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a b s t r a c t

In this paper, we have proposed a novel resilient reinforcement learning approach for solving robust
optimal output regulation problems of a class of partially linear systems under both dynamic uncer-
tainties and denial-of-service attacks. Fundamentally different from existing works on reinforcement
learning, the proposed approach rigorously analyzes both the resilience of closed-loop systems against
attacks and the robustness against dynamic uncertainties. Moreover, we have proposed an original
successive approximation approach, named hybrid iteration, to learn the robust optimal control policy,
that converges faster than value iteration, and is independent of an initial admissible controller.
Simulation results demonstrate the efficacy of the proposed approach.

© 2022 Elsevier Ltd. All rights reserved.
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1. Introduction

Reinforcement learning (RL) concerns how an agent makes
ecisions to minimize a predefined cost criterion through active
nteractions with unknown environment (Sutton & Barto, 2018).
n the control community, RL and adaptive/approximate dynamic
rogramming (ADP) (Powell, 2007) have been employed as direct
daptive optimal control methods to stabilize dynamical systems
n both discrete-time and continuous-time; see the recent surveys
nd tutorial papers (Jiang et al., 2020a; Kiumarsi et al., 2018; Liu
t al., 2021; Vamvoudakis & Kokolakis, 2020). As a generalization
f traditional RL-based stabilization approaches, Gao and Jiang
2016, 2018, 2022), Jiang et al. (2020b, 2020c), Odekunle et al.
(2020) and Zhao et al. (2022) have solved adaptive optimal output
regulation problems so that the closed-loop system can asymp-
totically track the reference, while rejecting the disturbance in a
model-free optimal sense. Different from existing RL considering
only static uncertainties in the system, robust adaptive dynamic
programming (RADP) has been proposed in Gao and Jiang (2015)
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and Jiang and Jiang (2017) to handle the dynamic uncertainties
n the system through developing robust optimal controllers.

Although RL-based control has been extensively studied, there
re two important conundrums in practice. Most of existing RL
esearch works consider that the communication in the control
ystem is normal without any attacks. However, the cyberattack
s usually unavoidable which significantly threatens the security
f closed-loop control systems. Therefore, the first conundrum
s, besides stability and robustness analysis, how to analyze the
esilience of systems against cyberattacks without the knowledge
f system dynamics. It is well known that policy iteration (PI)
nd value iteration (VI) are two typical successive approximation
pproaches in RL for learning the optimal control policy (Jiang
t al., 2020a). Comparing with VI, the convergence of PI is much
aster at the price of a strong assumption that an initial admissible
ontrol policy must be available. The second conundrum is to
ropose a novel successive approximation approach that con-
erges faster than VI, and is independent of an initial admissible
ontroller.
The aim of this paper is to solve these two conundrums in RL-

ased control under denial-of-service (DoS) attacks. DoS attack is
typical attack pattern in the domain of cyber attacks. Essentially,
he DoS attackers block the information transmission among
etworks (Amin et al., 2009; Teixeira et al., 2015). In De Persis
nd Tesi (2015), a control framework is introduced to provide
n explicit characterization of frequency and duration of the DoS
ttacks under which closed-loop stability can be achieved by
sing the feedback control. Under this framework, some valuable
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esults are emerged; see, e.g., An and Yang (2018) and Deng
nd Wen (2020). However, there is neither model-free optimal
ontrol design nor resilient analysis for dynamical systems in-
aded by DoS attacks. Most recently, Galarza-Jimenez et al. (2022)

and Zhai and Vamvoudakis (2021) have leveraged learning-based
control techniques, such as ADP and extremum seeking, to defend
the closed-loop dynamic systems from adversarial attacks in the
absence of dynamic uncertainties. In this paper, we will pro-
pose a novel resilient reinforcement learning (R2L) based control
approach to solve a class of robust optimal output regulation
problems with unknown system dynamics, dynamic uncertain-
ties, and denial-of-service (DoS) attacks. The major contributions
are listed as follows.

1. This paper has, for the first time, proposed an R2L ap-
proach to solve a robust optimal output regulation problem
which bridges the gap between RL, RADP, output regula-
tion, and small-gain theories. With the proposed approach,
one can directly analyze the resilience of the closed-loop
system with the learned robust optimal controller, and find
the lower bound of DoS attack duration criterion that the
closed-loop system can handle without the knowledge of
system dynamics.

2. We have proposed a novel successive approximation al-
gorithm, named hybrid iteration (HI), to learn the opti-
mal control policy and the corresponding value. Comparing
with PI, the HI completely removes the assumption of
the admissibility of the initial control policy. Also, the
convergence rate of HI is usually faster than that of VI.

3. Most existing works on DoS attacks only consider static
uncertainties in systems (De Persis & Tesi, 2015; Feng
et al., 2020; Feng & Tesi, 2017; Galarza-Jimenez et al.,
2022; Zhai & Vamvoudakis, 2021). Different from them,
this paper has considered the existence of both DoS attacks
and dynamic uncertainties in systems.

4. Comparing with our previous work (Gao & Jiang, 2015)
solving the robust optimal output regulation problem via
PI, the proposed approach in this paper can solve that
problem without relying the knowledge of an admissible
control policy.

