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Abstract—Deep reinforcement learning (DRL) has attracted
attentions by researchers to complete complex tasks in engineer-
ing, such as autonomous driving, that are typically very difficult
to achieve using traditional model-based approaches. With the
safety being critical in self-driving vehicles and the increased
reliance on vehicle connectivity, the resilience to cyberattacks
has to be systematically studied. In this paper, we train a
deep (Q-learning based agent to drive autonomously in the
CARLA simulator under various scenarios that the agent may
experience during a cyberattack. Specifically, we observe the
agent’s behavior and performance in the presence of denial-of-
service and deception attacks. The results reflect an inbuilt level
of resilience to cyberattacks with the DRL methods. Comparing
with conventional driving agents, deep (Q-learning agents can
learn to deal with uncertainty and missing information without
explicitly modeling such behavior

Index Terms—Resilience analysis, deep reinforcement learn-
ing, cybersecurity, autonomous vehicles, deep (Q-learning

I. INTRODUCTION

In the last decade, extensive attention and resources have
been directed towards vision zero in autonomous vehicles.
Among all the existing methods to achieve this ambitious
goal, deep reinforcement and reinforcement learning (RL)
based self-driving algorithms [5], [6], [15] have been a
promising class of approaches since the DRL has proved its
proficiency in other emerging applications. Deep (Q-networks
(DQN) [14], imitation learning, deep deterministic policy
gradient (DDPG) [12], and soft actor-critic [7] are typical
deep reinforcement learning (DRL) algorithms applied to
autonomous vehicles.

The data from sensors, such as depth and RGB cameras,
global navigation satellite systems (GNSS), inertial measure-
ment unit (IMU), light detection and ranging (LiDAR), and
radar sensors, need fused to ensure the reliability and stability
of an autonomous vehicle [9]. However, the array of sensors
may make autonomous vehicles susceptible and vulnerable to
potential cyber threats. Therefore, in order to build safe and
secure autonomous vehicles, the applied algorithms should
be guaranteed to defend cyberattacks. For this purpose, Deng
et al executed an adversarial attack that compromised the

This work was supported in part by the U.S. National Science Foundation
under Grant CMMI-2138206.
The corresponding author is Weinan Gao.

visual sensors of three state-of-the-art driving models with
high accuracy [2]. It is pointed out by the authors [17] in
that most of the potential cyberattacks on automated vehicles
are on the sensors of the vehicle because they have very
high feasibility. In [16], it is studied the significance of
malicious attacks along the roadside that may change the
trajectory of an autonomous vehicle. Note that although DRL
may potentially improve autonomous driving performance,
its resilience against cyberattacks has not been thoroughly
studied. This paper will focus on the resilience of DRL
algorithms against different types of cyber threats.

A. Cyberattacks

Typical cyberattacks on cyber physical ststems (CPSs)
includes denial of service (DoS) attacks, deception attacks
[13], while later can be further classified by adversarial attacks
and replay attacks.

1) Denial of Service Attack: DoS attacks are strategies in
which the attack impedes data distribution or restricts specific
control system components to be inactivated. An example
of a DoS attack in an autonomous vehicle is an adversary
blocking communication of camera sensors with the control
system. DoS attacks may be used to prevent cameras, LiDAR,
and radar from detecting objects, roads, and safety signs. The
vehicle’s braking system service may fail, leading the car to
stop suddenly or be unable to stop where needed. A DoS
attacks usually can be characterized by two parameters, the
DoS frequency, the number of times a DoS attack happens
over a period, and DoS duration, a record of how long each
attack lasts.

2) Deception Attack: Deception attacks, sometimes called
false data attacks, are strategies in which an attacker modifies
the input data used by a cyber-system. The attacker sends
fraudulent data directly to the target system or decodes
authorized input data and injects false data into it [22].
An example of a deception attack is a case in which an
attacker takes control of a sensor and purposefully changes
the readings. The attacker can provide fictitious data into the
control program. Researchers in [1] were able to deceive
a LiDAR-based autonomous vehicle into recognizing false
obstacles to manipulate its driving judgments. The deception
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attacks that this paper implemented were adversarial attacks
and replay attacks.

a) Adversarial Attack: Adversarial attacks usually aim
to fool machine learning algorithms to mis-classify images
by altering the input image. In [20], a deep neural network
is tricked by only changing one pixel on the image, it mis-
classifies images on different dataset by altering one pixel.
Adversarial attacks mainly started as a way to affect the
results of image classification, but it is now used in broader
areas.

b) Replay Attack: A replay attack is a method in which
an attacker uses past recorded data to disrupt a system by
feeding it as input repeatedly. When performing a replay
attack, the attacker first takes a series of sensor readings. The
genuine measurements are then substituted with previously
recorded ones in a subsequent attack phase. As a result, the
control system’s performance suffers, allowing more mali-
cious operations to go unnoticed. Due to the false data having
the same signature as the actual data, replay attacks are tough
to detect.

