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ABSTRACT

We introduce ImportantAug, a technique to augment training data
for speech classification and recognition models by adding noise
to unimportant regions of the speech and not to important regions.
Importance is predicted for each utterance by a data augmentation
agent that is trained to maximize the amount of noise it adds while
minimizing its impact on recognition performance. The effectiveness
of our method is illustrated on version two of the Google Speech
Commands (GSC) dataset. On the standard GSC test set, it achieves
a 23.3% relative error rate reduction compared to conventional noise
augmentation which applies noise to speech without regard to where
it might be most effective. It also provides a 25.4% error rate reduc-
tion compared to a baseline without data augmentation. Additionally,
the proposed ImportantAug outperforms the conventional noise aug-
mentation and the baseline on two test sets with additional noise
added.

Index Terms— Data augmentation, importance maps, speech
recognition, noise robustness.

1. INTRODUCTION

Data augmentation techniques are used to enhance models’ perfor-
mance by adding additional variations to the training data. These
techniques are widely applied to improve automatic speech recogni-
tion (ASR) performance [1-4]. In [1], the authors used speed per-
turbation to create new speech utterances by changing the frequency
components and number of time frames of speech recordings. This
additional training data helped to decrease the word error rate (WER)
by 3.2% relative on Librispeech task with 960 hours Librispeech
data. In [2], reverberation was added to the speech to make it more
realistic. Recently, a common technique is to remove or mask infor-
mation in the spectrogram domain. For instance, SpecAugment [5]
removes speech information in 7" continuous random time frames or
F frequency bins. At the time, this augmentation not only increased
ASR accuracy, but also achieved the state-of-the-art WER on the
LibriSpeech 960-hour dataset at 5.8%. [3] proposed data augmenta-
tion via adding additional noise to speech, reducing WER by 21.3%
relative on their self-constructed 100 sentence evaluation set.
Recently, data augmentation techniques have been introduced
that utilize importance or saliency maps. There are many methods to
predict importance and saliency maps, e.g., [6-16], but few previous
studies have investigated applications of such maps. In the visual
domain, a recent work [17] used saliency maps for data augmentation.
Instead of using noise, the authors cut random rectangles out of an
image if the sum of the importance scores of all the pixels inside the
rectangle was smaller than a threshold. In speech, [18] used a bottom-
up approach to predicting auditory saliency maps to improve ASR
performance. They used Gabor filters to extract intensity and contrast

in time and frequency to find the saliency maps. This saliency map is
then multiplied with the spectrogram, resulting in a weighted spec-
trogram, from which features are extracted for ASR. This approach
achieved a 5.3% relative WER reduction compared to a baseline that
did not use importance maps.

We introduced a top-down adversarial approach to predicting
importance maps in [15, 19]. The current paper builds upon those
approaches to introduce a method of using our top-down importance
maps for data augmentation in speech command recognition. In con-
trast to [18], we use a top-down approach to identify the regions that
are important for recognizing the specific production of the specific
words in a given utterance. Furthermore, these regions are directly
related to the speech recognition task, which is different from bottom-
up approaches, which produce the same prediction regardless of the
task. For instance, a bottom up approach using intensity filters might
predict that a spectrogram area containing loud noise is important for
the speech recognition task.

In section 2, we discuss our ImportantAug' method, where we
first identify the importance maps and then utilize them to augment
the data. In section 3, we present our experimental setup with details
about the data, hyperparameter settings, and experiments. The results
on clean, in domain noisy, and out-of-domain noisy test sets are
illustrated in section 4.

2. METHOD

The proposed network has a speech command recognizer and a mask
generator, as illustrated in Figure 1. The speech command recog-
nizer’s task is to classify the input utterances into the correct classes.
The mask generator’s task is to add as much noise as possible to
utterances without harming the performance of the recognizer. This
has the effect of generating importance maps, which are utilized for
data augmentation.

Our networks are trained in two stages. In the first stage, we
train the generator so that it can output importance maps (masks).
We load a recognizer that is pre-trained on clean speech. Then,
we freeze the recognizer and train only the mask generator. The
generator receives clean speech as input and outputs a mask. This
mask is multiplied with the noise and then added to the clean speech,
resulting in a noisy utterance. The recognizer receives this noisy
speech as input and predicts a class. Note that in the Google Speech
Commands (GSC) dataset [20], each utterance is at most 1s long and
only contains a single word in the presence of noise. Thus this is a
speech classification task as opposed to a full speech recognition task.

