech Center, Brooklyn, NY 11201, USA

ARTICLE INFO

Article history:

Received 1 December 2020

Received in revised form 12 August 2021

Accepted 30 October 2021

Available online xxxx

Keywords:

Adaptive dynamic programming

Output regulation

Event-triggered control

ABSTRACT

This paper presents novel event-triggered control approaches to solve the adaptive optimal output regulation problem for a class of linear discrete-time systems. Different from most existing research on output regulation problems, the developed adaptive optimal control approaches are based on (1) output-feedback instead of full-state or partial-state feedback, (2) adaptive dynamic programming (ADP) which provides approximate solutions of the optimal control problem without requiring the precise knowledge of the plant dynamics, and (3) an event-triggering mechanism that reduces the communication between the controller and the plant. It is shown that the system in closed-loop with the developed controllers is asymptotically stable at an equilibrium of interest, and the tracking errors asymptotically converge to zero. Moreover, the suboptimality of the closed-loop system is directly determined by the relative threshold, which is a ratio between the triggering threshold and the actual state. A numerical simulation example is employed to verify the effectiveness of the proposed methodologies.

© 2021 Elsevier Ltd. All rights reserved.

1. Introduction

The output regulation problem addresses the design of a feedback controller to achieve the disturbance rejection and asymptotic tracking for dynamical systems with disturbance and reference signal generated by certain ecosystems. Due to its wide application, the problem of output regulation has received tremendous attention (see Bonivento et al. (2001), Huang (2004), Isidori et al. (2003), Krener (1992) and Saberi et al. (2003)). The optimal output regulation problem is studied in Krener (1992) and Saberi et al. (2003), where the transient performance can be optimized by minimizing a predefined cost function. However, a general limitation in these solutions is that the system dynamics is assumed to be perfectly known.

Adaptive dynamic programming (ADP) is a non-model based control approach inspired by biological systems (see Gao et al.

(2016), Jiang and Jiang (2012), Kiumarsi et al. (2015), Lewis and Liu (2012), Li et al. (2017), Werbos (1974) and Song et al. (2016)). It can be used to approximate the optimal control solutions for uncertain systems whose uncertain system model is missing. Therefore, it is a good candidate to handle optimal output regulation problems with unknown system dynamics. In our previous work (Gao & Jiang, 2016; Gao et al., 2018), we have, for the first time, achieved adaptive optimal output regulation for linear systems via ADP.

Recently, event-triggered strategies (Åström & Bernhardsson, 2002; Donkers & Heemels, 2012; Heemels et al., 2013; Lennion, 2011; Liu & Jiang, 2015; Tabuada, 2007; Xing et al., 2019) have been employed in ADP-based control to save control system resources. An adaptive optimal controller is developed to solve the event-triggered Hamilton–Jacobi–Bellman (HJB) equation for nonlinear systems in Vamvoudakis (2014). Vamvoudakis and Ferraz (2018) further proposes a class of event-triggered controllers for uncertain systems by using Q-learning techniques. In Sahoo et al. (2016), a suboptimal event-triggered condition is provided for a class of discrete-time nonlinear systems in the affine form. Moreover, input constraints and robustness with respect to uncertain terms and unmatched dynamics have also been studied within the scope of event-triggered ADP (Dong et al., 2017; Wang & Liu, 2018; Zhang et al., 2018; Zhu et al., 2017). In Xue et al. (2020), Zhang et al. (2017) and Zhao et al. (2019), the methods of event-triggered H_∞ optimal control via

[☆] This work was supported in part by the National Natural Science Foundation of China under Grants U1911401 and 61633007, Consulting Research Project of the Chinese Academy of Engineering (2019-XZ-7), and in part by the U.S. National Science Foundation under Grant EPCN-1903781 and CMMI-2138206. The material in this paper was not presented at any conference. This paper was recommended for publication in revised form by Associate Editor Kyriakos G. Vamvoudakis under the direction of Editor Miroslav Krstic.

* Corresponding author.

E-mail addresses: 1610279@stu.neu.edu.cn (F. Zhao), wgao@fit.edu (W. Gao), tfliu@mail.neu.edu.cn (T. Liu), zjjiang@nyu.edu (Z.-P. Jiang).

ADP are studied. Besides stabilization, some event-triggered optimal methods have been proposed to solve the tracking problems. An event-triggered optimal tracking control algorithm for nonlinear systems is presented in [Batmani et al. \(2017\)](#), but no external disturbance is taken into account and the dynamics of the system are assumed to be known. In [Li and Yang \(2018\)](#), a simultaneous design of a neural network based adaptive control law and an event-triggered condition for a class of strict feedback nonlinear discrete-time systems is proposed, and the uniform ultimate boundedness property is achieved for the closed-loop system.

It should be noticed that most previously proposed ADP-based event-triggered control designs are based on state-feedback. In many practical tracking control problems, the state of a system is not measurable, and only the measured output can be utilized for feedback. The observer-based control design is usually utilized to develop measurement feedback controllers. However, observer design is a challenging problem for the linear optimal output regulation of uncertain systems. Besides this technical challenge, due to sampling errors, unknown system dynamics and unknown disturbances, the main difficulty lies in the design of adaptive optimal controller with event-triggered output-feedback for unknown systems to achieve the disturbance rejection and asymptotic tracking. Moreover, it is a non-trivial task to quantify the relationship between the suboptimality and triggering threshold ratio.

In this paper, we consider a class of unknown discrete-time linear systems with unknown exosystem. The unmeasured states and exostates are reconstructed by using the measured input/output data. A dynamic compensator is designed to compensate the effect of the states of the exosystem. Then, we design a novel event-triggering mechanism which only depends on the tracking errors. The event-triggered ADP method is implemented based on the reconstructed state. It is proved that the discrete-time algebraic Riccati equation and the regulator equation can be iteratively solved by utilizing the event-triggered ADP based on both the policy iteration (PI) and value iteration (VI) methods. With the proposed ADP designs, the event-triggered adaptive optimal output regulation problem is achievable for uncertain linear systems by only using the input/output data. Moreover, the communication between the plant and the controller can be reduced.

The major contributions of this paper are threefold. As the first contribution, we, for the first time, solve the model-free event-triggered output regulation problem via output-feedback. Compared with [Batmani et al. \(2017\)](#), [Li and Yang \(2018\)](#) and [Vamvoudakis et al. \(2017\)](#), the solution in this paper can deal with the optimal output regulation problem for unknown discrete-time linear systems with unmeasurable states, exostates, and disturbances. The second contribution is that we propose two successive approximation algorithms, PI and VI, to approximate the optimal control policy. The closed-loop stability and convergence of proposed algorithms are rigorously guaranteed in this paper. Last but not the least, different from existing studies on optimal control and event-triggering mechanisms, we have analyzed the sensitivity of triggering threshold. To be more specific, we quantify the relationship between the suboptimality of the closed-loop system and the triggering threshold ratio.

The remainder of this paper is organized as follows. In Section 2, we review the linear optimal output regulation problem, and provide a brief review on the even-triggering mechanism. In Section 3, PI and VI based output-feedback event-triggered adaptive optimal controllers are designed, respectively. The main results of the stability and suboptimality analysis are given in Section 4. Simulation for an LCL coupled inverter-based distributed generation system is given in Section 5. Finally, conclusions are given in Section 6.

Notations: Let \mathbb{R} denote the set of real numbers, \mathbb{R}_+ the set of nonnegative real numbers, \mathbb{Z}_+ the set of non-negative integers, and $\|\cdot\|$ the Euclidean norm of vectors or matrices. $A \otimes B$ stands for the Kronecker product of matrices A and B . For a symmetric matrix $A \in \mathbb{R}^{n \times n}$, $\bar{\lambda}(A)$ and $\underline{\lambda}(A)$ are the maximum eigenvalue and the minimum eigenvalue of A , respectively. A continuous function $g(s) : \mathbb{R}_+ \rightarrow \mathbb{R}_+$ is a \mathcal{K} -function if it is strictly increasing and $g(0) = 0$; it is a \mathcal{K}_∞ -function if it is a \mathcal{K} -function and $g(s) \rightarrow \infty$ as $s \rightarrow \infty$. For a matrix $L \in \mathbb{R}^{n \times m}$, $\text{vec}(L) = [l_1^T, l_2^T, \dots, l_m^T]^T \in \mathbb{R}^{mn}$. For a symmetric matrix $F \in \mathbb{R}^{m \times m}$, $\text{vecs}(F) = [f_{11}, 2f_{12}, \dots, 2f_{1m}, f_{22}, 2f_{23}, \dots, 2f_{2m-1}, f_{mm}]^T \in \mathbb{R}^{\frac{1}{2}m(m+1)}$. For an arbitrary column vector $a \in \mathbb{R}^n$, $\text{vecv}(a) = [a_1^2, a_1a_2, \dots, a_1a_n, a_2^2, a_2a_3, \dots, a_{n-1}a_n, a_n^2]^T \in \mathbb{R}^{\frac{1}{2}n(n+1)}$.

2. Problem formulation and preliminaries

2.1. Basics of optimal output regulation

Consider the following linear system:

$$x_{k+1} = Ax_k + Bu_k + Cz_k, \quad (1)$$

$$z_{k+1} = Dz_k, \quad (2)$$

$$\omega_k = Ex_k + Fz_k \quad (3)$$

where $x_k \in \mathbb{R}^n$ is the state vector, $A \in \mathbb{R}^{n \times n}$, $B \in \mathbb{R}^{n \times m}$, $C \in \mathbb{R}^{n \times d}$, $D \in \mathbb{R}^{d \times d}$, $E \in \mathbb{R}^{l \times n}$, and $F \in \mathbb{R}^{l \times d}$ are constant matrices. The exosystem described by (2) generates both the disturbances $\zeta_k = Cz_k$ and the reference signal $y_{r_k} = -Fz_k$. $\omega_k \in \mathbb{R}^m$ denotes the tracking error, $u_k \in \mathbb{R}^m$ stands for the control input of the system. The following assumptions are made in this paper.

Assumption 1. The pair (A, B) is controllable.

Assumption 2. $\text{rank} \begin{bmatrix} A - \lambda I & B \\ E & 0 \end{bmatrix} = n + l, \forall \lambda \in \sigma(D)$.

