SpecPart: A Supervised Spectral Framework for Hypergraph
Partitioning Solution Improvement

Ismail Bustany
Advanced Micro Devices
San Jose, CA, USA
ismail.bustanytgmail.com

Bodhisatta Pramanik
Iowa State University
Ames, 1A, USA
bodhi91@iastate.edu

ABSTRACT

State-of-the-art hypergraph partitioners follow the multilevel par-
adigm that constructs multiple levels of progressively coarser hy-
pergraphs that are used to drive cut refinements on each level of
the hierarchy. Multilevel partitioners are subject te two limitations:
(i} Hypergraph coarsening processes rely on local neighborhood
structure without fully considering the global structure of the hyper-
graph. (ii) Relinement heuristics can stagnate on local minima. Tn
this paper, we describe SpecPart, the [irst supervised spectral [rame-
work that directly tackles these two limilations. SpecPart solves a
generalized eigenvalue problem thal capturcs the balanced partition-
ing objective and global hypergraph structure in a low-dimensional
vertex embedding while leveraging initial high-quality solutions
from multilevel partitioners as hints. SpecPart further constructs
a family of trees from the vertex embedding and partitions them
with a tree-sweeping algorithm. Then, a novel overlay of multiple
tree-based partitioning solutions, followed by lifting to a coarsened
hypergraph, where an ILP partitioning instance is solved to alleviate
local stagnation. We have validated SpecPart on multiple sets of
benchmarks. Experimental results show that for some benchmarks,
our SpecPart can subslantially improve the cutsize by more than 50%
with respect to the best published solutions obtained with leading
partitioners AMETIS and KaHyPar.

CCS CONCEPTS

* Hardware — Physical design (EDA); » Theory of computation
— Design and analysis of algorithms.

KEYWORDS
Hypergraph Partitioning, Supervised Spectral Partitioning

ACM Reference Format:

Ismail Bustany, Andrew B, Kahng, Toannis Koutis, Bodhisatta Pramanik,
and Zhiang Wang, 2022. SpecPurl: A Supervised Spectral Framework for
Hypergraph Partitioning Selution Tmprovement. In [EEE/ACM International
Conference on Computer-Aided Design (ICCAD °22), Qctober 30-November
3, 2022, San Diego, CA, US4, ACM, New York, NY, USA, 9 pages. https:
fdolorg/10.1145/3508352.3549390

Penmission to make digital or hard copies of all or part ol this work for persenal or
classroom use is granted without fee provided that copics are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work awned by others than ACM
must be honored. Abstracting with eredit is permitted. To copy otherwise, or republish,
10 post on servers or to redistrilule 1o lists, requires prior specilic permission and/ora
fee. Request permissions from permissionsécacm.org.

ICCAD 22, Octaber 30-November 3, 2022, Sun Diego, C4, USA

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9217-4/22/10.. .$15.00
hitps:fidol.org/10.1145/3508352.3549390

Andrew B. Kahng
University of California San Dicgo
La Jolla, CA, USA
abk@ducsd.edu

loannis Koutis

New Jersey Institute of Technology
Newark, NJ, USA
ikoutis@njit.edu

Zhiang Wang
University of California San Diego
La Jolla, CA, USA
zhw033@ucsd.edu

1 INTRODUCTION

Hypergraphs are a generalization of graphs where hyperedges, the
counterpart of edges in a graph, can connect more than two vertices.
A fundamental NP-hard problem related to hypergraphs is to parti-
tion all the vertices into balanced blocks such that each block has
bounded size and the cufsize, i.e, the number of spanning mulliple
blocks, is minimized. This balanced hypergraph partitioning has
been a well-siudied, lundamental combinatorial optimization prob-
lem with application throughout VLSI CAD. Balanced partitioning
can also enable eflicient distributed computations when solving area-
constrained hypergraph optimization problems. Many hypergraph
partitioners have been proposed over the past decades. Stute-of-
the-art hypergraph partitioners, including MLPari [21], PaToH [9],
KaHyPar [24], and hMETIS [6], usually follow the multilevel par-
adigm [6]. The multilevel paradigm constructs a hierarchy of pro-
gressively coarser hypergraphs using local clustering heuristics [24],
partitions the coarsest hypergraph, then uncoarsens, and refines the
partitioning solution at each level of the hierarchy [11, 14].

Multilevel partitioners are powerful but subject to two limitations.
The first stems trom the propensity of partition refinement heuristics
to become trapped on local minima that persist through levels in the
hierarchy. Tt is reasonable to hypothesize that any given solution
oblained by a multilevel partitioner is ‘in the vicinity” ol potentially
much belter solutions. However, (inding such solulions may require
some type of global understanding ol the hypergraph. That brings us
to the second limitation of the multilevel paradigm: the coarsening
phase and refinement decisions are usually based on local structure
and greedy computational objectives, hence the global structure of
the hypergraph is not explicitly taken into account.

We thus censider a cut obtained by a multilevel partitioner as a
hint for a better solution and set out to design a solution improvement
method that leverages the hint while using global structural informa-
tion. This kind of global structure of the hypergraph can be exposed
by spectral algorithms [26-29] based on the well-known Cheeger in-
equalily [31]. Spectral parlitioning algerithms have been generalized
by Cucuringu et al. [1] to supervised parlitioning instances, ¢.g. in-
stances where a hint is available. More specifically, the algorithm
ol [1] formulates supervised partitioning as a generalized eigenvalue
problem salis[ying a generalized Cheeger inequality. This suggests
a clear direction lowards oblaining improved parlitioning solutions.

We proposc SpecPart, the irst supervised spectral framework for
hypergraph partitioning solution improvement. Tn this work, we focus
on the bipartitioning problem which is otten used as a subroutine in
k-way partitioners.

ICCAD 22, October 30-November 3, 2(:22, San Diego, CA, USA

Our contributions include:

o A novel method that incorporales pre-compuled Ainr solulions inlo
a generalized eigenvalue problem. The computed eigenvectors
vield high-quality vertex embeddings that are superior to those ob-
tained without supervision. Importantly, our carefully engineered
code yields a practically fast implementation. [Section 4.1].

e A novel algorithm for converting a vertex embedding into a parti-
tioning solution. The algorithin uses the embedding to construct
a family of trees that in some sense distill the cut structure of
the hypergraph. Then, [ast algorithms can be used on the tree to
explore a large spacc of candidate sclutions from which the best
can be picked. [Section 4.2].

o A novel cut overlay method lor improving a small pool ol initial
solutions. Specifically, we compute clusters by removing from the
hypergraph the union ol the hyperedges cul by any ol the solutions
in the pool. The size of the clustered hypergraph is small, but it
nearly always conlains an improved solution that can often be
computed optimally using an ILP formulation. [Section 3].

e We have validated SpecPart on multiple benchmark sets ((SPD98
VLSI Cireuit Benchmark Suite [4], Titan23 [8] and Industrial
benchmarks from a leading FPGA company) with state-of-the-art
partitioners (AMETIS [0] and KaHyPar [24]). Experimental results
show that for some benchinarks, our SpecPurt can substantially
improve the cutsize by more than 50% with respect to AMETIS
and‘or KaHvPar. [Section 5.1].

