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ABSTRACT

Conversational recommender systems (CRS) have shown great suc-

cess in accurately capturing a user’s current and detailed preference

through the multi-round interaction cycle while effectively guiding

users to amore personalized recommendation. Perhaps surprisingly,

conversational recommender systems can be plagued by popularity

bias, much like traditional recommender systems. In this paper, we

systematically study the problem of popularity bias in CRSs. We

demonstrate the existence of popularity bias in existing state-of-the-

art CRSs from an exposure rate, a success rate, and a conversational

utility perspective, and propose a suite of popularity bias metrics

designed specifically for the CRS setting. We then introduce a debi-

asing framework with three unique features: (i) Popularity-Aware

Focused Learning to reduce the popularity-distorting impact on

preference prediction; (ii) Cold-Start Item Embedding Reconstruc-

tion via Attribute Mapping, to improve the modeling of cold-start

items; and (iii) Dual-Policy Learning, to better guide the CRS when

dealing with either popular or unpopular items. Through exten-

sive experiments on two frequently used CRS datasets, we find the

proposed model-agnostic debiasing framework not only mitigates

the popularity bias in state-of-the-art CRSs but also improves the

overall recommendation performance.
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1 INTRODUCTION

Recommender systems have become an indispensable tool in every-

one’s daily life. Ranging from E-commerce, to multimedia services,

and to E-education platforms, recommender systems alleviate in-

formation overload by connecting users to their items of interest.

While they have been one of the success stories of AI in practice, one

long-lasting challenge faced by recommender systems is popularity

bias, which refers to the phenomenon of the minority popular items

being overly exposed to users while the majority unpopular items

do not receive their deserved attention [1, 5, 6, 8, 10, 11, 19, 30, 38].

This popularity bias greatly limits the opportunities for users to dis-

cover these less exposed items [11, 27, 30] and the system’s potential

to learn an unbiased view of the user’s true preferences [24, 38].

To solve such a critical issue, extensive efforts have been made to

investigate and mitigate popularity bias in recommender systems

[2, 19, 27, 38]. Recently, a new form of interactive recommenda-

tion system ś the conversational recommender system (CRS) ś has

shown great success in enhancing personalization through multi-

turn interactions (i.e., dialogue). In this way, the system can elicit

users’ current and detailed preferences, which can lead to justifiable

and highly personalized recommendations. Similar to traditional

recommender systems, a CRS also takes into consideration the past

user-item interactions when making recommendations. Therefore,

it would be reasonable to assume that a CRS is also affected by pop-

ularity bias similar to a traditional recommender. However, despite

the promising functionality and wide range of potential applica-

tions of CRSs, how to quantify and mitigate the issue of popularity

bias in CRSs remains understudied.

Hence, this paper first illustrates the existence of popularity bias

in a multi-round CRS from three perspectives: (i) Exposure Rate,

where we find popular items are exposed to users at a significantly

higher rate than others, even when these other items match all

preferences specified by the user; (ii) Success Rate, where we find

items with high popularity have much higher chances of being

successfully recommended; and (iii) Conversational Utility, where

we find popular items are recommended in earlier rounds than

other items, violating the assumption of an unbiased recommender.

Based on these observations, we propose a suite of popularity bias

metrics designed specifically for the CRS setting.
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Figure 1: Evidence of different perspectives of popularity bias in CRSs

We then diagnose the root causes of the observed popularity

bias. First, we find that item popularity can significantly impact the

magnitude of the item embedding in the recommender component

which drives the predicted preference score. Since popular items

occur more in the training set (through user-item interactions), the

embeddings of popular items are updated more frequently, leading

to greater magnitudes, and hence higher predicted scores. Second,

we find that cold-start items are typically ill-modeled in existing

CRS, meaning that they are rarely successfully recommended to

users. Finally, we find that the policy agent which guides the ac-

tions of a CRS at each step may further amplify popularity bias by

prioritizing specific attributes associated with popular items. Based

on this diagnosis, we propose a three-stage debiasing framework

that generalizes across specific CRS implementations. To combat

the item magnitude problem, we introduce Popularity-Aware Fo-

cused Learning (PAL) which is designed to help the recommender

component learn a more fine-grained set of embeddings for the

unpopular items without sacrificing the effectiveness of the learned

embeddings for popular items. To better model cold-start items, we

propose a Cold-Start Item Embedding Reconstruction via Attribute

Mapping (CSM) to avoid the problem of randomly initialized em-

beddings for cold-start items by transferring representations from

warm-start items to the cold-start ones. To improve the policy

agent, we design Dual-Policy Learning (DPL) to train one policy

network on popular items and one policy network on unpopular

items. Through extensive experiments on both Yelp and Lastfm, we

demonstrate that the proposed three-stage debiasing framework

can significantly mitigate popularity bias across existing baseline

CRS methods by an average of 42.5% while improving their over-

all recommendation success rate by 12.3%, all while keeping the

average conversational turns the same.

2 PRELIMINARIES

The goal of a CRS is to improve the preference elicitation process

by directly asking the user’s current preference on a set of domain

specific attributes that characterize every item in the itemset. In this

work, we follow the System Ask - User Responds (SAUR) setting

[35] to investigate popularity bias in multi-round CRS. Formally let

𝑈 denote the user set, 𝑉 denote the itemset, and 𝐴 = 𝑎1, 𝑎2, ..., 𝑎𝑚
denote a set of m domain-specific attributes used to systematically

characterize all items in 𝑉 .

At each turn, a CRS calls upon its conversation component,

which is typically a policy agent, to decide whether to ask the

user’s preference on a specific attribute or make a recommendation.

If the policy agent decides not enough preference evidence has

been collected, it will pick one attribute 𝑎 from the set of unasked

attributes to prompt the user.When promptedwith the question, the

user is assumed to provide her preference 𝑝 on the asked attribute

𝑎. Upon receiving the user’s preference, the policy agent updates its

current belief state 𝑠 by adding the (attribute, preference) pair to it.

