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a b s t r a c t

This paper presents novel event-triggered control approaches to solve the adaptive optimal output
regulation problem for a class of linear discrete-time systems. Different from most existing research
on output regulation problems, the developed adaptive optimal control approaches are based on (1)
output-feedback instead of full-state or partial-state feedback, (2) adaptive dynamic programming
(ADP) which provides approximate solutions of the optimal control problem without requiring the
precise knowledge of the plant dynamics, and (3) an event-triggering mechanism that reduces the
communication between the controller and the plant. It is shown that the system in closed-loop with
the developed controllers is asymptotically stable at an equilibrium of interest, and the tracking errors
asymptotically converge to zero. Moreover, the suboptimality of the closed-loop system is directly
determined by the relative threshold, which is a ratio between the triggering threshold and the
actual state. A numerical simulation example is employed to verify the effectiveness of the proposed
methodologies.

© 2021 Elsevier Ltd. All rights reserved.
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1. Introduction

The output regulation problem addresses the design of a
eedback controller to achieve the disturbance rejection and
symptotic tracking for dynamical systems with disturbance and
eference signal generated by certain exosystems. Due to its
ide application, the problem of output regulation has received
remendous attention (see Bonivento et al. (2001), Huang (2004),
Isidori et al. (2003), Krener (1992) and Saberi et al. (2003)). The
optimal output regulation problem is studied in Krener (1992)
and Saberi et al. (2003), where the transient performance can be
optimized by minimizing a predefined cost function. However, a
general limitation in these solutions is that the system dynamics
is assumed to be perfectly known.

Adaptive dynamic programming (ADP) is a non-model based
control approach inspired by biological systems (see Gao et al.
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(2016), Jiang and Jiang (2012), Kiumarsi et al. (2015), Lewis and
Liu (2012), Li et al. (2017), Werbos (1974) and Song et al. (2016)).
t can be used to approximate the optimal control solutions for
ncertain systems whose uncertain system model is missing.
herefore, it is a good candidate to handle optimal output regu-
ation problems with unknown system dynamics. In our previous
ork (Gao & Jiang, 2016; Gao et al., 2018), we have, for the

ist time, achieved adaptive optimal output regulation for linear
ystems via ADP.
Recently, event-triggered strategies (Åström & Bernhardsson,

002; Donkers & Heemels, 2012; Heemels et al., 2013; Lem-
on, 2011; Liu & Jiang, 2015; Tabuada, 2007; Xing et al., 2019)

have been employed in ADP-based control to save control sys-
tem resources. An adaptive optimal controller is developed to
solve the event-triggered Hamilton–Jacobi-Bellman (HJB) equa-
tion for nonlinear systems in Vamvoudakis (2014). Vamvoudakis
and Ferraz (2018) further proposes a class of event-triggered
controllers for uncertain systems by using Q-learning techniques.
In Sahoo et al. (2016), a suboptimal event-triggered condition is
provided for a class of discrete-time nonlinear systems in the
affine form. Moreover, input constraints and robustness with
respect to uncertain terms and unmatched dynamics have also
been studied within the scope of event-triggered ADP (Dong
et al., 2017; Wang & Liu, 2018; Zhang et al., 2018; Zhu et al.,
2017). In Xue et al. (2020), Zhang et al. (2017) and Zhao et al.
(2019), the methods of event-triggered H optimal control via
∞
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DP are studied. Besides stabilization, some event-triggered opti-
al methods have been proposed to solve the tracking problems.
n event-triggered optimal tracking control algorithm for non-
inear systems is presented in Batmani et al. (2017), but no
xternal disturbance is taken into account and the dynamics of
he system are assumed to be known. In Li and Yang (2018), a
imultaneous design of a neural network based adaptive control
aw and an event-triggered condition for a class of strict feedback
onlinear discrete-time systems is proposed, and the uniform
ltimate boundedness property is achieved for the closed-loop
ystem.
It should be noticed that most previously proposed ADP-based

vent-triggered control designs are based on state-feedback. In
any practical tracking control problems, the state of a system

s not measurable, and only the measured output can be uti-
ized for feedback. The observer-based control design is usually
tilized to develop measurement feedback controllers. However,
bserver design is a challenging problem for the linear optimal
utput regulation of uncertain systems. Besides this technical
hallenge, due to sampling errors, unknown system dynamics and
nknown disturbances, the main difficulty lies in the design of
daptive optimal controller with event-triggered output-feedback
or unknown systems to achieve the disturbance rejection and
symptotic tracking. Moreover, it is a non-trivial task to quan-
ify the relationship between the suboptimality and triggering
hreshold ratio.

In this paper, we consider a class of unknown discrete-time
inear systems with unknown exosystem. The unmeasured states
nd exostates are reconstructed by using the measured
nput/output data. A dynamic compensator is designed to com-
ensate the effect of the states of the exosystem. Then, we design
novel event-triggering mechanism which only depends on the

racking errors. The event-triggered ADP method is implemented
ased on the reconstructed state. It is proved that the discrete-
ime algebraic Riccati equation and the regulator equation can be
teratively solved by utilizing the event-triggered ADP based on
oth the policy iteration (PI) and value iteration (VI) methods.
ith the proposed ADP designs, the event-triggered adaptive
ptimal output regulation problem is achievable for uncertain
inear systems by only using the input/output data. Moreover,
he communication between the plant and the controller can be
educed.