Assumption 3. All the eigenvalues of D are semisimple with modulus equal to 1, and the minimal polynomial of D is available, which is

$$h_m(s) = \prod_{i=1}^M (s - \lambda_i)^{a_i} \prod_{j=1}^N (s^2 - 2p_js + \mu_j^2 + q_j^2)^{b_j} \quad (4)$$

with its degree $r \leq d$, where a_i and b_j are positive integers and $\lambda_i, p_j, q_j \in \mathbb{R}$, for $i = 1, 2, \dots, M, j = 1, 2, \dots, N$.

Under the condition of **Assumption 3**, we can always find a vector $\gamma_k \in \mathbb{R}^r$ and a matrix $\hat{D} \in \mathbb{R}^{r \times r}$, such that

$$\gamma_{k+1} = \hat{D}\gamma_k,$$

$$z_k = H\gamma_k$$

where $H \in \mathbb{R}^{d \times r}$ is an unknown constant matrix.

Therefore, the system (1)–(3) turns into

$$\begin{aligned} x_{k+1} &= Ax_k + Bu_k + \hat{C}\gamma_k, \\ \gamma_{k+1} &= \hat{D}\gamma_k, \\ \omega_k &= Ex_k + \hat{F}\gamma_k \end{aligned} \quad (5)$$

where $\hat{C} = CH$ and $\hat{F} = FH$.

Assumption 4. The pair (\bar{A}, \bar{E}) is observable, where $\bar{E} = [E \quad \hat{F}]$,

$$\bar{A} = \begin{bmatrix} A & \hat{C} \\ 0 & \hat{D} \end{bmatrix}.$$

The solvability of linear output regulation problem is discussed in the following theorem.

Theorem 1 (Huang, 2004). Under the conditions of [Assumptions 1–2](#), choose a K such that $A - BK$ is a Schur matrix. The linear output regulation problem is solvable if the controller is designed as

$$u_k = -K(x_k - \mathbf{X}\gamma_k) + \mathbf{U}\gamma_k \quad (6)$$

where $\mathbf{X} \in \mathbb{R}^{n \times r}$ and $\mathbf{U} \in \mathbb{R}^{m \times r}$ solve the following regulator equation:

$$\begin{aligned} \mathbf{X}\hat{D} &= \mathbf{A}\mathbf{X} + \mathbf{B}\mathbf{U} + \hat{C}, \\ 0 &= E\mathbf{X} + \hat{F}. \end{aligned} \quad (7)$$

Remark 1. As introduced in [Huang \(2004\)](#), [Assumption 3](#) is a standard assumption for solving a linear output regulation problem, which is usually necessary to develop an internal model. [Assumption 2](#) ensures the solvability of regulator Eq. (7) for any matrices \hat{C} and \hat{F} .

If the pair (\mathbf{X}, \mathbf{U}) is a solution to the regulator equation, then we can rewrite the error system of (5) as

$$\begin{aligned} \varepsilon_{k+1} &= A\varepsilon_k + Bu_k - B\mathbf{U}\gamma_k, \\ w_k &= E\varepsilon_k \end{aligned} \quad (8)$$

where $\varepsilon_k = x_k - \mathbf{X}\gamma_k$.

As shown in [Krener \(1992\)](#), the linear optimal output regulation problem (LOORP) is solvable if (1) the linear output regulation problem is solvable, and (2) the following optimization [Problem 1](#) is solvable.

Problem 1. Along the solutions of (8), find $\bar{u}_k = u_k - \mathbf{U}\gamma_k$ that minimizes the following cost

$$J(\varepsilon_0) = \sum_{k=0}^{\infty} \omega_k^T Q \omega_k + \bar{u}_k^T R \bar{u}_k \quad (9)$$

where $Q = Q^T \geq 0$, $R = R^T > 0$.

By optimal control theory ([Lewis et al., 2012](#)), the control policy that minimizes the cost (9) is

$$\bar{u}_k^* = -(R + B^T P^* B)^{-1} B^T P^* A \varepsilon_k := -K^* \varepsilon_k \quad (10)$$

where $P^* = (P^*)^T > 0$ uniquely solves the following discrete-time algebraic Riccati equation under the conditions that the pair (A, B) is controllable and the pair $(A, Q^{\frac{1}{2}}E)$ is observable.

$$A^T P A - P - A^T P B (R + B^T P B)^{-1} B^T P A + E^T Q E = 0. \quad (11)$$

Since (11) is nonlinear in P , solving P directly from (12) is difficult. A PI algorithm is proposed in [Hewer \(1971\)](#) to approximate the solution P . To be more specific, given K_0 such that $A - BK_0$ is a Schur matrix, sequences $\{P_j\}_{j=0}^{\infty}$ and $\{K_j\}_{j=0}^{\infty}$ are uniquely determined by

$$(A - BK_j)^T P_j (A - BK_j) - P_j + E^T Q E + K_j^T R K_j = 0, \quad (12)$$

$$(A - BK_j)^T P_j B - P_j + E^T Q E + K_j^T R K_j = 0, \quad (13)$$

If an initial stabilizing control gain K_0 is not available, one can rely on the VI algorithm ([Lancaster & Rodman, 1995](#)). Given any $P_0 = P_0^T > 0$, sequences $\{P_j\}_{j=0}^{\infty}$ and $\{K_j^v\}_{j=0}^{\infty}$ are uniquely determined by

$$P_{j+1} = A^T P_j A - A^T P_j B (R + B^T P_j B)^{-1} B^T P_j A + E^T Q E \quad (14)$$

and

$$K_{j+1}^v = (R + B^T P_{j+1} B)^{-1} B^T P_{j+1} A. \quad (15)$$

2.2. Problem formulation of event-triggered adaptive optimal output regulation

In this paper, it is expected that the amount of the control updates can be reduced through an event-triggered design. For convenience of discussions, we use $\hat{\varepsilon}_k$ to represent the sampled value of ε_k , that is

$$\hat{\varepsilon}_k = \varepsilon_{k_j}, k \in [k_j, k_{j+1}) \quad (16)$$

where $\{k_j\}_{j=0}^{\infty}$ is a monotonically increasing sequence of sampling instants, and the state is only updated at instants: k_0, k_1, k_2, \dots . The sampling error of the state is defined as

$$e_k = \hat{\varepsilon}_k - \varepsilon_k. \quad (17)$$

Then, the error system (8) is converted into

$$\begin{aligned} \varepsilon_{k+1} &= A\varepsilon_k + B\hat{u}_k - B\mathbf{U}\gamma_k, \\ \hat{u}_k &= -K\hat{\varepsilon}_k + \mathbf{U}\gamma_k, \end{aligned} \quad (18)$$

and the event-triggered adaptive optimal output-feedback controller is

$$\hat{u}_k^* = \hat{u}_k^* + \mathbf{U}\gamma_k \quad (19)$$

where \hat{u}_k^* is the optimal control law to be designed later.

The event-triggered adaptive optimal output regulation problem for the linear discrete-time system is formulated as follows.

Problem 2. Consider the system (1)–(3) with unknown constant matrixes A, B, C, D, E and F , unmeasurable state vector x_k , unmeasurable exostate vector z_k , unknown disturbances ζ_k , and unknown reference signal s_k , design a controller as in (19), such that the following properties hold.

- The linear output regulation problem is solved;
- The communication between the controller and the plant is reduced;
- The designed controller is suboptimal with respect to the cost (9). More specifically, the following suboptimality criterion ([Berglind et al., 2012](#)) needs satisfied:

$$\sum_{k=0}^{\infty} \omega_k^T Q \omega_k + (\hat{u}_k^*)^T R \hat{u}_k^* \leq \rho J^*(\varepsilon_0) \quad (20)$$

where $\rho \geq 1$ is a performance degradation index, $J^*(\varepsilon_0)$ is the optimal cost.

We will give the relationship between ε_k and the sequences of the outputs and inputs in Section 3. Then, in the event-triggered design, we utilize the sampled inputs and outputs to reconstruct the state ε_k . Moreover, due to the unknown system dynamics, we cannot get the value of \mathbf{U} directly, but it can be learned through the online data.

3. Event-triggered output-feedback adaptive optimal controller design

This section employs the ADP techniques to solve the event-triggered output-feedback adaptive optimal control problem for the linear system (5).

3.1. Event-triggered output-feedback ADP controller: PI-based design

This subsection introduces a new class of event-triggered output-feedback adaptive optimal controller for suboptimality of the closed-loop system.

Under the conditions of [Assumption 4](#), motivated by [Aanegenent et al. \(2005\)](#) and [Lewis and Vamvoudakis \(2011\)](#), there exist two matrices N_w and N_u such that

$$\varepsilon_k = N_w \tilde{\omega}_k + N_u \tilde{u}_k = N v_k \quad (21)$$

where

$$N_w = [I_n \quad -\mathbf{X}] \bar{A}^{n+r} (O_1^T O_1)^{-1} O_1^T \in \mathbb{R}^{n \times l(n+r)},$$

$$N_u = [I_n \quad -\mathbf{X}] (C_o - \bar{A}^{n+r} (O_1^T O_1)^{-1} O_1^T \Gamma) \in \mathbb{R}^{n \times m(n+r)},$$

$$\tilde{u}_k = [\hat{u}_{k-1}^T, \hat{u}_{k-2}^T, \dots, \hat{u}_{k-n-r}^T]^T \in \mathbb{R}^{m(n+r)},$$

$$\tilde{\omega}_k = [\omega_{k-1}^T, \omega_{k-2}^T, \dots, \omega_{k-n-r}^T]^T \in \mathbb{R}^{l(n+r)},$$

$$N = [N_w \quad N_u] \in \mathbb{R}^{n \times (l+m)(n+r)},$$

$$v_k = [\tilde{u}_k^T \quad \tilde{\omega}_k^T]^T \in \mathbb{R}^{(l+m)(n+r)},$$

$$\bar{B} = [B^T, 0_{m \times r}]^T \in \mathbb{R}^{(n+r) \times m},$$

$$C_o = [\bar{B}, \bar{A}\bar{B}, \dots, \bar{A}^{n+r-1}\bar{B}] \in \mathbb{R}^{(n+r) \times m(n+r)},$$

$$O_1 = [(\bar{E}\bar{A}^{n+r-1})^T, \dots, (\bar{E}\bar{A})^T, \bar{E}^T]^T \in \mathbb{R}^{l(n+r) \times (n+r)},$$

$$\Gamma = \begin{bmatrix} 0 & \bar{E}\bar{B} & \bar{E}\bar{A}\bar{B} & \dots & \bar{E}\bar{A}^{n+r-2}\bar{B} \\ 0 & 0 & \bar{E}\bar{B} & \dots & \bar{E}\bar{A}^{n+r-3}\bar{B} \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \bar{E}\bar{B} \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \in \mathbb{R}^{l(n+r) \times m(n+r)}.$$

Let $\bar{K}_0 = K_0 N$ be a stable control gain for the error system [\(18\)](#), and define

$$u_k^v = -\bar{K}_0 v_k \quad (22)$$

as the control input. According to [\(13\)](#), we have

$$K_0 = (R + B^T P B)^{-1} B^T P A \quad (23)$$

where P is a solution of the Lyapunov equation [\(12\)](#). Also, define

$$\hat{v}_k = v_{k_j}, \quad k \in [k_j, k_{j+1}) \quad (24)$$

as the sampled value of v_k . Then, we have the sampling error as follows

$$e_k^v = \hat{v}_k - v_k. \quad (25)$$

In the PI-based learning process, the error system [\(18\)](#) can be rewritten as

$$\varepsilon_{k+1} = A\varepsilon_k + B\hat{u}_k^v - B\mathbf{U}\gamma_k, \quad (26)$$

$$\hat{u}_k^v = -\bar{K}_0 \hat{v}_k.$$

The following lemma gives the stability of the transformed system [\(26\)](#). The proof is given in [Appendix A.1](#).