If the policy agent decides enough information has been collected

after t turns of interaction, the CRS then calls upon its recommender

component to make a list of recommendations for the user. Unlike

a traditional static recommender which ranks all items in the entire

itemset, the recommender component of a CRS only ranks items in

the candidate itemset 𝑉𝑐𝑎𝑛𝑑 ś the itemset that contains only items

with attributes perfectly matching all (attribute, preference) pairs in

the current belief state 𝑠𝑡 = [(𝑎1, 𝑝1), ..., (𝑎𝑡 , 𝑝𝑡 )]. After ranking all

items in 𝑉𝑐𝑎𝑛𝑑 , the CRS recommends the top K items to display to

the user. If the user accepts the recommendation, then the system

quits. If the user rejects all the recommended items, the system

repeats the above-introduced cycle by calling upon its policy agent

to decide the next action to take. This process continues until the

user quits due to impatience or a predefined maximum number of

allowed conversational turns has been reached.

3 EVIDENCE OF POPULARITY BIAS IN CRS

In this section, we conduct data-driven analysis on the Lastfm

dataset for music artist recommendation with three state-of-the-art

CRSs: SCPR [21], EAR [20], and CRM [28], to illustrate the existence

of popularity bias in a multi-round CRS from three perspectives:

Exposure Rate Perspective. A CRS starts by collecting a set of

user preferences, from which the system forms a candidate item

set containing all items matching the collected user preferences

so far. Once the system determines enough information has been

collected, it selects the top-N items from the candidate set to gener-

ate the recommendation set. As shown in Figure 1(a), the average

popularity of items that get recommended by CRM is almost 8 times

higher than the average popularity of items in the candidate set. A

similar pattern is observed in EAR and SCPR, indicating popular

items are much more likely to get recommended (exposed) than

unpopular items. However, in a completely unbiased CRS, since
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both the candidate set and the recommendation set contain items

perfectly matching all preferences specified by the user (i.e., equally

qualified items), the overall average popularity for both sets should

not deviate excessively. The observed phenomenon suggests the

existence of a strong exposure based bias in all three CRS models.

Success Rate Perspective. Next, we investigate whether there

exists a correlation between an item’s popularity and recommenda-

tion success rate (i.e., how likely the item will be recommended to

the user within the allowed turns of interactions). In a completely

unbiased system, an item’s popularity should be completely irrel-

evant to its recommendation success rate. Any correlation, either

positive or negative, is an indication of popularity bias in the CRS.

As we can observe from Figure 1(b), all three models ś SCPR, EAR,

and CRM ś exhibit strong positive correlations between an item’s

popularity and its recommendation success rate. For example, in

EAR, items with popularity greater than 0.01 ś the 75th percentile of

the sorted popularity of all items ś have over 75% recommendation

success rate, while items with popularity lesser than 0.01 having

significantly lower. That is, items with high popularity have much

higher chances of being successfully recommended, indicating the

existence of strong success rate bias in SCPR, EAR, and CRM.

Conversational Utility Perspective. Unlike traditional static rec-

ommenders, a CRS operates under a multi-round interaction setting,

in which a user might leave due to impatience when the session

is taking too long. Intuitively, items requiring fewer turns of user

interactions (i.e., dialogue) to get successfully recommended should

be considered more advantageous than those requiring more. Thus

in an unbiased CRS, an item’s required turns of user interactions

should be completely independent of its popularity. However, as

shown in Figure 1(c), all three models exhibit strong inverse cor-

relations between an item’s popularity and its required turns of

user interaction to get successfully recommended. This observation

shows that an item’s conversational utility is heavily dependent

upon its popularity, indicating the existence of strong conversa-

tional utility bias in SCPR, EAR, and CRM.

4 QUANTIFYING POPULARITY BIAS IN CRS

After demonstrating the existence of popularity bias in multi-round

CRSs, we formally define three bias metrics for quantifying the

degree of popularity bias from each of the three perspectives intro-

duced in Section 3.

Popularity Correlation with Exposure Rate (PER). Given the

deviation of average item popularity between the recommended

items and the candidate items as illustrated in Figure 1(a), we seek

to measure popularity bias from a more comprehensive perspective

that also accounts for the rank of popular items on the recommen-

dation list (ranking utility). To start, we consider the correlation

between popularity and exposure rate first formally quantified in

[11]. Let 𝐴 be a set of𝑚 attributes associated with an itemset 𝑉 ,

[11] defines the exposure-based bias at the 𝑛𝑡ℎ turn to be:

𝐸𝐴𝑛
[𝑉𝑢,𝑛] =

𝑚∑︁
𝑖=1

1[𝑎𝑖 ∈ 𝐴𝑛]𝜌 (𝑎𝑖 |𝑉𝑢,𝑛)𝑃 (𝑎𝑖 |𝑉𝑢,𝑛), (1)

where 𝑉𝑢,𝑛 denotes the set of potential recommendations made

by the CRS at the 𝑛𝑡ℎ interaction (turn). 𝐴𝑛 denotes the set of

Figure 2: Success Rate Bias Measured via Gini Coefficient

attributes associated with all invoked questions till the 𝑛𝑡ℎ turn,

and 1[.] denotes whether an attribute 𝑎 exists in 𝐴𝑛 . 𝜌 (𝑎𝑖 |𝑉𝑢,𝑛)

measures the ranking utility of all popular items, defined based on

a certain attribute 𝑎𝑖 , on the recommendation list. The higher the

popular items are ranked, the greater 𝜌 (𝑎𝑖 |𝑉𝑢,𝑛) will be. 𝑃 (𝑎𝑖 |𝑉𝑢,𝑛)

measures the number of popular items on the recommendation

list. The more frequently popular items are recommended, the

greater 𝑃 (𝑎𝑖 |𝑉𝑢,𝑛) will be. Together, 𝐸𝐴𝑛
[𝑉𝑢,𝑛] considers both the

ranking utilities of popular items and the frequency of them being

recommended.

However, Equation 1 cannot be easily adapted to the conven-

tional interaction-frequency based definition of popularity. Refer-

ring back to Equation 1, the notion of popularity is based upon a

particular attribute 𝑎𝑖 . For instance, in aMovie dataset, the attribute

production has over 15 values, but Columbia Pictures, Disney, and

Lions Gate Films alone account for more than 50% of the movies in

the training data. In this case, items (movies) that are produced by

Columbia Pictures, Disney, or Lions Gate Films would be deemed as

popular items; however, such a definition has a slight limitation.