e Wc apply autoluning to tune the hyperparamelers ol existing par-
titioners and generate a better initial solution for SpecPart. Ex-
periments suggest that the autotuning-based SpecPart can further
push the leaderboard lor these benchmarks. [Section 5.3].
SpecPart draws strength from recent theoretical and algorithmic

progress [1, 18, 20, 22]. In parlicular, a careful choice ol the nu-

merical solvers enables a very ellicient implementation. Moreover,

SpecPart’s capacity to include supervision information makes it po-

tentially even more powerful in industrial pipelines. We thus believe

that our work may eventually lead to a departure from the multilevel
paradigim that has deminated the field for the past quarter-century.,

2 PRELIMINARIES

2.1 Hypergraph Partitioning Formulation

In a hypergraph H(V, E), V is a set of vertices with each vertex
v € V associated with a weight wy, and E is a set of hyperedges
where a hiyperedge e € E is a subset of V. Each hyperedge e can
be also associated with a weight w.. Given a positive integer k
(k > 2) and a positive real number € (¢ < %)5 the k-way balanced
hypergraph partitioning problem is to partition V into k disjoint
blocks S = {Vy, V1, ..., Vi_q} such that (letting W = 3o wo)

o (1/k— W < Tyey, wo < (1/k+ W, for 0 < i < k-

o cutsizepr(5) = ZfelegdVy for any i} We 18 minimized
Here k is the number of blocks in the partitioning solution, € is the

allowed imbalance between blocks, V; s a partition block and we
say that S is an e-balanced partitioning solution.

2.2 Laplacians, Cuts and Eigenvectors

Suppose G = (V, E, w) is a weighted graph. The Laplacian matrix
L of G is defined as follows: (i) L(w,v) = —we,, if u # v and
(i) L(w. u) = X4y We,, . Let x be an indicator vector for the biparti-
tion solution S = {V, ¥1} containing 1s in entries corresponding to
Vi, and Os everywhere else (Vp). Then, we have

¥ Lx = cutsizeg (S), (L)

Bodhisatta and Zhiang, et al.

Let us now consider an example of how balanced graph bipartitioning
relates to speciral methods. Lel K be the Laplacian ol'a complele
unweighted graph on V. Using expression (1}, we have

ix _ cutsizeg(S)
“TKx 18] - |V —sl"

Minimizing R(x) over 0-1 vectors x incentivizes a small cutsize(S)
with a simultaneous balance between |5 and |V — S|, hence R(x)
can be viewed as a proxy for the balanced partitioning objective.
‘We can relax the problem over the real vectors x constrained to be
orthogonal to the common null space of L and K. [tis well understood
that the minimum is achieved by the first non-trivial eigenvector of
the problem Lx = AKx.

Rix) £

2.3 Spectral Embeddings and Partitioning

Spectral graph partitioning algorithms embed the vertices of an input
graph G into a m-dimensional space and then cluster the points in this
geometric space. The vertex embedding comes trom the computation
of m non-trivial eigenvectors of an appropriate eigenvalue problem
involving the Laplacian Ls of the graph G. More specifically, it
X e RIVI g the mutrix containing m (column) eigenvectors, then
row X, of X is the embedding of vertex u.

Spectral algorithms have also bheen used for hypergraph parti-
tioning. In this context, the hypergraph H is first transformed to a
corresponding graph G, and then the spectral embedding is computed
using L. For example, the eigenvalue problem solved in [26] is

Lgx = ADyx 2}

where D, is the diagonal matrix containing positive vertex weights.
In this paper we solve the more general problem

Lox = ABx (3}

where B is also a graph Laplacian. In practical instances, hypergraphs
are ‘essentially’ connected with possibly a few outstanding vertices
and edges that can be processed separately. Thus, since G can be
considered connected, the problem is well-defined even if B does
not correspond to a connected graph, because Lg;’s null space is a
subspace of that of B [19]. This enables us to handle zero vertex
weights as required in practice, and to encode in a natural *graphical’
way prior supervision information into the matrix B.

Term Description

H(V,E) Hypergraph H with vertiees V and hyperedges £

Ho(Vo. o) Clustered hypergraph He th:ljf: eac_:h vertex v in Ve
3 corresponds to a group of vertices in H(V, E)

G(V, L) Ciraph G with verlices V and edges I

G Spectral sparsilier of GG

T(V.Er) Tree T with vertices V and cdges Er

U, v Vertices in V

Cun Edge or hyperedge connecting u and o

ey Edge of tree T

Wa, W, Weight of vertex v, or hyperedge e, respectively

k Number ol blocks in a partitioning solution

s Partitioning selution, § = {Vp, V1, ..., Vi_1}

€ Allowed imbalanee (1-49) between blocks in &

cutls) Cut of 5, cui (5) = {ele ¢ V; for any i}

cutSizerr(8) | Cutsize of S on (hyper)graph H.

ISSHP lterative Supervised Spectral Hypergraph Partitioning

Table 1: Notation

SpecPart: A Supervised Spectral Framework for Hypergraph Partitioning Solution Improvement

Parameter | Description (default sctting)

Number of eigenvectors (m = 2)

Number of trees (¢ = &)

Number of best solutions (& = 5)

Number ol iterations ol ISSIIP {(f =2)

Number of random cycles ({ = 2)

Threshold of number of hyperedges (v = 300}
Number ol iterations of eigenvalue solver (6 = 80)

E R S I RIE

Table 2: Parameters of SpecPart framework.

2.4 ILP for Hypergraph Partitioning
Hypergraph partitioning can be solved optimally by casting the prob-
lem as an integer linear program (ILP) [23]. To write balanced hyper-
graph partilioning as an ILP. for each block V; we introduce integer
{0,1} varinbles, x,; for each vertex v, and y,; for each hyperedge e,
and recquire that:

o x,; =1ifv eV} ey =1ife C W
We then define the following constraints for each j € [0,k — 1]:
o (1/k = €)W < Zyey, woXu: < (1/k+ W
o Y xy=1lroeV
® yei < xy;forecachec E, andeach v € e

where W = 3, o wy. The objective is

A«Iaximizez Z Welfe,i-

eeE D=i<k—1

3 SPECPART: AN OVERVIEW

The architecture of our SpecPart [ramework is shown in Figure 1.
The input is a hypergraph H(V, E), an initial partilioning solution
Sinit. and ¢, the allowed imbalance between blocks in a partition-
ing solution. The output is an improved partitioning selution Sgy;.
Here the initial partitioning solution S;,:; can come from any source,

including available open-source parlili()ners,]

| Hypergraph H(V,E) | \ Initial Partitioning Solution S;,;; [Balance Constraint € |

—
([Iterative Supervised Spectral Hypergraph Partitioning (ISSHP) J \

GEEsEEEsEESEssEEEEsEsEsEssEEssEsEssEEEEssEss

Cut-Overlay Clustering
l A clustered hypergraph H.(V,, E.)

Optimal-Attempt Partitioning

SpecPari “Framework A

BRI
Yanmmnnmna®

e

p

[Improved Partitioning Solution Sy,,¢ J

Figure 1: Overview of the SpecPart framework,

The SpecPart framework consists of two major companents:

1. lterative Supervised Spectral Hypergraph Partitioning.
ISSHP constitutes the tundamental algorithmic core of SpecPart.
The initial solution Sips; is incorporated into a generalized eigenvalue
problem in order to generate a vertex embedding (Section 4.1). With
the hint from S = S;p;r, the vertex embedding from the generalized
eigenvalue problem is of higher quality relative to thal obtained
from the standard eigenvalue problem, as illustrated in Figure 2. The
embedding is used to compute a family ol trees that — in some sense

! The inpul initial solution §; ., may even be a pariial solution where block membership
information is given for only some of the vertices. This may be potentially usetul in
practical situations but we do not consider it further in this paper.