Notations. Throughout this paper, R+ denotes the set of nonneg-
ative real numbers, Z+ the set of nonnegative integers, and N+
the set of positive integers. A set C− indicates the open left-half
complex plane. The operator | · | represents the Euclidean norm
for vectors and the induced norm for matrices. A set Pn includes
all n × n real, symmetric and positive semidefinite matrices. A
continuous function α : R+ → R+ is of class K if it is strictly
ncreasing and α(0) = 0. A function β : R+ × R+ → R+ is of
lass KL if for each fixed t , the function β(·, t) is of class K and,
or each fixed s, the function β(s, ·) is non-increasing and tends
o 0 at infinity. The symbol ⊗ indicates the Kronecker product
perator and vec(A) = [aT1, a

T
2, . . . , a

T
m]

T , where ai ∈ Rn are
he columns of A ∈ Rn×m. For an arbitrary column vector v ∈
n, vecv(v) = [v2

1, v1v2, . . . , v1vn, v
2
2, v2v3, . . . , vn−1vn, v

2
n]

T
∈

R
1
2 n(n+1). vecs(P) = [p11, 2p12, . . . , 2p1m, p22, 2p23, . . ., 2pm−1,m
pmm]T ∈ R

1
2m(m+1) for a symmetric matrix P ∈ Rm×m, and λM (P)

(resp. λm(P)) denotes the maximum (resp. minimum) eigenvalue
of a real symmetric matrix P . P ≻ 0 (resp. P ≺ 0) represents
that the matrix P is positive (resp. negative) definite. For any
piecewise continuous function u : R+ → Rm, ∥u∥ stands for
up |u(t)|.
t≥0

2

2. Problem formulation and preliminaries

In this paper, we consider a class of partially linear systems,
which includes a linear subsystem interconnected with a nonlin-
ear subsystem known by dynamic uncertainty. The dynamics of
the interconnected system is described by

ζ̇ (t) =∆(ζ (t), e(t), v(t)), (1)

ẋ(t) =Ax(t)+ B[u(t)+Φ(ζ (t), e(t), v(t))] + Dv(t), (2)

e(t) =Cx(t)+ Fv(t), (3)

where e(t) ∈ R, u(t) ∈ R and x(t) ∈ Rn are respectively the
measurement output, the control input and the state. ζ (t) ∈ Rp

is the state of system (1). ∆ : Rp
×R×Rq

→ Rp and Φ : Rp
×R×

Rq
→ R are locally Lipschitz functions satisfying ∆(0, 0, v) = 0

and Φ(0, 0, v) = 0 for any fixed v ∈ Rq. Φ is called a dynamic
uncertainty to the system (2)–(3). The signal v(t) ∈ Rq is the
exostate of an autonomous system usually referred as exosystem:

v̇(t) = Sv(t). (4)

The constant matrices A, B, C , D, F and S are with proper dimen-
sions. Throughout this paper, Assumptions 1–4 are made on the
overall system (1)–(4).

Assumption 1. The pair (A, B) is stabilizable and all eigenvalues
of S are simple with zero real part.

Assumption 2. rank
[

A− λI B
C 0

]
= n+ 1, ∀λ ∈ σ (S).

Assumption 3 (Strong Unboundedness Observability). There exist
a function σs of class KL and a function γs of class K, both of
which are independent of any v such that for any measurable
locally essentially bounded e on [0, T ) with 0 < T ≤ +∞ and
any v ∈ Σv , ζ (t) right maximally defined on [0, T ′)(0 < T ′ ≤ T )
satisfies |ζ (t)| ≤ σs(|ζ (0)|, t) + γs(∥[e[0,t], Φ[0,t]]

T
∥),∀t ∈ [0, T ′),

where e[0,t] and Φ[0,t] are the truncated functions of e and ∆ over
[0, t], respectively.

Assumption 4 (Input-to-Output Stability). There exist a function
σΦ of class KL and a function γΦ of class K, both of which are
independent of any v such that, for any initial state ζ (0), any
measurable locally essentially bounded e on [0, T ) with 0 < T ≤
+∞ and any v ∈ Σv , Φ(t) right maximally defined on [0, T ′)(0 <

T ′ ≤ T ) satisfies

|Φ(t)| ≤ σΦ (|ζ (0)|, t)+ γΦ

(
∥e[0,t]∥

)
,∀t ∈ [0, T ′). (5)

Remark 1. Assumptions 1–2 are general conditions for
solving output regulation problems; see Huang (2004). Assump-
ions 3–4 make the system (1) be strong unboundedness ob-
servable (Jiang et al., 1994) with zero-offset and input-to-output
stable (IOS) (Sontag, 2007). Similar assumptions appear in Huang
and Chen (2004) and Jiang and Jiang (2017).

3. Model-based robust optimal controller design

In this section, we will design a controller to achieve output
regulation in a robust optimal sense; see Jiang and Jiang (2017).
Note that the controller design in this section does not take DoS
attacks into consideration. To begin with, we choose a G2 ∈ Rp

such that the pair (S,G2) is controllable. Through the classical
internal model principle (Huang, 2004; Isidori, 2017; Marino &
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omei, 2003), the following equation

˙(t) = Sz(t)+ G2e(t) (6)

erves as an internal model for system (2) with (4) as an exosys-
tem. Next, we show in the following lemma that, in the absence
of the dynamic uncertainty, one can develop a state-feedback
controller for the system (2)–(4) with an internal model (6) to
solve the output regulation problem.

Lemma 1. Under Assumptions 1–2, the augmented system

v̇(t) =Sv(t)
ẋ(t) =Ax(t)+ Bu(t)+ Dv(t),
e(t) =Cx(t)+ Fv(t),

ż(t) =Sz(t)+ G2e(t) (7)

in closed-loop with the state-feedback controller

u(t) = −Kxx(t)− Kzz(t), (8)

achieves output regulation (asymptotic tracking with disturbance
rejection) if the matrix

Ac =

[
A− BKx −BKz
G2C S

]
is Hurwitz.

Proof. Under the conditions in Assumptions 1–2, there exists
uniquely a pair (X,U) solving the following regulator equations

XS =AX + BU + D, (9)

0 =CX + F . (10)

By Huang (2004, Lemma 1.27), the matrix equations (10) com-
bined with

XS =(A− BKx)X − BKzZ + D, (11)

ZS =SZ + G2(CX + F ) (12)

have a unique solution X̂ and Z . This implies that X = X̂ , and
U = −KxX − KzZ . Define the following vectors and matrices

x̃ =x− Xv, z̃ = z − Zv, ũ = u− Uv, K =
[
Kx Kz

]
,

ξ̃ =
[
x̃T z̃T

]T
∈ Rn+q, C̄ =

[
C 0

]
,

Ā =
[

A 0
G2C S

]
, B̄ =

[
B
0

]
, D̄ =

[
D

G2F

]
.