We designed the loss function for our network to encourage the
mask to maximize the amount of noise while the speech recognizer
maintains good performance. This loss function therefore forces

IThe code is available at https://github.com/tvanh512/importantAug
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Fig. 1. ImportantAug scheme. The mask generator’s task is to output an importance map (mask) for an utterance with maximal noise while
interfering with recognition of the recognizer as little as possible. The mask is point-wise multiplied (®) with the scaled noise and added to the
clean speech. The mask contains values close to 0 at important points and values close to 1 at unimportant points.

the generator to output a mask with less noise in regions that are
important to the recognizer, and with more noise in regions that are
unimportant to the recognizer.

In the second stage, we freeze the generator and train only the
speech command recognizer. We aim to create additional data to
train the recognizer. To create additional data, noise is added to the
unimportant regions of the clean speech. Less or no noise is added to
the important regions.

Denote S(f,t) and N(f,t) as the complex spectrograms of the
speech and noise, respectively, where f is the frequency index and
t is the time index. These spectrograms are created by applying the
short time Fourier transform (STFT) to the time domain signal s(t)
of the speech and n(t) of the noise. The generator G with parameters
6 takes S(f,t) = 20log,, |S(f,t)| as input and predicts a mask
My (f,t) with the same shape as S(f, t)

MQ(f7 t) = G(S’(.ﬂ t)79) €

An additional augmentation shifts the mask slightly in time or
frequency to further increase variability in the training data for the
recognizer. The mask output by the generator, My, is rolled along
the frequency and time dimension
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where r is the roll operator (we use torch.roll) and ¢ is the number of
time frames or frequency bins by which the elements of the mask are
shifted. § is drawn uniformly at random from the interval (—D, D).
Furthermore, to create additional variation, with probability 0.5, the
mask Mo, is replaced by a mask of all 1’s. Denote whichever mask
is selected as M. This rolling augmentation is only used when re-
training the recognizer using the predicted importance maps and not
when training the mask generator itself.

This mask is then applied point-wise to a noise instance IV, scaled
by gain A. The gain A is adjusted each training batch such that the
signal to noise ratio is maintain at a target value
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where v is the target SNR expressed in decibels, and b, t, f denoted
the batch, time, and frequency dimensions respectively. The resulting
masked-scaled noise AN ® M (where ® denotes point-wise multi-
plication) is added to the clean speech S. The resulting noisy mixture
is input to the speech command recognizer R, which predicts the
probability of the class ¢

j = R(S + AN ® M). )

The model is trained to minimize
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where Ly is the loss of the speech recognizer, Ay is the difference
operation along frequency, A; is the difference operation along time,
and A\, Ae, A, and \; are weights set as hyperparameters of the
model. The recognizer loss is the cross entropy between the prediction
¢ and the ground truth label y. This loss forces the recognizer to keep
high accuracy on predicting the correct class. The — Y it log M
term forces the mask’s value to be close to one, thus maximizing
the amount of noise added. The terms associated with Ay and \;
encourage the mask to smooth in frequency and time.
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3. EXPERIMENTAL SETUP

3.1. Dataset

We use the Google Speech Commands (GSC) dataset version 2 [20]
for our experiments. This dataset includes 105,829 single-word ut-
terances of 35 unique words. Many utterances include noise or other
distortions. The models were trained on the training set and evaluated
on the test set. The development set was used for early stopping.

We also employ additional noise from the MUSAN dataset [21]
to augment the speech from the GSC dataset. The recordings in
MUSAN have different lengths, so we only used the first second from
each recording and exclude any recordings shorter than one second
as the speech utterances are restricted to be at most one second long.
There are 877 noisy files after filtering out short utterances. We
randomly choose 702 files (80%) for training. We mix the remaining
175 files with the utterances from the GSC test set, creating a new
noisy test set that we call GSC-MUSAN.

To evaluate our trained model on out-of-domain noisy environ-
ments, we also create another test set. First, we select a file “HOME-
LIVINGB-1.wav”, which contains 40 minutes of noise recording in
the living room environment from the QUT corpus [22]. We then
resample this file from 48 to 16 kHz, the same rate as the GSC utter-
ances and choose random sections in this noisy file to mix with the
utterances in the GSC test set. We call this dataset GSC-QUT.

3.2. Experiments

We compare our proposed method against two other methods. In the
first method (baseline), we train a recognizer that does not utilize any
data augmentation . It is trained on the GSC training set and selected



Table 1. Recognizer error rate (%) on the Google Speech Command
v2 (GSC) development set with conventional noise augmentation at
different SNRs

SNR  Dev SNR  Dev
00 7.74 15 5.83
40  6.39 10 6.11
35 7.65 5 6.00
30  6.10 0 5.97
25 6.19 -5 624
20 6.22 —10 6.16

using early stopping on the development set. All other methods are
trained by initializing their parameters to those of this pre-trained
baseline recognizer. In the second method, we utilize a conventional
noise augmentation technique that treats all time-frequency points
as equally important and applies noise directly to the speech without
importance maps (S + AN). We perform an experiment to identify
the best single signal to noise ratio (SNR) to use, comparing those
ranging from —10 dB to 40 dB in steps of 5 dB. We also evaluate
oo dB by training on clean data.