Referring back to the same Movie dataset, the attribute Duration

has 4 different values, but >=90min alone accounts for more than

60% of the movies in the training data. In this case, items (movies)

with durations greater or equal to 90 minutes would be classified

as popular items; however, there could be an item (movie) that has

a duration of less than 90 minutes but is produced by Columbia

Pictures. In this case, this movie would be classified as popular by

the attribute production but unpopular by the attribute duration.

Therefore, to adapt to a more generalizable definition of popularity,

we modify the existing metric to be:

𝐸𝑛 [𝑉𝑢,𝑛] = 𝜌 (𝑉𝑢,𝑛)𝑃 (𝑉𝑢,𝑛), (2)

with 𝜌 (𝑎𝑖 |𝑉𝑢,𝑛) updated to be:

𝜌 (𝑉𝑢,𝑛) =
∑︁
𝑣∈𝑉𝑢

1[𝑣 ∈ 𝑉
𝑝𝑜𝑝
𝑢 (𝑡𝑝𝑜𝑝 )]

𝑙𝑜𝑔(𝑟𝑎𝑛𝑘 (𝑣) + 1)
,

and 𝑃 (𝑎𝑖 |𝑉𝑢,𝑛) updated to be:

𝑃 (𝑉𝑢,𝑛) =
|𝑉

𝑝𝑜𝑝
𝑢,𝑛 (𝑡

𝑝𝑜𝑝 ) |

|𝑉𝑢 |
,

where 𝑡𝑝𝑜𝑝 denotes the popularity threshold and 𝑉
𝑝𝑜𝑝
𝑢,𝑡 (𝑡

𝑝𝑜𝑝 ) de-

notes recommended items that have popularity greater or equal to
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the threshold. We adopt the conventional definition of
|𝑈𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑒𝑑 |
|𝑈 |

for measuring the popularity of an item and categorize items with

popularity greater than the 80th percentile as popular (head) items

[3ś5]. Similar to Equation 1, this metric (Equation 2) also mea-

sures how frequently popular items are recommended (exposed)

to the user along with their ranking utilities; however, this metric

is attribute independent, making it more generalizable and consis-

tent across different datasets. Formally we define the popularity

correlation with exposure rate (PER) to be:

𝑃𝐸𝑅 =

1

|𝐼 |

∑︁
(𝑢,𝑖) ∈𝐼

1

𝑁

𝑁∑︁
𝑛=1

𝐸𝑛 [𝑉𝑢,𝑛], (3)

where 𝐼 denotes the user-item interactions and 𝑁 denotes the num-

ber of total interactions (turns).

Popularity Correlation with Success Rate (PSR).While Figure

1(b) provides the illustration, to the best of our knowledge, there has

not been a well-defined metric for quantifying the degree of popu-

larity bias in a multi-round CRS from a recommendation success

rate perspective. However, a few previous works have demonstrated

the effectiveness of using the Gini Coefficient for measuring the

correlation between recommendation accuracy and item popular-

ity [9, 26, 37]. Inspired by these works, we formally define the

popularity correlation with success rate (PSR) to be:

𝑃𝑆𝑅 = 1 − 2

∫
1

0

𝑆𝑅(𝑉𝑠𝑜𝑟𝑡 )𝑑𝑉𝑠𝑜𝑟𝑡 , (4)

where 𝑉𝑠𝑜𝑟𝑡 denotes a set of items sorted in ascending popularity,

and 𝑆𝑅(𝑉𝑠𝑜𝑟𝑡 ) denotes the Lorenz curve constructed with the x-

axis representing items sorted in ascending popularity and the

y-axis representing the average success rate accumulated so far.

As illustrated in Figure 2, in a perfectly unbiased CRS, the average

success rate should be accumulated at the same rate for all items

regardless of their popularity, making 𝑆𝑅(𝑉𝑠𝑜𝑟𝑡 ) a straight line with

a constant slope of 1. In this case, the AUCwould be 0.5, resulting in

a Gini Coefficient of 0. However, when a positive correlation exists

between popularity and success rate, 𝑆𝑅(𝑉𝑠𝑜𝑟𝑡 ) would instead be a

concave hyperbolic curve with increasing slope, making the AUC

less than 0.5. In this case, the Gini Coefficient would be a positive

number ranging from (0,1), the closer to 1 the stronger the bias.

Popularity Correlation with Conversational Utility (PCU).

To the best of our knowledge, this is the first work that investigates

popularity bias in a multi-round CRS from a conversational utility

perspective. Therefore, there does not exist any well-defined metric

that can be applied. Building upon the notion that an item’s required

turns of user interactions should be completely independent of its

popularity, we calculate the averaged turns of user interactions for

both the popular (head) items and the unpopular (tail) items and

use the difference (gap) between the two as our metric. Formally

we define the popularity correlation with conversational utility (PCU)

to be:

𝑃𝐶𝑈 =

1

(𝑇 )
[

1

|𝑉𝑢𝑛𝑝𝑜𝑝 |

∑︁
𝑣∈𝑉𝑢𝑛𝑝𝑜𝑝

𝑈𝑡𝑢𝑟𝑛 (𝑣𝑖 )−
1

|𝑉 𝑝𝑜𝑝 |

∑︁
𝑣∈𝑉 𝑝𝑜𝑝

𝑈𝑡𝑢𝑟𝑛 (𝑣𝑖 )],

(5)

where𝑉 𝑝𝑜𝑝 and𝑉𝑢𝑛𝑝𝑜𝑝 respectively denote the popular (head) and

unpopular (tail) itemset, 𝑈𝑡𝑢𝑟𝑛 (𝑣) denotes the needed turns of user

interactions to get successfully recommended item 𝑣 .𝑇 denotes the

total turns of allowed interactions which serves as the normalizing

constant. Following the convention [3ś5], we define items with

popularity greater than the 80th percentile to be popular and items

with popularity less than the 20th percentile to be unpopular.

5 DEBIASING FRAMEWORK

In this section, we identify the three primary causes of popularity

bias in CRSs and propose a three-stage debiasing framework that

can be easily generalized. The framework starts with the popularity-

aware focused learning stage where the recommender component

learns to fairly model all items by taking into account their popu-

larity. After learning an effective set of embeddings for all items,

the framework builds a attribute to item embedding mapping to

reconstruct embeddings for items with zero user interactions (the

cold-start items). Lastly, to help reduce the number of popularity-

based false assumptions that the policy agent makes, the framework

separately trains two policy agents, one for the popular items and

one for the unpopular items.