Based on (11)–(12), we have the following error system of (7):
˙̃x =Ax+ Bu+ Dv − XSv = (A− BKx)x̃− BKz z̃,
˙̃z =Sz + G2e− ZSv = Sz̃ + G2Cx̃. (13)

We can convert (13) into a more compact form,
˙̃
ξ =(Ā− B̄K )ξ̃ = Ac ξ̃ ,

e =C̄ ξ̃ .

Due to the fact that Ac is Hurwitz, we conclude that lim
t→∞

ξ̃ (t) = 0,
and lim

t→∞
e(t) = 0. The proof is thus completed. □

In order to take into account the transient performance of
the closed-loop system, the optimal output regulation problem
is defined as follows.

Problem 1. The optimal output regulation problem is solved
if a feedback controller is designed to achieve output regulation.
Moreover, the following dynamic programming

min
∫
∞

(ξ̃ TQ ξ̃ + ũ2)dt (14)

ũ 0

3

s.t. ˙̃ξ = Āξ̃ + B̄ũ (15)

is solved, where Q = Q T
≻0.

It should be mentioned that the dynamic programming prob-
lem in Problem 1 is a standard linear quadratic regulator problem.
The solution to this problem is an optimal feedback controller of
the form

ũ∗ = −K ∗ξ̃ , (16)

where the optimal control gain matrix K̄ ∗ is

K ∗ = B̄TP∗. (17)

From linear optimal control theory, the matrix P∗ = (P∗)T > 0 is
the solution to the following algebraic Riccati equation (ARE)

ĀTP∗ + P∗Ā+ Q − P∗B̄B̄TP∗ = 0, (18)

and (16) is equivalent to

u∗ = ũ∗ + Uv := −K ∗x x− K ∗z z. (19)

Therefore, (19) is an optimal controller for the original system
(2)–(3) augmented by an internal model (6) when Φ ≡ 0. In order
to develop a robust optimal controller, the closed-loop system has
to be robust against nontrivial Φ . In the following theorem, we
show that (19) becomes a robust optimal controller for the overall
system (1)–(3) if a small-gain condition is satisfied.

Theorem 1. Under Assumptions 3–4, the system (1)–(4) with the
optimal control policy (19) achieves output regulation for any v(t),
if the following small-gain condition is satisfied

γΦγe < 1, (20)

where

γe = |C̄ |

√
λM (P∗)

λm(P∗)λm(Q )
. (21)

Proof. Defining ξ (t) =
[
xT (t) zT (t)

]T , the original system (2)
augmented with (6) can be written by

ξ̇ (t) = Āξ (t)+ B̄(u(t)+Φ(t))+ D̄v(t). (22)

For simplicity, we use Φ(t) to represent Φ(ζ (t), e(t), v(t)). Based
on Eqs. (9)–(12), one obtains the following error system
˙̃
ξ (t) =(Ā− B̄K ∗)ξ̃ (t)+ B̄Φ(t),

e(t) =C̄ ξ̃ (t). (23)

The ARE (18) is equivalent to

(Ā− B̄K ∗)TP∗ + P∗(Ā− B̄K ∗) = −Q − P∗B̄B̄TP∗.

Then, differentiating the Lyapunov function V = ξ̃ TP∗ξ̃ along the
trajectories of system (23), we have

V̇ = ξ̃ T
[(Ā−B̄K ∗)TP∗+P∗(Ā−B̄K ∗)]ξ̃ + 2ξ̃ TP∗B̄Φ

= −ξ̃ T
[Q + P∗B̄B̄TP∗]ξ̃ + 2ξ̃ TP∗B̄Φ

≤ −ξ̃ TQ ξ̃ − |Φ − B̄TP∗ξ̃ |
2
+ |Φ|2

≤ −ξ̃ TQ ξ̃ + |Φ|2

≤ −λm(Q )|ξ̃ |
2
+ |Φ|2. (24)

y the fact that λm(P∗)|ξ̃ |
2
≤ V ≤ λM (P∗)|ξ̃ |

2
for any t ≥ 0, we

ave

(t) ≤ exp
(
−

λm(Q )
∗
t
)
V (0)+

λM (P∗)
∥Φ∥2.
λM (P ) λm(Q )
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n immediate consequence of the previous inequality is

ξ̃ (t)| ≤ exp
(
−

λm(Q )
2λM (P∗)

t
)√

λM (P∗)
λm(P∗)

|ξ̃ (0)|

+

√
λM (P∗)

λm(P∗)λm(Q )
∥Φ∥, ∀t ≥ 0, (25)

hich implies that the system (23) with Φ as the input is input-
to-state stable (see, e.g., Sontag, 1989). One can write

|e(t)| ≤ σe(|ξ̃ (0)|, t)+ γe∥Φ∥, (26)

where

σe(|ξ̄ (0)|, t) = |C̄ | exp
(
−

λm(Q )
2λm(P∗)

t
)√

λM (P∗)
λm(P∗)

|ξ̃ (0)|

is a function of KL and γe is defined in (21), which guarantees
that (23) with e as output has SUO property with zero-offset and
IOS properties (Jiang et al., 1994). Assumptions 3 and 4 indicate
that the ζ -system has SUO property with zero-offset and IOS
properties with input-to-output gain function γΦ (s). Under the
small-gain condition (20), the interconnected system (1) with
(23) is globally asymptotically stable at the origin for any v(t). We
ave lim

t→∞

(
x(t)−Xv(t)

)
= 0, and lim

t→∞
e(t) = 0, which immediately

implies that both asymptotic tracking and disturbance rejection
are achieved. The proof is thus completed. □

4. Online learning of the robust optimal controller under DoS

In this section, we will propose three online learning strat-
egies–PI, VI, and HI–to learn the robust optimal control policy (19)
in terms of online data. Moreover, we consider the existence of
DoS attack during the learning process, which will be described
in Section 4.1.