Lemma 1. Given any stabilizing \bar{K}_0 , and assume $E^T QE > \mu_1 I_m$, where $\mu_1 > 1$. With the event-triggered control law given in [\(26\)](#), the closed-loop system is input-to-state stable (ISS) with $\mathbf{U}\gamma_k$ as the input, if

$$\|\bar{K}_0 e_k^v\|^2 \leq \frac{\frac{(1-\alpha)(\mu_1-1)}{\bar{E}^2} \|\omega_k\|^2 + \underline{\lambda}(R) \|\hat{u}_k^v\|^2}{\eta} \quad (27)$$

where $\alpha \in (0, 1)$, $\|E\| \leq \bar{E}$, and $\eta \geq \bar{\lambda}(R + 2B^T P B)$.

As can be directly checked, the condition in [\(27\)](#) is guaranteed by the following event-triggering mechanism:

$$k_{j+1} = \inf \{k \in \mathbb{Z}_+ \mid k > k_j \wedge \|\bar{K}_0 e_k^v\|^2 \geq \bar{e}_k^{v_0}\} \quad (28)$$

$$\text{with } k_0 = 0 \text{ and } \bar{e}_k^{v_0} = \frac{\frac{(1-\alpha)(\mu_1-1)}{\bar{E}^2} \|\omega_k\|^2 + \underline{\lambda}(R) \|\hat{u}_k^v\|^2}{\eta}.$$

To solve the ARE [\(11\)](#) by PI method, we rewrite the system [\(26\)](#) as

$$\varepsilon_{k+1} = A_j \varepsilon_k + B(\hat{u}_k^v + K_j \varepsilon_k) - B\mathbf{U}\gamma_k \quad (29)$$

where $A_j = A - BK_j$. Define $\bar{K}_j = K_j N$ and $\bar{P}_j = N^T P_j N$. Based on [\(29\)](#) and the PI algorithm [\(12\)–\(13\)](#), we have

$$\begin{aligned} & v_{k+1}^T \bar{P}_j v_{k+1} - v_k^T \bar{P}_j v_k \\ &= \varepsilon_{k+1}^T P_j \varepsilon_{k+1} - \varepsilon_k^T P_j \varepsilon_k \\ &= -2v_k^T N^T A_j^T P_j B \mathbf{U} \gamma_k + 2(\hat{u}_k^v + \bar{K}_j v_k)^T B^T P_j A N v_k \\ &+ (\hat{u}_k^v + \bar{K}_j v_k)^T B^T P_j B (\hat{u}_k^v - \bar{K}_j v_k) - \omega_k^T Q \omega_k - v_k^T \bar{K}_j^T R \bar{K}_j v_k \\ &- 2(\hat{u}_k^v + \bar{K}_j v_k)^T B^T P_j B \mathbf{U} \gamma_k + \gamma_k^T \mathbf{U}^T B^T P_j B \mathbf{U} \gamma_k. \end{aligned} \quad (30)$$

Define $G_{j_1} = N^T A_j^T P_j B \mathbf{U}$, $G_{j_2} = B^T P_j A N$, $G_{j_3} = B^T P_j B$, $G_{j_4} = B^T P_j B \mathbf{U}$, and $G_{j_5} = \mathbf{U}^T B^T P_j B \mathbf{U}$. Given a sufficiently large $q \in \mathbb{Z}_+$ and let $\xi_k = \hat{u}_k^v + \bar{K}_j v_k$. For two sequences $\{\mathcal{H}_k\}_{k_0}^{\bar{k}_q}$ and $\{\mathcal{S}_k\}_{k_0}^{\bar{k}_q}$, define

$$\begin{aligned} \Theta(\mathcal{H}_k, \mathcal{S}_k) &= [\mathcal{H}_{\bar{k}_0} \otimes \mathcal{S}_{\bar{k}_0}, \mathcal{H}_{\bar{k}_1} \otimes \mathcal{S}_{\bar{k}_1}, \dots, \mathcal{H}_{\bar{k}_q} \otimes \mathcal{S}_{\bar{k}_q}]^T, \\ \tilde{\Theta}(\mathcal{H}_k) &= [\text{vec}(\mathcal{H}_{\bar{k}_0}), \text{vec}(\mathcal{H}_{\bar{k}_1}), \dots, \text{vec}(\mathcal{H}_{\bar{k}_q})]^T, \\ \Pi_j &= [(\omega_{\bar{k}_0})^T Q \omega_{\bar{k}_0} + (v_{\bar{k}_0})^T \bar{K}_j^T R \bar{K}_j v_{\bar{k}_0}, \dots, \\ &(\omega_{\bar{k}_q})^T Q \omega_{\bar{k}_q} + (v_{\bar{k}_q})^T \bar{K}_j^T R \bar{K}_j v_{\bar{k}_q}]^T. \end{aligned}$$

For any stabilizing gain matrix \bar{K}_j , [\(30\)](#) indicates the following equation

$$\mathcal{E}_j G_j = \Pi_j \quad (31)$$

where

$$\begin{aligned} \mathcal{E}_j &= [-2\Theta_j(\gamma_k, v_k), 2\Theta_j(v_k, \xi_k), \tilde{\Theta}_j(\hat{u}_k^v) - \tilde{\Theta}_j(\bar{K}_j v_k), \\ &\quad - 2\Theta_j(\gamma_k, \xi_k), \tilde{\Theta}_j(\gamma_k), \tilde{\Theta}_j(v_k) - \tilde{\Theta}_j(v_{k+1})], \\ G_j &= [\text{vec}(G_{j_1})^T, \text{vec}(G_{j_2})^T, \text{vecs}(G_{j_3})^T, \text{vec}(G_{j_4})^T, \\ &\quad \text{vecs}(G_{j_5})^T, \text{vecs}(\bar{P}_j)^T]^T. \end{aligned}$$

Eq. [\(31\)](#) can be uniquely solved when matrix \mathcal{E}_j is full column rank, i.e.,

$$G_j = (\mathcal{E}_j^T \mathcal{E}_j)^{-1} \mathcal{E}_j^T \Pi_j. \quad (32)$$

Assumption 2 implies that B is of full column rank, so G_{j_3} is a nonsingular matrix. Then, \bar{K}_{j+1} and \mathbf{U} can be obtained as follows:

$$\begin{aligned} \bar{K}_{j+1} &= (R + G_{j_3})^{-1} G_{j_2}, \\ \mathbf{U} &= G_{j_3}^{-1} G_{j_4}. \end{aligned} \quad (33)$$

Let $\varphi_k = [v_k^T, \hat{u}_k^T, \gamma_k^T]^T$. The uniqueness of the solution to [\(32\)](#) is ensured by the following lemma.

Lemma 2 ([Gao et al., 2018](#)). Let $\theta = (l+m)(n+r)$, if there exists a $q^* \in \mathbb{Z}_+$ such that

$$\begin{aligned} \text{rank}[\Theta_j(\varphi_k, \varphi_k)] &= \\ \frac{m(m+1) + lr(lr+1+2m) + \theta(\theta+1+2lr+2m)}{2} \end{aligned} \quad (34)$$

holds for all $q > q^*$, then [\(31\)](#) can be uniquely solved.

Then, we present our event-triggered output-feedback adaptive optimal control algorithm.

Algorithm 1. PI-based event-triggered ADP

- (1) Utilize $\hat{u}_k^v = -\bar{K}_0 \hat{v}_k + \eta_k$ as the control input on $[\bar{k}_0, \bar{k}_q]$, where η_k is an exploration noise. Set $j = 0$.
- (2) Solve \bar{P}_j , \bar{K}_{j+1} , and \mathbf{U} from (32) and (33).
- (3) Set $j \leftarrow j + 1$, for $j \geq 1$, if $\|\bar{P}_j - \bar{P}_{j-1}\| > \tau$, repeat Step 2; else set $j^* \leftarrow j$ and go to Step 4, where constant $\tau > 0$ is a stop criterion for the convergence of \bar{P}_j .
- (4) The approximated optimal control gain is

$$\bar{\mathbf{K}} := [-\bar{K}_{j^*} (G_{j^*}^{*})^{-1} G_{j^*}^{*}].$$

By using the event-triggered ADP controller, the error system (26) can be rewritten as

$$\begin{aligned} \varepsilon_{k+1} &= A\varepsilon_k + B\hat{u}_k^* - B\mathbf{U}\gamma_k, \\ \hat{u}_k^* &= \bar{\mathbf{K}}_{j^*} [\hat{v}_k \ \gamma_k]^T. \end{aligned} \quad (35)$$

The following lemma gives the stability of the transformed system (35). See [Appendix A.2](#) for the proof.