The major contributions of this paper are threefold. As the
irst contribution, we, for the first time, solve the model-free
vent-triggered output regulation problem via output-feedback.
ompared with Batmani et al. (2017), Li and Yang (2018) and
amvoudakis et al. (2017), the solution in this paper can deal with
he optimal output regulation problem for unknown discrete-
ime linear systems with unmeasurable states, exostates, and
isturbances. The second contribution is that we propose two
uccessive approximation algorithms, PI and VI, to approximate
he optimal control policy. The closed-loop stability and conver-
ence of proposed algorithms are rigorously guaranteed in this
aper. Last but not the least, different from existing studies on
ptimal control and event-triggering mechanisms, we have ana-
yzed the sensitivity of triggering threshold. To be more specific,
e quantify the relationship between the suboptimality of the
losed-loop system and the triggering threshold ratio.
The remainder of this paper is organized as follows. In Sec-

ion 2, we review the linear optimal output regulation problem,
nd provide a brief review on the even-triggering mechanism.
n Section 3, PI and VI based output-feedback event-triggered
daptive optimal controllers are designed, respectively. The main
esults of the stability and suboptimality analysis are given in Sec-
ion 4. Simulation for an LCL coupled inverter-based distributed
eneration system is given in Section 5. Finally, conclusions are
iven in Section 6.
2

Notations: Let R denote the set of real numbers, R+ the set of
nonnegative real numbers, Z+ the set of non-negative integers,
and ∥ · ∥ the Euclidean norm of vectors or matrices. A ⊗ B
stands for the Kronecker product of matrices A and B. For a
symmetric matrix A ∈ Rn×n, λ̄(A) and λ(A) are the maximum
eigenvalue and the minimum eigenvalue of A, respectively. A
continuous function g(s) : R+ → R+ is a K-function if it is
strictly increasing and g(0) = 0; it is a K∞-function if it is a
K-function and g(s) → ∞ as s → ∞. For a matrix L ∈ Rn×m,
vec(L) = [lT1, l

T
2, . . . , l

T
m]

T
∈ Rmn. For a symmetric matix F ∈

Rm×m, vecs(F ) = [f11, 2f12, . . . , 2f1m, f22, 2f23, . . . , 2fm−1, fmm]
T
∈

R
1
2m(m+1). For an arbitrary column vector a ∈ Rn, vecv(a) =
[a21, a1a2, . . . , a1an, a

2
2, a2a3, . . . , an−1an, a

2
n]

T
∈ R

1
2 n(n+1).

2. Problem formulation and preliminaries

2.1. Basics of optimal output regulation

Consider the following linear system:

xk+1 = Axk + Buk + Czk, (1)

zk+1 = Dzk, (2)

ωk = Exk + Fzk (3)

where xk ∈ Rn is the state vector, A ∈ Rn×n, B ∈ Rn×m, C ∈ Rn×d,
D ∈ Rd×d, E ∈ Rl×n, and F ∈ Rl×d are constant matrices.
The exosystem described by (2) generates both the disturbances
ζk = Czk and the reference signal yrk = −Fzk. ωk ∈ Rm denotes
the tracking error, uk ∈ Rm stands for the control input of the
system. The following assumptions are made in this paper.

Assumption 1. The pair (A, B) is controllable.

Assumption 2. rank
[
A− λI B

E 0

]
= n+ l,∀λ ∈ σ (D).

Assumption 3. All the eigenvalues of D are semisimple with
modulus equal to 1, and the minimal polynomial of D is available,
which is

hm(s) =
M∏
i=1

(s− λi)ai
N∏
j=1

(s2 − 2pjs+ µ2
j + q2j )

bj (4)

with its degree r ≤ d, where ai and bj are positive integers and
λi, pj, qj ∈ R, for i = 1, 2, · · · ,M, j = 1, 2, · · ·N .

Under the condition of Assumption 3, we can always find a
vector γk ∈ Rr and a matrix D̂ ∈ Rr×r , such that

γk+1 = D̂γk,
zk = Hγk

where H ∈ Rd×r is an unknown constant matrix.
Therefore, the system (1)–(3) turns into

xk+1 = Axk + Buk + Ĉγk,

γk+1 = D̂γk,

ωk = Exk + F̂γk

(5)

where Ĉ = CH and F̂ = FH .

Assumption 4. The pair (Ā, Ē) is observable, where Ē =
[
E F̂

]
,

Ā =
[
A Ĉ
0 D̂

]
.

The solvability of linear output regulation problem is discussed
in the following theorem.
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heorem 1 (Huang, 2004). Under the conditions of Assumptions 1–
, choose a K such that A− BK is a Schur matrix. The linear output
egulation problem is solvable if the controller is designed as

k = −K (xk − Xγk)+ Uγk (6)

where X ∈ Rn×r and U ∈ Rm×r solve the following regulator
quation:

D̂ = AX+ BU+ Ĉ,

0 = EX+ F̂ .
(7)

Remark 1. As introduced in Huang (2004), Assumption 3 is
a standard assumption for solving a linear output regulation
problem, which is usually necessary to develop an internal model.
Assumption 2 ensures the solvability of regulator Eq. (7) for any
atrices Ĉ and F̂ .

If the pair (X,U) is a solution to the regulator equation, then
we can rewrite the error system of (5) as

k+1 = Aεk + Buk − BUγk,
ωk = Eεk

(8)

where εk = xk − Xγk.
As shown in Krener (1992), the linear optimal output regu-

lation problem (LOORP) is solvable if (1) the linear output reg-
ulation problem is solvable, and (2) the following optimization
Problem 1 is solvable.

Problem 1. Along the solutions of (8), find ūk = uk − Uγk that
inimizes the following cost

(ε0) =
∞∑
k=0

ωT
kQωk + ūT

kRūk (9)

where Q = Q T
≥ 0, R = RT > 0.

By optimal control theory (Lewis et al., 2012), the control
policy that minimizes the cost (9) is

ū∗k = −(R+ BTP∗B)−1BTP∗Aεk := −K ∗εk (10)

here P∗ = (P∗)T > 0 uniquely solves the following discrete-
ime algebraic Riccati equation under the conditions that the pair
A, B) is controllable and the pair (A,Q

1
2 E) is observable.

