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Machine learning models are becoming pervasive in high-stakes applications. Despite their clear benefits in terms of
performance, the models could show discrimination against minority groups and result in fairness issues in a decision-making
process, leading to severe negative impacts on the individuals and the society. In recent years, various techniques have
been developed to mitigate the unfairness for machine learning models. Among them, in-processing methods have drawn
increasing attention from the community, where fairness is directly taken into consideration during model design to induce
intrinsically fair models and fundamentally mitigate fairness issues in outputs and representations. In this survey, we review
the current progress of in-processing fairness mitigation techniques. Based on where the fairness is achieved in the model,
we categorize them into explicit and implicit methods, where the former directly incorporates fairness metrics in training
objectives, and the latter focuses on refining latent representation learning. Finally, we conclude the survey with a discussion
of the research challenges in this community to motivate future exploration.
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1 INTRODUCTION

Machine learning models are becoming pervasive in real-world applications and have been increasingly deployed
in high-stakes decision-making processes, such as loan management [62], job applications [69], and criminal
justice [9]. Despite the clear benefits brought by machine learning techniques, e.g., strong prediction ability by
automatically discovering effective patterns in data, the resultant models could show discrimination against certain
groups of people and lead to fairness issues in practice. For example, it is reported that the deployed automated risk
assessment tools for criminal offenders have significant racial disparities: black defendants are almost twice more
likely to be falsely flagged as future criminals than white defendants [5]. The problem is partly caused by the bias
that already exists in datasets and could be further amplified by models [82], leading to severe negative impacts
on the individuals and the society. To mitigate unfairness in machine learning models, researchers have developed
various techniques at different stages of model development [46, 47, 50, 59, 60, 63, 64, 68], including pre-processing,
in-processing and post-processing methods. Pre-processing [13, 46, 59, 60, 63] and post-processing [50, 64, 68]
are straightforward strategies to mitigate unfairness: pre-processing methods focus on adjusting the training
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data distribution to balance the sensitive groups, while post-processing methods calibrate the prediction results
after model training.

Unlike the above techniques, in-processing methods directly incorporate fairness into model design, which can
induce intrinsically fair models and fundamentally mitigate fairness issues in machine learning models [30, 31,
40, 48, 76]. First, in-processing techniques can address the problem of bias amplification in model training: the
tendency that the model exacerbates biases in the training data. This problem is often caused by the algorithm and
cannot be solely attributed to the data [34, 81]. In-processing methods directly take fairness into consideration in
model optimization so that the converged model could achieve fairness even with biased data as input [18]. Second,
in-processing methods can effectively fine-tune the representations from pre-trained models to mitigate the bias
without huge re-training efforts. While many pre-trained deep learning models [25, 41, 42] have demonstrated
their performance power, they inevitably encode or amplify bias, leading to potential unfair consequences
in downstream applications. It is with huge efforts and sometimes even infeasible to re-train the models for
unfairness mitigation. Instead, in-processing methods can be used to fine-tune the representations in pre-trained
models. For example, a contrastive learning framework was proposed to debias the representations without
re-training for BERT [19], an indispensable pre-trained component in the modern natural language processing
models [25]. Third, it remains a challenge to develop effective in-processing solutions. The existing algorithms
mainly focus on addressing the fairness issue under a single and known sensitive attribute. There exist application
scenarios where many of the existing methods will fail. For instance, it is crucial to address fairness issues when
sensitive attributes information is not disclosed or available.

Complementing the previous survey papers that mainly present high-level overview of machine learning
tairness and general taxonomies of pre-processing, in-processing, and post-processing methods [18, 29, 61], we
aim to summarize and categorize the key ideas behind the existing in-processing methods for motivating future
exploration of algorithmic fairness. In this article, we survey through the in-processing methods for machine
learning fairness and categorize them into explicit and implicit mitigation methods based on where the fairness
is achieved in the model. Explicit mitigation is achieved by formulating the objective function with fairness
constraints or regularizers, which are often inspired by the fairness measurements and designed to enforce the
predictions to be less dependent on the sensitive attributes. The explicit methods are often flexible and easy
to implement as they only require minimum modifications to objective functions. Some example regularizers
include co-variance relationships [47], absolute correlation regularization [11], Wasserstein-1 distances [43], etc.
Alternatively, implicit mitigation focuses on debiasing the representations so that the resulting predictions do not
show discrimination towards a minority group or individuals. The implicit approaches often target deep learning
models, where learning representations is crucial. For example, they can be used to fine-tune the representations
in pre-trained models to debias downstream applications. Some strategies that fall into this category include
adversarial learning [31], contrastive learning [19], disentangled representation learning [58], etc.