In our proposed method, ImportantAug, we performed the two-
stage training as described above. First, we load and freeze the
recognizer from the baseline and train the generator. Then, we freeze
the generator and train the recognizer. The noise from the MUSAN
dataset was multiplied with the rolled importance maps and added to
the speech. In addition, we perform an ablation study by evaluating
the recognizer performance when we remove the importance map
from the proposed approach, by setting the mask to be all 1°s, which
we call the “Null ImportantAug” condition. In this case, no region is
more important than other regions and the noise is added directly to
the speech. We evaluate the baseline (no augmentation), conventional
noise augmentation, ImportantAug and Null ImportantAug on the
standard GSC test set, GSC-MUSAN and GSC-QUT noisy test sets.

In addition to using continuous-valued importance maps, we
also experimented with binarizing the importance maps . We con-
sidered the ¢% of time-frequency points with the lowest value in the
continuous-valued importance map as being important and did not
add any noise to them. The other 100 — ¢% of the points were con-
sidered unimportant and noise was added to them. In this experiment,
the mask was not replaced by an all 1’s mask at all.

3.3. Hyperparameter settings

The signal was sampled at 16 kHz with a window length of 512
and a hop length of 128 samples, leading to a spectrogram with
257 frequency bins and 126 time frames for a 1 s utterance. In all
experiments, we use the same default setting for the speech command
recognizer, which is a neural network with 5 layers. Each layer has a
1D depth-wise and 1D point-wise convolution [23,24], followed by
SELU activation [25]. The depth-wise convolution has a kernel size
of 9 x 9 (281.25 Hz x 96 ms), a stride value of 1, a dilation value of
1; and its inputs and outputs are both 257 channels. The point-wise
convolution consists of a kernel of size 1 x 1 and also has inputs and
outputs for size 257.

The generator is a neural network with 4 layers, where each layer
is a 2D convolutional network. The first layer takes one channel in
and outputs 2 channels. The second and third layers have 2 channels
in their input and output. The last layer has 2 channels of input and

Table 2. Recognizer error rate (%) with various augmentation ap-
proaches on GSC test set

Augmentation method Initial SNR (dB)  Error
No augmentation 00 6.70
Conventional noise augmentation 15.0 6.52
ImportantAug -12.5 5.00
Null ImportantAug -12.5 6.12

one of output. All the layers have a kernel size of 5 x 5 (156.25 Hz x
64ms), a stride value of 1, a dilation value of 1 and a padding so that
the output has the same height and width as the input.

In the proposed ImportantAug method, we selected hyperparam-
eters A, = 1, A\e = Ay = Ay = 3, v = —12.5 dB. First, the weights
Ar, Ae, Af, Ag, and v were manually adjusted based on a very small
number of settings so that the speech command recognizer performed
well and the mask values were closer to all 1’s on the development
set. Then we chose D, the maximum number of time frames or
frequency bins by which the elements of the mask are shifted to be
30, equivalent to 937.5 Hz and 264 ms. This was selected to keep the
mask from shifting too far from the original position.

All the models are trained with the Adam optimizer with an initial
learning rate of 0.001, which is decayed by half every 20 epochs and
a batch size of 256. The models are trained for 200 epochs with early
stopping on the development set loss with a patience value of 30.

4. RESULTS

Table 1 shows the error rate on the development set for the conven-
tional augmentation method with different signal to noise ratios. We
can see that adding too much noise leads to a high error rate, for
example, SNRs -10 and -5 dB have error rates 6.16% and 6.24%,
respectively on the development set. Adding too little noise is also not
optimal, for instance, SNRs 40 and 35 dB have error rate 6.39% and
7.65% on the development set. Using no noise at all does not provide
good performance, with an error rate 7.74%. However, adding the
right amount of noise is beneficial for the recognizer as it balances
variation in the training data with speech fidelity. As shown in Ta-
ble 1, the best error rate (5.83%) is with an SNR of 15 dB. The model
trained with SNR 15 dB has the best performance on the development
set, so we choose this model to evaluate on the test set and compare
with other approaches in Table 2.