ICCAD ’22. October 30-November 3, 2022, San Diego. CA, USA

with supervision

without supervision

o

Figure 2: Two vertex embeddings of ISPD IBMI14 benchmark. Both are
based on the smallest two cigenvectors, computed without supervision
(Eq. 2) and with supervision (Eq. 3). The red and blue dots highlight
vertices hipartitioned by AMETIS with ¢ = 2. With supervision, the
distinetion hetween the bipartitioned vertices is cleaner,

— distill the cut structurc of the hypergraph (Section 4.2). Then, fast
tree-based algorithms are employed to find the best solution S,
on those trees, Finully, we sct S = Speq; and the process iterates.

2. Cut-Overlay Clustering and Optimal-Attempt Partitioning.

n the course of its iteralions, ISSHP generates a collection of dif-
ferent solutions. We select the § best solutions, denoted as “candidate
partitioning solutions™ in Figure 1.

Cut-Overlay clustering. Let Ey, ..., Es C E be the scts of hy-
peredges cut in the § candidate solutions. We remove the union of
these scts from H to yield a number of connected clusters. Then, we
perform a cluster contraction process that is stundard in multilevel
partitioners, to give rise 1o a clustered hypergraph H.(V,. E;). A solu-
tion on H can be “lifted” to H, and by construction it is guaranteed
that H, contains a solution which is «/ least as good as the best
among the cuts I;.

Optimai-Attempt Partitioning. While one would expect that H,
has not many more than 2% vertices, empirically we often observe
hundreds ol vertices and hyperedges (e.g.. even lor § = 5). Given
such a size for H., we would also expect that it is infeasible to
run an ILP-based partitioner on it. Remarkably, due to the special
generalive process that yields H, it is often the case that the TLP
computes within stringent walltime a solution that is better than any
ol the § solutions in the pool. Tn our current implementation, we
include a parameter y; in the case when the number of hyperedges in
H, is larger than y (default value of y is 300} we run AMET!S on H.

4 THE ISSHP ALGORITHM

The Tterative Supervised Spectral Hvpergraph Partitioning (ISSTIP)
process is described in Algorithm 1, with pointers to subsequent
sections that discuss the details.

4.1 Vertex Embedding Generation

In order to generate a vertex embedding, we need to construct the
generalized eigenvalue problem and compute the first m nontrivial
eigenvectors. Here m is the number of eigenvectors that we use,
which is sct to 2 by delault.

4.1.1 Clique Expansion Graph: We define (he clique expan-
sion graph G of the hypcrgraph H, as a sum, i.e., superposition,
of weighted cliques; the clique corresponding to edge e € E has
\e|1—1' Graph G has size
Yeer le* where |e] is the size of hyperedge e. This is usually quite
large relative to the input size |I| = X.z |e|. For this reason we only
construct a function f; . that evaluates matrix-vector products of

the same vertices as e and edge weighls

ICCAD 22, October 30-November 3, 2(:22, San Diego, CA, USA

Algorithm 1: ISSHP:
Iterative Supervised Spectral Hypergraph Partitioning.

Input: Hypergraph H(V, E}, Initial partitioning solution Spe.;
Qutput: Candidate partitioning solutions {Sg }

1 Construct the Laplacian L of the clique expansion for H (4.1.1)

2 Construct the Laplacian Bpgse ol weighl-balance graph (4.1.2)

sfori=0i<f;i++do

4 Construct Laplacian Bsyo based on hint Sy, (4.1.3}

5 Let B = Bpase + Bs,,,..,

6 Solve the gencralized cigenvalue preblem Lgx = ABx to
compute m nontrivial eigenvectors (4.1.5)

7 Construct a family of trees {Tii } based on computed
gigenveclors (4.2)

8 Generate candidate solutions {S,;j } by running trec-sweep and
METIS on trees {T;; } (4.3)

9 Sel Spe.s to the best partitioning selution in {ij }

10 end

-

1 Construct {5, } by picking the best § solutions from Sy H
2 return {SCJ}

the form Lgax, where L is the Laplacian of G, which is all we need
to perform the eigenvector computation. In all places where Algo-
rithm 1 mentions the construction of any Laplacian, we construct the
equivalent function for evaluating matrix-vector products. This is
further justified in Section 4.1.5. The function fj . is an application
of the following identity that is based on cxpressing L as a sum of
Laplacians ol cliques:

1 xT1
Lox =) — |r= =5 1], @
2eE lel — 1 1e]"‘le

where 1, is the 1-0 vector with 1s in the entries corresponding to
the vertices in e, By exploiting the sparsity in 1., the product is
implemented to run in O(|I[) time.

4.1.2 Weight-Balance Graph: The weight-balance graph G, isa
complete weighted graph used to capture arbitrary vertex weights and
incentivize balanced cuts, as we elaborate in Section 4,1.4, G,, has
the same vertices as hypergraph H, and edges of weight wy, - wy,
between any two vertices y and 0. Lel wy;, be the weight of block V;
in a partitioning solution S, i.e.,

wy, = Z Wy. (5)

vel;
We have
wy, Wy, = Z Wy ¢ Z Wp = Z Wy o Wy
velp veW veVpuel;
= W, = cutsizeg, (5) (6)
veV,uel]

We now discuss how to computc matrix-veclor products with the
Laplacian matrix of G.,, which we denote by Bp;... Let w be the
vector of vertex weights. Wc have the identity

xT1
Bpasex =wox— ﬁ * W, (7
where 1 is the all-ones vector and o denotes the Hadamard product.
Clearly, this can be carried out in time O(|V]).

Bodhisatta and Zhiang, et al.

In general any vector x can be written in the form x = y + c1,
where 471 = 0. Subslituting (his decomposition ol x into the above
equation, we get that By,..x = wo y. In other words, By, acts like
a diagonal matrix on y and nullifies the constant component of x.

4.1.3 IHint Graph: The hint graph Gy is a complete bipartite graph
on the two vertex scts Vy and V) delined by the hint selution Spe.;.
Tt is used to incentivize the computation of cuts that are similar to
Spest, as elaborated in Section 4.1.4. Il Bs, , denocies the Laplacian
of the hint graph,

xT1 xTIVn xrlvl)
Bgpu ¥ = (x— 1) = [x— = Ty —(x— = 1y,) (8)
141 15, 1y, v 1y,

where 1y, denotes the 1-0 vector with 1s in entries corresponding
to the verlices in V. By exploiling the sparsily in 1y7, the product is
implemented in O(|V]) lime.

4.1.4 Intuition on the constructed graphs: Wc solve the gen-
eralized eigenvalue problem L;x = ABx, where B = Bjgse + Bspur
From the discussion in Section 2.2 recall that the cigenvalue problem
is directly related to solving
. o x Lgx . xTL(;x
min R(x} = min ——— = min (9)
x x xTBx x xTBba.sex +xTBSimsrx

over the real vectors x. Recall also that this is a reluxation of the
minimization problem over 0-1 cut indicator vectors. Let xg be the
indicator vector for some set S C V. Then, using Equation (1) we
have:
o ng(;xs = cutsizec; (S) which is a proxy for cutsizegy (S). Thus,
the numerator incenlivizes smaller cuts in H.
° x;-BbasexS = cutsizeg,,(S). By Equation (6), this is equal to
ws - wy_g, where wg i8 the total weight of the vertices in §. Thus
the denominator incenlivizes a large ws - wy_s, which implies
balance.
T e Fve) ! 3
e x{Bg,, x5 is maximized when all edges of Gy, are cut, thus the
denominator incentivizes cutting many edges that are also cut by
the hin:.