The remainder of this article is structured as follows. Section 2 gives an introduction of the fairness problem and
some representative measurements to quantify the (un)fairness. Section 3 and Section 4 summarize the existing
research on explicit and implicit mitigation of unfairness, respectively. Section 5 provides general discussions
on the differences of the existing in-processing methods. Section 6 discusses the research challenges in this
community. Finally, we conclude the article in Section 7.

2 FAIRNESS IN MACHINE LEARNING

In this section, we introduce the fairness problem in machine learning, measurements for quantifying the degree
of bias for different types of fairness, and an overview of the taxonomy for in-processing techniques.
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Table 1. Main symbols and definitions.

Symbol ‘ Definition

fo A machine learning model that maps attributes to predictions with parameters 6.
x e R? A vector of attributes with a dimension of d.

x; €ER The sensitive attribute.

s A tuple representing all the values of (multiple) sensitive attributes.
§j € {—1,1} | A binary prediction that indicates negative and positive outcomes for —1 and 1, respectively.
y € {—1,1} | The ground-truth label.

D The training dataset.

L(D;8) The objective function of the machine learning model.

zeR! The encoded latent representation with a dimension of 1.

R(D;0) Fairness regularizer.

Q(D;0) Fairness constraint.

IEIE L, regularizer.

[]+ The operator that ignores the parts less than zero.

d(.,) Distance between two samples in attribute space.

D(.,") Distance between two samples in prediction space.

X, A positive sample in contrastive learning

X A negative sample in contrastive learning

MI(+,-) Mutual information.

X; Non-sensitive attributes.

b The sensitive latent factors.

Xy The predicted sensitive attribute.

Ap An adversary network with parameters ¢.

L(D; ) The adversarial loss for x5 and x;.

L.(D;0) The reconstruction loss.

2.1 Fairness Problem

We first discuss fairness in general, and distinguish the concepts of fairness and bias from the psychometrics
view. Then, we describe different strategies to improve fairness and narrow the scope to in-processing methods.
Finally, we formally define the fairness problem from the computational perspective, followed by a supervised
binary classification task asan example to describe the underlying fairness issues.

2.1.1 Definition of Fairness in Machine Learning.

Fairness is a social and subjective concept whose definition varies across different cultures and societies. In the
context of machine learning, unfairness often refers to the situation where a model shows discrimination against
certain groups of people (e.g., races and genders). Another term that frequently appears is bias, which is often
used interchangeably with fairness in the machine learning literature [61]. However, these two concepts are
different from the psychometrics view. A recent study has provided a clear and comprehensive discussion to
distinguish the two [14]. Unlike fairness, bias refers to any systematic error that affects the performance of
different groups in different ways. Bias is defined as either contamination of the measurement of a construct
(e.g., by adding unnecessary gender information) or a deficiency in the measurement (e.g., by not capturing
all aspects of the construct which are relevant). A biased model could be either fair or unfair. For example, in
a hypothetical experiment performed in [67], a college admission decision algorithm that is given knowledge
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about demographics could help admit more people from underrepresented races. The algorithm is inherently
biased (while fair) because it uses demographic information. We refer interested readers to [14] for a more
comprehensive discussion.

In this article, fairness of a machine learning model is defined in the context of a specific measurement. A
model cannot be fair under all fairness measurements, since those fairness definitions are mutually exclusive [12].
Explicit methods will often result in fair models because they directly incorporate fairness metrics into learning
objectives. Some implicit methods, such as contrastive learning [19] and disentanglement [58], only seek to
reduce the reliance on sensitive attributes in representations, which result in a debiased model. The fairness
performance depends on the downstream tasks and the fairness measurements (detailed in Section 2.2) to be
used. Domain experts and application areas help determine which fairness metric to choose.