TPA− P − ATPB(R+ BTPB)−1BTPA+ ETQE = 0. (11)

Since (11) is nonlinear in P , solving P directly from (12) is
ifficult. A PI algorithm is proposed in Hewer (1971) to approxi-
ate the solution P . To be more specific, given K0 such that A−
K0 is a Schur matrix, sequences {Pj}∞j=0 and {Kj}

∞

j=0 are uniquely
etermined by

A− BKj)TPj(A− BKj)− Pj + ETQE + K T
j RKj = 0, (12)

j+1 = (R+ BTPjB)−1BTPjA. (13)

If an initial stabilizing control gain K0 is not available, one
an rely on the VI algorithm (Lancaster & Rodman, 1995). Given
ny P0 = PT

0 > 0, sequences {Pj}∞j=0 and {K vj+1}
∞

j=0 are uniquely
etermined by

j+1 =ATPjA− ATPjB(R+ BTPjB)−1BTPjA+ ETQE (14)

and

K v = (R+ BTP B)−1BTP A. (15)
j+1 j+1 j+1

3

2.2. Problem formulation of event-triggered adaptive optimal output
regulation

In this paper, it is expected that the amount of the control
updates can be reduced through an event-triggered design. For
convenience of discussions, we use ε̂k to represent the sampled
value of εk, that is

ε̂k = εkj , k ∈ [kj, kj+1) (16)

where {kj}∞j=0 is a monotonically increasing sequence of sampling
instants, and the state is only updated at instants: k0, k1, k2, · · ·.
he sampling error of the state is defined as

k = ε̂k − εk. (17)

Then, the error system (8) is converted into

k+1 = Aεk + Bûk − BUγk,
ûk = −K ε̂k + Uγk,

(18)

nd the event-triggered adaptive optimal output-feedback con-
roller is

ˆ
∗

k =
ˆ̄u∗k + Uγk (19)

here ˆ̄u∗k is the optimal control law to be designed later.
The event-triggered adaptive optimal output regulation prob-

em for the linear discrete-time system is formulated as follows.

roblem 2. Consider the system (1)–(3) with unknown con-
tant matrixes A, B, C , D, E and F , unmeasurable state vector xk,
nmeasurable exostate vector zk, unknown disturbances ζk, and
nknown reference signal sk, design a controller as in (19), such
hat the following properties hold.

• The linear output regulation problem is solved;
• The communication between the controller and the plant is

reduced;
• The designed controller is suboptimal with respect to the

cost (9). More specifically, the following suboptimality cri-
terion (Berglind et al., 2012) needs satisfied:

∞∑
k=0

ωT
kQωk + ( ˆ̄u

∗

k)
TR ˆ̄u∗k ≤ ρJ

∗(ε0) (20)

here ρ ≥ 1 is a performance degradation index, J∗(ε0) is the
ptimal cost.

We will give the relationship between εk and the sequences of
he outputs and inputs in Section 3. Then, in the event-triggered
esign, we utilize the sampled inputs and outputs to reconstruct
he state εk. Moreover, due to the unknown system dynamics, we
annot get the value of U directly, but it can be learned through
he online data.

. Event-triggered output-feedback adaptive optimal
ontroller design

This section employs the ADP techniques to solve the event-
riggered output-feedback adaptive optimal control problem for
he linear system (5).

.1. Event-triggered output-feedback ADP controller: PI-based de-
ign

This subsection introduces a new class of event-triggered
utput-feedback adaptive optimal controller for suboptimality of
he closed-loop system.
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Under the conditions of Assumption 4, motivated by Aan-
enent et al. (2005) and Lewis and Vamvoudakis (2011), there

exist two matrices Nw and Nu such that

εk = Nωω̃k + Nuũk = Nvk (21)

where
Nω =

[
In −X

]
Ān+r (OT

1O1)−1OT
1 ∈ Rn×l(n+r),

Nu =
[
In −X

]
(Co − Ān+r (OT

1O1)−1OT
1Γ )

∈ Rn×m(n+r),

ũk =[ûT
k−1, û

T
k−2, · · · , û

T
k−n−r ]

T
∈ Rm(n+r),

ω̃k =[ω
T
k−1, ω

T
k−2, · · · , ω

T
k−n−r ]

T
∈ Rl(n+r),

N =
[
Nω Nu

]
∈ Rn×(l+m)(n+r),

vk =
[
ω̃T

k ũT
k

]T
∈ R(l+m)(n+r),

B̄ =[BT , 0m×r ]
T
∈ R(n+r)×m,

Co =[B̄, ĀB̄, · · · , Ān+r−1B̄] ∈ R(n+r)×m(n+r),

O1 =[(ĒĀn+r−1)T , · · · , (ĒĀ)T , ĒT
]
T
∈ Rl(n+r)×(n+r),

Γ =

⎡⎢⎢⎢⎢⎢⎣
0 ĒB̄ ĒĀB̄ · · · ĒĀn+r−2B̄
0 0 ĒB̄ · · · ĒĀn+r−3B̄
...

...
. . .

. . .
...

0 0 0 0 ĒB̄
0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎦
∈ Rl(n+r)×m(n+r).

Let K̄0 = K0N be a stable control gain for the error system (18),
nd define
v
k = −K̄0vk (22)

s the control input. According to (13), we have

0 = (R+ BTPB)−1BTPA (23)

here P is a solution of the Lyapunov equation (12). Also, define

ˆk = vkj , k ∈ [kj, kj+1) (24)

s the sampled value of vk. Then, we have the sampling error as
ollows
v
k = v̂k − vk. (25)

In the PI-based learning process, the error system (18) can be
ewritten as

k+1 = Aεk + Bûvk − BUγk,
ûvk = −K̄0v̂k.