5.1 Popularity-Aware Focused Learning (PAL)

Cause. A CRS relies upon its recommender component to rank all

the candidate items when making recommendations to a user. This

component is typically first trained separately as a static recom-

mendation system then fine-tuned via reinforcement learning in

an offline simulation [20, 28, 32]. Similar to a typical collaborative

recommendation system, the recommender component learns a set

of user, item, and attribute embeddings that will be used to predict

a user’s interest in a particular item. As shown in [20], one way to

calculate the predicted rating is:

𝑦 (𝑢, 𝑣, 𝐴𝑢 ) = u⊺v +
∑︁

𝑎𝑖 ∈𝐴𝑢

v⊺a𝑖 (6)

where u and v denote the embedding for user u and item v, and a𝑖
denotes the embedding for a specific attribute in the user’s preferred

attribute set 𝐴𝑢 . From the above equation, we can see that the item

embedding v plays a vital role in the rating prediction, as it is used

both to predict the general interest of the user on the target item

and the affinity between the target item and the user’s preferred

attributes. However, most existing CRS neglect the potential issue

that popularity bias could bring to item embeddings. As shown in

Figure 3, both EAR and CRM show a strong positive correlation

between the magnitude of an item’s learned embedding ś calculated

as the squared sum of all features ś and its popularity. Especially

for EAR, the magnitude of the learned embeddings for popular

items is significantly greater than the learned embeddings of the

unpopular items. Since an item’s popularity is calculated by the

frequency that such an item appears in the training set (via past

user-item interaction records). Higher popularity is equivalent to

more occurrences (or samples) in the training set. Consequently,

during the training process of the recommender component, the

embeddings for popular items are more frequently updated (e.g.,

through back-propagation or other learning schemes), resulting in

a greater magnitude. Such a phenomenon is problematic since this

component ranks all candidate items based upon their predicted

ratings. As a result, popular items will have higher predicted ratings
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Figure 3: item popularity vs item embedding magnitude

due to the greater magnitude of their embeddings, making them

easier to get recommended by the system.

Treatment. To address this issue, we propose a popularity-aware

focused learning formulation for the recommender component. This

formulation could be easily generalized to any objective function

used to optimize the recommender used in a multi-round CRS. For

clarity, we show the formulation of our popularity-aware focused

learning on the pairwise Bayesian Personalized Ranking (BPR) [25]

objective function due to its wide usage in recommendation tasks.

Formally the loss function of BPR is defined as:

𝐿𝑏𝑝𝑟 =

∑︁
(𝑢,𝑣,𝑣′)

−𝑙𝑛𝜎 (𝑦 (𝑢, 𝑣, 𝐴𝑢 )) − 𝜎 (𝑦 (𝑢, 𝑣
′, 𝐴𝑢 )) + 𝜆𝜃 | |𝜃 | |

2, (7)

where 𝑣 and 𝑣 ′ respectively denote an item that has been interacted

by the user and an item that has not. 𝜎 is the sigmoid function and

𝜆𝜃 is the regularization parameter. 𝑦 (.) could be any function that

calculates the predicted rating based on the user embedding u, item

embedding v, and all attribute embeddings in the user preferred

attribute set 𝐴𝑢 .

Similar to any loss function, the standard BPR finds a global opti-

mal solution which, as shown in [7], is typically not locally optimal.

In the case of CRS, since the popular items dominate the training set,

the global optimal solution that BPR finds will be heavily tailored

towards them, ignoring the less relevant unpopular items. Conse-

quently, popular items will have a much higher recommendation

success rate compared to the unpopular items, introducing severe

popularity bias into the system. The goal of the proposed popular-

ity aware focused learning is to help the recommender component

learn a more fine-grained set of embeddings for the unpopular items

without sacrificing the effectiveness of the learned embeddings for

popular items. Formally, our formulation could be generalized to

BPR as the following:

𝐿𝑏𝑝𝑟 =

1

𝑒𝑛1𝑝𝑖
[−𝑙𝑛𝜎 (𝑦 (𝑢, 𝑣, 𝐴𝑢 )) − 𝜎 (𝑦 (𝑢, 𝑣

′, 𝐴𝑢 ))] + 𝑒
𝑛2𝑝𝑖 | |v| |2

+𝜆
𝜃
( | |𝜃 | |2)

(8)

where 𝑝𝑖 is the popularity of the item 𝑣 . 1

𝑒𝑛1𝑝𝑖
controls how much

the sample is weighted in the loss function, and 𝑒𝑛2𝑝𝑖 controls the

scale of the regularization on the learned item embedding. 𝑛1 and

𝑛2 are hyperparameters that control the impact of popularity on an

item’s weight and regularization scale. Greater 𝑛1 denotes lower

weights on the popular items and greater weights on unpopular

items; while 𝑛2 denotes a more significant regularization penalty

on the popular items and a more minor penalty on unpopular items.

Note that it is sufficient to only apply the popularity-correlated

regularization parameter 𝑒𝑛2𝑝𝑖 to the norm of the item embedding.

The recommender component is only responsible for ranking items

within a candidate itemset, so the magnitude of the user and at-

tribute embeddings becomes irrelevant since the same user and

attribute embeddings are used to calculate the predicted rating.

Applying the popularity-correlated regularization parameter also

to the norm of the user and the attribute embeddings would bring

no additional benefits and might cause the loss function to fail to

converge. Adjusting the importance and scale of regularization of

an item based on its popularity helps the recommender compo-

nent to focus also on the unpopular items which would have been

poorly-modeled otherwise.

5.2 Cold-Start Item Embedding Reconstruction
via Attribute Mapping (CSM)

Cause. Cold-start items refer to items with no past user interac-

tions, which are sometimes excluded from the start in the traditional

static recommendation system. However, one of the intentions for

a CRS is to directly elicit preferences from users so that even cold-

start items could be recommended accurately. Thus it is reasonable

to keep cold-start items in the testing set for a more holistic evalua-

tion. Referring back to Equation 6, we know the item embedding

𝑣 plays a significant role in rating prediction; however, cold-start

items were never included in the training of the recommender

component. Their embeddings are often randomly initialized or

simply zeros. Therefore, the predicted rating for a cold-start item

is rarely an accurate reflection of the user’s true interests in the

item. Consequently, these cold-start items are rarely successfully

recommended or exposed to users, defeating the purpose of a CRS.

