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ABSTRACT

We introduce ImportantAug, a technique to augment training data

for speech classification and recognition models by adding noise

to unimportant regions of the speech and not to important regions.

Importance is predicted for each utterance by a data augmentation

agent that is trained to maximize the amount of noise it adds while

minimizing its impact on recognition performance. The effectiveness

of our method is illustrated on version two of the Google Speech

Commands (GSC) dataset. On the standard GSC test set, it achieves

a 23.3% relative error rate reduction compared to conventional noise

augmentation which applies noise to speech without regard to where

it might be most effective. It also provides a 25.4% error rate reduc-

tion compared to a baseline without data augmentation. Additionally,

the proposed ImportantAug outperforms the conventional noise aug-

mentation and the baseline on two test sets with additional noise

added.

Index Terms— Data augmentation, importance maps, speech

recognition, noise robustness.

1. INTRODUCTION

Data augmentation techniques are used to enhance models’ perfor-

mance by adding additional variations to the training data. These

techniques are widely applied to improve automatic speech recogni-

tion (ASR) performance [1–4]. In [1], the authors used speed per-

turbation to create new speech utterances by changing the frequency

components and number of time frames of speech recordings. This

additional training data helped to decrease the word error rate (WER)

by 3.2% relative on Librispeech task with 960 hours Librispeech

data. In [2], reverberation was added to the speech to make it more

realistic. Recently, a common technique is to remove or mask infor-

mation in the spectrogram domain. For instance, SpecAugment [5]

removes speech information in T continuous random time frames or

F frequency bins. At the time, this augmentation not only increased

ASR accuracy, but also achieved the state-of-the-art WER on the

LibriSpeech 960-hour dataset at 5.8%. [3] proposed data augmenta-

tion via adding additional noise to speech, reducing WER by 21.3%

relative on their self-constructed 100 sentence evaluation set.

Recently, data augmentation techniques have been introduced

that utilize importance or saliency maps. There are many methods to

predict importance and saliency maps, e.g., [6–16], but few previous

studies have investigated applications of such maps. In the visual

domain, a recent work [17] used saliency maps for data augmentation.

Instead of using noise, the authors cut random rectangles out of an

image if the sum of the importance scores of all the pixels inside the

rectangle was smaller than a threshold. In speech, [18] used a bottom-

up approach to predicting auditory saliency maps to improve ASR

performance. They used Gabor filters to extract intensity and contrast

in time and frequency to find the saliency maps. This saliency map is

then multiplied with the spectrogram, resulting in a weighted spec-

trogram, from which features are extracted for ASR. This approach

achieved a 5.3% relative WER reduction compared to a baseline that

did not use importance maps.

We introduced a top-down adversarial approach to predicting

importance maps in [15, 19]. The current paper builds upon those

approaches to introduce a method of using our top-down importance

maps for data augmentation in speech command recognition. In con-

trast to [18], we use a top-down approach to identify the regions that

are important for recognizing the specific production of the specific

words in a given utterance. Furthermore, these regions are directly

related to the speech recognition task, which is different from bottom-

up approaches, which produce the same prediction regardless of the

task. For instance, a bottom up approach using intensity filters might

predict that a spectrogram area containing loud noise is important for

the speech recognition task.

In section 2, we discuss our ImportantAug1 method, where we

first identify the importance maps and then utilize them to augment

the data. In section 3, we present our experimental setup with details

about the data, hyperparameter settings, and experiments. The results

on clean, in domain noisy, and out-of-domain noisy test sets are

illustrated in section 4.

2. METHOD

The proposed network has a speech command recognizer and a mask

generator, as illustrated in Figure 1. The speech command recog-

nizer’s task is to classify the input utterances into the correct classes.

The mask generator’s task is to add as much noise as possible to

utterances without harming the performance of the recognizer. This

has the effect of generating importance maps, which are utilized for

data augmentation.