Remark 2. The learning algorithms to be proposed in this section
are model-free since they rely neither on the knowledge of sys-
tem matrices A, B, C,D, F , nor the structures of system functions
Φ(ζ , e, v) and ∆(ζ , e, v).

4.1. DoS attacks

In this section, both the actuator and sensor attacks on the
interconnected system will be considered; see Fig. 1. We use
Is = [hs, hs + τs) to represent the sth (s ∈ N+) DoS attacks
interval. hs, hs + τs and τs represent the start time, end time
and the length of the sth DoS attacks. Based on Assumption 5,
we define ΠD(ta, tb) := (ta, tb)

⋂⋃
∞

s=1 Is as the set in which
the communication is denied under the influenced of DoS attacks
during the interval [ta, tb]. Accordingly, we use ΠN (ta, tb) :=
[ta, tb] \ΠD(ta, tb) to denote the normal communication set.

The following assumptions are made regarding the DoS fre-
quency and DoS duration.

Assumption 5 (DoS Frequency). There exist constants η > 1 and
τD > 0 such that

n(ta, tb) ≤ η +
tb − ta

τD
, ∀ tb > ta ≥ 0, (27)

where n(ta, tb) denotes the number of DoS off/on transitions
occurring on the interval [ta, tb].

Assumption 6 (DoS Duration). There exist constants T > 1 and
κ > 0 such that

|ΠD(ta, tb)| ≤ κ +
tb − ta

, ∀ tb > ta ≥ 0,

T

4

Fig. 1. The learning framework for the closed-loop system under DoS attacks.

where |ΠD(ta, tb)| denotes the Lebesgue measure of the set
ΠD(ta, tb).

In the rest of this section, we will propose several model-free
RL algorithms and analyze the robustness and resilience of the
closed-loop systems.

4.2. Policy iteration

To begin with, we rewrite the augmented system (7) by:

ξ̇ = Ākξ + B̄ (Kkξ + w)+ D̄v, (28)

where Āk = Ā− B̄Kk, and w = u+Φ . The idea of policy iteration
is to implement both policy evaluation

0 = ĀT
kPk + PkĀk + Q + K T

k Kk (29)

and policy improvement

Kk+1 = B̄TPk (30)

using online data by iterations. By Eqs. (28)–(30), we have

ξ T (t1)Pkξ (t1)− ξ T (t0)Pkξ (t0)

=

∫ t1

t0

[−ξ T (Q + K T
k Kk)ξ + 2ξ TK T

k+1(Kkξ + w)+ 2ξ TPkD̄v]dτ .

(31)

Based on Assumption 6, there always exists a sequence {ti}∞i=0
such that the communication are allowed in all the following
intervals [t0, t1], [t2, t3], [t4, t5], . . .. For any two vectors a, b and
a sufficiently large number s > 0, define δa = [vecv(a(t1)) −
vecv(a(t0)), vecv(a(t3)) − vecv(a(t2)), . . . , vecv(a(t2s+1)) −

vecv(a(t2s))]T , Γa,b = [
∫ t1
t0

a⊗bdτ ,
∫ t3
t2

a⊗bdτ , . . . ,
∫ t2s+1
t2s

a⊗bdτ ]T .
q. (31) implies the following linear equation

(k)
PI

⎡⎣ vecs(Pk)
vec(Kk+1)
vec

(
D̄TPk

)
⎤⎦ = Φ

(k)
PI , (32)

here Ψ
(k)
PI = [δξ ,−2Γξ,ξ (I ⊗ K T

k ) − 2Γξ,w,−2Γξi,v], Φ
(k)
PI =

Γξ,ξvec(Q + K T
k Kk). The uniqueness of solution to (32) is guar-

anteed under some rank conditions as shown below. For want of
space, we omit the proof of lemma which follows the same line
of proofs as in Gao and Jiang (2016) and Jiang and Jiang (2012).

emma 2. For all k ∈ Z+, if there exists a s∗ ∈ Z+ such that for
all s > s∗,

rank([Γξ,ξ , Γξ,w, Γξ,v]) =
(n+ q)(n+ 3q+ 3)

2
, (33)

then the matrix Ψ
(k) has full column rank for all k ∈ Z .
PI +
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Now, we are ready to present a data-driven PI Algorithm 1 to
approximate the optimal values K ∗ and P∗.
Algorithm 1 Online Policy Iteration Algorithm
1: Select a small c1 > 0 and an admissible control gain K0. Apply

any locally essentially bounded input u on [t0, t2s+1] such that
(33) holds.

2: k← 0
3: repeat
4: Solve Pk and Kk+1 from (32)
5: k← k+ 1
6: until |Pk − Pk−1| < c1

4.3. Value iteration

Based on Bian and Jiang (2016), the nature of VI algorithm is
o update the value matrix and control gain by

k+1 =ϵk
(
ĀTPk + PkĀ− PkB̄B̄TPk + Q

)
+ Pk,

Kk =B̄TPk, (34)

where ϵk is the step size satisfying ϵk > 0,
∑
∞

k=0 ϵk = ∞,
∑
∞

k=0 ϵ2
k

<∞. Based on (28) and (34), we have

ξ T (t1)Pkξ (t1)− ξ T (t0)Pkξ (t0)∫ t1

t0

ξ THkξ + 2wTKkξ + 2vT D̄TPkξdτ , (35)

here Hk = ĀTPk + PkĀ.
(35) implies the following equation

(k)
VI

⎡⎣ vecs(Hk)
vec(Kk)

vec
(
D̄TPk

)
⎤⎦ = Φ

(k)
VI , (36)

here Ψ
(k)
VI = [δξ , 2Γξ,w, 2Γξ,v], Φ

(k)
VI = −Γξ,ξvec(Pk). By defin-

ng a collection of bounded set {Bq}
∞

q=0 as Bq ⊂ Bq+1, q ∈
+, lim

q→∞
Bq = Pn. The online VI algorithm is presented in Algo-

ithm 2.