2.1.2 Different Views on Fairness in Machine Learning.

Fairness in the context of machine learning is very complex and can be interpreted from different views. Consider
the machine learning process as a pipeline consisting of data collection, feature engineering, model training,
model prediction, decision making, etc. Three dimensions of fairness have been discussed in the literature [14, 73],
including distributive, interactional, and procedural fairness. Distributive fairness focuses on the outcomes
brought by machine learning (e.g., jobs or resource allocation). Interactional fairness regards how people perceive
the explanations, rationales, and justifications of the decisions. Procedural fairness refers to the fairness of each
element of the decision-making, i.e, each step of the machine learning pipeline. In this article, we focus on the
distributive perspective, which is related to in-processing mitigation methods.

From the technical perspective, algorithms to improve fairness can be categorized into pre-processing, in-
processing, and post-processing methods according to where the intervention is applied. Pre-processing regards
adjusting the data before feeding them into the model, while post-processing is applied after modeling, such
as calibrating the prediction results. In-processing is applied to the design and training of models, which can
induce intrinsically fair models. In this article, we focus on in-processing methods, which can fundamentally
mitigate fairness issues even with biased inputs by taking fairness into consideration in model optimization.
While increasing research efforts have been dedicated to the in-processing methods in recent years, it remains a
challenge to develop effective solutions for many scenarios (e.g., the lack of sensitive attribute information). This
article aims to summarize the ideas of the existing in-processing methods to motivate future exploration.

2.1.3 Fairness from the Computational Perspective.

Without loss of generality, we consider a binary classification problem. Formally, the task is to learn a mapping
fo : R4 — R, which takes as input the attributes x € X € R? (including a sensitive attribute x; € X; C R) for
each individual, where 6 is the model weights and d denotes the number of attributes. Typically, we only consider
a single sensitive attribute. It is also worth noting that researchers have studied fairness problems where the
sensitive attribute information is not fully available [40], or there are multiple sensitive attributes [48]. In the
following discussions, we focus on the most common scenario with a single known sensitive attribute. Given all
the attributes, the model will make a binary prediction § € {—1, 1} that indicates negative and positive outcomes
for —1 and 1, respectively (we use y € {-1,1} to denote the ground truth). The model is then often trained
on a training dataset D using an objective function L(D); §) with the goal that the trained model could make
predictions for unlabeled individuals in a hold-out test set. For a deep learning model, the mapping fp usually
consists of an encoder that maps x into a latent representation z € Z C R, where [ is the dimension of the
latent space, and a decoder that maps z into gj. We summarize the symbols used throughout this article in Table 1.
Regardless of the adopted models, the models could be unfair in the use of the sensitive attribute x,. Next, we
instantiate the above problem definition with the Adult dataset, which will serve as an example in our discussion
to facilitate understanding.
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Fig. 1. Disparate impact (left) and disparate treatment (right) on the Adult dataset, where a binary classifier is trained to
predict high salary (positive) or low salary (negative). Disparate impact addresses group-level bias, where the two sensitive
groups (male and female) are treated differently according to a fairness metric (e.g., true positive rates are significantly
different across groups). Disparate treatment focuses on individual-level bias, where two individuals with different sensitive
attributes (i.e., gender) but similar non-sensitive attributes of occupation, education level and hours work per week are treated
differently.

The task of the Adult dataset is to predict whether a person’s annual salary is higher (positive) or lower
(negative) than 50K dollars. The attributes in Adult are tabular, describing the characteristics of each individual.
They consist of many non-sensitive attributes, such as occupation, education level, and hours per week, and
some sensitive attributes, such as gender and race. We consider a single sensitive attribute x,, which is binary
and x; € {male, female}. From the computational perspective, the fairness problem can be generally grouped
into two categories: disparate impact and disparate treatment, which approach the fairness problem from the
group- and individual-level, respectively [84].