L d
— v,
e =
X / v 4
) 6 v,
. [
e >
.
P —8 V.
T L) 2
- _
Hypergraph Clique expansion graph, G
Ve) -
[wo.w v =
(, v
v1" v , v, v, . - . 3
v / N «
4 % 1\
\ X wow v, . G . v,
[\ | v3 v5 2 - 5
W W . N A
/3 /T=» v, .
o X S
2 \\ / .
Y/ wo_.
— v5 v6 =
wo.w v Hint

Weight-balance complete graph, G| Hint graph (complete bipartite graph), Gh/ /
N—

Figure 3: Graphs used in ISSHP, Algorithm 1.

SpecPart: A Supervised Spectral Framework for Hypergraph Partitioning Solution Improvement

4.15 Computation: We solve the generalized sigenvalue problem
Lgx = ABx using the preconditioned eigensolver LOBPCG [13]. Due
to its iterative nature, LOBPCG does not require explicit matrices Lg
and B, but merely functions that evaluate matrix-vector products with
them. For fast computation, the solver can utilize a preconditioner
for Lg, also in an implicit functional form. To compute the precon-
ditioner we first obtain an explicit graph G that is spectrally-similar
with G and has size at most 3|7[, where |I| = Z.cx |€]. More specifi-
cally, we build G by replacing every hyperedge e in H with the sum
of' 3 unitormly weighted random cveles on the vertices V, of e. This
is an essentially optimal sparse spectral approximation for the clique
on Vg.2 Since G is a sum of cliques, and G is a sum of tight spec-
tral approximations of cliques, standard graph support theory [38]
implies that Gisa tight spectral approximation for G. Finally, we
compute a preconditioner of Lz using the CMG algorithm [20]; by
transitivity [38], it is also a preconditioner tor L.

4.2 Tree Construction
After solving the generalized eigenvalue problem, we have a matrix
X e RlVIXm opm computed eigenvectors {x1, xz, ..., ¥} that we use

to construct a number of trees on V.

4.2.1 Paths. We [irst use a standard linear ordering algorithm [39]
to obtain a path graph for each eigenvector x;, by sorting the vertices
in V based on x; in non-decreasing order and connecting the sorted
verlices in that order. The path graph is implicit in the prool ol the
Cheeger inequality [31] which shows that a relatively good cut of
the graph into two parts can be found by sweeping over the n — 1
trce cuts. We thus use the m eigenvectors to construct m path graphs
in total. These path graphs naturally arrange together vertices with
similar global positioning, but neighboring nodes in the path are not
necessarily neighbors in the original hypergraph H. That means the
local neighborhood information is not fully preserved in the paths.

422 Clique Expansion Spanning Trees. To address the issue
of preserving local information, we work with a weighted graph
that reflects both the connectivity of H and the global information
contained in the embedding, adapting an idea that has been used in
work on k-way Cheeger inequalities [22].

Concretely, we form a graph & by replacing every edge e of H with
a sum of & cycles (as discussed also in Section 4.1.5). Suppose that
Y e BRIVl s an embedding matrix and denote by ¥, the row of ¥
containing the embedding ol vertex u. We construct the weighted
graph Gy by selting the length of each edge ¢, € G to || Yy = Yollz,
i.e., equal to the Euclidean distance between the two vertices in the
embedding. We will be compuling spanning trees of Gy.

LSST: A desired property for a spanning tree T of Gy is to pre-
serve the embedding inflormation conlained in G as faithfully as
possible. Thus, we let T be a Low Stretch Spanning Tree (LSST)
of (i, which by definition means that the length I(e,,) of each edge
in G is approximated on cverage, and up to a small [unction f(|V]),
by the distance between the nodes y and v in T [2]. We compute the
LSST using the AKPW algorithm of Alen et al. [2]. The output of
the AKPW algorithin depends on the vertex ordering ol its input. To
make it invariant to the vertex ordering in the original hypergraph H,

>The construction relies on theory about the asymplotic properties of random d-repular
expanders te.g.. see [32] or Theorem 4.16 in [33]). For the hvperedges in our conlexd,
the near-optimality of our construction can alse be verilied numerically.

ICCAD °22. October 30-November 3, 2022, San Diego. CA, USA

we reorder GY using the order induced by sorting the smallest non-
trivial eigenvecior computed earlier. Empirically, this order has the
advantage of producing slightly better LSSTs,

MST: A graph can contain multiple different LSSTs, with each
of them approximating to different degrees the length [(ey,} for
any given eyg. It should also be noted that the AKPW algorithm
is known to be suboptimal with respecet to the approximation fac-
tor f{|V]): more sophisticated algorithms exist but they are far from
practical. For these reasons we alse compute a Minimum Spanning
Tree of G. For most weighted graphs an MST can be viewed as an
casy-to-compute prexy to an LSST, which potentially has better or
complementary distance-preserving properties relative to the tree
computed by the AKPW algorithm. We construct the MST using
Kruskal®s algorithim [3].

4.2.3 Family of Trees. Recall now that we have a matrix X ol m
eigenvectors. We construct the LSST and MST [or the graphs Gx,;
fori=1,...,m., and for the graph (ix. Along with the path graphs,
these comprise a tamily F of trees. Intotal, wehave 7 = m+2x(m+1)
trees, comprised of m path graphs, m + 1 MSTs, and m + 1 LSSTs.
In the default selling, 7 = 8.

4.3 Cut Distilling and Partitioning on a Tree

We will use each tree T in the family of trees to distill the cut structurc
of H over T, in the following sense: For any fixed tree T = (V, Ef),
observe that the remaoval of an edge er of T yields a partitioning
Se; € V and thus of the original hypergraph H. We would thus like
to reweight each edge e € Er with the corresponding cutsizeg(Se,.).

Computing these edge weights on T can be done in O(3,, le| log|e])
time, via an elaborate algorithm involving the computation of lcast
common ancestors (LCA) on T, in combinalion with dynamic pro-
gramming on 7. We now describe the main idea by example; the
omilted details can be lound in our code.

Figure 4: Hyperedge, junctions and their numerical labels

We consider T to be rooted at an arbitrary vertex. In the example of
Figure 4, consider hyperedge e = {#1, vs, v9}. The LCA of its nodes
is v7. Then, the weight ol ¢ should be accounted for the sct C. C Ep
of all tree edges that are ancestors of {1, vs, v9} and descendants
ofwz. We do this as follows. (i) We compute a set of junction vertices
that are LCAs of {1, us} and {1, v5, vg}. (ii) W then “label” these
junctions with —w,, where w, is the weight of e. Morc generally, for
a hyperedge e={uvy,, ..., vy } ordered according to T, we calculate the
LCAs forthe k—1 scts {o;,, ..., vi) forj =2,..., k, and the junctions
are labeled with appropriate necgative multiples of w,.. We also label
the vertices in e with w,. (iii) All other vertices are implicitly labeled
with 0. Consider an arbitrary edge er of'the tree, and compute the sum-
below-er, i.e., the sum of the labels of vertices that are descendants of

ICCAD 22, October 30-November 3, 2(:22, San Diego, CA, USA

¢p. This will be w, on all edges of C,. and 0 otherwise, thus correctly
accounting lor the hyperedge e on lhe intended set of edges Ce.