(26)

The following lemma gives the stability of the transformed
system (26). The proof is given in Appendix A.1.

Lemma 1. Given any stabilizing K̄0, and assume ETQE > µ1Im,
where µ1 > 1. With the event-triggered control law given in (26),
the closed-loop system is input-to-state stable (ISS) with Uγk as the
input, if

∥K̄0evk∥
2
≤

(1−α)(µ1−1)
Ē2

∥ωk∥
2
+ λ(R)∥ûvk∥

2

η
(27)

where α ∈ (0, 1), ∥E∥ ≤ Ē, and η ≥ λ̄(R+ 2BTPB).

As can be directly checked, the condition in (27) is guaranteed
by the following event-triggering mechanism:

kj+1 = inf
{
k ∈ Z+ | k > kj ∧ ∥K̄0evk∥

2
≥ ēv0k

}
(28)

ith k = 0 and ēv0 =
(1−α)(µ1−1)

Ē2
∥ωk∥

2
+λ(R)∥ûvk∥

2

.
0 k η

4

To solve the ARE (11) by PI method, we rewrite the system
(26) as

εk+1 = Ajεk + B(ûvk + Kjεk)− BUγk (29)

where Aj = A − BKj. Define K̄j = KjN and P̄j = NTPjN . Based on
(29) and the PI algorithm (12)–(13), we have

vTk+1P̄jvk+1 − v
T
k P̄jvk

εTk+1Pjεk+1 − ε
T
k Pjεk

− 2vTkN
TAT

j PjBUγk + 2(ûvk + K̄jvk)TBTPjANvk
+ (ûvk + K̄jvk)TBTPjB(ûvk − K̄jvk)− ωT

kQωk − v
T
k K̄

T
j RK̄jvk

− 2(ûvk + K̄jvk)TBTPjBUγk + γ T
k U

TBTPjBUγk.

(30)

Define Gj1 = NTAT
j PjBU, Gj2 = BTPjAN , Gj3 = BTPjB, Gj4 =

TPjBU, and Gj5 = UTBTPjBU. Given a sufficiently large q ∈ Z+ and

et ξk = ûvk + K̄jvk. For two sequences {Hk}
k̃q
k̃0

and {Sk}
k̃q
k̃0
, define

(Hk, Sk) =[Hk̃0
⊗ Sk̃0

,Hk̃1
⊗ Sk̃1

, . . . ,Hk̃q ⊗ Sk̃q ]
T ,

Θ̃(Hk) =[vecv(Hk̃0
), vecv(Hk̃1

), . . . , vecv(Hk̃q )]
T ,

Πj =[(ωk̃0
)TQωk̃0

+ (vk̃0 )
T K̄ T

j RK̄jvk̃0 , . . . ,

(ωk̃q )TQωk̃q + (vk̃q )
T K̄ T

j RK̄jvk̃q ]
T .

For any stabilizing gain matrix K̄j, (30) indicates the following
quation

jGj = Πj (31)

here

j =[−2Θj(γk, vk), 2Θj(vk, ξk), Θ̃j(ûvk )− Θ̃j(K̄jvk),

− 2Θj(γk, ξk), Θ̃j(γk), Θ̃j(vk)− Θ̃j(vk+1)],

Gj =[vec(Gj1 )
T , vec(Gj2 )

T , vecs(Gj3 )
T , vec(Gj4 )

T ,

vecs(Gj5 )
T , vecs(P̄j)T ]T .

Eq. (31) can be uniquely solved when matrix Ξj is full column
ank, i.e.,

j = (Ξ T
j Ξj)−1Ξ T

j Πj. (32)

Assumption 2 implies that B is of full column rank, so Gj3 is a
onsingular matrix. Then, K̄j+1 and U can be obtained as follows:

¯j+1 = (R+ Gj3 )
−1Gj2 ,

U = G−1j3
Gj4 .

(33)

Let ϕk = [vTk , û
T
k , γ

T
k ]

T . The uniqueness of the solution to (32)
s ensured by the following lemma.

emma 2 (Gao et al., 2018). Let θ = (l + m)(n + r), if there exists
q∗ ∈ Z+ such that

ank[Θj(ϕk, ϕk)] =
m(m+ 1)+ lr(lr + 1+ 2 m)+ θ (θ + 1+ 2lr + 2 m)

2
(34)

olds for all q > q∗, then (31) can be uniquely solved.

Then, we present our event-triggered output-feedback adap-
tive optimal control algorithm.
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Algorithm 1. PI-based event-triggered ADP
(1) Utilize ûvk = −K̄0v̂k + ηk as the control input on [k̃0, k̃q],
where ηk is an exploration noise. Set j = 0.
(2) Solve P̄j, K̄j+1, and U from (32) and (33).
(3) Set j← j+ 1, for j ≥ 1, if ∥P̄j − P̄j−1∥ > τ , repeat Step 2;
else set j∗ ← j and go to Step 4,where constant τ > 0 is a
stop criterion for the convergence of P̄j.
(4) The approximated optimal control gain is

K̄ := [−K̄j∗ (Gj∗3
)−1Gj∗4

].

By using the event-triggered ADP controller, the error system
26) can be rewritten as

k+1 = Aεk + Bû∗k − BUγk,
û∗k = K̄j∗ [v̂k γk]

T .
(35)

The following lemma gives the stability of the transformed
system (35). See Appendix A.2 for the proof.

Lemma 3. Assume the weighting matrix in (9) satisfying Q > µIn,
where µ is a positive real number. With the event-triggered control
law û∗k given in (35), the system (35) is globally asymptotically stable
at the origin, if

∥K̄j∗evk∥
2
≤
ϵµ∥ωk∥

2
+ λ(R)∥û∗k − (Gj∗3

)−1Gj∗4
γk∥

2

λ̄(R+ Gj∗3
)

(36)

here ϵ ∈ (0, 1).