B. Deep Reinforcement Learning

Machine learning (ML) is an operation in which a com-
puter algorithm automatically learns from its experiences to
improve its performance at a specified task [4]. As a major
class of ML, RL algorithms seek to train an autonomous
agent to improve its performance by interacting with an
environment. RL agents may learn in real-time utilizing
observations gathered through real-time interactions with the
environment, unlike supervised and unsupervised learning
processes, which require training data to understand. The
agent is not programmed to act, but this is done by reinforcing
the agent’s behavior. The desired actions by the agent are
positively rewarded, and unwanted behavior is punished. A
reward function is created to fuse the positive and negative
rewards. The agent’s goal is to maximize the reward over
a particular duration; after a period, the agent will want to
perform actions that will result in a high reward.

1) Q-Learning: QQ-Learning [21] is a typical RL algorithm
in which an agent aims to perform the optimal action given a
state. The algorithm is broken down into three steps. First, the
agent begins in a state, performs an action, and is rewarded.
Second, the agent has two options for the next action: refer
to the Q table and select the action with the greatest value,
or perform a random action. Last but not the least, the agent
updates the @Q-values. A @-table is a reference table that the
agent can use to determine the appropriate course of action
depending on the )-value; see [10].

2) Deep Q-Learning: When the size of the states is a
small discrete value, (Q-learning is good, whereas when the
states are continuous, using (2-learning to solve the problem is
nearly impossible. The -table would have to be extremely
large in continuous observation spaces. Updates on the Q-
learning algorithm are also slow and do not converge rapidly.
Deep (Q-network was created due to the limitation of the Q-
learning algorithm. One over this challenge, one can approx-

imate the @-function by introducing deep neural networks
[19] or convolutional neural networks (CNN) [11]. In the
later, deep @-network (DQN) uses CNNs to process the ob-
servations’ states by extracting features from them. Typically,
the CNNs are used for classification, but in DQN, the Q-
values are the resulting outputs. The network uses convolution
layers to extract features from the input frames taken from
the observation space. The output of the convolutional layers
is flattened into a one-dimensional array which serves as the
input to the fully connected layers. The fully connected layers
output the ()-values associated with the defined actions. This
is what forms a DQN. When training a DQN, two networks
are used to create stability for the whole network: the policy
and the target networks. The goal of the policy network is
to find the best (Q-function to approximate the most optimal
policy. The target network is a clone of the policy network
and is used to calculate the target value estimate y”@" that
is used to define the optimization criteria, which is based on
the difference § between its current ()-value estimates, and its
expectation of future rewards obtained from target ()-values
estimates.

yPON = R, + 7m3XQ(St+1, a;0)) (1

where R, is the reward, s is the state, a is the action. 6} is the
weight of the target network is only updated after a certain
number of steps to prevent the instability that is caused by
calculating the present (-value and predicting the future Q-
value with the same network [8].

8 =Q(s,a) — Q"(s,a), )
Q*(s,a) :E[Rt.t,_l +’7H}3XQ(S/7G/)} 3)

where Q(s,a) is the Q-function defined by the policy net-
work, and Q*(s,a) is the expectation of future rewards
calculated using the target network.

The agent’s experiences are saved in a replay memory, and
the policy network is updated by randomly selecting samples
from the replay memory to boost sampling efficiency. This
random selection breaks the correlation between subsequent
samples. The replay memory (experience replay) allows the
agent to recall and reuse previous experiences in which
observed transitions are saved for a period, generally in a
queue, and then randomly chosen from this memory to update
the network. This method, on the other hand, merely reruns
transitions at the same frequency as when they were first
encountered, regardless of their importance [3].

II. IMPLEMENTATION AND ANALYSIS OF RESULTS

In this paper, we implement a deep (-learning algorithm to
train an agent to drive autonomously in the CARLA simulator,
an open-source physics simulation platform built using Unreal
Engine, which enables the simulation of realistic driving
environments, making it ideal for training self-driving agents.
CARLA has a variety of sensors available to use, including
collision detectors, depth camera, GNSS sensor, IMU sensor,
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Fig. 1. Network states
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Fig. 2. Architecture of DQN

LiDAR sensor, RADAR sensor, RGB camera, RSS sensor,
and optical flow camera.