Treatment. While popularity-aware focused learning alleviates

the popularity bias introduced by the recommender component,

the embeddings of cold-start items remain randomly initialized

or simply zeros since they are never included in the training of

the recommender. However, utilizing a unique property of a CRS,

we propose a simple mapping mechanism to reconstruct the em-

beddings for cold-start items. In the setting of a CRS, every item,

regardless of its popularity, is associated with a set of predefined

attributes or features that characterizes the item. Based on this

property, for the warm start items, we train a simple feed-forward

neural network that maps items from their one-hotted attribute

embeddings to their item embeddings learned in the previous stage.

Using this trained mapping, we reconstruct the embeddings for

cold-start items by feeding their one-hotted attribute embeddings

to the trained mapping neural network. Formally, Let 𝑉 + denote

the set of warm-start items. Let 𝑒𝑚𝑏𝑖𝑡𝑒𝑚
𝑖+

and 𝑒𝑚𝑏𝑖𝑡𝑒𝑚𝑖− denote the

item embedding for a warm-start and a cold-start item respectively.

Let 𝑒𝑚𝑏𝑜𝑛𝑒ℎ𝑜𝑡
𝑖+

and 𝑒𝑚𝑏𝑜𝑛𝑒ℎ𝑜𝑡𝑖− denote the one-hotted attribute em-

bedding for a warm-start and a cold-start item respectively. We

train a mapping function 𝑓𝜃 with the following loss function:

𝑎𝑟𝑔𝑚𝑖𝑛𝜃

∑︁
𝑖∈𝑉 +

(𝑓𝜃 (𝑒𝑚𝑏𝑜𝑛𝑒ℎ𝑜𝑡𝑖 ) − 𝑒𝑚𝑏𝑖𝑡𝑒𝑚𝑖 )2 + 𝜆 | |𝜃 | |2 (9)
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where 𝜆 is the regularization parameter to prevent overfitting. The

item embedding for the cold-start item can then be constructed as:

𝑒𝑚𝑏𝑖𝑡𝑒𝑚𝑖− = 𝑓𝜃 (𝑒𝑚𝑏𝑜𝑛𝑒ℎ𝑜𝑡𝑖− ) (10)

In this way, instead of having randomly initialized embeddings,

cold-start items now have embeddings that effectively encode their

unique properties, making their predicted ratings a more realistic

reflection of a user’s true interest.

5.3 Dual-Policy Learning (DPL)

Cause. A CRS relies upon a policy agent to decide which action

to take at each interaction with the user. The action space typi-

cally includes whether to elicit the user’s preference on any of the

unasked attributes or to make a recommendation if the agent feels

enough information has been collected. However, without careful

modification, the policy agent brings a new form of popularity bias

into the system. In CRS, policy agents are typically first pretrained

with a max entropy attribute selecting strategy, with the goal of

minimizing the number of needed interactions to reach a success-

ful recommendation. Under the max entropy strategy, the policy

agent is trained to pick the attribute that reduces the candidate set

the most, skipping attributes with a high disparity in their value

distribution. For instance, if most of the movies in a movie dataset

have value Action for the attribute genre, then the entropy of the at-

tribute genre would be quite low since knowing the value of it does

not help the system gain as much information as asking about an

attribute with lower disparity in its value distribution. By skipping

the attribute genre, the policy agent makes the false assumption

that users desire only the popular Action movies when in fact the

user is actually seeking a Sci-Fi movie.

Besides making false assumptions on specific user preferences,

the training of the policy agent is also affected by the popularity

bias introduced by the recommender component. Since the recom-

mender component learns relatively uninformative embeddings for

unpopular items, the policy agent learns to elicit more user pref-

erences before making a recommendation. In addition, the lower

magnitude of their learned embeddings makes them rank lower in

the candidate set, and thus they are less likely to be recommended

to the user. Thus, for unpopular items, the agent either exceeds the

number of allowed interactions before making a recommendation

or could never successfully recommend the target items.

Treatment. As discussed above, affected by the max entropy at-

tribute selection strategy used in pretraining, the policy network

tends to make false assumptions on specific user preferences by

skipping attributes with a low disparity in their value distributions.

To tackle this issue, we propose a dual policy learning scheme. First,

we split the entire dataset into two smaller datasets ś 𝐷1 and 𝐷2

such that 𝐷1 contains only the items with popularity greater than

the 80th percentile, and 𝐷2 contains only the items with popularity

lesser than the 20th percentile. Then, we train two policy networks,

𝑃𝑁1 and 𝑃𝑁2, on 𝐷1 and 𝐷2 respectively. When interacting with

the user, we select 𝑃𝑁1 if the item’s popularity is greater than the

25th percentile and 𝑃𝑁2 if otherwise. Both policy networks are first

Table 1: Dataset statistics

Dataset users items interactions attributes

Yelp 27,675 70,311 1,368,606 590

Lastfm 1,801 7,432 76,693 33

pretrained as classifiers to avoid optimization failures, then fine-

tuned with the standard policy gradient method as the following:

𝜃 ← 𝜃 − 𝛼∇𝑙𝑜𝑔𝜋𝜃 (𝑎
𝑛 |𝑠𝑛)𝑅𝑛

where 𝜃 denotes the parameter of the policy network, 𝛼 denotes

the learning rate of the policy network and 𝑅𝑛 represents the total

accumulated reward from the 𝑛𝑡ℎ turn to the final turn. Inspired

by [11], we define 𝑅𝑛 to be:

𝑅𝑛 =

𝑁∑︁
𝑛=1

𝛾𝑛 (𝑤𝑟𝑒𝑐𝑅
𝑟𝑒𝑐
𝑛 +𝑤𝑐𝑜𝑛𝑣𝑅

𝑐𝑜𝑛𝑣
𝑛 +𝑤𝑏𝑖𝑎𝑠𝑅

𝑏𝑖𝑎𝑠
𝑛 ),

where 𝛾 denotes the discounted factor, 𝑅𝑟𝑒𝑐𝑛 , 𝑅𝑐𝑜𝑛𝑣𝑛 , and 𝑅𝑏𝑖𝑎𝑠𝑛 re-

spectively denotes the recommendation success state, the user expe-

rience of the conversation, and the degree of popularity bias defined

in Equation 2 at the n-th of the interaction. And𝑤𝑟𝑒𝑐 ,𝑤𝑐𝑜𝑛𝑣 , and

𝑤𝑏𝑖𝑎𝑠 denotes the weight for 𝑅
𝑟𝑒𝑐
𝑛 , 𝑅𝑐𝑜𝑛𝑣𝑛 , and 𝑅𝑏𝑖𝑎𝑠𝑛 respectively.