Based on Lemma 3, to guarantee the satisfaction of the con-
ition in (36), the following event-triggering mechanism is de-
igned:

j+1 = inf{k ∈ Z+ | k > kj ∧ ∥K̄j∗evk∥
2
≥ ēvpk } (37)

ith ēvpk =
ϵµ∥ωk∥

2
+λ(R)∥û∗k−(G

∗
j3
)−1G∗j4

γk∥
2

λ̄(R+G∗j3
)

and k0 = 0. Then, the

I-based event-triggered ADP controller is designed as

ˆ
∗

k = K̄j∗ [v̂k γk]
T (38)

ith ∥K̄j∗evk∥
2
≤

ϵµ∥ωk∥
2
+λ(R)∥û∗k−(G

∗
j3
)−1G∗j4

γk∥
2

λ̄(R+G∗j3
)

.

Theorem 2. If (34) holds, then sequences {P̄j}∞j=0 and {K̄j}
∞

j=1 ob-
ained from solving Algorithm 1 converge to P̄∗ and K̄ ∗, respectively,
here P̄∗ = NTP∗N and K̄ ∗ = K ∗N.

roof. See Appendix A.3. □

.2. Event-triggered output-feedback ADP controller: VI-based de-
ign

As an alternative to the policy iteration approach, the value
teration approach does not need a known stabilizing control law
o initialize.

In the VI-based learning process, the error system (18) is
ewritten as

k+1 = Aεk + Bûk − BUγk
ûk = −K̄vφ(k)

(39)

here K̄v = [K̄ v − U] ∈ Rm×[r+(l+m)(n+r)] is an arbitrary control
ain, φ(k) = [v̂Tk γ

T
k ]

T , and evk satisfies that

evk∥ ≤ α (40)

here α > 0 stands for a predefined threshold.
5

Define

Ḡj =

⎡⎢⎣Ḡ11
j Ḡ12

j Ḡ13
j

Ḡ21
j Ḡ22

j Ḡ23
j

Ḡ31
j Ḡ32

j Ḡ33
j

⎤⎥⎦
=

⎡⎣ NTATPjAN NTATPjB −NTATPjBU
BTPjAN BTPjB −BTPjBU
−UTBTPjAN −UTBTPjB UTBTPjBU

⎤⎦ .
Besides, let

f (Pj) = ATPjA− ATPjB(R+ BTPjB)−1BTPjA.

From (14) and (39), we obtain

ωT
k+1Qωk+1

=εTk+1Pj+1εk+1 − ε
T
k+1f (Pj)εk+1

=
[
vecv([vk ûk γk]

T )
]T

vecs(Ḡj+1)

− vTk+1[Ḡ
11
j − Ḡ12

j (R+ Ḡ22
j )−1(Ḡ12

j )T ]vk+1

=ϖ T
k vecs(Ḡj+1)− ψ

j
k+1

(41)

where

ψ
j
k+1 = v

T
k+1[Ḡ

11
j − Ḡ12

j (R+ Ḡ22
j )−1(Ḡ12

j )T ]vk+1,

ϖk = vecv([vTk , û
T
k , γ

T
k ]

T ).

For j = 0, 1, 2, . . ., define

Ψj = [ω
T
k̃1
Qωk̃1

+ ψ
j
k̃1
, · · · , ωT

k̃q+1
Qωk̃q+1 + ψ

j
k̃q+1
],

Φ = [ϖk̃0
,ϖk̃1

, · · · ,ϖk̃q ].

According to Eq. (41), we have

Φvecs(Ḡj+1) = Ψj. (42)

Similarly, The uniqueness of the solution is ensured by
Lemma 2. Then, we present our VI-based output-feedback event-
triggered adaptive optimal control algorithm.

Algorithm 2. VI-based event-triggered ADP
(1) Select thresholds τ > 0 and α > 0. Set j = 0, Ḡ0 = 0 and
K̄0 = 0.
(2) Apply ûk = −K̄0vk + ηk on [k̃0, k̃q]. Solve Ḡj+1 from (42).
(3) Set j+ 1→ j, if ∥Ḡj − Ḡj−1∥ > τ , repeat Step 2; else set
j∗ ← j and go to Step 4.
(4) Use K̄vj∗ = [(R+ Ḡ22

j∗ )
−1(Ḡ12

j∗ )
T , (Ḡ22

j∗ )
−1(Ḡ23

j∗ )] as the
approximated optimal control gain.

Then, we can get the control law as follows

û∗k = K̄j∗ [v̂k γk]
T . (43)

Let K̄ vj∗ = (R+ Ḡ22
j∗ )
−1(Ḡ12

j∗ )
T , according to Lemma 3, evk satisfies

that

∥K̄ vj∗e
v
k∥

2
≤
ϵµ∥ωk∥

2
+ λ(R)∥û∗k − (Ḡ22

j∗ )
−1(Ḡ23

j∗ )γk∥
2

λ̄(R+ Ḡ22
j∗ )

. (44)

To guarantee the satisfaction of the condition in (44), we give
he following event-triggering mechanism:

j+1 = inf{k ∈ Z+ | k > kj ∧ ∥K̄ vj∗e
v
k∥

2
≥ ēvvk } (45)

ith k0 = 0 and ēvvk =
ϵµ∥ωk∥

2
+λ(R)∥û∗k−(Ḡ

22
j∗ )
−1(Ḡ23

j∗ )γk∥
2

λ̄(R+Ḡ22j∗ )
.