Lemma 3. Assume the weighting matrix in (9) satisfying $Q > \mu I_n$, where μ is a positive real number. With the event-triggered control law \hat{u}_k^* given in (35), the system (35) is globally asymptotically stable at the origin, if

$$\|\bar{K}_{j^*} e_k^v\|^2 \leq \frac{\epsilon \mu \|\omega_k\|^2 + \underline{\lambda}(R) \|\hat{u}_k^* - (G_{j^*}^{*})^{-1} G_{j^*}^{*} \gamma_k\|^2}{\bar{\lambda}(R + G_{j^*}^{*})} \quad (36)$$

where $\epsilon \in (0, 1)$.

Based on [Lemma 3](#), to guarantee the satisfaction of the condition in (36), the following event-triggering mechanism is designed:

$$k_{j+1} = \inf\{k \in \mathbb{Z}_+ \mid k > k_j \wedge \|\bar{K}_{j^*} e_k^v\|^2 \geq \bar{e}_k^{vp}\} \quad (37)$$

with $\bar{e}_k^{vp} = \frac{\epsilon \mu \|\omega_k\|^2 + \underline{\lambda}(R) \|\hat{u}_k^* - (G_{j^*}^{*})^{-1} G_{j^*}^{*} \gamma_k\|^2}{\bar{\lambda}(R + G_{j^*}^{*})}$ and $k_0 = 0$. Then, the PI-based event-triggered ADP controller is designed as

$$\hat{u}_k^* = \bar{\mathbf{K}}_{j^*} [\hat{v}_k \ \gamma_k]^T \quad (38)$$

$$\text{with } \|\bar{K}_{j^*} e_k^v\|^2 \leq \frac{\epsilon \mu \|\omega_k\|^2 + \underline{\lambda}(R) \|\hat{u}_k^* - (G_{j^*}^{*})^{-1} G_{j^*}^{*} \gamma_k\|^2}{\bar{\lambda}(R + G_{j^*}^{*})}.$$

Theorem 2. If (34) holds, then sequences $\{\bar{P}_j\}_{j=0}^{\infty}$ and $\{\bar{K}_j\}_{j=1}^{\infty}$ obtained from solving Algorithm 1 converge to \bar{P}^* and \bar{K}^* , respectively, where $\bar{P}^* = N^T P^* N$ and $\bar{K}^* = K^* N$.

Proof. See [Appendix A.3](#). \square

3.2. Event-triggered output-feedback ADP controller: VI-based design

As an alternative to the policy iteration approach, the value iteration approach does not need a known stabilizing control law to initialize.

In the VI-based learning process, the error system (18) is rewritten as

$$\begin{aligned} \varepsilon_{k+1} &= A\varepsilon_k + B\hat{u}_k - B\mathbf{U}\gamma_k \\ \hat{u}_k &= -\bar{\mathbf{K}}^v \phi(k) \end{aligned} \quad (39)$$

where $\bar{\mathbf{K}}^v = [\bar{K}^v \ -U] \in \mathbb{R}^{m \times [r+(l+m)(n+r)]}$ is an arbitrary control gain, $\phi(k) = [\hat{v}_k^T \ \gamma_k^T]^T$, and e_k^v satisfies that

$$\|e_k^v\| \leq \alpha \quad (40)$$

where $\alpha > 0$ stands for a predefined threshold.

Define

$$\begin{aligned} \bar{\mathbf{G}}_j &= \begin{bmatrix} \bar{\mathbf{G}}_j^{11} & \bar{\mathbf{G}}_j^{12} & \bar{\mathbf{G}}_j^{13} \\ \bar{\mathbf{G}}_j^{21} & \bar{\mathbf{G}}_j^{22} & \bar{\mathbf{G}}_j^{23} \\ \bar{\mathbf{G}}_j^{31} & \bar{\mathbf{G}}_j^{32} & \bar{\mathbf{G}}_j^{33} \end{bmatrix} \\ &= \begin{bmatrix} N^T A^T P_j A N & N^T A^T P_j B & -N^T A^T P_j B \mathbf{U} \\ B^T P_j A N & B^T P_j B & -B^T P_j B \mathbf{U} \\ -\mathbf{U}^T B^T P_j A N & -\mathbf{U}^T B^T P_j B & \mathbf{U}^T B^T P_j B \mathbf{U} \end{bmatrix}. \end{aligned}$$

Besides, let

$$f(P_j) = A^T P_j A - A^T P_j B (R + B^T P_j B)^{-1} B^T P_j A.$$

From (14) and (39), we obtain

$$\begin{aligned} &\omega_{k+1}^T Q \omega_{k+1} \\ &= \varepsilon_{k+1}^T P_{j+1} \varepsilon_{k+1} - \varepsilon_{k+1}^T f(P_j) \varepsilon_{k+1} \\ &= [\text{vecv}([\hat{v}_k \ \hat{u}_k \ \gamma_k]^T)]^T \text{vecs}(\bar{\mathbf{G}}_{j+1}) \\ &\quad - v_{k+1}^T [\bar{\mathbf{G}}_j^{11} - \bar{\mathbf{G}}_j^{12} (R + \bar{\mathbf{G}}_j^{22})^{-1} (\bar{\mathbf{G}}_j^{12})^T] v_{k+1} \\ &= \varpi_k^T \text{vecs}(\bar{\mathbf{G}}_{j+1}) - \psi_{k+1}^j \end{aligned} \quad (41)$$

where

$$\begin{aligned} \psi_{k+1}^j &= v_{k+1}^T [\bar{\mathbf{G}}_j^{11} - \bar{\mathbf{G}}_j^{12} (R + \bar{\mathbf{G}}_j^{22})^{-1} (\bar{\mathbf{G}}_j^{12})^T] v_{k+1}, \\ \varpi_k &= \text{vecv}([v_k^T, \hat{u}_k^T, \gamma_k^T]^T). \end{aligned}$$

For $j = 0, 1, 2, \dots$, define

$$\begin{aligned} \Psi_j &= [\omega_{k_1}^T Q \omega_{k_1} + \psi_{k_1}^j, \dots, \omega_{k_q+1}^T Q \omega_{k_q+1} + \psi_{k_q+1}^j], \\ \Phi &= [\varpi_{k_0}, \varpi_{k_1}, \dots, \varpi_{k_q}]. \end{aligned}$$

According to Eq. (41), we have

$$\Phi \text{vecs}(\bar{\mathbf{G}}_{j+1}) = \Psi_j. \quad (42)$$

Similarly, The uniqueness of the solution is ensured by [Lemma 2](#). Then, we present our VI-based output-feedback event-triggered adaptive optimal control algorithm.

Algorithm 2. VI-based event-triggered ADP

- (1) Select thresholds $\tau > 0$ and $\alpha > 0$. Set $j = 0$, $\bar{\mathbf{G}}_0 = 0$ and $\bar{K}_0 = 0$.
- (2) Apply $\hat{u}_k = -\bar{K}_0 \hat{v}_k + \eta_k$ on $[\bar{k}_0, \bar{k}_q]$. Solve $\bar{\mathbf{G}}_{j+1}$ from (42).
- (3) Set $j + 1 \rightarrow j$, if $\|\bar{\mathbf{G}}_j - \bar{\mathbf{G}}_{j-1}\| > \tau$, repeat Step 2; else set $j^* \leftarrow j$ and go to Step 4.
- (4) Use $\bar{\mathbf{K}}_{j^*}^v = [(R + \bar{\mathbf{G}}_{j^*}^{22})^{-1} (\bar{\mathbf{G}}_{j^*}^{12})^T, (\bar{\mathbf{G}}_{j^*}^{22})^{-1} (\bar{\mathbf{G}}_{j^*}^{23})]$ as the approximated optimal control gain.

Then, we can get the control law as follows

$$\hat{u}_k^* = \bar{\mathbf{K}}_{j^*} [\hat{v}_k \ \gamma_k]^T. \quad (43)$$

Let $\bar{K}_{j^*}^v = (R + \bar{\mathbf{G}}_{j^*}^{22})^{-1} (\bar{\mathbf{G}}_{j^*}^{12})^T$, according to [Lemma 3](#), e_k^v satisfies that

$$\|\bar{K}_{j^*}^v e_k^v\|^2 \leq \frac{\epsilon \mu \|\omega_k\|^2 + \underline{\lambda}(R) \|\hat{u}_k^* - (\bar{\mathbf{G}}_{j^*}^{22})^{-1} (\bar{\mathbf{G}}_{j^*}^{23}) \gamma_k\|^2}{\bar{\lambda}(R + \bar{\mathbf{G}}_{j^*}^{22})}. \quad (44)$$

To guarantee the satisfaction of the condition in (44), we give the following event-triggering mechanism:

$$k_{j+1} = \inf\{k \in \mathbb{Z}_+ \mid k > k_j \wedge \|\bar{K}_{j^*}^v e_k^v\|^2 \geq \bar{e}_k^{vp}\} \quad (45)$$

$$\text{with } k_0 = 0 \text{ and } \bar{e}_k^{vp} = \frac{\epsilon \mu \|\omega_k\|^2 + \underline{\lambda}(R) \|\hat{u}_k^* - (\bar{\mathbf{G}}_{j^*}^{22})^{-1} (\bar{\mathbf{G}}_{j^*}^{23}) \gamma_k\|^2}{\bar{\lambda}(R + \bar{\mathbf{G}}_{j^*}^{22})}.$$

Similar to the analysis of [Theorem 2](#), the convergence of Algorithm 2 is shown as follows.

Theorem 3. If (34) holds, then $\{\bar{\mathbf{G}}_j\}_{j=0}^{\infty}$ and $\{\bar{\mathbf{K}}_j^v\}_{j=1}^{\infty}$ obtained from solving Algorithm 2 converge to $\bar{\mathbf{G}}^*$ and $\bar{\mathbf{K}}^*$, where $\mathbf{K}^* = [K^*N, -U]$ and

$$\bar{\mathbf{G}}^* = \begin{bmatrix} N^T A^T P^* A N & N^T A^T P^* B & -N^T A^T P^* B U \\ B^T P^* A N & B^T P^* B & -B^T P^* B U \\ -U^T B^T P^* A N & -U^T B^T P^* B & U^T B^T P^* B U \end{bmatrix}.$$

Remark 2. Exploration noise (Al-Tamimi et al., 2007; Jiang & Jiang, 2012; Vamvoudakis & Lewis, 2011; Xu et al., 2012) is introduced in Algorithms 1 and 2 for persistent excitation, which is needed for convergence of the ADP algorithms. For simulation purpose, we will use the sum of sinusoidal signals with different frequencies, see e.g., Jiang and Jiang (2012).