Table 2 shows the results on the standard GSC test set. The
baseline speech command recognizer has an error rate of 6.70%. The
conventional noise augmentation method produces a model with an
error rate of 6.52%. Our proposed method has the best error rate at
5.00%, which is a 25.4% relative improvement over the no augmenta-
tion baseline and 23.3% relative improvement over the conventional
noise augmentation method. We also perform an ablation study with
the Null ImportantAug method by using a “mask” that is all 1’s,
which leads to an error rate of 6.12%. Null ImportantAug is similar to
the traditional NoiseAug because it does not utilize importance maps.
The difference is that Null ImportantAug is trained with the same
SNR as ImportantAug (-12.5 dB), while the traditional NoiseAug
uses the SNR chosen based on the performance on the development
set of 15 dB. The error rate with and without important maps are 5%
and 6.12% respectively, thus the importance map is necessary for the
observed performance gains.
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Fig. 2. (a) Clean utterance from Google Speech Commands dataset. (b) Importance map (blue areas) from the generator. (c) Rolled importance
map. (d) MUSAN noise. (e) Noisy speech created by multiplying the noise from (d) with the mask from (c) and adding clean speech from (a)

Table 3. Recognizer error rate (%) of augmentations on in-domain
noise test set (GSC-MUSAN) as a function of test SNR.

Test SNR
Method —-12.5 —10 0 10 20 30 40
No aug. (baseline) 71.6 727 452 210 115 84 13
Noise aug. (SNR 15) 65.8 577 263 10.8 73 66 64
ImportantAug 435 350 133 7.4 57 52 51
Null ImportantAug 452 37.0 150 8.5 69 62 60

Table 4. Recognizer error rate (%) of augmentations on out-of-
domain noise test set (GSC-QUT) as a function of test SNR.

Test SNR
Method —-12.,5 —10 0 10 20 30 40
No aug. (baseline) 90.9 873 558 208 96 74 70
Noise aug. (SNR 15) 89.0 835 420 129 73 65 62
ImportantAug 72.0 613 235 89 58 51 48
Null ImportantAug 72.3 61.6 248 100 6.8 6.1 6.0

Table 3 shows the results on the GSC-MUSAN test set. We could
observe that the proposed method ImportantAug achieve the best
result in all SNR range. For example, the ImportantAug achieve
13.3% error rate at 0 dB, which is around one-third of the error rate
of the baseline 45.2% and a half of the conventional augmentation
method. We also observe that the error rates are going up if we
remove the importance map (IM) when comparing row 3 and row 4
of Table 3. For example, at SNR 0 dB, the error rate going up from
13.3% to 15% if we remove the IM and train with only the noise.

Table 4 shows the results on the GSC-QUT test set, which is
out-of-domain noise test set because the models are trained with
MUSAN noise, not with QUT noise. Here, we observe the same trend
when the ImportantAug outperforms the baseline, the conventional
augmentation method.

Figure 2.b shows an example of an importance map of an utter-
ance of the word “four” in the GSC dataset. The importance map
includes the fundamental frequency, the harmonics, and the outer bor-
der shape of the speech. These regions are predicted to be necessary
for the speech command recognizer to identify this specific utterance.
Thus, keeping these regions clean and adding noise outside of them
makes the data more diverse while not affecting the recognition.

Table 5 shows the error rate on the development and test set
for the binary ImportantAug method with different important region
ratios. In this experiment, we consider the quantile ¢% of the regions
that have lowest mask value to be important. The best result is
achieved on the development set by choosing 10% of points to be

Table 5. Recognizer error rate (%) with binarized ImportantAug
using different important region ratios, g on the original GSC test set.

q (%) Dev Test

70 542  5.64
50 549 592
40 519 571
20 5.17 5.15
10 5.00 543
5 5.09 492
1 512 494
0 6.03 6.12

important, which provides a 11.3% relative error reduction on the
test set compared to not multiplying the noise with the importance
map (¢ = 0). Thus only a very small proportion of points need to be
preserved in this way to enhance the data augmentation performance.

5. CONCLUSION

In conclusion, we have demonstrated a data augmentation agent that
improves a speech command recognizer. Our proposed ImportantAug
method produced a 25.4% relative error rate reduction compared
to the non-augmentation method and and 23.3% relative reduction
compared to the conventional noise augmentation method. Taken
together, this work shows that importance maps can be estimated
accurately enough to be helpful for data augmentation, providing one
of the first such demonstrations, especially for speech. In the future,
we will extend this framework by replacing the speech command
recognizer with a full large vocabulary continuous speech recognizer
and we will deploy different methods to identify the importance
map and use the map to augment the speech data, such as those
based on human responses. The proposed method could also be used
in computer vision tasks, such as image recognition by predicting
importance maps for images.
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