Similar to the analysis of Theorem 2, the convergence of Algo-
rithm 2 is shown as follows.
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heorem 3. If (34) holds, then {Ḡj}
∞

j=0 and {K̄vj }
∞

j=1 obtained from
olving Algorithm 2 converge to Ḡ∗ and K̄∗, where K̄∗ = [K ∗N,−U]
nd

¯ ∗ =

⎡⎣ NTATP∗AN NTATP∗B −NTATP∗BU
BTP∗AN BTP∗B −BTP∗BU
−UTBTP∗AN −UTBTP∗B UTBTP∗BU

⎤⎦ .
emark 2. Exploration noise (Al-Tamimi et al., 2007; Jiang &

Jiang, 2012; Vamvoudakis & Lewis, 2011; Xu et al., 2012) is
introduced in Algorithms 1 and 2 for persistent excitation, which
is needed for convergence of the ADP algorithms. For simulation
purpose, we will use the sum of sinusoidal signals with different
frequencies, see e.g., Jiang and Jiang (2012).

Remark 3. Algorithm 1 assumes a known stabilizing control
law, which may limit its applications. However, compared with
Algorithm 2, the convergence rate of Algorithm 1 is quadratic in
a neighborhood of the steady state (Hewer, 1971), which is faster.
Algorithm 2 does not assume a known stabilizing control law, but
the price paid for this is the possibly slower convergence rate.

4. Main results

From Theorem 2, there always exists a small enough threshold
τ > 0 in Algorithms 1, such that A− BKj∗ is a Schur matrix. With
the proof of Lemma 3, it obviously indicates that the closed-loop
system is globally asymptotically stable at the origin. Besides, we
can rewrite the error system of the closed-loop system as follows

εk+1 = Aεk + Bûk − BUγk,

ωk = Eεk + (EX+ F̂ )γk.
(46)

Because the closed-loop system is globally asymptotically sta-
ble, we have limk→∞ εk = 0. Also, X solves the regulator Eq. (8),
we have limk→∞ ωk = 0.

Based on the above analysis, the following Theorem 4 is given.

Theorem 4. Considering the linear system (1)–(3), by using the
learning based control policy (38), we have

• the system (1)–(3) is globally asymptotically stable at the
origin.
• the tracking error ωk converges to 0 as t goes to infinity.

According to the proof of Lemma 3, we have

∥K ∗ek∥2 ≤
ϵµ∥ωk∥

2
+ λ(R)∥û∗k − Uγk∥2

λ̄(R+ BTP∗B)
:= ē2k . (47)

For εk ̸= 0, let the triggering threshold ratio be δe =

max{ ēk
∥εk∥

, k = 1, 2, · · ·}. The following theorem is given to
haracterize the suboptimality property of the closed-loop system
omposed of (1)–(3) and (38). See Appendix A.4 for the proof.

heorem 5. Under the conditions of Lemmas 2 and 3, the control
trategy (38) is suboptimal for system (1)–(3) with the cost J∗e in (9)
atisfying

∗(ε0) ≤ J∗e ≤ J∗(ε0)+
λ̄(R)δe(δe + 2∥K ∗∥)
µ(1− ϵ)∥Ē∥2

J∗(ε0). (48)

Remark 4. Theorem 5 shows the numerical relationship be-
tween the triggering ratio δe and the cost of the system. As we
can see from (48), a smaller δe results in more frequent samplings
but better suboptimality. A large δe causes larger inter-sampling
eriods but an unsatisfactory system performance.
6

In practice, there may be slight perturbations ∆D on D and
additional output noise ∆yk , satisfying ∆yk ≤ ∥∆yk∥ ≤ ∆̄yk . In
this case, the system (1)–(3) can be formed as

xk+1 = Axk + Buk + Czk,
zk+1 = (D+∆D)zk,

ωk = Exk + F̂γk +∆yk .

(49)

Under the conditions of Assumption 3 and Theorem 1, we get
the following error system

εk+1 = Aεk + Buk − BUγk +∆zk ,

ωk = Eεk +∆yk
(50)

where ∆zk = Czk − Ĉγk.
Motivated by Aangenent et al. (2005) and

Lewis and Vamvoudakis (2011), we have εk = Nvk +∆εk , where
∆εk is a bounded function related to ∆zk and ∆yk .

Based on Bian and Jiang (2019) and Pang et al. (2021), in the
presence of ∆D and ∆yk , by using Algorithms 1 and 2, we can
obtain a suboptimal control gain K̄ ∗d and a feedforward gain Ud,
such that the controller is designed as

û∗k = −K̄
∗

d v̂k + Udγk. (51)

To explain the effect of the slight perturbations ∆D and addi-
ional output noise ∆yk on the system (49), the following Corol-
ary 1 is given.

orollary 1. With the designed event-triggered adaptive optimal
ontrol law (51), if the following event-triggered condition

K̄ ∗d e
v
k∥ ≤

(1−α)(µ1−1)
Ē2

min{∥ωk −∆yk∥
2, ∥ωk − ∆̄yk∥

2
}

2λ̄(R+ BTPB+ In)
(52)

s satisfied, then the closed-loop system is ISS with ∆D and ∆yk as
the inputs.