Remark 3. Algorithm 1 assumes a known stabilizing control law, which may limit its applications. However, compared with Algorithm 2, the convergence rate of Algorithm 1 is quadratic in a neighborhood of the steady state (Hewer, 1971), which is faster. Algorithm 2 does not assume a known stabilizing control law, but the price paid for this is the possibly slower convergence rate.

4. Main results

From Theorem 2, there always exists a small enough threshold $\tau > 0$ in Algorithms 1, such that $A - BK_{j^*}$ is a Schur matrix. With the proof of Lemma 3, it obviously indicates that the closed-loop system is globally asymptotically stable at the origin. Besides, we can rewrite the error system of the closed-loop system as follows

$$\begin{aligned} \varepsilon_{k+1} &= A\varepsilon_k + B\hat{u}_k - B\mathbf{U}\gamma_k, \\ \omega_k &= E\varepsilon_k + (\mathbf{E}\mathbf{X} + \hat{F})\gamma_k. \end{aligned} \quad (46)$$

Because the closed-loop system is globally asymptotically stable, we have $\lim_{k \rightarrow \infty} \varepsilon_k = 0$. Also, \mathbf{X} solves the regulator Eq. (8), we have $\lim_{k \rightarrow \infty} \omega_k = 0$.

Based on the above analysis, the following Theorem 4 is given.

Theorem 4. Considering the linear system (1)–(3), by using the learning based control policy (38), we have

- the system (1)–(3) is globally asymptotically stable at the origin.
- the tracking error ω_k converges to 0 as t goes to infinity.

According to the proof of Lemma 3, we have

$$\|K^*e_k\|^2 \leq \frac{\epsilon\mu\|\omega_k\|^2 + \underline{\lambda}(R)\|\hat{u}_k^* - \mathbf{U}\gamma_k\|^2}{\bar{\lambda}(R + B^T P^* B)} := \bar{\epsilon}_k^2. \quad (47)$$

For $\varepsilon_k \neq 0$, let the triggering threshold ratio be $\delta_e = \max\{\frac{\varepsilon_k}{\|\varepsilon_k\|}, k = 1, 2, \dots\}$. The following theorem is given to characterize the suboptimality property of the closed-loop system composed of (1)–(3) and (38). See Appendix A.4 for the proof.

Theorem 5. Under the conditions of Lemmas 2 and 3, the control strategy (38) is suboptimal for system (1)–(3) with the cost J_e^* in (9) satisfying

$$J^*(\varepsilon_0) \leq J_e^* \leq J^*(\varepsilon_0) + \frac{\bar{\lambda}(R)\delta_e(\delta_e + 2\|K^*\|)}{\mu(1 - \epsilon)\|\bar{E}\|^2} J^*(\varepsilon_0). \quad (48)$$

Remark 4. Theorem 5 shows the numerical relationship between the triggering ratio δ_e and the cost of the system. As we can see from (48), a smaller δ_e results in more frequent samplings but better suboptimality. A large δ_e causes larger inter-sampling periods but an unsatisfactory system performance.

In practice, there may be slight perturbations Δ_D on D and additional output noise Δ_{y_k} , satisfying $\Delta_{y_k} \leq \|\Delta_{y_k}\| \leq \bar{\Delta}_{y_k}$. In this case, the system (1)–(3) can be formed as

$$\begin{aligned} x_{k+1} &= Ax_k + Bu_k + Cz_k, \\ z_{k+1} &= (D + \Delta_D)z_k, \\ \omega_k &= Ex_k + \hat{F}\gamma_k + \Delta_{y_k}. \end{aligned} \quad (49)$$

Under the conditions of Assumption 3 and Theorem 1, we get the following error system

$$\begin{aligned} \varepsilon_{k+1} &= A\varepsilon_k + Bu_k - B\mathbf{U}\gamma_k + \Delta_{z_k}, \\ \omega_k &= E\varepsilon_k + \Delta_{y_k} \end{aligned} \quad (50)$$

where $\Delta_{z_k} = Cz_k - \hat{C}\gamma_k$.

Motivated by Aangeneent et al. (2005) and Lewis and Vamvoudakis (2011), we have $\varepsilon_k = Nv_k + \Delta_{\varepsilon_k}$, where Δ_{ε_k} is a bounded function related to Δ_{z_k} and Δ_{y_k} .

Based on Bian and Jiang (2019) and Pang et al. (2021), in the presence of Δ_D and Δ_{y_k} , by using Algorithms 1 and 2, we can obtain a suboptimal control gain \bar{K}_d^* and a feedforward gain \mathbf{U}_d , such that the controller is designed as

$$\hat{u}_k^* = -\bar{K}_d^*\hat{v}_k + \mathbf{U}_d\gamma_k. \quad (51)$$

To explain the effect of the slight perturbations Δ_D and additional output noise Δ_{y_k} on the system (49), the following Corollary 1 is given.

Corollary 1. With the designed event-triggered adaptive optimal control law (51), if the following event-triggered condition

$$\|\bar{K}_d^*e_k^v\| \leq \frac{\frac{(1-\alpha)(\mu_1-1)}{\bar{E}^2} \min\{\|\omega_k - \Delta_{y_k}\|^2, \|\omega_k - \bar{\Delta}_{y_k}\|^2\}}{2\bar{\lambda}(R + B^T PB + I_n)} \quad (52)$$

is satisfied, then the closed-loop system is ISS with Δ_D and Δ_{y_k} as the inputs.

Proof. Define $A_d = A - BK_d^*$ with $\bar{K}_d^* = K_d^*N$. Then, we have

$$\varepsilon_{k+1} = A_d\varepsilon_k - BK_d^*e_k + \Delta_k \quad (53)$$

where $\Delta_k = \Delta_{z_k} + B(\mathbf{U}_d - \mathbf{U})\gamma_k$.

Along the trajectory of (53), we have

$$\begin{aligned} &\varepsilon_{k+1}^T P \varepsilon_{k+1} - \varepsilon_k^T P \varepsilon_k \\ &= \varepsilon_k^T A_d P A_d \varepsilon_k + (K_d^* e_k)^T B^T P B K_d^* e_k + \Delta_k^T P \Delta_k \\ &\quad - 2(K_d^* e_k)^T B^T P A_d \varepsilon_k + 2\Delta_k^T P A_d \varepsilon_k - 2\Delta_k^T P B K_d^* e_k \\ &\quad - \varepsilon_k^T P \varepsilon_k \\ &\leq -\alpha(\mu_1 - 1)\|\varepsilon_k\|^2 - \frac{(1 - \alpha)(\mu_1 - 1)}{\bar{E}^2} \|\omega_k - \Delta_{y_k}\|^2 \\ &\quad + 2(\bar{K}_d^* e_k^v)^T (R + B^T PB + I_n) (\bar{K}_d^* e_k^v) + 2\bar{\Delta}_k^T (R + B^T PB + I_n) \bar{\Delta}_k \\ &\quad + \Delta_k^T (P + PA_d A_d^T P + P B B^T P) \Delta_k \end{aligned}$$

where $\bar{\Delta}_k = \bar{K}_d^*(\Delta_{\varepsilon_k} - \Delta_{\varepsilon_k})$ and $\{k_j\}_{j=0}^{\infty}$ are triggering instants.

When the condition (52) is satisfied, we have

$$\varepsilon_{k+1}^T P \varepsilon_{k+1} - \varepsilon_k^T P \varepsilon_k \leq -\tilde{\alpha}_3(\|\varepsilon_k\|) + \tilde{\alpha}_4(\|\Delta_k\|, \|\bar{\Delta}_k\|)$$

where $\tilde{\alpha}_3(\cdot)$ is a \mathcal{K}_{∞} -function and $\tilde{\alpha}_4(\cdot)$ is a \mathcal{K} -function.

According to Jiang and Wang (2001), the closed-loop system is ISS with Δ_D and Δ_{y_k} as the inputs. □

5. Simulation results

We show the efficiency of the proposed method by means of a practical of LCL coupled inverter-based distributed generation

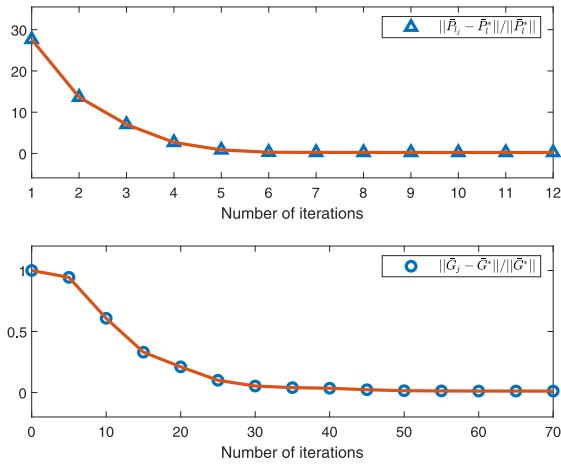


Fig. 1. Convergence of Algorithms 1 and 2.

system (Ahmed et al., 2011). In practice, the discrete-time system is preferred for computer implementation (Lin & Narendra, 1980). Based on the Euler discretization method, by using a sampling period $h = 0.0001$, the continuous-time system in Ahmed et al. (2011) is discretized as follows:

$$x_{k+1} = \begin{bmatrix} 1 - \frac{hR_1}{L_1} & -\frac{h}{L_1} & 0 \\ \frac{h}{c} & 1 & -\frac{h}{c} \\ 0 & \frac{h}{L_2} & 1 - \frac{hR_2}{L_2} \end{bmatrix} x_k + \begin{bmatrix} \frac{h}{L_1} \\ 0 \\ 0 \end{bmatrix} u_k + dh$$

where $x_k = [I_L, V_C, I_0]^T$, $\omega_k = I_0$, and $u_k = V_L$. The physical meanings and values of the parameters refer to Ahmed et al. (2011). The exosystem can generate both the disturbance (grid voltage) and the reference signal. The minimal polynomial of D is set as

$$h_m(s) = s^4 - 3.9901s^3 + 5.9803s^2 - 3.9901s + 1.$$

Then, we can generate the exosystem as

$$\gamma_{k+1} = \begin{bmatrix} 0.9995 & -0.0314 & 0 & 0 \\ 0.0314 & 0.9995 & 0 & 0 \\ 0 & 0 & 0.9956 & -0.0941 \\ 0 & 0 & 0.0941 & 0.9956 \end{bmatrix} \gamma_k \quad (54)$$

with initial condition $\gamma_0 = [1 \ 0 \ 1 \ 0]^T$.