The entire framework functions as an entity. The embeddings,

learned in the PAL stage, are used in the CSM stage to reconstruct

embeddings for all the cold-start items. Only with embeddings of

all items properly learned, can the framework train a dual-policy

agent that decides the next most appropriate action to take. To

achieve the best performance, the framework must be executed in

the order presented above since each stage has a significant impact

on the following.

6 EXPERIMENTS

To validate the proposed debiasing framework, we showcase ex-

periments over real-world datasets designed to answer three key

research questions: RQ1. Does the proposed framework effectively

mitigate popularity bias in existing conversational recommenda-

tion methods? RQ2. How does the proposed framework impact the

overall recommendation performance of existing conversational

recommendation methods? RQ3. How does each stage contribute

to the mitigation of popularity bias and impact the overall recom-

mendation performance?

6.1 Experiments Setup

Dataset. We conduct experiments on two datasets widely adopted

to evaluate CRSs [20, 21, 28, 33] ś Yelp1 business recommendation

dataset and Lastfm2 music artist recommendation dataset. Follow-

ing previous works [15, 25], we only keep users with at least 10

reviews to alleviate data sparsity. The user-item interactions are

split in the ratio of 7:2:1 for training, validation, and testing. For

the Yelp dataset, we perform the same hierarchical attribute pre-

possessing as in previous works [20, 21, 28]. The two datasets are

summarized in Table 1.

1https://www.yelp.com/dataset/
2https://grouplens.org/datasets/hetrec-2011/
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Implementation Details. For PAL, we perform grid search to find

the best values for the hyperparameters 𝑛1 and 𝑛2. Specifically, we

set 𝑛1 to 7 and 𝑛2 to 8. For CSM, we use a two layer neural network

with parameter sizes of |𝑒𝑚𝑏𝑜𝑛𝑒ℎ𝑜𝑡 | x 128 and 128 x |𝑒𝑚𝑏𝑖𝑡𝑒𝑚 |. For

DAL, each policy network is modeled as a two-layer neural network

with parameter sizes of |𝑠𝑡 | x 64 and 64 x |𝐴|, where 𝑠𝑡 denotes the

state vector (see Section 2) and 𝐴 denotes the action space. we use

the REINFORCE algorithm to train [31] the two policy networks.

For calculating the rewards, we set 𝑅𝑟𝑒𝑐 to 1 if the user accepts the

recommendation or to -1 if the user quits due to impatience or the

allowed conversational turns have been reached. 𝑅𝑐𝑜𝑛𝑣 is set to 0.1

if the user replies to the prompted attribute and to -0.1 if otherwise.

𝑅𝑏𝑖𝑎𝑠 is calculated via Equation 2, and the discount factor 𝛾 is set

to 0.7. We report the best results of 15 conversational rounds on

the Lastfm dataset and 5 conversational rounds on the Yelp dataset.

Baselines. To examine the proposed framework, we investigate its

effectiveness on the following state-of-the-art baseline conversa-

tional recommendation approaches.

• Max Entropy(MaxEnt): MaxEnt is a rule-based attribute se-

lection strategy. At each turn, the policy agent computes the

entropy for each unknown attribute and selects the attribute

with the highest entropy to be the next one to ask. Recommen-

dation is made either when the candidate space is small enough,

or the policy agent runs out of attributes to ask.

• CRM [28]: CRM is a CRS that uses a belief tracker to record a

user’s preference conveyed during the conversation, and trains

a policy network via reinforcement learning to decide how to

interact with the user. The policy network takes the output

of the belief tracker and decides the most appropriate subse-

quent action. We follow [20, 21] to adapt it to the multi-round

conversational setting to make fair comparisons.

• EAR [20]: Similar to CRM, EAR also learns a predictive model

to estimate a user’s preference and trains a policy network to

determine whether to ask more attributes or make recommen-

dations; however, different from CRM, EAR also considers the

feedback from the user to further fine-tune the learned predic-

tive model, achieving better recommendation performance.

• SCPR [21]: SCPR is the state-of-the-art multi-round CRS. Ex-

tending from EAR, SCPR leverages the concept of adjacent

attributes to reduce the search space of attributes and builds a

knowledge graph to learn a more efficient policy network.

Besides applying our proposed debiasing framework on the afore-

mentioned CRSs, we also compare it with Popcorn [11], which

focuses on attribute-based popularity bias in CRSs. We adapt this

approach to the conventional interaction frequency-based popu-

larity definition for a fair comparison. Note that Popcorn is not a

model-agnostic framework and we report its performance following

the workflow in the original paper.

Metrics. To measure the degree of popularity bias in the CRS, we

use PER, PSR, and PCU introduced in Section 4. In addition, since

this work intends to design a framework that mitigates the popular-

ity bias while preserving the overall recommendation performance,

we also include two widely adopted [20, 21, 28, 33] recommendation

performance metrics: success rate (SR@t) and average turns (AT ).

Table 2: Overall debiasing effectiveness on two benchmark

datasets. Popularity correlation with exposure rate (PER↓),

Popularity correlation with success rate (PSR↓), and Pop-

ularity correlation with conversational utility (PCU↓) are

used as evaluation metrics. The best performance is in bold-

face.

Lastfm Yelp

PER PSR PCU PER PSR PCU

Popcorn 3.19 .448 .146 4.26 .195 .255

MaxEnt 3.99 .503 .172 2.83 .110 .132

w/ Debias 1.92 .417 .077 2.29 .058 .029

CRM 4.16 .474 .148 4.81 .253 .347

w/ Debias 1.24 .331 .072 3.84 .103 .163

EAR 2.71 .552 .224 4.99 .269 .402

w/ Debias 1.11 .318 .119 3.71 .141 .170

SCPR 5.79 .440 .281 5.97 .281 .440

w/ Debias 3.61 .322 .142 4.39 .179 .257

Success rate measures if the target item can be successfully rec-

ommended within the allowed turns of interactions while average

turns measures the number of needed interactions to successfully

recommend an item. Additionally, to measure the ratio of successful

recommendation for popular and unpopular items respectively, we

also include popular (head) item success rate (HSR) and unpopular

(tail) item success rate (TSR).