Proof. Define Ad = A− BK ∗d with K̄ ∗d = K ∗dN . Then, we have

εk+1 = Adεk − BK ∗d ek +∆k (53)

where ∆k = ∆zk + B(Ud − U)γk.
Along the trajectory of (53), we have

εTk+1Pεk+1 − ε
T
k Pεk

=εTk AdPAdεk + (K ∗d ek)
TBTPBK ∗d ek +∆

T
kP∆k

− 2(K ∗d ek)
TBTPAdεk + 2∆T

kPAdεk − 2∆T
kPBK

∗

d ek
− εTk Pεk

≤− α(µ1 − 1)∥εk∥2 −
(1− α)(µ1 − 1)

Ē2
∥ωk −∆yk∥

2

+ 2(k̄∗de
v
k )

T (R+ BTPB+ In)(k̄∗de
v
k )+ 2∆̃T

k (R+ BTPB+ In)∆̃k

+ ∆T
k (P + PAdAT

dP + PBBTP)∆k

where ∆̃k = K̄ ∗d (∆εkj −∆εk ) and {kj}
∞

j=0 are triggering instants.
When the condition (52) is satisfied, we have

T
k+1Pεk+1 − ε

T
k Pεk ≤ −α̃3(∥εk∥)+ α̃4(∥∆k∥, ∥∆̃k∥)

where α̃3(·) is a K∞-function and α̃4(·) is a K-function.
According to Jiang and Wang (2001), the closed-loop system

is ISS with ∆D and ∆yk as the inputs. □

. Simulation results

We show the efficiency of the proposed method by means of
practical of LCL coupled inverter-based distributed generation
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Fig. 1. Convergence of Algorithms 1 and 2.

ystem (Ahmed et al., 2011). In practice, the discrete-time system
s preferred for computer implementation (Lin & Narendra, 1980).
ased on the Euler discretization method, by using a sampling
eriod h = 0.0001, the continuous-time system in Ahmed et al.
2011) is discretized as follows:

k+1 =

⎡⎢⎣1− hR1
L1
−

h
L1

0
h
c 1 −

h
c

0 h
L2

1− hR2
L2

⎤⎥⎦ xk +

⎡⎣ h
L1
0
0

⎤⎦ uk + dh

where xk = [IL, VC , IO]T , ωk = IO, and uk = VI . The physical
meanings and values of the parameters refer to Ahmed et al.
(2011). The exosystem can generate both the disturbance (grid
voltage) and the reference signal. The minimal polynomial of D is
set as

hm(s) = s4 − 3.9901s3 + 5.9803s2 − 3.9901s+ 1.

Then, we can generate the exosystem as

γk+1 =

⎡⎢⎣0.9995 −0.0314 0 0
0.0314 0.9995 0 0

0 0 0.9956 −0.0941
0 0 0.0941 0.9956

⎤⎥⎦ γk (54)

with initial condition γ0 = [1 0 1 0]T .
Set the reference signal yrk = −[5

√
3 5 0.2 0.1]γk. Then, we

ave the tracking error ωk = [0 0 1]xk + yrk .
As stated in Algorithm 1, we apply a stabilizing control strat-

egy ûvk = −K̄0v̂k + ηk as the control input on [0, 30] ms for the
stage of data collection. Then, P̄j, K̄j+1, and U are iteratively solved
from (32) and (33) by using the collected data. In Algorithm
2, we use ûk = −ηk on [0, 30] ms for data collection. Then,
Ḡj+1 is iteratively solved according to (42). The convergence of
Algorithms 1 and 2 is shown in Fig. 1 by choosing τ = 10−6.

The trajectories of the output, the reference signal and the
ontrol input of the discrete-time system are shown in Fig. 2.
To validate the reasonability of Theorem 4, by using a loga-

ithmic coordinate for the y coordinates, Fig. 3 shows the com-
arisons of J∗ and J∗e at different δe.
Fig. 4 shows the inter-sampling steps of the event-triggered

ampling and the comparison of the total sampling times un-
er event-triggered output feedback ADP method and the ADP
ithout event-triggered sampling. It can be seen that, the output
f the plant converges to the reference signal, and the com-
unication between the controller and the plant is reduced.
7

Fig. 2. Plot of the output, reference signal and control input.

Fig. 3. Comparisons of J∗ and J∗e at different δe .

Fig. 4. The sequence of steps of event-triggered sampling and the comparison
of the total sampling numbers.

6. Conclusions

This paper presents two event-triggered output-feedback ap-
proaches to address the adaptive optimal output regulation for
linear systems with unknown system dynamics, unmeasurable
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tates and disturbance. A nonmodel-based ADP scheme is pro-
osed for the design of event-triggered adaptive optimal trackers
ith disturbance rejection. Simulation results have validated the
ffectiveness of the proposed approach. Our future work will
e directed at generalizing the proposed methods to a class
f nonlinear systems with output-feedback by means of recent
evelopments in nonlinear PI and VI schemes (Bian & Jiang, 2021;
iang et al., 2020).
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ppendix. Proofs

.1. Proof of Lemma 1

Define Ag = A− BK0. Then, we have

k+1 = Agεk − BK0ek − BUγk. (A.1)

Define

(εk) = εTk Pεk. (A.2)

Obviously, there exist K∞-functions α1(·) and α2(·) such that

1(∥εk∥) ≤ V (εk) ≤ α2(∥εk∥),∀εk ∈ Rn. (A.3)

Along the solutions of (26), we have

V (εk+1)− V (εk)

=εTk+1Pεk+1 − ε
T
k Pεk

=εTk A
T
gPAgεk + (K̄0evk )

TBTPBK̄0evk + (Uγk)TBTPB(Uγk)

− 2(K̄0evk )
TBTPAgεk − 2(Uγk)TBTPAgεk − ε

T
k Pεk

+ 2(Uγk)TBTPBK̄0evk .

Using (11), we also have

V (εk+1)− V (εk)

≤− ωT
kQωk − λ(R)(K0εk + K̄0evk )

2
+ (K̄0evk )

T (R+ BTPB)K̄0evk
+ (Uγk)TBTPB(Uγk)− ((Uγk)TRK0 + ε

T
k )

2

+ (Uγk)TRK0K T
0 R(Uγk)+ (Uγk)TBTPB(Uγk)

+ (K̄0evk )
TBTPBK̄0evk + ε

T
k εk.

Then, it follows that

V (εk+1)− V (εk)

≤− α(µ1 − 1)∥εk∥2 −
(1− α)(µ1 − 1)

Ē2
∥ωk∥

2
− λ(R)∥ûvk∥

2

+ λ̄(RK T
0 K0R+ 2BTPB)∥Uγk∥2 + λ̄(R+ 2BTPB)∥K̄0∥

2
∥evk∥

2.