In order to compute the correct total counts on all tree edges,
we iterate over hyperedges, compute their junctions and tally the
associated labels. Then, for any tree edge er, the swn-below-ep will
equal cutsizerr(Se,). These sums can be computed in O(|V]) time,
via dynamic programming on 7. A similar application of dynamic
programming can computc the total weight of the vertices that lie
below er on T. Wc can thus compute the value for the balanced
cut objective for S, and pick the S, that minimizes the objective
among the n — 1 cuts suggested by thc tree.

For a partition S C V that cuts more than one edge on T we have
cutSizey (§) < cutSizer(S), and owing to the spectral origin ol ¥’
we hope that cutSizer (S) can provide a good proxy for cutSizer (S)
the cuts ol H. Therelore, we use AMETIS [5] to solve a balanced
partitioning problem on the reweighted tree, with the original vertex
weighls from H. This can polentially return a partition S C V that culs
more than one edge on T. In some cases we do get cutSize(S) <
cutSizer; (Se;), thus further improving the solution.

5 EXPERIMENTAL VALIDATION

The SpecPart ramework is implemented in Julia and we provide both
Julia and Python interfaces. We use CPLEX [36] and LOBPCG [17]
as our ILT solver and eigenvalue solver respectively. We run all
experiments on a server with 56 Xecon E5-2650L, 1.70GHz proccs-
sors and 256 GB memory. We have compared our framework with
two state-of-the-art hypergraph partitioners® (AAETIS [6] and Kalfy-
Par [24]) on three different sets of benchmarks ([SPD98 VLST Circuil
Benchmark Suite [4], Titan23 Suite [8)] and Industrial Benchmark
Suite from a leading FPGA company).? The statistics of these bench-
marks are summarized in Table 3, Table 4 and Table 5 respectively.

Bodhisatta and Zhiang, et al.

KaHyParon H to generate an initial partitioning solution 3;,;;, which
is leveraged by SpecPart as a“hint” (o generate an improved partition
Sour- Here we run AMETLS and KaHyPar with their respective default
parameter settings.6 To avoid any possible confusion, we adopt
these conventions: SpecParty, and SpecParty. represent the cutsizes
of SpecPart with the initial solutions generated by AMETIS and
KaHyPar respectively: SpecPari represents the best cutsize between
SpecParty, and SpecParty; and hMETIS; and KaHyPar; represent
the best cutsizes generated by running AMETIS and KaHvPar i times
with different random seeds respectively.

Statistics hMETISs | SpecParty | RMETISw | SpecParty
Benchmark [¥] |E] e=2/20 | e=2/20 | e=2/20
sparcT1_core 21976 02827 1012/ 903 [1066 / 1172 | 1012 7 903
neuron 92290 125305 252 7 206 260/ 228 2521 206
stercovision 24050 127085 180/ 61 180 /129 180/ 91
dos90) 111221 | 139557 402/ 398 402/ 377 402 7 358

ST.AM spheric | 113115 | 142408
cholesky _me | 113250 | 144948
scgmentation | 138295 | 179051

106171061 [106171061 | 1061 / 1061
2857345 | 2857478 | 285/345
126/ 78 136/ 112 126/ 78

bitonic_mesh | 192064 | 235328 5857483 | 6147554 | 587/ 483
dart 202351 | 223301 8U7 /543 511/ 510 BO7 /540
open(V 217453 | 284108 5107518 511/ 541 510/ 518
siap_grd 240240 | 290123 399 /295 3997295 399 7 295
minres 261359 | 320540 2157189 2157 189 2157 189
cholesky_bdli | 266422 | 342688 1156/ 898 [1157 /947 | 1156/ 947
denoisc 275638 | 356848 416/ 224 722/ 478 416/ 224

124471245 | 1273/ 1447 | 1244/ 1245
1852/ 1407 [5077 / 5352 | 1827 / 1407
641/ 617 648 [632 6347617
327372677 | 33281 2677 | 3273/ 2677
525 /524 549/ 52% 525/ 524
899 /783 | 11957951 | 8YY/ 783

directrl’ 931275 | 1374742 574 /295 588 /295 5747295
bilcoin_miner | 1089284 | 1448151 5151471225 1489/ 1225 | 1297/ 1225

Table 4: Statistics of Titan23 suite [8]. RMETIS; and hMET 1S5, represent
the best cutsizes generated by running AMETIS 5 and 20 times with
different random seeds. SpecPart;, represents the eutsize gemerated by

sparcT2_core | 300109 | 302663
gsm_switch | 493260 | 507821
nes_noe 347544 | 377604
LU230 574372 | 669477
LU Network | 635456 | 7260499
sparcT1_chip2 | 820886 | 821274

Table 3: Statistics of 1ISPD98 VLSI circuit benchmark suite |4]. Best and
Besi,, represent the best published cutsizes for unit weights and actual
weights respectively. SpecPart and SpecPuart,, represent the cutsizes
generated by SpecPart for unit weights and actual weights respectively.

5.1 Experimental Results

Tn this section, we present the experimental results of SpecPart with
default paramcter setting.d We run SpecPart as follows. Given a
hypergraph H and an imbalance factor e, we first run AMETLS and/or

*We do not compare our results with PaToH since it generates weaker cuts compared
to AMETLS and KaHvPar on the 1SPDO8, Titan23 and industrial benchmarks,

4We make public with permissive open-source license all partition solulions, scripls
and code at [41].

The default values lor parameters (8, §. Y, £, 6 and m) are shown in Table 1.

e ‘Eﬁatistijz‘ Best ZP‘j;“l’”{ E \f‘i}: ”}';)“ SpecPart where the hint is obtained frem running AMETIS once with
TVt 2752 [13711 SRR AR default random seed. SpecParfy; represents the cutsize generated by
“Ngl; 19601 | 19584 dih 7 A6 | 266 K2 7256 SpecPart where the hint is the solution corresponding te AMETS5,.
IBMO3 | 23136 | 27401 959 7552 | 78 313
TBM0S [27507 | 31970 3037388 | 506 |4 1767393
TBVIDS | 29347 | 28436 ; 17207 1683 | 1727 [17247 1692
IBVIDG | 32498 | 34826 | 978 [43]7 963 /733 | 53l 500 7 306
TBVI07 | 45926 | 48117 | 951 |43] /85 9357760 [T3¢ Statistics KuHyPar | KaHylury | Sprelarly
[BMUR :EI:EEP*J 50513 [1159 [4]7 16 71140 11H$ 43 ' Eﬁ? [43] 11% [Il!f; Benchmark | # Vertices | # Hyperedges €=2/20 €=2/20 €=2/20
%gl}?g ;3:;; ;“;gé 1;;; ‘Li;J o 1gfg?;;1 1312333|[i133‘fh"2-:|i43~lj 1—’01,';"‘5‘;;’3 mdustrial0l | 349927 128676 20107 2426 | 28067 2426 | 28137 2401