A. Deep QQ-Network

a) States: We use the semantic RGB image and LiDAR
sensors to construct our states. The state inputs are illustrated
in Fig. 1. The LiDAR sensor provides the agent with point
cloud data that contribute spatial information regarding the
vehicle’s surroundings; see Fig. 2. The image sensor provides
three-channel semantic color input showing the car’s front
view to give a sense of the road shape. For autonomous
driving, the agent must interpret spatial and temporal in-
formation. To achieve this, we prepare the state using three
consecutive simulation frames as a single environmental step
and concatenate the sensor data to produce a single state
matrix of size R!2X150x150 The first three channels are
2D LiDAR point cloud images taken from consecutive time
steps, and the remaining channels are the corresponding color
images of the vehicle’s front view.

b) Actions: We trained the DQN agent to operate the
vehicle with six discrete actions. The action space depicted
in Table I below describes the intended vehicle behavior [18].

TABLE I
ACTION SPACE

Actions Descriptions
Slow down with 100% brake, zero steer
Drive forward with 60% throttle
Drive forward with 60% throttle and 25% left steer
Drive forward with 60% throttle and 25% right steer
Drive forward with 60% throttle and 50% left steer

Drive forward with 60% throttle and 50% right steer

| B W] | —=| O

¢) Reward: Our goal with the RL agent was to design
an autonomous driving agent that can keep the vehicle safe.
The rewards were shaped appropriately according to this
goal. Thus, the reward function needs to account for aspects
of driving that are indicative of vehicle speed, distance to
obstacles, and crashes, which is described as follows

Tt = _200rcol + Tradar + Tspeed + Tcont + Tsteer + Tproxi

where r.,; is the reward associated with collision, 7,444, 18
the reward for distance to an obstacle in front of the ego
vehicle, rspeeq 1S the reward associated with the car’s current
velocity, rqon¢ 1S a positive reward given to encourage long
episode duration, 7., is a reward set to discourage driving
around in circles or turning too often, and 7.,z is the reward
set to discourage the ego vehicle from leaving the road.

The 7,444 1s @ defined by a negative step function which
returns zero if the distance to an object exceeds three meters,
and -1 if below to firmly discourage nearing any object.
Similarly, r.o; is -1 in case of a collision, and zero otherwise.
The reward 75peca = —0.0017v2 + 0.1167v — 1, where v is
the vehicle velocity, returns small or negative rewards for very
low or extremely high speeds and positive rewards otherwise.
Tsteer = —02 where a € [—1,1] is the steering ratio.
The proximity with non-road elements is determined using
the semantic segmentation image. The semantic classification
data is used to create a mask of the road surface and proximity
lines are drawn over the mask to determine vicinity of non-
road pixels. If the ego vehicle moves towards an obstacle
detected by proximity, then a negative reward of —0.5 is
given; if it drives towards a region of no detection then a
reward of 0.25 is given, and if it slows down when an obstacle
is ahead then a reward of 0.5 is given.

d) DON Algorithm: Our DQN employs deep CNNs
to extract high-level features from state image inputs. The
network model used consists of two sets of CNN’s, one to
extract features from LiDAR images and the other for RGB
images. Both networks consist of three convolution layers of
size 64 each and kernel sizes 8, 4, and 3. The model’s output
is concatenated and passes through a fully connected neural
network to output 6 ()-values, which provide an estimate of
the optimal policy for action selection from the discrete action
space; see Fig 2.

A replay buffer stores experience at each environment step
for training. An experience e; consists of the current state s,
the action taken a., the future state s;; 1, and the reward r; for
the current state-action pair. The DQN is an off-policy training
algorithm, and the replay buffer acts as a set of independent
and identically distributed random variables used to train the
network effectively. Replay allows us to break the correlation
between consecutive samples.

Our objective is to estimate Q*(s,a) such that it is the
optimal action-value function. The loss function compares the
action values for the current state and action pair with the
expected future rewards for the next state. We compute this
expected future reward using (3) over the action values of the
future state using a target network.
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The loss function used in our network is defined as follows

6, it |0 > a
Ll,smooth = (4)

ﬁég, if 9] < «
which provides steady gradients for large values of the error
6 from (2), and more minor oscillations for small values of
0. And « is a hyper-parameter used to scale squared loss and
set to unity.

Algorithm 1 Deep Q-learning Algorithm
Initialize replay memory D to capacity N
Initialize action-value function () with random weights 6
Initialize target action-value function Q with weights =0
for episode =1: M do
Reset environment and get initial state s;
while t =1:7 do
Select random action a; with probability e
otherwise select a; = arg max, Q* (s, a;0)
Execute a; in emulator and observe reward r; and new
sates Sey1
Store experience e; = (8¢, at, T't, St+1,d) in D
if Time to train then
Sample mini-batch of experiences from D
Compute targets y;

)T if episode ends at j + 1
v i +7Q(sj41,a’;0), otherwise

Perform gradient descent step on Loss with net-
work parameters 6
end if
Every C steps reset 6=0
end while
end for=0

e) Training Details: The simulation and training were
completed in Windows 10 with CARLA 0.9.13. The deep Q-
network was created using the Pytorch API. The computer the
DQN was trained on had a core i7-11700K, NVIDIA 3060
12GB VRAM, and 32 GB of RAM.The network is trained for
100, 000 episodes with replay memory of length 100, 000 and
batch size 128. The simulation refresh rate is set to 20F' PS.
An action is selected based on an epsilon-greedy policy for
a given ego vehicle state. Three simulation steps are then
taken to record the next state and cumulative reward at each
environment step, and this experience is stored in the replay
memory. The process is repeated until the episode times out at
500 simulation steps, or if a collision is detected. The online
and the target networks are synced every 3000 environment
steps.