Our networks are trained in two stages. In the first stage, we

train the generator so that it can output importance maps (masks).

We load a recognizer that is pre-trained on clean speech. Then,

we freeze the recognizer and train only the mask generator. The

generator receives clean speech as input and outputs a mask. This

mask is multiplied with the noise and then added to the clean speech,

resulting in a noisy utterance. The recognizer receives this noisy

speech as input and predicts a class. Note that in the Google Speech

Commands (GSC) dataset [20], each utterance is at most 1s long and

only contains a single word in the presence of noise. Thus this is a

speech classification task as opposed to a full speech recognition task.

We designed the loss function for our network to encourage the

mask to maximize the amount of noise while the speech recognizer

maintains good performance. This loss function therefore forces

1The code is available at https://github.com/tvanh512/importantAug
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Fig. 1. ImportantAug scheme. The mask generator’s task is to output an importance map (mask) for an utterance with maximal noise while

interfering with recognition of the recognizer as little as possible. The mask is point-wise multiplied (⊙) with the scaled noise and added to the

clean speech. The mask contains values close to 0 at important points and values close to 1 at unimportant points.

the generator to output a mask with less noise in regions that are

important to the recognizer, and with more noise in regions that are

unimportant to the recognizer.

In the second stage, we freeze the generator and train only the

speech command recognizer. We aim to create additional data to

train the recognizer. To create additional data, noise is added to the

unimportant regions of the clean speech. Less or no noise is added to

the important regions.

Denote S(f, t) and N(f, t) as the complex spectrograms of the

speech and noise, respectively, where f is the frequency index and

t is the time index. These spectrograms are created by applying the

short time Fourier transform (STFT) to the time domain signal s(t)
of the speech and n(t) of the noise. The generator G with parameters

θ takes S̃(f, t) = 20 log
10

|S(f, t)| as input and predicts a mask

Mθ(f, t) with the same shape as S̃(f, t)

Mθ(f, t) = G(S̃(f, t); θ) ∈ [0, 1]F×T
(1)

An additional augmentation shifts the mask slightly in time or

frequency to further increase variability in the training data for the

recognizer. The mask output by the generator, Mθ , is rolled along

the frequency and time dimension

Mθr = r(Mθ; δ) (2)

where r is the roll operator (we use torch.roll) and δ is the number of

time frames or frequency bins by which the elements of the mask are

shifted. δ is drawn uniformly at random from the interval (−D,D).
Furthermore, to create additional variation, with probability 0.5, the

mask Mθr is replaced by a mask of all 1’s. Denote whichever mask

is selected as M . This rolling augmentation is only used when re-

training the recognizer using the predicted importance maps and not

when training the mask generator itself.

This mask is then applied point-wise to a noise instance N , scaled

by gain A. The gain A is adjusted each training batch such that the

signal to noise ratio is maintain at a target value

A =

√

∑

b,t,f |Sbtf |2

10v/10
∑

b,t,f |Nbtf |2
, (3)

where v is the target SNR expressed in decibels, and b, t, f denoted

the batch, time, and frequency dimensions respectively. The resulting

masked-scaled noise AN ⊙M (where ⊙ denotes point-wise multi-

plication) is added to the clean speech S. The resulting noisy mixture

is input to the speech command recognizer R, which predicts the

probability of the class ŷ

ŷ = R(S +AN ⊙M). (4)

The model is trained to minimize

L(θ) = λrLR(y, ŷ)−
λe

TF

∑

f,t

logM

+
λf

TF

∑

f,t

|∆fM |+
λt

TF

∑

f,t

|∆tM |. (5)

where LR is the loss of the speech recognizer, ∆f is the difference

operation along frequency, ∆t is the difference operation along time,

and λr, λe, λf , and λt are weights set as hyperparameters of the

model. The recognizer loss is the cross entropy between the prediction

ŷ and the ground truth label y. This loss forces the recognizer to keep

high accuracy on predicting the correct class. The −
∑

f,t logM
term forces the mask’s value to be close to one, thus maximizing

the amount of noise added. The terms associated with λf and λt

encourage the mask to smooth in frequency and time.