¢ Disparate Impact: It refers to the situation where the model disproportionately discriminates certain
groups [84], even if the model does not explicitly leverage the sensitive attribute to make predictions but
rather on some proxy attributes. The left-hand side of Figure 1 provides an example of disparate impact in
the Adult dataset. According to the prediction results, the model is unfair because it tends to predict male
instances as positive with a higher probability (i.e., 0.7) than females as positive (i.e., 0.4). In the example,
the true-positive rate is 50% in the female group while the rate is 86% in the male group. There are various
ways and perspectives to measure disparate impact, which will be introduced in details later.

¢ Disparate Treatment: Unlike disparate impact that focuses on group-level discrimination, disparate
treatment refers to unfairness at the level of individuals. The underlying intuition is that a model should
not treat individuals with similar attributes differently. The right-hand side of Figure 1 gives an example
of disparate treatment in the Adult dataset. The two individuals A and B have very similar background
information such as the same occupation, equal education level, and identical work hours per week, while
gender is the only different attribute between them. In this example, the model is unfair because the
prediction for individual A is negative while it is positive for individual B. Such a phenomenon usually
suggests that the model could have undesirably leveraged sensitive attributes, such as gender information
in this example, to make predictions.

2.2 Fairness Measurements

As many fairness measurements have been proposed, choosing the fairness measurement to be applied is crucial
tor detecting and mitigating model unfairness. The chosen measurement decides how fairness is defined, and it
reflects the expectation of target applications. This subsection focuses on some representative ones that quantify
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Table 2. A summary of fairness measurements.

Category ‘ Mechanism ‘ Sensitive Attribute | Measurement Description
Parity Known Demographic parity [23] Equal percentages of positive outcome
Equal opportunity [39] Equal true positive rate
Equalized odds [9] Equal true positive rate and false positive rate
Group Confusion Matrix | Known Overall accuracy equality [9] Equal accuracy
Treatment equality [9] Equal false negative rate / false positive rate
Equalizing disincentives [45] Equal true positive rate - false positive rate
Worst-off utility Unknown Rawlsian Max-Min [70] The lowest the utility is maximized
Cluster balance Known Fair cluster [20] The ratios of the groups are balanced for each cluster
. Lipschitz property | Known Fairness through awareness [30] | Similar individuals have similar outcomes
Individual - o ——— > s
Causal mode Known Counterfactual fairness [54] Same prediction for actual/counterfactual individuals
Hybrid Bounding Known Differential fairness [34] Positive/negative outcomes bounded across sub-groups

the disparate impact (group fairness measurements) or the disparate treatment (individual fairness measurements),
respectively. Additionally, we introduce a hybrid criteria that measures the fairness of subsets of multiple sensitive
attributes. Table 2 summarizes the measurements according to group/individual measurements, the mechanisms,
and whether sensitive attribute is known. We still use Adult dataset as the example for illustration.

Note that, due to the subjectivity of fairness, different fairness measurements could be suitable for different
scenarios. We provide more discussions in Section 5. In this article, we assume that the appropriate fairness
measurements are already chosen in downstream applications, and focus on surveying the design of unfairness
mitigation techniques.

2.2.1  Group Fairness Measurements.

Group fairness measures the difference of model predictions on two or more groups. The group that an individual
belongs to is indicated by its sensitive attributes. We use s; and s; to denote two different sensitive groups
associated with a sensitive attribute. For the example task of salary prediction, s; and s; represent female and
male groups, respectively. In some scenarios, there could be more than two sensitive groups. In this case, we
can often aggregate the measurement values for each pair of groups as an overall measurement. Following the
above notations, we summarize some representative group fairness measurements as below, where the first
measurement is parity-based (i.e., considering positive rates), the next five measurements are based on confusion
matrix (i.e., considering aspects of true positive rates, true negative rates, false positive rates, and false negative
rates), the next measurement is based on worst-off utility (i.e., the worst value of a metric, such as accuracy, AUC,
across groups), and the final one is defined for clustering problems.

e Demographic parity [23]: The percentages of a positive outcome across different sensitive groups
(denoted by x) should be the same, i.e., p(§ = 1|xs = 5;) = p(§ = 1|xs = s;). In the example of Figure 1, 40%
of females are predicted as positive, while the ratio is 70% for male. Due to the large gap between the two
ratios, it is probable that the model violates demographic parity.