6.2 Mitigation of Popularity Bias (RQ1)

In this section, we evaluate the debiasing effectiveness of the pro-

posed framework on each baseline CRS model with different pop-

ularity bias metrics introduced in Section 4. As shown in Table 2,

by applying the debiasing framework on different baseline CRS

models, it notably reduces the degree of popularity bias quantified

by all metrics. Meanwhile, the proposed framework also achieves

lower values for PSR and PCU compared to Popcorn on all baseline

models, which further demonstrates its effectiveness in mitigating

the popularity bias in CRSs. On Lastfm, the framework exhibits

strong debiasing performance on all baseline models. For MaxEnt,

we observe a lower decrement in PSR. This is because MaxEnt relies

on a rule-based policy agent to select attributes to ask, which vastly

limits the effectiveness of the PAL stage. However, since MaxEnt

is still affected by the issues of biased recommender and cold-start

negligence, applying the CSM stage still dramatically decreases

both PER and PCU. Compared to MaxEnt, the proposed framework

demonstrates an even stronger bias mitigation performance on

the RL-based CRS approaches ś CRM, EAR, and SCPR. For CRM,

we observe a particularly sharp decrease in PER, which indicates

unpopular items now have higher chances of being recommended

(exposed) to users. For EAR, our framework decreases the PCU by

over 68% which significantly lowers the frequency of unpopular

items getting unsuccessfully recommended due to lengthy conver-

sations. And for SCPR, we observe a 49% decrease in PCU and a

38% decrease in PER. In addition, our framework decreases the PSR

across EAR, CRM, and SCPR by 30%, 42% and 27% respectively, sig-

nificantly weakening the correlation between an item’s popularity
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Table 3: Overall recommendation performance on two

benchmark datasets. Success rate (SR↑), Popular (Head) item

success rate (HSR↑), Unpopular (Tail) item success rate

(TSR↑), and Average Turns (AT↓) are used as evaluation met-

rics.

Lastfm Yelp

SR HSR TSR AT SR HSR TSR AT

Popcorn .396 .710 .104 12.9 .637 .711 .358 3.56

MaxEnt .286 .541 .068 13.6 .507 .530 .424 3.97

w/ Debias .311 .532 .102 13.5 .509 .522 .459 3.99

CRM .324 .598 .089 13.3 .604 .703 .228 3.59

w/ Debias .438 .645 .162 12.3 .633 .694 .402 3.62

EAR .421 .742 .061 12.5 .629 .719 .295 3.61

w/ Debias .479 .711 .187 12.1 .647 .708 .422 3.64

SCPR .457 .793 .109 12.5 .631 .715 .301 3.67

w/ Debias .546 .839 .216 11.5 .667 .717 .501 3.75

and its recommendation success rate. It is important to note that

all baseline models produce a lesser degree of popularity bias on

the Yelp dataset. One key reason is that the Yelp dataset adopts an

enumerated question setting in which a user can provide values

for multiple attributes at each conversational turn. Compared to

the Lastfm dataset, which adopts a binary question setting, the

enumerated question setting facilitates user preference elicitation.

As a result, all items, in general, have higher chances for being

successfully recommended, weakening the correlation between an

item’s popularity and its recommendation success rate, exposure

rate, and conversational utility. Even so, our framework still ex-

hibits strong bias mitigation performance on the Yelp dataset. In

particular, the PSR value for CRM decreases by 59% and the PCU

value for MaxEnt decreases by more than 28%.

6.3 Recommendation Performance (RQ2)

Since this work intends to mitigate the undesirable effects of popu-

larity bias while preserving the recommendation performance of

the CRS, we also report the overall recommendation performance

on all three baseline CRSs after applying our framework. In addition

to the Recommendation Success Rate (SR) and Average Turns (AT),

we also report the success rate for popular (head) items and the un-

popular (tail) items respectively (HSR and TSR). Following Table 2,

we include the overall recommendation performance of Popcorn

[11] as our baseline and use boldface to denote statistical signifi-

cance of 𝑝 < 0.01. As shown in Table 3, our framework significantly

increases the overall recommendation performance of all baseline

models by greatly preserving the recommendation success rate

for the popular (head) items while boosting the recommendation

success rate for the unpopular (tail) items. In general, we observe

a more minor improvement on the Yelp dataset. This is because

all baseline models already achieve high recommendation perfor-

mance due to the enumerated user preference elicitation process.

On the contrary, we observe a higher performance boost across all

the baseline models on the Lastfm dataset. In particular, both the

HSR and TSR of CRM increase after applying the framework. In

addition to the DPL stage, the increase in overall recommendation

performance is primarily due to the more effective item embeddings

Figure 4: The performance of Item Prediction Before and Af-

ter Applying the Debiasing Framework.

learned in the PAL stage (for warm-start items) and re-constructed

in the CSM stage (for cold-start items). To compare the effectiveness

of the item embeddings learned with and without the proposed

debasing framework, we calculate their AUC scores on item predic-

tion as in [25]. As shown in Figure 4, the AUC scores of unpopular

items significantly increase across three baseline models on both

the the Lastfm and the Yelp dataset. This is because many of the

unpopular items are either cold-start or have extremely low oc-

currences in the training set. Re-constructing their embeddings in

the CSM stage increases their effectiveness which in turn increases

their recommendation success rate. In addition, the AUC scores

of popular items also increase on all baseline models, especially

for CRM. This is because even amongst the popular items, there

exists a large variation in an item’s popularity. By strategically

re-weighting an item’s relevance based on its popularity, the PAL

stage refrains the recommender from focusing on optimizing the

embeddings for the few extremely popular items, thus learning an

overall more effective set of item embeddings. Note SPCR shares

the same recommender component as EAR, making their learned

item embeddings the same; thus we report its AUC score with EAR.