Set the reference signal $y_{r_k} = -[5\sqrt{3} \ 5 \ 0.2 \ 0.1]\gamma_k$. Then, we have the tracking error $\omega_k = [0 \ 0 \ 1]x_k + y_{r_k}$.

As stated in Algorithm 1, we apply a stabilizing control strategy $\hat{u}_k^v = -\bar{K}_0 \hat{v}_k + \eta_k$ as the control input on $[0, 30]$ ms for the stage of data collection. Then, \bar{P}_j , \bar{K}_{j+1} , and \mathbf{U} are iteratively solved from (32) and (33) by using the collected data. In Algorithm 2, we use $\hat{u}_k = -\eta_k$ on $[0, 30]$ ms for data collection. Then, \bar{G}_{j+1} is iteratively solved according to (42). The convergence of Algorithms 1 and 2 is shown in Fig. 1 by choosing $\tau = 10^{-6}$.

The trajectories of the output, the reference signal and the control input of the discrete-time system are shown in Fig. 2.

To validate the reasonability of Theorem 4, by using a logarithmic coordinate for the y coordinates, Fig. 3 shows the comparisons of J^* and J_e^* at different δ_e .

Fig. 4 shows the inter-sampling steps of the event-triggered sampling and the comparison of the total sampling times under event-triggered output feedback ADP method and the ADP without event-triggered sampling. It can be seen that, the output of the plant converges to the reference signal, and the communication between the controller and the plant is reduced.

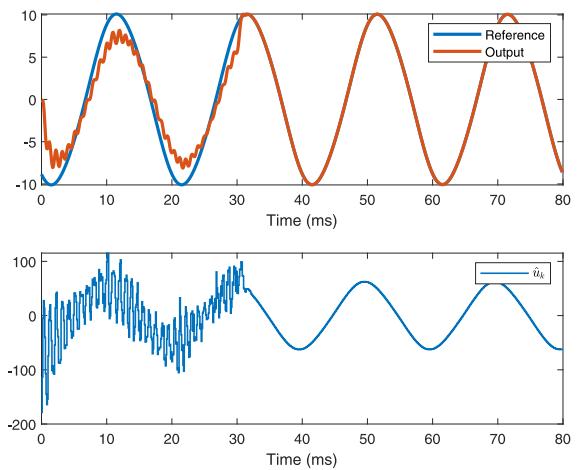


Fig. 2. Plot of the output, reference signal and control input.

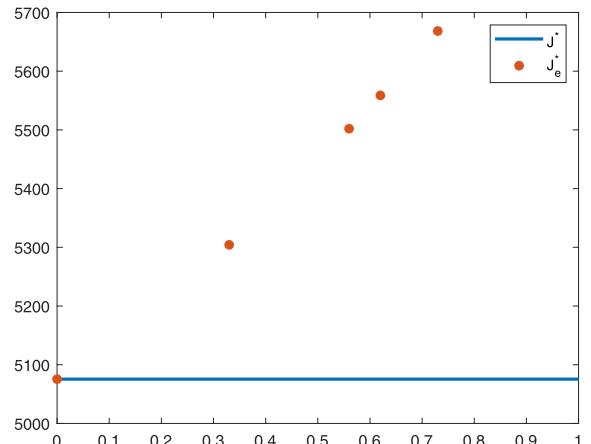
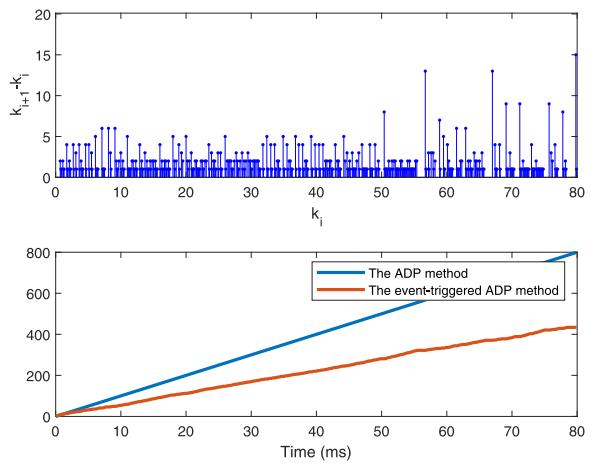
Fig. 3. Comparisons of J^* and J_e^* at different δ_e .

Fig. 4. The sequence of steps of event-triggered sampling and the comparison of the total sampling numbers.

6. Conclusions

This paper presents two event-triggered output-feedback approaches to address the adaptive optimal output regulation for linear systems with unknown system dynamics, unmeasurable

states and disturbance. A nonmodel-based ADP scheme is proposed for the design of event-triggered adaptive optimal trackers with disturbance rejection. Simulation results have validated the effectiveness of the proposed approach. Our future work will be directed at generalizing the proposed methods to a class of nonlinear systems with output-feedback by means of recent developments in nonlinear PI and VI schemes (Bian & Jiang, 2021; Jiang et al., 2020).

Acknowledgments

The authors would like to thank the anonymous AE and reviewers for their invaluable comments that have led to the improvement of the paper.

Appendix. Proofs

A.1. Proof of Lemma 1

Define $A_g = A - BK_0$. Then, we have

$$\varepsilon_{k+1} = A_g \varepsilon_k - BK_0 \varepsilon_k - BU \gamma_k. \quad (\text{A.1})$$

Define

$$V(\varepsilon_k) = \varepsilon_k^T P \varepsilon_k. \quad (\text{A.2})$$

Obviously, there exist \mathcal{K}_∞ -functions $\alpha_1(\cdot)$ and $\alpha_2(\cdot)$ such that $\alpha_1(\|\varepsilon_k\|) \leq V(\varepsilon_k) \leq \alpha_2(\|\varepsilon_k\|), \forall \varepsilon_k \in \mathbb{R}^n$. (A.3)

Along the solutions of (26), we have

$$\begin{aligned} & V(\varepsilon_{k+1}) - V(\varepsilon_k) \\ &= \varepsilon_{k+1}^T P \varepsilon_{k+1} - \varepsilon_k^T P \varepsilon_k \\ &= \varepsilon_k^T A_g^T P A_g \varepsilon_k + (\bar{K}_0 \varepsilon_k)^T B^T P B \bar{K}_0 \varepsilon_k + (U \gamma_k)^T B^T P B (U \gamma_k) \\ &\quad - 2(\bar{K}_0 \varepsilon_k)^T B^T P A_g \varepsilon_k - 2(U \gamma_k)^T B^T P A_g \varepsilon_k - \varepsilon_k^T P \varepsilon_k \\ &\quad + 2(U \gamma_k)^T B^T P B \bar{K}_0 \varepsilon_k. \end{aligned}$$

Using (11), we also have

$$\begin{aligned} & V(\varepsilon_{k+1}) - V(\varepsilon_k) \\ &\leq -\omega_k^T Q \omega_k - \underline{\lambda}(R)(K_0 \varepsilon_k + \bar{K}_0 \varepsilon_k)^2 + (\bar{K}_0 \varepsilon_k)^T (R + B^T P B) \bar{K}_0 \varepsilon_k \\ &\quad + (U \gamma_k)^T B^T P B (U \gamma_k) - ((U \gamma_k)^T R K_0 + \varepsilon_k^T)^2 \\ &\quad + (U \gamma_k)^T R K_0 K_0^T R (U \gamma_k) + (U \gamma_k)^T B^T P B (U \gamma_k) \\ &\quad + (\bar{K}_0 \varepsilon_k)^T B^T P B \bar{K}_0 \varepsilon_k + \varepsilon_k^T \varepsilon_k. \end{aligned}$$

Then, it follows that

$$\begin{aligned} & V(\varepsilon_{k+1}) - V(\varepsilon_k) \\ &\leq -\alpha(\mu_1 - 1)\|\varepsilon_k\|^2 - \frac{(1 - \alpha)(\mu_1 - 1)}{\bar{E}^2}\|\omega_k\|^2 - \underline{\lambda}(R)\|\hat{u}_k^v\|^2 \\ &\quad + \bar{\lambda}(R K_0^T K_0 R + 2B^T P B)\|U \gamma_k\|^2 + \bar{\lambda}(R + 2B^T P B)\|\bar{K}_0\|^2\|\varepsilon_k^v\|^2. \end{aligned}$$

When the condition (27) is satisfied, we have

$$\begin{aligned} & V(\varepsilon_{k+1}) - V(\varepsilon_k) \\ &\leq -\alpha(\mu_1 - 1)\|\varepsilon_k\|^2 + \bar{\lambda}(R K_0^T K_0 R + 2B^T P B)\|U \gamma_k\|^2 \\ &\leq -\alpha_3(\|\varepsilon_k\|) + \alpha_4(\|U \gamma_k\|) \end{aligned} \quad (\text{A.4})$$

where α_3 is a \mathcal{K}_∞ -function and α_4 is a \mathcal{K} -function.

According to (A.3) and (A.4), we can know that (A.2) is an ISS-Lyapunov function (Jiang & Wang, 2001). Therefore, the closed-loop system is ISS to $U \gamma_k$.