3. EXPERIMENTAL SETUP

3.1. Dataset

We use the Google Speech Commands (GSC) dataset version 2 [20]

for our experiments. This dataset includes 105,829 single-word ut-

terances of 35 unique words. Many utterances include noise or other

distortions. The models were trained on the training set and evaluated

on the test set. The development set was used for early stopping.

We also employ additional noise from the MUSAN dataset [21]

to augment the speech from the GSC dataset. The recordings in

MUSAN have different lengths, so we only used the first second from

each recording and exclude any recordings shorter than one second

as the speech utterances are restricted to be at most one second long.

There are 877 noisy files after filtering out short utterances. We

randomly choose 702 files (80%) for training. We mix the remaining

175 files with the utterances from the GSC test set, creating a new

noisy test set that we call GSC-MUSAN.

To evaluate our trained model on out-of-domain noisy environ-

ments, we also create another test set. First, we select a file “HOME-

LIVINGB-1.wav”, which contains 40 minutes of noise recording in

the living room environment from the QUT corpus [22]. We then

resample this file from 48 to 16 kHz, the same rate as the GSC utter-

ances and choose random sections in this noisy file to mix with the

utterances in the GSC test set. We call this dataset GSC-QUT.

3.2. Experiments

We compare our proposed method against two other methods. In the

first method (baseline), we train a recognizer that does not utilize any

data augmentation . It is trained on the GSC training set and selected



Table 1. Recognizer error rate (%) on the Google Speech Command

v2 (GSC) development set with conventional noise augmentation at

different SNRs

SNR Dev SNR Dev

∞ 7.74 15 5.83

40 6.39 10 6.11

35 7.65 5 6.00

30 6.10 0 5.97

25 6.19 −5 6.24

20 6.22 −10 6.16

using early stopping on the development set. All other methods are

trained by initializing their parameters to those of this pre-trained

baseline recognizer. In the second method, we utilize a conventional

noise augmentation technique that treats all time-frequency points

as equally important and applies noise directly to the speech without

importance maps (S + AN). We perform an experiment to identify

the best single signal to noise ratio (SNR) to use, comparing those

ranging from −10 dB to 40 dB in steps of 5 dB. We also evaluate

∞ dB by training on clean data.

In our proposed method, ImportantAug, we performed the two-

stage training as described above. First, we load and freeze the

recognizer from the baseline and train the generator. Then, we freeze

the generator and train the recognizer. The noise from the MUSAN

dataset was multiplied with the rolled importance maps and added to

the speech. In addition, we perform an ablation study by evaluating

the recognizer performance when we remove the importance map

from the proposed approach, by setting the mask to be all 1’s, which

we call the “Null ImportantAug” condition. In this case, no region is

more important than other regions and the noise is added directly to

the speech. We evaluate the baseline (no augmentation), conventional

noise augmentation, ImportantAug and Null ImportantAug on the

standard GSC test set, GSC-MUSAN and GSC-QUT noisy test sets.

In addition to using continuous-valued importance maps, we

also experimented with binarizing the importance maps . We con-

sidered the q% of time-frequency points with the lowest value in the

continuous-valued importance map as being important and did not

add any noise to them. The other 100− q% of the points were con-

sidered unimportant and noise was added to them. In this experiment,

the mask was not replaced by an all 1’s mask at all.