¢ Equal opportunity [39]: Different groups should have equal true positive rates, i.e., p(§ = 1|x; = s,y =
1) = p(§ = 1|x; = s;,y = 1). In Figure 1, three out of six truly positive individuals in the female group are
predicted as positive, with a true positive rate of 50%; in contrast, the true positive rate of the male group
is 86%, which is significantly higher than 50%. Therefore, it is probable that the model fails to guarantee
equal opportunity.

¢ Equalized odds [9]: Different groups should have equal true positive and false positive rates, i.e., p(y =
lxs=sp,y=1) =p(=1lxs =sj,y=1) and p(§ = 1x; = s,y = —1) = p(§ = 1|x; = sj,y = —1). This
measurement is more restrictive than demographic parity and equalized odds since we require both true
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and false positive rates to be the same. It is often used when we strongly care about predicting the positive
outcomes correctly.

e Overall accuracy equality [9]: The accuracies across the sensitive groups are the same, i.e., p(§ = 1|x; =
sy = 1D +p(d = -1xs =s;,y = —1) = p(§ = Llxs = s5,y = 1) + p(§ = —1|x; = sj,y = —1). Unlike the
above measurements, overall accuracy equality emphasizes both true positive and true negative rates. This
can be used in the scenarios where true negatives are as desirable as true positives.

e Treatment equality [9]: The ratios of false negative prediction to false positive prediction should be equal
plI=1]y=-1x=s5)) _ p(I=1|y=—1x=s;))
plI=—1ly=1x5=5)) — pli=—1]y=Lxs=s;))
classifying an individual results in a bigger loss.

e Equalizing disincentives [45]: The difference between true positive rates and false positive rates should
be equal across groups, ie, p(§j =1y = Lx; =s;)) —p(§ =1y = -1, x =s;)) = p( =1y = L,x; =
sj)) —p(y = 1|y = =1, x5 = s;)). This measurement has strong emphasis on classifying positives both
correctly and incorrectly.

e Rawlsian Max-Min fairness principle [70]: Let U(#,s) be the utility of the sensitive group s with
weights §. The Rawlsian Max-Min fairness can be quantified as arg maxy min, U(6, s). This measurement
encourages maximizing the utility of the group with the lowest utility, where the utility metric can be
accuracy, AUC, etc. While the definition of this measurement does not explicitly consider sensitive groups,
it implicitly treats the individuals with the lowest utility as the minority group. It is commonly used in the
scenarios where the sensitive information is unknown [40, 55].

e Fair clustering [20]: It is defined for quantifying unfairness in clustering problems. Let N(7j = ¢|x;s = s;)
denote the number of individuals that are assigned to cluster ¢ with sensitive attribute s;. The balance of

the cluster c is defined as the minimum ratios of the numbers of individuals in each group, i.e., balance(c) =
. N(g=c|xs=s;) N(f=c|xs=s;
mIn{ Ny=v.=s)* N(gmelm =

8, where § is a threshold.

across groups, ie., . This measurement can be used when incorrectly

; }. The generated clusters are considered fair if for every cluster ¢, balance(¢) >

2.2.2 Individual Fairness Measurements.

Instead of measuring fairness across different sensitive groups, individual fairness measurements consider the
fairness for each individual with the intuition that similar individuals should be treated as similarly as possible.
Some representative scenarios include:

e Fairness through awareness [30]: Any two individuals who have similar non-sensitive attributes should
receive a similar outcome. Let d(x,, x;,) define the difference between the attributes of two individuals
x, and x;,. If d(x,, x},) is small, then D(g,, §5) should also be small, where D(:, -) computes the prediction
difference. Formally, the goal is to bound D(7,, §») and make the model satisty the (D, d) — Lipschitz
property: D(fq,9p) < d(X4, xp). The specific formulation of D(-,-) and d(-, -) are usually determined by
the task at hand.

¢ Counterfactual fairness [54]: It is defined with causal models. Let (U, V, F) be a causal model, where, U
denotes the set of background variables, V denotes the set of observable variables, and F denotes the set of
functions associated with V. § is counterfactually fair towards an individual if the prediction is the same
for the actual individual and a counterfactual individual that belongs to a different sensitive group, i.e., for

any context X, p(tx s, (U) = y|x) = p(x,es, (U) = y[x).