6.4 Ablation Studies (RQ3)

In this section, we investigate how each stage in the proposed

framed work contributes to the mitigation of popularity bias and

the improvement of recommendation performance via the abla-

tion studies conducted on both EAR and SCPR with the Lastfm

dataset. Note we also perform ablation study on EAR to serve as a

comparison between knowledge-graph based CRS (SCPR) and non-

knowledge-graph based CRS (EAR). For EAR, we find that while the

CSM stage contributes the most to lowering both the PSR and PCU,

it also produces a strong trade-off between the recommendation

performance and the debiasing effectiveness. As shown in Table 5,

skipping the CSM stage gives a significant recommendation perfor-

mance boost to the system but also limits the overall bias mitigation

effectiveness. Such trade-off happens because since the CSM re-

constructs the embeddings for all cold-start items, the cold-start

items will also predict ratings that reflect a user’s true interests on

them, making them rank significantly higher within the candidate

itemset. Therefore, when the CRS is trying to recommend a popular

target item, all the cold-start items with attributes matching the

collected user preferences will now be deemed as equally qualified

as the target item. Consequently, the number of conversational
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Table 4: Debiasing effectiveness and Recommendation Per-

formance of skipping (-) one stage of the proposed debiasing

framework on EAR.

PER PSR PCU SR HSR TSR AT

EAR w/ Debias 1.11 .318 .119 .479 .711 .187 12.1

- PAL 1.31 .325 .166 .445 .689 .171 12.4

- CSM 1.21 .439 .204 .516 .814 .110 11.9

- DPL 1.23 .338 .145 .459 .709 .166 12.3

EAR 2.71 .552 .224 .421 .742 .061 12.5

Table 5: Debiasing effectiveness and Recommendation Per-

formance of skipping (-) one stage of the proposed debiasing

framework on SCPR.

PER PSR PCU SR HSR TSR AT

SCPR w/ Debias 3.61 .322 .142 .546 .839 .216 11.5

- PAL 5.05 .373 .205 .458 .761 .160 12.3

- CSM 4.43 .469 .275 .495 .831 .097 11.9

- DPL 4.19 .422 .257 .484 .805 .156 11.7

SCPR 5.79 .440 .281 .457 .793 .109 12.5

turns needed to recommend the target item increases, and some

popular items might even fail to get successfully recommended.

Interestingly, skipping the DPL stage also results in a notable in-

crease in PCU which backs up our intuition of the policy agent

prioritizing popular items during the attribute selection process.

Compared to EAR, skipping the DPL stage led to greater recommen-

dation performance drop in SCPR. This is because SCPR deploys

a knowledge graph that significantly reduces the decision space

of the policy network, which makes our DPL stage more effective.

Interestingly for SCPR, skipping the CSM stage did not lead to

better recommendation performance. This is because the DPL stage

functions better on SCPR such that re-constructing the embeddings

for the cold-start items have less impact on the recommendation

performance of the popular items.

7 RELATED WORK

Conversational Recommender Systems. Traditional static rec-

ommender systems that are trained using offline historical user-item

interactions face two inherent challenges: (1) the inability to cap-

ture users’ precise preferences; and (2) failure to provide a human-

interpretable justification for their recommendations [13]. Although

many existing works have attempted to solve these problems, most

rely on a large amount of auxiliary data to better interpret user

intentions. The emergence of CRSs provides an intrinsic solution

to these problems. By dynamically interacting with users through

real-time interactions (e.g., conversations, form fields, buttons and

even gestures [17]), CRSs are able to elicit current and detailed

preferences directly from users, learning precisely what the users’

interests are and thus making highly personalized recommenda-

tions that are justifiable.While early works on CRSs primarily resort

to choice-based questions for collecting user preferences [14, 18],

recent works have explored the possibilities of more effective pref-

erence elicitation methods and conversational strategies with the

help of reinforcement learning. For example, [28] first proposes a

unified deep RL framework that builds a personalized preference

elicitation process by optimizing a session-based utility function.

Inspired by [28], research in [20] further strengthens the interaction

between the recommender component and the conversation compo-

nent by proposing a three-stage framework that inherently adapts

to a multi-round setting. Extending upon [20], work proposed in

[21] first integrates a knowledge graph to improve the reasoning

ability of the system and reduce the learning difficulty of the policy

agent. In addition, other research directions in CRSs include dia-

logue understanding and generation [35, 39], response generation

[23, 36], and the exploration-exploitation trade-offs [22, 34].

PopularityBias inRecommender Systems.Many existingworks

have studied the impact of popularity bias in traditional static

recommender systems. [27] first examines the trade-off between

item popularity and recommendation accuracy. [24] introduces

the importance of long tail items in promoting user satisfaction

and preventing monopoly by big brands. More comprehensively,

[16] empirically demonstrated that different recommendation algo-

rithms have different vulnerabilities to popularity bias. To mitigate

the harmful effects of popularity bias, a variety of debiasing ap-

proaches have been proposed. [30] studies the popularity bias in

recommender systems from a cause-effect perspective and proposes

a model-agnostic counterfactual debiasing method that amends the

learning process of recommendation. And [29] proposes to augment

learning for casual users. However, the above introduced works

focus on discovering and mitigating undesirable effects of item pop-

ularity in traditional recommender systems and cannot be directly

applied to CRSs. Recently, [12] introduces the notion of human-

in-the-loop (HitL) reasoning in CRS and [11] first investigates the

issue of HitL bias in CRSs. Specifically, [11] defines a metric that

quantifies the degree of HitL popularity bias, and modifies the re-

ward function to dynamically mitigate it during the preference

elicitation process. However, it adopts an attribute-based definition

of popularity which is less generalizable and consistent than the

conventional interaction-frequency-based definition. To this end,

our work presents a more comprehensive study on popularity bias

in CRSs and proposes a generalizable framework that interactively

mitigates the harmful effects of popularity bias in the entire system.

8 CONCLUSION AND FUTUREWORK

In this work, we present the first systematic study on popular-

ity bias in conversational recommender systems. We illustrate the

existence of popularity bias in the setting of CRSs from three per-

spectives. Building upon this analysis, we propose three metrics

for quantifying the degree of popularity bias in CRSs and a three-

staged debiasing framework that can be easily applied to any CRS.

The experimental results on two frequently adopted conversational

recommendation datasets show that this framework not only mit-

igates the undesirable effects brought by popularity bias in CRSs

but also improves the overall recommendation performance. In

the future, we will explore more effective mapping schemes for

cold-start items.
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