B. Cyberattacks

Autonomous driving agents are safety-critical systems, and
therefore the effects of various attacks on the system must be
studied. In this paper, we implement two types of attacks on
our self-driving agent: denial of service, and deception.
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Fig. 3. Full state DoS attack

1) DoS Attacks: DoS attacks were simulated by making
deliberate modifications to the flow of information in RL
algorithm or attacking vehicle sensors directly to deprive the
system of information critical for autonomous driving.

a) Sensor disruption: To evaluate of the DoS attacks at
the sensor level, we begin by completely cutting off the sensor
data stream to our network for the entire evaluation duration
and observe ego vehicle behavior and rewards. This effec-
tively simulates communication disruption between vehicle
sensors and the autonomous driving agent. The experiment
is repeated several times with 100% and 50% disruption in-
tervals. The disruption intervals are simulated by interrupting
sensor data at various frequencies.

Fig. 3 shows the moving average rewards observed for the
above described DoS attack along with the baseline rewards.
The agent seems to be quite resilient to this type of DoS
attack since it appears to conclude that stopping is the optimal
action when state information is missing. When the state input
is completely interrupted, most of the observed actions were
stop commands. Hence the agent incurs a small but steady
reward penalty at each step resulting in almost a flat line
reward plot. When the frequency interval is reduced to 50%,
the vehicle starts exhibiting a crawl-like behavior with most
of its actions being the brake command due to the empty state
inputs. With this behavior, the agent incurs smaller positive
rewards for movements and often completes every episode
without ever crashing. Resulting in increased overall rewards
compared to the 100% DoS case.

The above DoS experiments were also performed on in-
dividual sensors that are used by our DQN agent, namely
LiDAR and Semantic image. First only the LiDAR signal
was disrupted for the full duration of the network evaluation.
Then the same experiment was repeated for the semantic
image channels instead. After observing the ego vehicle
behavior and the rewards presented in the Fig 4, we come
to a conclusion that the agent is highly dependent on the
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Fig. 4. DoS attack on individual sensors

semantic image channels and has not yet learned to fully
utilize the spatial information provided by the LiDAR. The
behavior observed when only the LiDAR data was missing
is almost identical to that of our baseline, whereas when the
only semantic data was missing the agent resorted to crawl
like behavior. Nonetheless, these experiments show that the
DQN’s are resilient to these types of attacks in ways that
minimize the risk of accident when critical sensor data is
missing.

2) Deception Attacks: To analyze the effect of a replay
attack on our network, we investigate three ways our network
could be attacked. In the first experiment, we input only the
false LiDAR images to the LiDAR image channels of our
network and note findings. We repeat the same process for the
second experiment, except for the semantic image channels
instead. Finally, we input the full replay buffer to the network
for the last replay attack.

Fig. 5 illustrates the moving average rewards achieved by
our trained network under various forms of replay attacks. For
the most part, the baseline plot remains steady around 170
average reward. Based on the results of the false semantic
inputs and that of the full state replay attack, the network
seems to be heavily reliant on Semantic image data and
does not give equal importance to the LiDAR data. This
deduction is also supported by the LiDAR replay plot, whose
performance is closest to the baseline.

The observed behavior of the vehicle during the simulation
of the replay attacks is consistent with the plots displayed.
The vehicle moved according to the fraudulent images fed
as inputs. If the false semantic input showed a left turn, the
vehicle should also turn left; if it is displayed states where
it should drive straight, it will act accordingly. The replay
images mainly were of straight roads, so the vehicle drove
straight for the most part. A ”stop and go” behavior was
observed when only one of the input channels was false
data. This behavior can be attributed to the conflicting states
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Fig. 5. Rewards for replay attacks

received by the DQN algorithm. When the false input was
semantic images, the main observation was that most of the
collisions were head-on. However, when the false input was
LiDAR images, the bulk of the collision happened on the side
of the vehicle.

III. CONCLUSION

In this paper, we study the resilience of deep () learn-
ing autonomous driving algorithms through CARLA driving
simulations. Different cyberattacks, such as denial-of-service
and replay attacks were introduced and tested. Simulation
results show that cyberattacks against the LiDAR sensor alone
rarely affected the performance of the DQN; however, any
attack against the semantic RGB sensor heavily affected the
performance of the DQN.
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