2.2.3 Hybrid Measurements.

Some hybrid measurements, instead of measuring the difference in the group- or the individual-level, focus on
the subsets of multiple sensitive attributes. We use s; and s; to denote two different tuples representing all the
sensitive attribute values. For example, if we consider both gender and race in the Adult dataset, an instantiation
of such tuple can be {male, black} or {female, white}. We introduce a representative measurement as below.
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¢ Differential fairness [34]: A model fp is e-differentially fair if e™¢ < log % < efand e <
—Hisy

log f,ft;’:—llf:j% < e for all s; and s;. This criteria states that the predictions are similar and bounded within

the range (e~

€, e°) regardless of the combinations of the sensitive attributes.

2.3 Survey Structure

This survey will give an overview of the recent in-processing techniques developed for various machine learning
tasks. We will summarize the core ideas and design principles regardless of the specific applications. We divide
existing techniques into two categories:

e Explicit methods: Research in this line often focuses on explicitly revising the training objective L(D;8).
One common strategy is to add fairness related constraints and solve the problem with constrained
optimization techniques. Another strategy is adding a regularization term into the objective function to
penalize the unfairness behaviors. We provide detailed categorizations in Section 3.

e Implicit methods: An alternative direction is to debias the latent representation z to implicitly remove
bias from the model. The intuition is that if z is less biased, the resulting predictions § from z will also be
less biased. We provide detailed categorizations in Section 4.

We further categorize explicit and implicit methods into several sub-categories based on whether the algorithms
are designed to mitigate the disparate impact (ie., group fairness/bias), disparate treatment (i.e., individual
fairness/bias), or both of them. Under each sub-category, based on the existing techniques, we either provide
a high-level summary of the key ideas (e.g., a unified formula) with some representative instances, or further
divide them based on the scenarios that the algorithms can tackle. An overview of the taxonomy used in this
article is summarized in Figure 2.

Complementing the previous survey papers that mainly present a high-level overview of machine learning
fairness and general taxonomies [18, 29, 61], we provide a more fine-grained and technical categorization by
focusing on in-processing methods. Our categorization provides a clearer understanding of where the fairness is
achieved in existing techniques (in training objectives or representations, in which layers of the representations),
what fairness goals they can achieve (e,g., disparate impact or disparate treatment), and what scenarios they can
tackle (e.g., whether sensitive attribute is known).

2.4 Strategy for Paper Collection and Category Determination

We identified the relevant papers and determined the categories based on the following iterative procedure.
Firstly, we identified a small set of papers by using the query “fair machine learning” along with some related
keywords, such as “bias”, “discrimination”, and "unfairness", to narrow down the search results. Note that we did
not explicitly put the keyword “in-processing” in the query since many in-processing papers do not explicitly
mention this term in the title or abstract. Instead, we manually examined them to collect the relevant ones.
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Among the papers returned from the search, we mainly considered the fairness work from the computational
perspective but not other disciplines such as law or social science. We focused on those important papers which
are either published at major machine learning or data mining conferences (such as ICML, NeurIPS, ICLR, KDD,
WSDM, CIKM, WWW, SIGIR, ACL, EMNLP, NAACL, AAAL IJCAI etc.) or journals (such as JMLR, TPAMI, TKDD,
TKDE, etc.) in the past five years (as most of the papers are published very recently without many citations), or
have more than 50 citations (as some pioneering works are very popular even though they are not published in
the above venues). In addition to directly searching for papers from the venues, we also traced the related work
section in recent papers to identify additional papers. We only considered the technical part of in-processing
methods in the paper and do not include the discussions of legal issues of fairness. Secondly, we categorize the
papers according to our taxonomy (e.g., explicit and implicit methods).