Algorithm 2 Online Value Iteration Algorithm
1: Select a small c2 > 0. Apply any locally essentially bounded

input u on [t0, t2s+1] such that (33) holds.
2: k← 0, q← 0. Choose a positive definite P0≻0.
3: repeat
4: Solve Hk and Kk from (36)
5: P̃k+1 ← Pk + ϵk(Hk + Q − K T

k Kk)
6: if P̃k+1 /∈ Bq then
7: Pk+1 ← P0, q← q+ 1.
8: else Pk+1 ← P̃k+1
9: end if

10: k← k+ 1
11: until |Pk − Pk−1| < c2ϵk

4.4. Hybrid iteration

The VI can be initialized from any initial control policy to
earn, but the convergence rate is usually not satisfactory. The PI
s a variant of Newton–Raphson method, which can ensure the
uadratic convergence (Jiang et al., 2020a), but its implementa-
ion must rely on an admissible control policy. We will propose a
ovel HI algorithm, Algorithm 3, to combine PI and VI efficiently.
We will show in Theorem 2 that there always exists an upper

bound on the number of iterations to achieve an admissible
controller using HI. Before that, let us present a Lemma 3 to
facilitate the proof of Theorem 2.
5

Algorithm 3 Online Hybrid Iteration Algorithm
1: Select a small c3 > 0. Apply any locally essentially bounded

input u on [t0, t2s+1] such that (33) holds.

2: k← 0, q← 0. k← 0, k̄q ←

(
sup
P∈Bq

|P|

ϵλm(Q )

)2

+ 2. Choose a P0 ≻ 0.

3: repeat
4: Solve Hk and Kk from (36)
5: P̃k+1 ← Pk + ϵ(Hk + Q − K T

k Kk)
6: if P̃k+1 /∈ Bq then
7: Pk+1 ← P0, q ← q + 1. ϵ ← ϵ/2, k ← k, k̄q ←(

sup
P∈Bq

|P|

ϵλm(Q )

)2

+ 2

8: else Pk+1 ← P̃k+1
9: end if
0: k← k+ 1
1: until (k > k+ k̄q + 1) or

(
Hk−1 ≺ 2K T

k−1Kk−1 and Pk−1 ≻ 0
)

2: k← k− 1
13: repeat
14: Solve Pk and Kk+1 from (32)
5: k← k+ 1
6: until |Pk − Pk−1| < c3

Lemma 3. Let sequences {Pϵ
k }
∞

k=0 and {K ϵ
k }
∞

k=1 determined by the
following equations

Pϵ
k+1 =A

T
ϵ P

ϵ
kAϵ + ϵQ −

AT
ϵ P

ϵ
k BϵBT

ϵ P
ϵ
kAϵ

ϵ + BT
ϵ P

ϵ
k Bϵ

,

K ϵ
k =

BT
ϵ P

ϵ
kAϵ

ϵ + BT
ϵ P

ϵ
k Bϵ

(37)

where Aϵ = I + Āϵ and Bϵ = B̄ϵ, and Pϵ
0 = P0 ≻ 0. For any

inite k̄ ∈ Z+ and any small δ ∈ R+, there exists a ϵ∗ ∈ R+ such
that |K ϵ

k̄
− Kk̄| < δ and |Pϵ

k̄
− Pk̄| < δ for any ϵ ∈ (0, ϵ∗], where

sequences {Pk}∞k=0 and {Kk}
∞

k=1 are determined by (34) starting from
P0.

Proof. We will prove by induction.

1. Letting k = 1, Eqs. (37) can be rewritten by

Pϵ
1 =ϵ

(
ĀTP0 + P0Ā− P0B̄B̄TP0 + Q

)
+ P0 + O1(ϵ)

=P1 + O1(ϵ),

K ϵ
1 =B̄

TP0 + O2(ϵ) = K1 + O2(ϵ) (38)

where, for i = 1, 2, lim supϵ→0 |Oi(ϵ)/ϵ| <∞.
2. Suppose, for k = l > 1, we have Pϵ

l − Pl = O3(ϵ) and
K ϵ
l − Kl = O4(ϵ), where lim supϵ→0 |Oi(ϵ)/ϵ| < ∞, for

i = 3, 4. By (37), we have

Pϵ
l+1 =ϵ

(
ĀTPϵ

l + Pϵ
l Ā− Pϵ

l B̄B̄
TPϵ

l + Q
)
+ Pϵ

l + O5(ϵ)

=ϵ
(
ĀTPl + PlĀ− PlB̄B̄TPl + Q

)
+ Pl + O6(ϵ)

=Pl+1 + O6(ϵ),

K ϵ
l+1 =B̄

TPϵ
l + O7(ϵ) = B̄TPl + B̄TO3(ϵ)+ O7(ϵ)

=Kl+1 + B̄TO3(ϵ)+ O7(ϵ) (39)

where lim supϵ→0 |Oi(ϵ)/ϵ| <∞, for i = 5, 6, 7.

The proof is thus completed. □

Theorem 2. There always exists a ϵ ∈ (0, ϵ∗] such that, for any
iteration k > ka1 the control gain Kk determined by the HI Algorithm
3 is admissible, where k = k+ k̄ .
a1 q
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roof. Inspired from the fact that VI provides a finite horizon op-
imal solution (Granzotto et al., 2021), we construct the following
iscrete-time optimal control problem

in
ũk

(
ξ̃ T
NP0ξ̃N +

N−1∑
k=0

ϵ
(
ξ̃ T
k Q ξ̃k + ũ2

k

))
.t. ξ̃k+1 = Aϵ ξ̃k + Bϵ ũk,∀k = 0, 1, . . . ,N − 1.