A 3 43] {1 i : S756 (43 i 0 Ty T = T 7 WL
IBMII | 70558 | 51454 | L1071 [43] 7960 (23] | 1062 764 | 781 [43] 7695 [43] | 765 /610 Indusirial02 | 499715 T84 I8717 1436 | 1455795 | 520723
TBMIZ 71076 | 77240 | 1918 [43] 7 1872 [25] | 1920 7 1842 | 1998 [43] 7 1932 [43] | 1965 ¢ 1073 I-T]dllhtfl-ﬂ"]} 522302 533575 10398 F 8628 | 8720 ! 7646 839276711
TBMI3 | #4199 | 99666 | 539 [43] 7 Ra2 [23] | 848/ 693 | 902 [43] /833 [43] | 843/ R22 industrialod | 570076 648667 2232/ 2889 | 2058/ 2889 | 2057/ 2369
IBMI14 [147605 [1527721863 [43] /1803 [23]] 1859 /1768 | 1772 [43] /1527 [43 industrial0S | 656245 829321 2679/ 1838 | 267071838 | 2670/1829
BMIT5 [161570 186608 [2833 [43] 72622 [25][2741 72235 [2099 [43] 71801 [43 ndustmal06 | 733740 Te6261 10629 F 8321 | 9852/ 7646 | 9884/ 7646
TEMIG | 183184 190048 | 2059 [43] 7 1720 |25 [19507 1616 | 1692 |33 7 1668 [43] | 16237 1619 tndustralo? | 733740 TSI 5807560 &80 7 560 4807560
TBVI17 | 185495 | (89561 | 2405 43|/ 2210 |25] | 2354 / 1989 | 2353 |43 7 2257 |43 | 22707 2008 - - = = .
TEATE zmens [oma | 57 [7o (1[50 T [16 [l s [[162 71572 indusirial0% | 1245270 1262050 | 30785 [34659 | 33518 34614 39346 7 34614

Table 5: Statistics of industrial benchmark suitc from a leading FPGA
company. KaHyPar and KaHyPar), represent the best cutsize gener-
ated by running KeHyPar once and 10 times respectively. SpecParty
represents the cutsize generated by SpecParf where the hint is obtaincd
trom running KaHyPar once with default randem seed.

5.1.1 ISPD98 benchmarks with unit weights: Here we present
results for the ISPD98 VLST Circuit Benchmark Suite with unit vertex
weights. Tn Table 3 we present the solutions generated by SpecPart
and compare them with the corresponding best previously published
solulions, with references to the corresponding publications.

Figures 5(a)-(b) reports the solutions sizes oblained rom SpecPart,

OThe delault parameter selting for AMETIS [7] is: Nruns = 10, CType = 1, RType = 1,
Veycle= |, Reconst =0 and sced = 0. The default configuration file we use for Kal lyPar
is cul_rKaHyPar_sea2{.ini [40]).

SpecPart: A Supervised Spectral Framework for Hypergraph Partitioning Solution Improvement

120 150

ICCAD "2z, October 30-November 3, 2022, San Diego, CA, USA

140

130

120

110

100

90

Normalized Cutsize (%)

140

-® hMETIS;
-4- KaHyPar;
- SpecPart

Normalized Cutsize (%)

ISPD98 Benchmarks with Unit Vertex Weights

Me=2.

150 110

ISPD98 Benchmarks with Unit Vertex Weights

(b) € = 10.

ibm18

ISPD98 Benchmarks with Actua

(c)e=2.

135 ; |-4- KaHyPar;
-3 SpecPart,,

ed Cutsize (%)

-4- hMET

@ Spe:

-8 SpecPart

100 4-44-H44-4g , 8 # o
90 ,- . -

Normalized Cutsize (%)

ibm18

ISPD98 Benchmarks with Actual Vertex Weights

W € = 10.

(e)e=2.

Titan23 Benchmarks

Titan23 Benchmarks

(f) € = 20.

Figurce 5: Results of SpecPart on ISPD98 VLSI Circuit Benchmark Suite [4] and Titan23 Suite [8] with different imbalanec factors (e).

KaHyPars, and AMETISs, normalized by the best published solu-
tion sizes, While AMETISs and (mostly) KaHyPars also improve
upon these previous solutions, it can be seen that SpecPurt generates
a significant improvement over both KgHyPar and AMETIS on a
number of instances. The reasoning behind picking 2METISs i mo-
tivated by an “iso™ (similar) runtime comparison. For these relatively
small instances SpecPart has approximately a 50% runtime overhead
over hMETISs, which is subject to significant improvement. This
illustrates that SpecPart can improve very quickly upon solutions
compuled under stringent walltime 1‘cquircmcnls.7

5.1.2 ISPD98 benchmarks with actual weights: Wc further
verify our framework on the vertex-weighted ISPD%8 benchmarks.
Mirroring the considerations of section 5.1.1, the results are presented
in Table 3 and Figures 5(c)-(d). The inclusion of weights makes the
problem more general and potentially more difficult. Here, we see a
tendency of SpecPart to yield bigger improvements.

The Tiran23 and Industrial benchmarks are interesting not just
because they are significantly larger than /SPDYS, but also because
they are generated by different, more modern synthesis processes.
I'hey hence provide a “lest oltime® {or AAMETIS, but also for KaHvPar
which does not include Titan23 in its experimental study |24/,

513 Titan23 benchmarks: Table 4 and Figures 3(e)-(f) show
the results. While the SpecPurt runtime overhead over AMETISs
remains at around 50%, the runtime ol KaffyPar on some ol these

70T course. RMETIS and KaHyPar can be run for more random starts. We include
such an experimental study for the larger and more interesting Titan23 and Industrial
benchmarks, but we omit them for 157098

benchmarks is very large (more than two hours), too high lor any rea-
sonable industrial setting (for more details on runtime see [41]). For
this reason we do not comparc against KeHyvPar. Tt should be noted
that because we could not [ind previous published resulis on fitan23,
Figure 5 reports cut sizes normalized by those obtained by hMETISs,
i.e., the best cut size generaled by running AMETIS [ive limes with
different random seeds. It can be seen that SpecPuart generates sig-
niticantly better partitioning sclutions. The improvements are even
more than 50% for benchmarks gem_switch and denoise. To further
examine the pertormance of SpecPart, we add these experiments:
(iy run ZMETIS twenty times with different random seeds and report

the best cut size AMETIS39: and (ii) sct the solution corresponding to

RMETIS5g as the initial solution to SpecfPart and generate the cutsize

SpecPartzg. We observe that SpecParty is still much better even
compared to KMETISzg for almost all the benchmarks. SpecPartsg

is also better than SpecParts for some benchmarks. This suggests

that SpecPart can achicve betler performance even when standard

partitioners are allowed significantly more running time (see also

Section 5.3).

5.14 Industrial benchmarks from a leading FPGA company:

Table 5 presents the results of industrial Benchmark Suite from
a leading FPGA compuny. Here we present results for imbalance
factors (e =2 and 20) as per guidance from our industrial collaborator.
We do not compare against #AMETIS because it tails with a segmenta-
tion fault on these benchmarks. KaHyPar remains impractically slow
on these large benchmarks, taking almost one hour on some ot the in-
dustrial benchmarks; SpecPari adds less than 5% overhead to single

ICCAD 22, October 30-November 3, 2(:22, San Diego, CA, USA

Bodhisatta and Zhiang, et al.

110 105
-®- SpecPart;, swee -@- Multi-start-hMETIS 1000000000 0000000000000
-4- SpecPart;, sweep with ¢ —4— Solution-overlay-part | |
90
g 100 80 -@- Multi-start-hMETIS
7 —A— Solution-overlay-part
105 0 70
p -
8 60 e N
S
A
50
*‘\‘/L Tt
s SpecPart;, A—A—A 4o A .
i SodkE ‘—‘_‘_‘_“ AT AT A 10 SpecParty,
~ Autotune;-SpecPar
100 v 90 | ¢ g5 opace Autotunes;-SpecPart i
Autotuneyg-SpecPart Autotune,o-SpecPart
¢ 30 ’,\nmlmw;u-mm Part
Autotune, -SpecPart

1 2 3 1 5
Number of SpecPart iterations(3), Number of graph cycles(()

5

(a) Validation of SpecPart default parameter values.