We iteratively repeated the above two steps to collect more papers following the categories determined in
the previous iterations, and gradually refined the categories and developed sub-categories based on the newly
collected papers. Finally, the identified taxonomy converged to the one shown in Figure 2. Note that rather than
desperately trying to cover all the work in this domain, we only selected the most representative papers under
each sub-category to make our discussion focused. In essence, some sub-categories (e.g., adversarial debiasing)
can have many extensions and variants. In this case, we manually traced the citation graph to identify the most
influential papers for discussion. We have identified more than 100 papers studying in-processing methods for
unfairness mitigation. Among them, we removed the extensions or pure applications of basic approaches (e.g.,
adversarial debiasing) where the basic approach was also present in the list, resulting in 22 explicit (Table 3) and
16 implicit (Table 4) representative techniques.

3 EXPLICIT UNFAIRNESS MITIGATION

Explicit unfairness mitigation can be achieved by explicitly adding fairness regularizers or constraints to the
objective functions of machine learning models. The high-level ideas are illustrated in Figure 3. In this section, we
summarize different explicit mitigation methods according to whether they tackle disparate impact or disparate
treatment. Additionally, researchers have also studied hybrid methods that address both of them. A summary of
the surveyed explicit mitigation methods is provided in Table 3.

3.1 Disparate Impact Mitigation

The existing explicit mitigation methods for addressing disparate impact can be categorized based on whether
sensitive attribute information is known. Beyond these, some other studies have also explored fairness problems
that are irrelevant to sensitive attributes.

3.1.1 Fairness with known sensitive attribute information.

A large body of existing work has investigated how to mitigate disparate impact when the sensitive information,
such as the race or gender information for each individual, is available in the training data. A typical strategy is
to guide the model with fairness regularization so that predictions are less dependent on the sensitive attributes.
A general objective function with fairness learning is formulated as:

L(D;0) + All6|l; + nR(D: 6), (1)

where the first term is the loss of the main task (e.g., classification or regression), the second term is a standard
regularizer on model parameters, the third term is a designed fairness regularizer, and 5 and A are hyperparameters.
Here, the fairness regularizer R(D; #) is the key to achieve the model fairness.

The core idea of the regularizer design is to quantify and minimize the correlation between the sensitive
attributes and the prediction. A representative strategy to quantify such correlation is based on mutual information.
[47] introduced prejudice index (P1 in short) to quantify the degree of dependence between a sensitive variable
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Fig. 3. An illustration of explicit mitigation of bias. The left-hand side shows an example of disparate impact mitigation with
regularization terms. In addition to the original loss L(D; 6), a fairness term R(D; 8) is formulated to enforce group fairness.
The existing studies mainly differ in how R(D; 8) is designed. The right-hand side illustrates disparate treatment mitigation.
Here, d(-, ) and D(:, ) measure the distance between any two individuals in attribute space and prediction space, respectively.
The objective is to minimize the discrepancy between these two distances for individuals with similar non-sensitive attributes
but different sensitive attributes. In this example, a female (F) and a male (M) with similar non-sensitive attributes are
enforced to have similar predictions.

and a target variable. It is defined as the sample distributions over a given sample set of the mutual distribution
between the sensitive groups and the predictions. By minimizing the mutual information between these two,
we enforce the predictions less dependent on the sensitive attributes. In this sense, the model tends to be fair
across groups. Although this paper focuses on simple linear regression and naive Bayesian classifiers, the idea is
general and could be also applied to other models. Other notable regularizers include minimizing Wasserstein-1
distances between the classifier outputs and sensitive information [43], absolute correlation regularization that
takes a simplified view by minimizing the absolute value of the correlation between the sensitive groups and the
predictions [11], and residual between the clicked and unclicked item and the members in groups in recommender
systems [10], etc.

Another idea of designing objective functions is to minimize the loss under fairness constraints, which can be
tormulated as a constraint optimization problem:

mgin L(D;6) + A||]5
st. Q(D;0) <0,

(2)

where L(; 6) is the loss of the main task, the second term is a standard regularizer, and Q is a fairness constraint
that is usually defined as a convex function. An example is to formulate Q as the covariance between the sensitive
attributes and the signed distance from the feature vectors to the decision boundary [85, 86]. In this example, Q
is a convex function because the signed distance is convex with respect to 6. The convex nature ensures that Q
will not increase the complexity of the training.