3.3. Hyperparameter settings

The signal was sampled at 16 kHz with a window length of 512

and a hop length of 128 samples, leading to a spectrogram with

257 frequency bins and 126 time frames for a 1 s utterance. In all

experiments, we use the same default setting for the speech command

recognizer, which is a neural network with 5 layers. Each layer has a

1D depth-wise and 1D point-wise convolution [23, 24], followed by

SELU activation [25]. The depth-wise convolution has a kernel size

of 9× 9 (281.25 Hz x 96 ms), a stride value of 1, a dilation value of

1; and its inputs and outputs are both 257 channels. The point-wise

convolution consists of a kernel of size 1× 1 and also has inputs and

outputs for size 257.

The generator is a neural network with 4 layers, where each layer

is a 2D convolutional network. The first layer takes one channel in

and outputs 2 channels. The second and third layers have 2 channels

in their input and output. The last layer has 2 channels of input and

Table 2. Recognizer error rate (%) with various augmentation ap-

proaches on GSC test set

Augmentation method Initial SNR (dB) Error

No augmentation ∞ 6.70

Conventional noise augmentation 15.0 6.52

ImportantAug -12.5 5.00

Null ImportantAug -12.5 6.12

one of output. All the layers have a kernel size of 5× 5 (156.25 Hz x

64ms), a stride value of 1, a dilation value of 1 and a padding so that

the output has the same height and width as the input.

In the proposed ImportantAug method, we selected hyperparam-

eters λr = 1, λe = λf = λt = 3, v = −12.5 dB. First, the weights

λr, λe, λf , λt, and v were manually adjusted based on a very small

number of settings so that the speech command recognizer performed

well and the mask values were closer to all 1’s on the development

set. Then we chose D, the maximum number of time frames or

frequency bins by which the elements of the mask are shifted to be

30, equivalent to 937.5 Hz and 264 ms. This was selected to keep the

mask from shifting too far from the original position.

All the models are trained with the Adam optimizer with an initial

learning rate of 0.001, which is decayed by half every 20 epochs and

a batch size of 256. The models are trained for 200 epochs with early

stopping on the development set loss with a patience value of 30.

4. RESULTS

Table 1 shows the error rate on the development set for the conven-

tional augmentation method with different signal to noise ratios. We

can see that adding too much noise leads to a high error rate, for

example, SNRs -10 and -5 dB have error rates 6.16% and 6.24%,

respectively on the development set. Adding too little noise is also not

optimal, for instance, SNRs 40 and 35 dB have error rate 6.39% and

7.65% on the development set. Using no noise at all does not provide

good performance, with an error rate 7.74%. However, adding the

right amount of noise is beneficial for the recognizer as it balances

variation in the training data with speech fidelity. As shown in Ta-

ble 1, the best error rate (5.83%) is with an SNR of 15 dB. The model

trained with SNR 15 dB has the best performance on the development

set, so we choose this model to evaluate on the test set and compare

with other approaches in Table 2.

Table 2 shows the results on the standard GSC test set. The

baseline speech command recognizer has an error rate of 6.70%. The

conventional noise augmentation method produces a model with an

error rate of 6.52%. Our proposed method has the best error rate at

5.00%, which is a 25.4% relative improvement over the no augmenta-

tion baseline and 23.3% relative improvement over the conventional

noise augmentation method. We also perform an ablation study with

the Null ImportantAug method by using a “mask” that is all 1’s,

which leads to an error rate of 6.12%. Null ImportantAug is similar to

the traditional NoiseAug because it does not utilize importance maps.

The difference is that Null ImportantAug is trained with the same

SNR as ImportantAug (-12.5 dB), while the traditional NoiseAug

uses the SNR chosen based on the performance on the development

set of 15 dB. The error rate with and without important maps are 5%

and 6.12% respectively, thus the importance map is necessary for the

observed performance gains.
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(a) Clean speech (b) Importance map (IM) (c) Rolled IM (d) MUSAN noise (e) Noisy speech

Fig. 2. (a) Clean utterance from Google Speech Commands dataset. (b) Importance map (blue areas) from the generator. (c) Rolled importance

map. (d) MUSAN noise. (e) Noisy speech created by multiplying the noise from (d) with the mask from (c) and adding clean speech from (a)

Table 3. Recognizer error rate (%) of augmentations on in-domain

noise test set (GSC-MUSAN) as a function of test SNR.