Based on Assumption 1, one can always choose a small enough
ϵ such that the pair (Aϵ, Bϵ) is stabilizable. The corresponding
optimal feedback control gain is K ϵ

N , which can be solved through
updating Eqs. (37) by iterations. By Grimm et al. (2005, Corollary
3), we have the matrix Aϵ − BϵK ϵ

N is Schur for any

N >
ā(ā+ āW )

a2W
+ 1 (40)

here āW = 0, aW = λm(ϵQ ) and ā = max
0≤k≤N

|Pϵ
k | = max

0≤k≤N
|Pk| + δ

in this paper. From Bian and Jiang (2016), if the step size ϵ is
mall enough, we observe that ā ≤ supP∈Bq |P| + δ, where the
et Bq is bounded. Then, one can always find a small enough δ

uch that the right side of Eq. (40) is no greater than k̄q. Based
on Lemma 3, there always exists a small pair (ϵ, δ) such that
the matrix Aϵ − BϵKN is Schur. It is immediate to have that the
closed-loop matrix Ā − B̄KN of the continuous-time system (15)
is Hurwitz, and the cost (14) is finite with respect to a controller
ũ = −KN ξ̃ . In other words, Kk+N is an admissible control gain for
the original continuous-time optimal control problem (14)–(15)
for any N > k̄q, which completes the proof. □

By introducing the following Lemma, one can find another
ufficient condition to ensure the admissibility of the learned
ontrol gain via the HI Algorithm 3.

emma 4. Considering a pair (Hk, Kk) solved from Eq. (36) at an
iteration k ∈ Z+. If both inequalities Hk − 2K T

k Kk ≺ 0 and Pk ≻ 0
hold, the control gain Kk must be admissible. Moreover, there always
exists a ka2 ∈ Z+ such that these inequalities hold when k = ka2.

roof. Based on Bian and Jiang (2016), we have Hk = ĀTPk + PkĀ
nd Kk = B̄TPk, where Pk ∈ Bq. One can observe that

≻Hk − 2K T
k Kk

=ĀTPk + PkĀ− 2B̄TPk
=(Ā− B̄Kk)TPk + Pk(Ā− B̄Kk).

Combining with the condition that Pk ≻ 0, it is sufficient
to show that Ā − B̄Kk is Hurwitz through Lyapunov stability
analysis, and the cost is finite with respect to the closed-loop
system. Therefore, Kk is admissible if Hk − 2K T

k Kk ≺ 0 and
Pk ≻ 0. Moreover, based on the fact that lim

k→∞
Pk ≻ 0 and

lim
k→∞

Hk − 2K T
k Kk = −Q − (K ∗)TK ∗ ≺ 0, there must exist a finite

integer ka2 such that Hka2 −2K T
ka2

Kka2 ≺ 0 and Pka2 ≻ 0. The proof
is thus completed. □

Now, we are ready to prove the convergence of the HI Algo-
rithm 3 in the following theorem.

Theorem 3. Sequences {Pk}∞k=0 and {Kk}
∞

k=1 learned by the HI
Algorithm 3 converge to P∗ and K ∗, quadratically.

roof. Based on Theorem 2 and Lemma 4, the condition in the
tep 11 of the Algorithm 3 triggers at the iteration ka ≤ min{ka1+
, k + 1}. This is sufficient to ensure that the learned control
a2

6

gain Kka−1 is admissible. After finding out this admissible control
gain, we switch to PI methods in steps 12–15. Given an admissible
control gain Kk, one can solve Pk and Kk+1 from (32) which are
equivalent to the solution to (29)–(30). From (29)–(30), we have

(A− BKk+1)T (Pk+1 − P∗)+ (Pk+1 − P∗)(A− BKk+1)

=− Q − K T
k+1RKk+1 − (A− BK ∗)TP∗ − P∗(A− BK ∗)

− (K ∗ − Kk+1)TBTP∗ − P∗B(K ∗ − Kk+1)

=− Q − K T
k+1RKk+1 + Q + K ∗RK ∗

− (K ∗ − Kk+1)TRK ∗ − K ∗R(K ∗ − Kk+1)

=− (Kk+1 − K ∗)TR(Kk+1 − K ∗)

=− (Pk − P∗)BR−1BT (Pk − P∗). (41)

Based on (41), we have

Pk+1 − P∗ =
∫
∞

0
e(A−BKk+1)τ (Pk − P∗)BR−1BT

(Pk − P∗)e(A−BKk+1)τdτ ,

which implies that there exist constants cp and ck such that

lim
k→∞

|Pk+1 − P∗|
|Pk − P∗|2

= cp, lim
k→∞

|Kk+1 − K ∗|
|Kk − K ∗|2

= ck. (42)

Therefore, both sequences {Pk}∞k=0 and {Kk}
∞

k=1 converge quadrat-
ically to their optimal values. The proof is thus completed. □

Remark 3. Similar to existing RADP algorithms (Jiang & Jiang,
2017), we use Φ(t) as a measurable signal during the learn-
ing phase in the Algorithm 3. After the learning completes, the
implementation of controller no longer depends on Φ(t). Note
that it is unnecessary to measure Φ(t) exactly. It can be relaxed,
for instance, by the measurement of a biased signal Φb(t) =
Φ(t) + Φ̃(t), where |Φ̃(t)| is upper bounded for t ∈ [t0, t2s+1].
In terms of robust dynamic programming and robust PI tech-
niques (Bian & Jiang, 2019; Pang et al., 2022), it can be shown that
the approximated solution learned by HI will eventually enter
a small neighborhood of the optimal solution under the relaxed
condition.

4.5. Resilience and robustness analysis of closed-loop systems under
DoS

Considering the effect of DoS, the control input and internal
model applied to the process can be expressed as

u(t) =− K ∗ξ (tk(t)), (43)

ż(t) =Sz(t)+ G2e(tk(t)), (44)

where tk(t) represents the last time instant that receives the up-
dated information. Define the error between the last successfully
received values and actual values as ϵξ (t) = ξ (tk(t))−ξ (t), ϵe(t) =
e(tk(t))− e(t). We propose the following Theorem to seek a lower
bound of DoS duration parameter T to ensure the robust optimal
output regulation under DoS.