Figure 6: (a):

10

Normalized Runtime

() Comparison on benchmark sparcT2 _core (¢ = 10).

Validation of SpecPart parameters discussed in Section 5.2.

15 20 5 10 15 20
Normalized Runtime

(c) Comparison on benchmurk gsm_switch (¢ = 10).

(bye): QoR vs. runtime overhead of Mulli-stari-hMETIS,

Solution-overlay=pari, SpecPart,, and Autotune;-SpecPart. Multi-star(-hMET1S = best cutsize from running AMETIS multiple times with different
random seeds. Solution-overlay-part = cutsize from running Cuwi-Overlay Clustering and Optimal-Attempt Partitioning directly on candidate solutions.
SpecParty, = cutsize from SpecPart when the initial solution is from one AMETILS run with default random seed. Auzotune;-SpecPart = cutsize from

SpecPart when the initial solution is from autotuning ot AMETLS with i trials.

run of Kaliypar. Nevertheless, we allow the very large runtime and
report a comparison with a single run of KaHyPar and KaHyParyo
in Table 5. Tt can be seen Lhat even when the Aint is based on a fairly
expensive computation (a single run of KaHyPar), SpecPart can still
generate signilicant improvements even over KaHyFPary, on some
of the benchimarks, especially industrial3 where the improvement
18 more than 50%. We speculale that the improverments would have
been greater il based on a hint provided by AMETIS, which is in
general much faster than KaHvPar.

5.2 Validation of Parameters

We now discuss the effect of tuning parameters on SpecPurt. The pa-
rameters we explore are the number ol best solutions (&), the number
of iterations of ISSHP (), the number of random cycles ({'}, and the
threshold of the number of hyperedges in the clustered hypergraph
H. (y). We define the score value as the average improvement ol
SpecParfy, with respect to hMETISs on benchmarks spareTT_core,
cholesky mc, segmeniation, denoise, gsm_switch and directf. When
we sweep (L.e., vary the value of) one parameter, the remaining pa-
rameters are fixed at their default values (Table 2) and € is set to
20. The results appear in Figure 6(a). Sweeping for § and y did not
change the score value in our experiments. Using m > 2 did not gen-
erate further improvement. We also note that using 2AMETIS instead
of ILP for Optimal Attempt Partitioning, worsens the score value
by 2.43%. From the results of tuning parameters on SpecPari we
establish that our default parameter setting is a local minimum in the
hyperparameter search spacc.

5.3 Effect of ISSHP and Solution Enhancement

53.1 Effect of ISSHP:. Tnn order to show the effect of ISSHP in the
SpecPart framework, we run Cut-Overlay Clustering and Optimal-
Attempt Partitioning directly on candidate solutions, which are gen-
erated by running AMETIS multiple times with different random
geeds. The flow is as follows. (i} We generate candidate solutions
{51, 82, ..., Sy} by running AMETIS ¢ times with different random
seeds, and report the besl cutsize Multi-start-hMETIS. Here v is
an inleger paramcter ranging from one to twenty. (1) We run Cut-
Overlay Clustering and Optimal-Astempt Partitioning direcily on
the best five solutions rom {5y, 5o, ..., Sgﬂ,} and report the cutsize
Solution-overlay-part. For each value of i, we run the above flow

100 times and report the average result in Figures 6(b,c). We observe
thal Selution-overiay-part is much better than Multi-stari-hMETIS,
and that SpecPgrt gencrates superior solutions in less runtime com-
pared to Multi-stari-hMETIS and Solution-overlay-part. This sug-
gests that /SSHP 18 an importanl component of SpecPart.

5.3.2 Solution enhancement: hMETIS has parameters whose
selling may signilicantly impact the quality ol generaled partition-
ing selutions. We use Ray [42] to mine the following parameters
of AMETIS: CType with possible values {1, 2,3, 4, 5}, RType with
pussible values {1, 2,3}, Veyele with possible values {1, 2,3}, and
Receonst with possible values {0, 1}. The search algorithin we use in
Ray [42] is HvperOptSearch. We set the number of trials to five, ten
and forty, i.e., Ray will launch five, ten and forty runs of AMETIS
with different parameters respectively. We set the number of threads
to ten to reduce the runtime. The results appear in Figures 6(b,c).
Here we normalize the cutsize and runtime to that of running 2AMFETIS
once with delault random seed. Auloluning increases the runtime
for AMETIS and computes a better hint Si;, vet we see a turther 2%
and 4% cutsize improvement trom SpecPari tor sparcT2 core and
gsm_switch, respeclively, lending [urther support to the observation
in Section 5.1.3.

6 CONCLUSION AND FUTURE DIRECTIONS

We have proposed SpecPuri, the first general supervised tramework
lor hypergraph partilioning solution improvemenl. Experiments con-
firm its outstanding performance compared to traditional multilevel
partitioners with similar runtime. The code, scripts, and best known
solution vectors are available through [41]. SpecPart opens multiple
[uture research directions, with its K-way generalizalion being a pri-
ority. SpecPari can be integrated with the internal levels of multilevel
partitioners; producing improved solutions on each level may lead
to further improved solutions. We also believe that the Cui-Overlay
and Oprimal-Attempt Partitioning are of independent interest and
amenable to machine learning techniques.

Acknowledgments. Bodhisatla Pramanik thanks Dr. Chris Chu
for his early guidance. We thank Dr. Grigor Gasparyan for provid-
ing testcases and sharing his thoughts on SpecPart. This work was
partially supported by NSF grants CCF-21 12665, CCF-2039863 and
CCF-1813374, and by DARPA HROO11-18-2-0032.

SpecPart: A Supervised Spectral Framework for Hypergraph Partitioning Solution Improvement

REFERENCES

(1

[2]

L10]

[

[12]

L18]
[19]

[20]

[21]

M. Cucuringu, I. Koutis, S. Chawla, G. Miller and R. Peny, “Simple and scal-
able constrained clustering: a gencralized spectral method™, Proc. International
Conference on Artificial Intelligence and Statistics, 2016, pp. 445-454.

N. Alon, R. M. Karp, D. Peleg and D. Wesl, “A graph-theoretic game and its
application to the k-server problem” | 8148 Jorrnal on Compuiing (24(1) (1995,
pp. 78-100.

I B, Kruskal, “On the shoriesi gpanning subtree of a graph and the traveling
salesman problem”, Froc, Americen Mathematical Seciety (7)(1) (1930), pp. 48-
50.

C. 1. Alpert. “The ISPDIS circuit benchmark suite”, Proc. ACAMAELE International
Svimpositm on Physical Design (ISPD), 1998, pp. 80-85.

G. Karypis and V. Kumar, “A fast and high quality multilevel scheme for parti-
tioning irrcgular graphs™, STAM Journal on Scieniific Compuring (20)(1) (1998),
pp. 359-392,

G. Karypis, R. Aggarwal, V. Kumar and S. Shekhar, “Multilevel hypergraph
partitioning: applications in VLSI domain™, JEEE Transactions on Verv Large
Scude Integration (VLST) Svstems (TV1) (1999), pp. 69-79.

G. Karypis and V. Kumar, “hMETIS, a hypergraph partitioning packuage, version
1.5.37, 1998, htipeéiglaros.dic.umn edu/ghhome/fetehisw/hMETIS /manval pd
K. E. Murray, S. Whitty, S. Liu, J. Luu and V. Belz, “Titan: Enabling large and
complex benehmarks inacademic CAD”, Proc. Internationa! Coaference on Field
programmable Logic and Applications, 2013, pp. 1-8.