A.2. Proof of Lemma 3

Define $A_l = A - BK_{j^*}$, where $K_{j^*}N = \bar{K}_{j^*}$, according to (35), we have

$$\varepsilon_{k+1} = A_l \varepsilon_k - BK_{j^*} \varepsilon_k. \quad (\text{A.5})$$

Besides, define $V(\varepsilon_k) = \varepsilon_k^T P_{j^*} \varepsilon_k$, where P_{j^*} is the approximated solution to the ARE (11). Along the solutions of (35), the following equality holds

$$\begin{aligned} & V(\varepsilon_{k+1}) - V(\varepsilon_k) \\ &= \varepsilon_{k+1}^T P_{j^*} \varepsilon_{k+1} - \varepsilon_k^T P_{j^*} \varepsilon_k \\ &= \varepsilon_k^T A_l^T P_{j^*} A_l \varepsilon_k + \varepsilon_k^T K_{j^*}^T B^T P_{j^*} B K_{j^*} \varepsilon_k - 2\varepsilon_k^T K_{j^*}^T B^T P_{j^*} A_l \varepsilon_k \\ &\quad - \varepsilon_k^T P_{j^*} \varepsilon_k. \end{aligned}$$

According to (11) and (13), we have

$$\begin{aligned} & V(\varepsilon_{k+1}) - V(\varepsilon_k) \\ &= -\omega_k^T Q \omega_k - (K_{j^*} \varepsilon_k)^T R K_{j^*} \varepsilon_k - 2\varepsilon_k^T K_{j^*}^T R K_{j^*} \varepsilon_k \\ &\quad + \varepsilon_k^T K_{j^*}^T B^T P_{j^*} B K_{j^*} \varepsilon_k \\ &\leq -\epsilon \mu \|\omega_k\|^2 - (1 - \epsilon)\mu \|\omega_k\|^2 - \underline{\lambda}(R)(\hat{u}_k - U \gamma_k)^2 \\ &\quad + \bar{\lambda}(R + B^T P_{j^*} B)\|\bar{K}_{j^*}\|^2\|\varepsilon_k^v\|^2. \end{aligned}$$

If (36) holds, then we have

$$V(\varepsilon_{k+1}) - V(\varepsilon_k) < -(1 - \epsilon)\mu \|\omega_k\|^2. \quad (\text{A.6})$$

Based on the observability of the discretized system (1)–(3), a direct application of LaSalle's Invariance Principle (Khalil, 2002) yields the GAS property of the trivial solution of the system (35).

This ends the proof of Lemma 3.

A.3. Proof of Theorem 2

Given a stabilizing K_j , if P_j is the solution to (12), then K_{j+1} can be uniquely determined by (13). Similarly, given a stabilizing \bar{K}_j , by solving (31) and (32), we have \bar{P}_j and \bar{K}_{j+1} . Due to the full rank condition of \mathcal{E}_j , \bar{P}_j and \bar{K}_{j+1} are uniquely determined. Consider the property in the PI algorithm (Hewer, 1971), we have $\lim_{j \rightarrow \infty} \bar{P}_j = \bar{P}^*$ and $\lim_{j \rightarrow \infty} \bar{K}_j = \bar{K}^*$.

A.4. Proof of Theorem 5

Based on (21) and (37), for $\varepsilon_k \neq 0$, we have $\frac{\|K^*(\hat{\varepsilon}_k - \varepsilon_k)\|}{\|\varepsilon_k\|} \leq \frac{\|\hat{\varepsilon}_k\|}{\|\varepsilon_k\|}$. Thus, if $k \in [k_j, k_{j+1})$, then $K^* \hat{\varepsilon}_k = K^* \varepsilon_k + \|\varepsilon_k\| \Lambda$, where $\Lambda = \frac{K^*(\hat{\varepsilon}_k - \varepsilon_k)}{\|\varepsilon_k\|}$, and $\|\Lambda\| \leq \frac{\|\hat{\varepsilon}_k\|}{\|\varepsilon_k\|} \leq \max\{\frac{\|\hat{\varepsilon}_k\|}{\|\varepsilon_k\|}, k = 1, 2, \dots\} := \delta_e$. By using the designed control policy (38), we have

$$\begin{aligned} & \omega_k^T Q \omega_k + (\hat{u}_k^*)^T R \hat{u}_k^* \\ &= \omega_k^T Q \omega_k + (K^* \varepsilon_k + \|\varepsilon_k\| \Lambda)^T R (K^* \varepsilon_k + \|\varepsilon_k\| \Lambda) \\ &= \omega_k^T Q \omega_k + (K^* \varepsilon_k)^T R (K^* \varepsilon_k) + 2(\|\varepsilon_k\| \Lambda)^T R K^* \varepsilon_k \\ &\quad + (\|\varepsilon_k\| \Lambda)^T R \|\varepsilon_k\| \Lambda \\ &\leq \omega_k^T Q \omega_k + (K^* \varepsilon_k)^T R (K^* \varepsilon_k) + \bar{\lambda}(R) \|\varepsilon_k\|^2 \delta_e^2 \\ &\quad + 2\bar{\lambda}(R) \|K^*\| \|\varepsilon_k\|^2 \delta_e. \end{aligned} \quad (\text{A.7})$$

Due to (A.6), it follows that

$$\Delta V = V(\varepsilon_k) - V(\varepsilon_{k+1}) > \mu(1 - \epsilon)\|\bar{E}\|^2\|\varepsilon_k\|^2. \quad (\text{A.8})$$

Let $H_k = \bar{\lambda}(R)\delta_e(\delta_e + 2\|K^*\|)\|\varepsilon_k\|^2$. Combine (A.7) and (A.8), we have

$$H_k \leq \frac{\bar{\lambda}(R)\delta_e(\delta_e + 2\|K^*\|)}{\mu(1 - \epsilon)\|\bar{E}\|^2} \Delta V. \quad (\text{A.9})$$

Let $\rho_1 = \frac{\bar{\lambda}(R)\delta_e(\delta_e + 2\|K^*\|)}{\mu(1-\epsilon)\|\bar{E}\|^2}$, for $k = 0, 1, 2 \dots$, we have

$$H_0 \leq \rho_1(V(\varepsilon_0) - V(\varepsilon_1)) \quad (A.10)$$

and

$$\begin{aligned} \sum_{k=0}^1 H_k &\leq \rho_1(V(\varepsilon_0) - V(\varepsilon_2)) \\ \sum_{k=0}^2 H_k &\leq \rho_1(V(\varepsilon_0) - V(\varepsilon_3)) \\ \sum_{k=0}^3 H_k &\leq \rho_1(V(\varepsilon_0) - V(\varepsilon_4)) \\ &\dots \end{aligned} \quad (A.11)$$

Based on the event-triggering condition (36), there exist $\lim_{k \rightarrow \infty} \varepsilon_k = 0$, that is $\lim_{k \rightarrow \infty} V(\varepsilon_k) = 0$. Then, we have

$$\sum_{k=0}^{\infty} H_k \leq \rho_1 V(\varepsilon_0). \quad (A.12)$$

According to Melzer and Kuo (1971), we have $J^*(\varepsilon_0) = \varepsilon_0^T P^* \varepsilon_0$. Based on Algorithms 1 and 2, the following inequation is satisfied

$$\begin{aligned} J_e^* &= \sum_{k=0}^{\infty} \omega_k^T Q \omega_k + (\hat{u}_k^*)^T R \hat{u}_k^* \\ &\leq J^*(\varepsilon_0) + \frac{\bar{\lambda}(R)\delta_e(\delta_e + 2\|K^*\|)}{\mu(1-\epsilon)\|\bar{E}\|^2} J^*(\varepsilon_0). \end{aligned} \quad (A.13)$$

That is

$$J^*(\varepsilon_0) \leq J_e^* \leq J^*(\varepsilon_0) + \frac{\bar{\lambda}(R)\delta_e(\delta_e + 2\|K^*\|)}{\mu(1-\epsilon)\|\bar{E}\|^2} J^*(\varepsilon_0). \quad (A.14)$$

References

Aangenent, W., Kostic, D., de Jager, B., van de Molengraft, R., & Steinbuch, M. (2005). Data-based optimal control. In *Proceedings of the 2005 American control conference, 2005. Vol. 2* (pp. 1460–1465).

Ahmed, K. H., Massoud, A. M., Finney, S. J., & Williams, B. W. (2011). A modified stationary reference frame-based predictive current control with zero steady-state error for LCL coupled inverter-based distributed generation systems. *IEEE Transactions on Industrial Electronics*, 58(4), 1359–1370.

Al-Tamimi, A., Lewis, F. L., & Abu-Khalaf, M. (2007). Model-free Q-learning designs for linear discrete-time zero-sum games with application to H_∞ control. *Automatica*, 43(3), 473–481.

Åström, K. J., & Bernhardsson, B. M. (2002). Comparison of Riemann and Lebesgue sampling for first order stochastic systems. In *Proceedings of the 41st IEEE conference on decision and control, 2002.* (pp. 2011–2016).

Batmani, Y., Davoodi, M., & Meskin, N. (2017). Event-triggered suboptimal tracking controller design for a class of nonlinear discrete-time systems. *IEEE Transactions on Industrial Electronics*, 64(10), 8079–8087.

Berglind, J. D. J. B., Gommans, T. M. P., & Heemels, W. P. M. H. (2012). Self-triggered MPC for constrained linear systems and quadratic costs. *IFAC Proceedings Volumes*, 45(17), 342–348.

Bian, T., & Jiang, Z. P. (2019). Continuous-time robust dynamic programming. *SIAM Journal on Control and Optimization*, 57(6), 4150–4174.

Bian, T., & Jiang, Z. P. (2021). Reinforcement learning and adaptive optimal control for continuous-time nonlinear systems: A value iteration approach. *IEEE Transactions on Neural Networks and Learning Systems*.

Bonivento, C., Marconi, L., & Zanasi, R. (2001). Output regulation of nonlinear systems by sliding mode. *Automatica*, 37(4), 535–542.

Dong, L., Zhong, X., Sun, C., & He, H. (2017). Event-triggered adaptive dynamic programming for continuous-time systems with control constraints. *IEEE Transactions on Neural Networks and Learning Systems*, 28(8), 4101–4109.

Donkers, M. C. F., & Heemels, W. P. M. H. (2012). Output-based event-triggered control with guaranteed L_∞ -gain and improved and decentralized event-triggering. *IEEE Transactions on Automatic Control*, 57(6), 1362–1376.

Gao, W., & Jiang, Z. P. (2016). Adaptive dynamic programming and adaptive optimal output regulation of linear systems. *IEEE Transactions on Automatic Control*, 61(12), 4164–4169.

Gao, W., Jiang, Y., Jiang, Z. P., & Chai, T. (2016). Output-feedback adaptive optimal control of interconnected systems based on robust adaptive dynamic programming. *Automatica*, 72, 37–45.

Gao, W., Jiang, Z. P., Lewis, F. L., & Wang, Y. (2018). Leader-to-formation stability of multiagent systems: An adaptive optimal control approach. *IEEE Transactions on Automatic Control*, 63(10), 3581–3587.

Heemels, W. P. M. H., Donkers, M. C. F., & Teel, A. R. (2013). Periodic event-triggered control for linear systems. *IEEE Transactions on Automatic Control*, 58(4), 847–861.

Hewer, G. (1971). An iterative technique for the computation of the steady state gains for the discrete optimal regulator. *IEEE Transactions on Automatic Control*, 16(4), 382–384.