Test SNR
Method −12.5 −10 0 10 20 30 40

No aug. (baseline) 77.6 72.7 45.2 21.0 11.5 8.4 7.3
Noise aug. (SNR 15) 65.8 57.7 26.3 10.8 7.3 6.6 6.4
ImportantAug 43.5 35.0 13.3 7.4 5.7 5.2 5.1
Null ImportantAug 45.2 37.0 15.0 8.5 6.9 6.2 6.0

Table 4. Recognizer error rate (%) of augmentations on out-of-

domain noise test set (GSC-QUT) as a function of test SNR.

Test SNR
Method −12.5 −10 0 10 20 30 40

No aug. (baseline) 90.9 87.3 55.8 20.8 9.6 7.4 7.0
Noise aug. (SNR 15) 89.0 83.5 42.0 12.9 7.3 6.5 6.2
ImportantAug 72.0 61.3 23.5 8.9 5.8 5.1 4.8
Null ImportantAug 72.3 61.6 24.8 10.0 6.8 6.1 6.0

Table 3 shows the results on the GSC-MUSAN test set. We could

observe that the proposed method ImportantAug achieve the best

result in all SNR range. For example, the ImportantAug achieve

13.3% error rate at 0 dB, which is around one-third of the error rate

of the baseline 45.2% and a half of the conventional augmentation

method. We also observe that the error rates are going up if we

remove the importance map (IM) when comparing row 3 and row 4

of Table 3. For example, at SNR 0 dB, the error rate going up from

13.3% to 15% if we remove the IM and train with only the noise.

Table 4 shows the results on the GSC-QUT test set, which is

out-of-domain noise test set because the models are trained with

MUSAN noise, not with QUT noise. Here, we observe the same trend

when the ImportantAug outperforms the baseline, the conventional

augmentation method.

Figure 2.b shows an example of an importance map of an utter-

ance of the word “four” in the GSC dataset. The importance map

includes the fundamental frequency, the harmonics, and the outer bor-

der shape of the speech. These regions are predicted to be necessary

for the speech command recognizer to identify this specific utterance.

Thus, keeping these regions clean and adding noise outside of them

makes the data more diverse while not affecting the recognition.

Table 5 shows the error rate on the development and test set

for the binary ImportantAug method with different important region

ratios. In this experiment, we consider the quantile q% of the regions

that have lowest mask value to be important. The best result is

achieved on the development set by choosing 10% of points to be

Table 5. Recognizer error rate (%) with binarized ImportantAug

using different important region ratios, q on the original GSC test set.

q (%) Dev Test

70 5.42 5.64

50 5.49 5.92

40 5.19 5.71

20 5.17 5.15

10 5.00 5.43

5 5.09 4.92

1 5.12 4.94

0 6.03 6.12

important, which provides a 11.3% relative error reduction on the

test set compared to not multiplying the noise with the importance

map (q = 0). Thus only a very small proportion of points need to be

preserved in this way to enhance the data augmentation performance.

5. CONCLUSION

In conclusion, we have demonstrated a data augmentation agent that

improves a speech command recognizer. Our proposed ImportantAug

method produced a 25.4% relative error rate reduction compared

to the non-augmentation method and and 23.3% relative reduction

compared to the conventional noise augmentation method. Taken

together, this work shows that importance maps can be estimated

accurately enough to be helpful for data augmentation, providing one

of the first such demonstrations, especially for speech. In the future,

we will extend this framework by replacing the speech command

recognizer with a full large vocabulary continuous speech recognizer

and we will deploy different methods to identify the importance

map and use the map to augment the speech data, such as those

based on human responses. The proposed method could also be used

in computer vision tasks, such as image recognition by predicting

importance maps for images.
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