Theorem 4. Under Assumptions 1–4, the system (1)–(4) in closed-
loop with the optimal controller (43) and internal model (44) under
DoS attacks achieves global output regulation if

1. The DoS duration criterion T satisfies

T > 1+
4λM (P∗)(|K ∗|2+|P∗||G2C̄ |)

:= T ∗; (45)

λm(Q )λm(P∗)
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2. The small-gain condition γΦγe < 1 is satisfied where

γe=|C̄ |

√ 1+ 2 exp
(

κT∗λm(Q )
λM (P∗) + η

)
eβτD

1−e−βτD

min
{

λm(Q )λm(P∗)
λM (P∗) , 4(|K ∗|2+|P∗||G2C̄ |)

} (46)

with β =
λm(Q )
λM (P∗)

(
1− T∗

T

)
.

roof. The system (2) in closed-loop with the controller (43) and
nternal model (44) is
˙ (t) =(Ā− B̄K̄ ∗)ξ (t)+ B̄(−K ∗ϵξ (t)+Φ(t))

+ D̄v(t)+
[

0
G2ϵe(t)

]
. (47)

etting Ξ =
[
XT ZT

]T , we have

ξ (t) =ξ (tk(t))− ξ (t) = ξ̃ (tk(t))− ξ̃ (t), (48)
ϵe(t) =e(tk(t))− e(t)

=C̄(ξ (tk(t))−Ξv(tk(t)))− C̄(ξ (t)−Ξv(t))

=C̄ϵξ (t). (49)

One can obtain the following error system

˙̃ (t) =(Ā− B̄K̄ ∗)ξ̃ (t)+ B̄(−K ∗ϵξ (t)+Φ(t))+
[

0
G2C̄ϵξ (t)

]
,

e(t) =C̄ ξ̃ (t). (50)

efore analyzing the stability of the interconnected system, we
ive and prove the following Lemma to show that the system (50)
s IOS.

emma 5. For any DoS duration criterion T > T ∗, the system (50)
egarding Φ(t) as the input and e(t) as the output is IOS and SUO
ith zero offset.

roof. By taking V = ξ̃ TP∗ξ̃ as a Lyapunov function, along the
losed-loop system (50), we have
d
dt

V ≤− ξ̃ T
[Q + (K ∗)TK ∗]ξ̃ − 2(K ∗ξ̃ )TK ∗ϵξ

+ 2(K ∗ξ̃ )TΦ + 2|ξ̃ ||P∗||G2C̄ϵξ |

≤ − λm(Q )|ξ̃ |
2
+ 2(|K ∗|2 + |P∗||G2C̄ |)|ξ̃ ||ϵξ | + |Φ|

2. (51)

onsidering the internal [hs + τs, hs+1) where communications
re normal, i.e., ϵξ = 0, and by the fact that λm(P∗)|ξ̃ |

2
≤ V ≤

M (P∗)|ξ̃ |
2
, we have d

dt V ≤ −
λm(Q )
λM (P∗)V + |Φ|

2, which implies that

V (ξ̃ (t)) ≤ e−w1(t−hs−τs)V (ξ̃ (hs + τs))+ γ1∥Φ∥
2, (52)

where w1 =
λm(Q )
λM (P∗) , and γ1 =

1
w1
=

λM (P∗)
λm(Q ) .

During the interval [hs, hs + τs) that communications are de-
nied, the error is bounded by |ϵξ (t)| ≤ |ξ̃ (hs)| + |ξ̃ (t)|. (51) is
equivalent to
d
dt

V ≤[2(|K ∗|2 + |P∗||G2C̄ |)− λm(Q )]|ξ̃ |
2
+ |Φ|2

+ 2(|K ∗|2 + |P∗||G2C̄ |)|ξ̃ ||ξ̃ (hs)|

≤2(|K ∗|2 + |P∗||G2C̄ |)(|ξ̃ |
2
+ |ξ̃ ||ξ̃ (hs)|)+ |Φ|2

≤w2 max{V (ξ̃ (t)), V (ξ̃ (hs))} + |Φ|2, (53)

where w2 =
4(|K∗|2+|P∗||G2C̄ |)

λm(P∗) . Then, for any t ∈ [hs, hs + τs), we
ave

(ξ̃ (t)) ≤ ew2(t−hs)V (ξ̃ (hs))+ γ2ew2(t−hs)∥Φ∥2, (54)
1 λm(P∗)
here γ2 = w2
=

4(|K∗|2+|P∗||G2C̄ |)
. a

7

By De Persis and Tesi (2015, Lemma 3), for all t ≥ 0, the
Lyapunov function satisfies

V (ξ̃ (t)) ≤e−w1|ΠN (0,t)|ew2|ΠD(0,t)|V (ξ̃0)

+ γ3

⎡⎣1+ 2
∑

s∈Z+\0;hs≤t

e−w1|ΠN (hs+τs,t)|ew2|ΠD(hs,t)|

⎤⎦ ∥Φ∥2,
(55)

where γ3 = max{γ1, γ2}, and ξ̃0 = ξ̃ (0). Based on Assumption 6,
we have |ΠD(hs, t)| ≤ κ + t−hs

T ,∀t ≥ hs. For the normal
ommunication duration, we have |ΠN (hs + τs, t)| = t − hs −

ΠD(hs, t)|,∀t ≥ hs. Therefore, one can observe that∑
s∈Z+\0;hs≤t

e−w1|ΠN (hs+τs,t)|ew2|ΠD(hs,t)|

ew3κ
∑

s∈Z+\0;hs≤t

e−β(t−hs), (56)

here

3 =w1 + w2

=
λm(Q )λm(P∗)+ 4λM (P∗)(|K ∗| + |P∗||G2C̄ |)

λM (P∗)λm(P∗)
,

β =w1 −
w3

T

=
λm(Q )λm(P∗)(T−1)−4λM (P∗)(|K ∗|2+|P∗||G2C̄ |)

λM (P∗)λm(P∗)T
.

t is easy to check that T ∗ defined in (45) is equivalent to T ∗ =
3/w1. By De Persis and Tesi (2015, Lemma 4) and Assumption 5,

we have∑
s∈Z+\0;hs≤t

e−β(t−hs) ≤
e−βτDη

1− e−βτD
.