Huang, J. (2004). *Nonlinear output regulation: Theory and applications*. Philadelphia, PA, USA: SIAM.

Isidori, A., Marconi, L., & Serrani, A. (2003). *Robust autonomous guidance: An internal model approach*. London, UK: Springer-Verlag.

Jiang, Z. P., Bian, T., & Gao, W. (2020). Learning-based control: A tutorial and some recent results. *Foundations and Trends in Systems and Control*, 8(3), 176–284.

Jiang, Y., & Jiang, Z. P. (2012). Computational adaptive optimal control for continuous-time linear systems with completely unknown dynamics. *Automatica*, 48(10), 2699–2704.

Jiang, Z. P., & Wang, Y. (2001). Input-to-state stability for discrete-time nonlinear systems. *Automatica*, 37(6), 857–869.

Khalil, H. K. (2002). *Nonlinear systems* (3rd ed.). Prentice Hall.

Kiumarsi, B., Lewis, F. L., Naghibi-Sistani, M.-B., & Karimpoor, A. (2015). Optimal tracking control of unknown discrete-time linear systems using input-output measured data. *IEEE Transactions on Cybernetics*, 45(12), 2770–2779.

Krener, A. J. (1992). The construction of optimal linear and nonlinear regulators. In *Systems, models and feedback: Theory and applications* (pp. 301–322).

Lancaster, P., & Rodman, L. (1995). *Algebraic Riccati equations*. New York, NY: Oxford University Press Inc.

Lemonn, M. D. (2011). Event-triggered feedback in control, estimation, and optimization. *Networked Control Systems*, 406, 293–358.

Lewis, F. L., & Liu, D. (2012). *Reinforcement learning and approximate dynamic programming for feedback control*. Hoboken, NJ: John Wiley & Sons.

Lewis, F. L., & Vamvoudakis, K. G. (2011). Reinforcement learning for partially observable dynamic processes: Adaptive dynamic programming using measured output data. *IEEE Transactions on Systems, Man and Cybernetics, Part B*, 41(1), 14–25.

Lewis, F. L., Vrabie, D., & Syrmos, V. L. (2012). *Optimal control*. Hoboken, NJ: John Wiley & Sons.

Li, J., Modares, H., Chai, T., Lewis, F. L., & Xie, L. (2017). Off-policy reinforcement learning for synchronization in multiagent graphical games. *IEEE Transactions on Neural Networks and Learning Systems*, 28(10), 2434–2445.

Li, Y., & Yang, G. (2018). Event-based adaptive NN tracking control of nonlinear discrete-time systems. *IEEE Transactions on Neural Networks and Learning Systems*, 29(9), 4359–4369.

Lin, Y. H., & Narendra, K. S. (1980). A new error model for adaptive systems. *IEEE Transactions on Automatic Control*, 25(3), 585–587.

Liu, T., & Jiang, Z. P. (2015). A small-gain approach to robust event-triggered control of nonlinear systems. *IEEE Transactions on Automatic Control*, 60(8), 2072–2085.

Melzer, S. M., & Kuo, B. C. (1971). Sampling period sensitivity of the optimal sampled data linear regulator. *Automatica*, 7(3), 367–370.

Pang, B., Bian, T., & Jiang, Z. P. (2021). Robust policy iteration for continuous-time linear quadratic regulation. *IEEE Transactions on Automatic Control*.

Saber, A., Stoorvogel, A., Sannuti, P., & Shi, G. (2003). On optimal output regulation for linear systems. *International Journal of Control*, 76(4), 319–333.

Sahoo, A., Xu, H., & Jagannathan, S. (2016). Near optimal event-triggered control of nonlinear discrete-time systems using neurodynamic programming. *IEEE Transactions on Neural Networks and Learning Systems*, 27(9), 1801–1815.

Song, R., Lewis, F. L., Wei, Q., & Zhang, H. (2016). Off-policy actor-critic structure for optimal control of unknown systems with disturbances. *IEEE Transactions on Cybernetics*, 46(5), 1041–1050.

Tabuada, P. (2007). Event-triggered real-time scheduling of stabilizing control tasks. *IEEE Transactions on Automatic Control*, 52(9), 1680–1685.

Vamvoudakis, K. G. (2014). Event-triggered optimal adaptive control algorithm for continuous-time nonlinear systems. *IEEE/CAA Journal of Automatica Sinica*, 1(3), 282–293.

Vamvoudakis, K. G., & Ferraz, H. (2018). Model-free event-triggered control algorithm for continuous-time linear systems with optimal performance. *Automatica*, 87, 412–420.

Vamvoudakis, K. G., & Lewis, F. L. (2011). Multi-player non-zero-sum games: Online adaptive learning solution of coupled Hamilton-Jacobi equations. *Automatica*, 47(8), 1556–1569.

Vamvoudakis, K. G., Mojoodi, A., & Ferraz, H. (2017). Event-triggered optimal tracking control of nonlinear systems. *International Journal of Robust and Nonlinear Control*, 27(4), 598–619.

Wang, D., & Liu, D. R. (2018). Neural robust stabilization via event-triggering mechanism and adaptive learning technique. *Neural Networks*, 102, 27–35.

Werbos, P. J. (1974). *Beyond regression: New tools for prediction and analysis in the behavioral sciences* (Ph.D. thesis), Cambridge, MA: Harvard University.

Xing, L. T., Wen, C. Y., Liu, Z. T., Su, H. Y., & Cai, J. P. (2019). Event-triggered output feedback control for a class of uncertain nonlinear systems. *Mathematics of Control, Signals, and Systems*, 64(9), 290–297.

Xu, H., Jagannathan, S., & Lewis, F. L. (2012). Stochastic optimal control of unknown linear networked control system in the presence of random delays and packet losses. *Automatica*, 48(6), 1017–1030.

Xue, S., Luo, B., Liu, D. R., & Yang, Y. (2020). Constrained event-triggered H_∞ control based on adaptive dynamic programming with concurrent learning. *IEEE Transactions on Systems, Man, and Cybernetics: Systems*.

Zhang, Q. C., Zhao, D., & Wang, D. (2018). Event-based robust control for uncertain nonlinear systems using adaptive dynamic programming. *IEEE Transactions on Neural Networks and Learning Systems*, 29(1), 37–50.

Zhang, Q. C., Zhao, D., & Zhu, Y. (2017). Event-triggered H_∞ control for continuous-time nonlinear system via concurrent learning. *IEEE Transactions on Systems, Man, and Cybernetics: Systems*, 47(7), 1071–1081.

Zhao, J. G., Gan, M. G., & Zhang, C. (2019). Event-triggered H_∞ optimal control for continuous-time nonlinear systems using neurodynamic programming. *Neurocomputing*, 360, 14–24.

Zhu, Y., Zhao, D., He, H., & Ji, J. (2017). Event-triggered optimal control for partially unknown constrained-input systems via adaptive dynamic programming. *IEEE Transactions on Industrial Electronics*, 64(5), 4101–4109.

Fuyu Zhao received the B.E. degree in Control Technology and Instruments from Nanchang Hangkong University, China, in 2011, the M.E. degree in Pattern Recognition and Intelligent Systems from Shenyang Aerospace University, China, in 2016. He is a Ph.D. student at Northeastern University, China. His research interests include adaptive dynamic programming (ADP) and event-triggered control.

Weinan Gao received the B.Sc. degree in Automation from Northeastern University, Shenyang, China, in 2011, the M. Sc. degree in Control Theory and Control Engineering from Northeastern University, Shenyang, China, in 2013, and the Ph.D. degree in Electrical Engineering from New York University, Brooklyn, NY, in 2017. He is an Assistant Professor of Mechanical and Civil Engineering at Florida Institute of Technology, Melbourne, FL since 2020. Previously, he was an Assistant Professor of Electrical and Computer Engineering at Georgia Southern University, Statesboro, GA in 2017–2020, and a Visiting Professor of Mitsubishi Electric Research Laboratory,

Cambridge, MA in 2018. His research interests include reinforcement learning, adaptive dynamic programming, optimal control, cooperative adaptive cruise control, intelligent transportation systems, sampled-data control systems, and output regulation theory. He is the recipient of the best paper award in IEEE International Conference on Real-time Computing and Robotics in 2018, and the David Goodman Research Award at New York University in 2019. Dr. Gao is an Associate Editor or a Guest Editor of IEEE/CAA Journal of Automatica Sinica, Neurocomputing, IEEE Transactions on Neural Network and Learning Systems, and Complex & Intelligent Systems, a member of Editorial Board of Neural Computing and Applications and Control Engineering Practice, and a Technical Committee Member in IEEE Control Systems Society on Nonlinear Systems and Control and in IFAC TC 1.2 Adaptive and Learning Systems.

Tengfei Liu received the B.E. and the M.E. degrees from South China University of Technology and the Ph.D. degree from RSISE, the Australian National University. He was a postdoc with faculty fellowship at Polytechnic Institute of New York University. He is a faculty member at Northeastern University, China. His research interests include mathematical control theory of interconnected nonlinear systems.

Zhong-Ping Jiang received the M.Sc. degree in statistics from the University of Paris XI, France, in 1989, and the Ph.D. degree in automatic control and mathematics from the Ecole des Mines de Paris (now, called ParisTech-Mines), France, in 1993, under the direction of Prof. Laurent Praly.

Currently, he is a Professor of Electrical and Computer Engineering at the Tandon School of Engineering, New York University. His main research interests include stability theory, robust/adaptive/distributed nonlinear control, robust adaptive dynamic programming, reinforcement learning and their applications to information, mechanical and biological systems. In these fields, he has written six books and is author/co-author of over 500 peer-reviewed journal and conference papers.

Prof. Jiang is a recipient of the prestigious Queen Elizabeth II Fellowship Award from the Australian Research Council, CAREER Award from the U.S. National Science Foundation, JSPS Invitation Fellowship from the Japan Society for the Promotion of Science, Distinguished Overseas Chinese Scholar Award from the NSF of China, and several best paper awards. He has served as Deputy Editor-in-Chief, Senior Editor and Associate Editor for numerous journals. Prof. Jiang is a Fellow of the IEEE, a Fellow of the IFAC, a Fellow of the CAA and is among the Clarivate Analytics Highly Cited Researchers. In 2021, he is elected as a foreign member of the Academia Europaea.