1. Catalyiirek and C. Aykanat, “PaToH (partitioning tool for hypergraphs)”,
Boston, MA. Springer US, 2011.

J. Bezanson, A. Hdelman, 8. Karpinski and V. B. Shah, “Julia: a fresh approach to
numerical computing™, SZAM Review (59)(1) (2017}, pp. 65-98.

C. M. Fidueeia and R. M. Marttheyses, “A lincar-time heuristic for improving
network partitions”, Proc. IEEE/ACM Design Automation Conjerence (DACH,
1982, pp. 175-181.

R. Shaydulin, J. Chen and 1. Safre, “Relaxation-based coarsening for multilevel
hypergraph partitioning”, Muliiscafe Modeling & Simulution (17)(1) (2019), pp.
482-500.

A. V. Kayazev, “Toward the optimal preconditioned eigensolver: locally optimal
block preconditioned conjugate gradient method”, 3{AM Journal on Scientific
Computing (23¥2) (20017, pp, 517-541.

T. Heuer, P. Sanders and 8. Schlag, “Network flow-based refinement for multilevel
hypergraph partitiening™, ACM Jowrnal of Experimental Algorithmies (24)(2)
(2019}, pp. 1-3¢.

D. Kucar, 8. Areibi and A. Vamuelli, “ITypergraph partitioning techniques™, Di-
namics of Continuous, Discrete & Impulsive Systems. Series A: Mothematical
Anadysis (1162) (2004), pp. 339-367.

R. Morris, “1.aplacian malrices of graphs: a survey™, Lisear dlgehra and its Appki-
cations 1197)(1994), pp. 143-176.

A. V. Knyazev, . Lashuk, M. E. Argentati, and E. Ovchinnikov, “Block locally
optimul preconditioned eigenvalue xolvers (BLOPEX) in hypre and PETSe™, S£4M
Jengrna on Scientific Compuling (25%5) (2007), pp. 2224-2239.

I. Keutis. G. L. Miller and R. Peng, “Approaching optimality for selving SDD
linear system”, STAM Jowrnal on Compuiing (43)(1) (2014), pp. 337-354.

1. G. Sun and G. W. Stewart, Mairix Perturbation Theorv, Cambridge, MA, ACA-
DEMIC PressINC, 1990.

1. Koutis, G. L. Miller and [). Telliver, ““Combinatorial preconditioners and multi-
level solvers for problems in computer vision and image processing”, Computer
Vision and Fmage Understunding (L1S}12) 2011, pp. 1638-1646.

A. E. Caldwell. A. B. Kahng and T. L. Markov. “Improved algorithms tor hyper-
graph bipartitioning”, Proc. IEEE/ACM Design Automation Conference (DAC),
2000, pp. 661-666.

J. R. Lee. S. O. Gharan and L. Trevisan, *Multiway spectral partitioning and
higher-order cheeger inequalitics”™) Jowrnal of the ACM (JACM) (61) (2014), pp.
1-34.

T. Heuer, “Engineering initial partitioning algorithms for direct k-way hypergraph
partitioning”, Karlsruber Institut fir Technelogie, 2015.

S. Scbustian, H. Toebias. G. Lars, A. Yaroslav, S. Christian and S. Peter, “High-
quality hypergraph partitioning™, ACM Journal of Experimenral Algovithmics
(2022},

5. Schlag, V. Henne, T. Hever, H. Meyerhenke, P. Sanders and C. Schulz, “k-way
1lypergraph Partitioning via n-Level Recursive Bisection”, Proc. The Meeting On
Algarithm Engineering And Experiments (ALENEX), 2016, pp. 53-67.

J. Y. Zien, M. D. F. Schlag and P. K. Chan, “Multilevel spectral hypergraph
partitioning with arbitrary vertex sizes”, fFEF Transactions on Computer-Aided
Design of integrated Cirewits and Systems (18Y9) (1999). pp. 1389-1359,

L. Hagen and A. B. Kahng, “Fast speetral methods for ratie cut partitioning
and clustering”, Proc. IELL/ACM International Conference on Computer-Aided
Design (1CCAD), 1991, pp. 10-13.

N. Rebagliati and A. Verri. “Spectral cluslering with more han K eigenvectors™,
Newrocompuiing (749} (2011), pp. 1391-1401.

C.J. Alperi and A, B, Kahng, “Multiway partitioning vig geometric embeddings,
orderings, and dynamic progranuning”, IEEE Transactions on Conyniter-Aided
Design of Integrated Circuits and Svstems (14)(11)(1995), pp. 1342-13358,

R. Horaud, “A short tutorial on graph Laplacians. Laplacion embedding,
and speetral clustering™, 2009. hitps:/fesustan.csustan.edu~tom/Clustering’
Graphlaplacian-tutovial. pdl

131]

[32]

133

[34]

[35]

[36]
[37

[39]

[40]
[411

[42]
[43]

[44]

[45]

ICCAD 22, October 30-November 3, 2022, San Diego, CA, USA

F. R. K. Chung, “Spectral graph theory™, CBAMS Regivnal Confereace Series in
Mathematics, 1997,

M. Kapralov and R. Panigrahy, “Spectral sparsification via random spanmers”,
Proc. innovations in Theoretical Computer Science Conference, 2012, pp, 393-
398.

S. Hoory and N. Linial. *Txpander graphs and their applications™, Bulletin of the
American Mathematical Society (43) (2000), pp. 439-561.

C. Ravishankar, D. Gaitonde and T. Bauer, “Placement strategies for 2.5D FPGA
fabric architectures”, Proc. fiternational Comference on Ficld Programmable
Logie und Applications (FPL), 2018, pp. 16-164,

R.L. Graham and P. Hell, “On the history of the minimum spanning tree problem™,
Annuls of the History of Computing (7)(1) (19835), pp. 43-57.

IBM LG CPLEX optimizer, hitps:/Avww.ibi.com/analytics/cplex-optinizer.
V. D. Blondel, J.-L. Guillaume, B, Lambiotie and E. Lelebvre, “Fast unlolding of
communities in large networks™, Journal af Statistical Mechanics: Theorv and
Experiment (2008X10) (2008), pp. 10008.

E. . Boman and B. Hendrickson. “*Support theory for preconditioning”™. SIAM
Jowrnal on Matrix Analysis and Applications (253) (2003}, pp. 694-717.

C. J Alper, A. B. Kahng and S.-7. Yao, “Speciral partitioning with multiple
eigenvectors”, Diseretle Applicd Muthematics (9031) (1999}, pp. 3-20.
https://github.com/kahyparkohypar/blobimaster/config/cut_rKal lyPar_seo20.ini
TPartition solutions, senipls and SpecPart, hips:/zithub.com TILOS-AT-Tnstitute!
HypereraphPartitioning.

Ray, hitps:/idocs.ray. io/en/latest/index html.
Latest actual area results for KMETIS, htrps:
errata.html.

Comparison of UCLA MLPart (v4.17) and hMETIS (v1.5.3) on instances
with actual cell areas (2% configuration), hitps://vlsicad.ucsd.cdu/UCLAWCb!
benchmarks/hMETISMLG2Tab, himl,

Comparison of UCLA MLPart (v4.17) and hMETIS (v1.5.3) on instances
with actual cell areas {L0% contiguration), Iittps:vlsicad.uesd.cdu/UCLAWeb!
benchmarks/hMETISMI 10 Tab. himl.

sicad.ucsd.edu/UCLAWeb/cheese/