Finally, we have the Lyapunov function along the trajectory of the
closed-loop system satisfies

V (ξ̃ (t)) ≤ eκw3−βtV (ξ̃0)+ γ3

(
1+ 2eκw3

eβτDη

1− e−βτD

)
∥Φ∥2.

This implies that

|ξ̃ (t)| ≤

√
eκw3−βt λM (P∗)

λm(P∗)
|ξ̃0| + γ4∥Φ∥

2,

|e(t)| ≤|C̄ |

√
eκw3−βt λM (P∗)

λm(P∗)
|ξ̃0| + γe∥Φ∥

2, (57)

here

4 =

[
γ3

λm(P∗)

(
1+ 2eκw3

eβτDη

1− e−βτD

)]1/2
,

γe =|C̄ |

√ 1+ 2 exp(κw1T ∗ + η) eβτD

1−e−βτD

min
{

λm(Q )λm(P∗)
λM (P∗) , 4(|K ∗|2 + |P∗||G2C̄ |)

} ,

hich is equivalent to (46).
From (57), we see that a sufficient condition to make the

ystem input-to-state stable is letting β > 0. In this setting,
ne can obtain that the DoS duration criterion T has to satisfy
he inequality (45). By Jiang et al. (1994), we conclude that the
nput-to-state stability guarantees that (50) with e as output has
UO property with zero-offset and IOS properties with IOS-gain
s γ . □
e
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Assumptions 3 and 4 indicate that the ζ -system (1) is SUO
ith zero-offset and IOS with IOS gain γΦ . By the small-gain
heory (Jiang & Liu, 2018; Jiang et al., 1994), under the small-
gain condition, the interconnected system (1) and (50) is globally
asymptotically stable at the origin for any v ∈ Σv . We have
lim
t→∞

(
x(t) − Xv(t)

)
= 0, and lim

t→∞
e(t) = 0, which immediately

implies that both disturbance rejection and asymptotic tracking
are achieved in global sense. The proof is thus completed. □

Remark 4. One can observe from (46) that the IOS-gain γe is
onotonically increasing with κ and η, but not with τD. Actually,
hen τD = log(2)/β := τ ∗D , γe achieves its minimum, i.e.,

∗

e = |C̄ |

√ 1+ 8 exp
(

κT∗λm(Q )
λM (P∗) + η

)
min

{
λm(Q )λm(P∗)

λM (P∗) , 4(|K ∗|2 + |P∗||G2C̄ |)
} (58)

here 1/τ ∗D is named by DoS critical frequency.

. Simulation

In order to validate the propose control approach, we consider
n interconnection of two synchronous generators wherein the
enerator 2 is regarded as the dynamic uncertainty of generator
(Gao et al., 2016). The interconnected system can be modeled
sing (1)–(4), where x, ζ ∈ R2 are the angle, rotor speed of the

generators 1 and 2, respectively. The input u is the mechanical
power of the generator 1. ∆ is a locally Lipschitz function such
that the system (1) is IOS and SUO with γ∆ = αs. v is the desired
rotor angle of the generator 1. System matrices and functions are

A =
[
0 1
0 −

D1
2H1

]
, B =

[
0
ω0
2Hi

]
,D =

[
0
0

]
,

C =
[
1 0

]
, F = −1, S = 0,G2 = 1,

Φ(e, ζ , v) =−
E1E2
X
[sin(e+ v − ζ1)− sin(v)],

here the definition and the value of all parameters can be found
n Jiang and Jiang (2017, Chapter 5).

For the purpose of simulation, we select κ = 0.35, τD = 15,
T = 21, α = 0.1, and η = 1. We implement HI Algorithm 3
to learn the optimal control gain. We choose the initial control
gain as K0 =

[
0 0 0

]
. We find that the updated control gain

is admissible after 91 iterations. This enables the transition from
VI to PI to significantly accelerate the convergence speed such
that the convergence is achieved after 2 more iterations. The
approximated optimal control gain learned by HI is

KHI
93 =

[
1.75669, 1.02985, 1.002

]
.

For reference, we calculate the optimal control gain through
solving algebraic Riccati equation

K ∗ =
[
1.75095 1.02974 1.0

]
.

Compared with the initial control policy, we find from Fig. 2 that
he transient response and the tracking performance are much
etter after updating the controller by the learned approximated
ptimal one under DoS attacks. Based on the learned control gain
nd the value matrix, one can find the bound of DoS duration
arameter T ∗ = 4.21 × 103, and the IOS gain γe = 1.04 ×
05. Similar to De Persis and Tesi (2015), these are sufficient

conditions to guarantee the resilience and stability of the closed-
loop system. As shown in Fig. 2, the DoS duration bound T ∗ can
in practice be much smaller than the theoretic ones.

In order to compare the computational complexity of different
iteration algorithms, we randomly generate 200 dynamical sys-
tems and implement Algorithms 1–3 to learn the optimal control
8

Fig. 2. The trajectories of angle differences of generator 1 (e) and generator 2
(ζ1) under DoS attack (shaded areas).

Table 1
Performance comparison of algorithms 1–3.
Algorithm PI VI HI

Need An Admissible K0 Yes No No
No. of iterations 12 8469 116
CPU time (sec) 0.2064 1.7526 0.2549

respectively. The average CPU time and the number of itera-
tions of each algorithm needed for convergence are illustrated
in Table 1 wherein one can see that the PI and HI algorithms
ignificantly outperform the VI algorithm. The PI relies on a strong
ssumption of an initial stabilizing control gain which is hard to
atisfy in practice.

. Conclusion

In this paper, we studied the LO2RP with assured conver-
ence rate requirement under the challenges from the unknown
ystem and exosystem dynamics. Without relying on the knowl-
dge of system dynamics and initial stabilizing feedback con-
rol gain, a novel VI algorithm is proposed, which is capable of
earning the optimal regulator using online data with a guaran-
eed convergence rate. An application to a LCL coupled inverter-
ased distributed generation system shows the efficiency of the
earning-based output regulation approach.
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