When the condition (27) is satisfied, we have

V (εk+1)− V (εk)

≤− α(µ1 − 1)∥εk∥2 + λ̄(RK T
0 K0RT

+ 2BTPB)∥Uγk∥2

− α3(∥εk∥)+ α4(∥Uγk∥)
(A.4)

here α3 is a K∞-function and α4 is a K-function.
According to (A.3) and (A.4), we can know that (A.2) is an ISS-

Lyapunov function (Jiang & Wang, 2001). Therefore, the closed-
loop system is ISS to Uγ .
k

8

A.2. Proof of Lemma 3

Define Al = A− BKj∗ , where Kj∗N = K̄j∗ , according to (35), we
have

εk+1 = Alεk − BKj∗ek. (A.5)

Besides, define V (εk) = εTk Pj∗εk, where Pj∗ is the approximated
solution to the ARE (11). Along the solutions of (35), the following
equality holds

V (εk+1)− V (εk)

=εTk+1Pj∗εk+1 − ε
T
k Pj∗εk

=εkAT
l Pj∗Alεk + eTkK

T
j∗B

TPj∗BKj∗ek − 2eTkK
T
j∗B

TPj∗Alεk

− εTk Pj∗εk.

According to (11) and (13), we have

V (εk+1)− V (εk)

=− ωT
kQωk − (Kj∗εk)TRKj∗εk − 2eTkK

T
j∗RKj∗εk

+ eTkK
T
j∗B

TPj∗BKj∗ek
≤− ϵµ∥ωk∥

2
− (1− ϵ)µ∥ωk∥

2
− λ(R)(ûk − Uγk)2

+ λ̄(R+ BTPj∗B)∥K̄j∗∥
2
∥evk∥

2.

If (36) holds, then we have

V (εk+1)− V (εk) < −(1− ϵ)µ∥ωk∥
2. (A.6)

Based on the observability of the discretized system (1)–(3), a
direct application of LaSalle’s Invariance Principle (Khalil, 2002)
yields the GAS property of the trivial solution of the system (35).

This ends the proof of Lemma 3.

A.3. Proof of Theorem 2

Given a stabilizing Kj, if Pj is the solution to (12), then Kj+1
can be uniquely determined by (13). Similarly, given a stabilizing
K̄j, by solving (31) and (32), we have P̄j and K̄j+1. Due to the
full rank condition of Ξj, P̄j and K̄j+1 are uniquely determined.
Consider the property in the PI algorithm (Hewer, 1971), we have
limj→∞ P̄j = P̄∗ and limj→∞ K̄j = K̄ ∗.

A.4. Proof of Theorem 5

Based on (21) and (37), for εk ̸= 0, we have ∥K
∗(ε̂k−εk)∥
∥εk∥

≤
ēk
∥εk∥

.
Thus, if k ∈ [kj, kj+1), then K ∗ε̂k = K ∗εk + ∥εk∥Λ, where Λ =
K∗(ε̂k−εk)
∥εk∥

, and ∥Λ∥ ≤ ēk
∥εk∥
≤ max{ ēk

∥εk∥
, k = 1, 2, · · ·} := δe.

By using the designed control policy (38), we have

ωT
kQωk + ( ˆ̄u∗k)

TR ˆ̄u∗k
ωT

kQωk + (K ∗εk + ∥εk∥Λ)TR(K ∗εk + ∥εk∥Λ)

ωT
kQωk + (K ∗εk)TR(K ∗εk)+ 2(∥εk∥Λ)TRK ∗εk
+ (∥εk∥Λ)TR∥εk∥Λ

≤ωT
kQωk + (K ∗εk)TR(K ∗εk)+ λ̄(R)∥εk∥2δ2e
+ 2λ̄(R)∥K ∗∥∥εk∥2δe.

(A.7)

Due to (A.6), it follows that

∆V = V (εk)− V (εk+1) > µ(1− ϵ)∥Ē∥2∥εk∥2. (A.8)

Let Hk = λ̄(R)δe(δe+2∥K ∗∥)∥εk∥2. Combine (A.7) and (A.8), we
have

Hk ≤
λ̄(R)δe(δe + 2∥K ∗∥)

∆V . (A.9)

µ(1− ϵ)∥Ē∥2
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Let ρ1 = λ̄(R)δe(δe+2∥K∗∥)
µ(1−ϵ)∥Ē∥2

, for k = 0, 1, 2 · ··, we have

H0 ≤ ρ1(V (ε0)− V (ε1)) (A.10)

and
1∑

k=0

Hk ≤ ρ1(V (ε0)− V (ε2))

2∑
k=0

Hk ≤ ρ1(V (ε0)− V (ε3))

3∑
k=0

Hk ≤ ρ1(V (ε0)− V (ε4))

· · · .

(A.11)

Based on the event-triggering condition (36), there exist
limk→∞ εk = 0, that is limk→∞ V (εk) = 0. Then, we have
∞∑
k=0

Hk ≤ ρ1V (ε0). (A.12)

According to Melzer and Kuo (1971), we have J∗(ε0) = εT0P
∗ε0.

ased on Algorithms 1 and 2, the following inequation is satisfied

∗

e =

∞∑
k=0

ωT
kQωk + (û∗k)

TRû∗k

≤ J∗(ε0)+
λ̄(R)δe(δe + 2∥K ∗∥)
µ(1− ϵ)∥Ē∥2

J∗(ε0).

(A.13)

That is

∗(ε0) ≤ J∗e ≤ J∗(ε0)+
λ̄(R)δe(δe + 2∥K ∗∥)
µ(1− ϵ)∥Ē∥2

J∗(ε0). (A.14)
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