Complementing the above strategies that mainly focus on model predictions, some other studies alternatively
investigate the scenarios where ground truth is available in the historical data. A noteworthy example is mitigating
disparate mistreatment [84], which aims to achieve similar misclassification rates for different sensitive groups.
Disparate mistreatment is usefull in many real-world scenarios, such as assigning risk scores to criminal offenders.
For example, ProPublica’ collects data of criminal offenders in Broward County, Florida, during 2013-2014. The

https://github.com/propublica/compas-analysis
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Table 3. A summary of explicit mitigation methods. Regularization refers to adding a penalty term to the objective function
to make the optimal solution fairer. Constraint optimization refers to optimizing the parameters with the original objective in
the presence of some (hard) constraints on the parameters. Note that regularization is also regarded as a soft constraint in
the literature (i.e., a constraint which is preferred but not required to be satisfied). In this survey, we distinguish these two by
grouping the papers with hard constraint into constraint optimization and papers with soft constraint into regularization.

Fairness Goal ‘ Training Scheme | Sensitive Attribute | Method

Prejudice index [47], Absolute correlation [11]
Regularization Known Wasserstein fair [43], Pairwise comparisons [10]
Fair regression 3], Fair decision trees [4]

Disparate impact Flexible mechanism [86], Tractable constraints [85],

Known
Constraint optimization Convex-concave [76]
P Unknown DRO [40], ARL [55], Proxy Fairness [38]
Beyond Paper matching [52]
. Controlled direct effect [26], Fair decision trees [4],
Regularization Known

. Convex fair regression [8]
Disparate treatment

Fairness Through Awareness [30], Logit pairing [36]

Constraint optimization | Known .
P Counterfactual fairness [54]

subgroup fairness [48], rich subgroup fairness[48]

Hybrid methods Constraint optimization | Known Maxmin-Fair Ranking [35]

data consists of offenders’ demographic features, such as gender, race, and age, as well as the offenders’ criminal
history. COMPAS (Correctional Offender Management Profiling for Alternative Sanctions) tool® is then used
to assign a risk score to each offender. The data also provides ground truth on whether the offenders have
recidivated within two years. An individual is misclassified if a high (low) risk score is assigned to an offender
who has not (has) recidivated within two years. The automated decision making system may suffer from disparate
mistreatment if the misclassification rates for different sensitive groups (e.g., race) differ. To address this, a
constraint optimization problem is formulated to bound the difference of the misclassification rates between
two sensitive groups. The problem can then be efficiently solved with convex-concave programming [76]. In
this way, the classifier learns the optimal decision boundary subject to the fairness constraints, which facilitates
fair treatments across sensitive groups. However, such constraints only bound the overall misclassification rates,
while specific individuals within a group can still be treated unfairly.

Recent studies have explored fairness in unsupervised learning tasks, where the label information is unavailable.
The existing studies in this line of research mainly focus on clustering, which is often considered as the most
common unsupervised learning problem. One representative work, Fair Clustering [20], defines fairness in
clustering under the disparate impact doctrine. Specifically, it defines the balance of a cluster as the ratio between
the numbers of individuals belonging to each sensitive group within the cluster. A clustering algorithm is
considered fair if all the generated clusters are relatively balanced. Unfortunately, achieving the optimal solution
under such fairness definition is NP-hard because the number of combinations grows exponentially with more
individuals. This work develops an approximation algorithm based on fairlets, which refers to small and fair
clusters. The key idea is to first obtain some farilets, which can be solved in polynomial time by relating it to the
graph covering problem. Then it clusters the fairlets using standard clustering algorithms. Since the fairlets are
balanced, the obtained clusters (each cluster is formed by multiple farilets) will also be balanced. A follow-up

Zhitps://www.documentcloud.org/documents/2702103- Sample- Risk- Assessment-COMPAS-CORE . html
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work extends Fair Clustering by making the first step (i.e., fairlets decomposition) more efficient by mapping the
data points into a tree metric. We refer interested readers to [6] for more details.

3.1.2  Fairness without sensitive attribute information.

All the above studies assume that sensitive attributes, such as gender and race, are available in the dataset.
However, collecting sensitive attributes itself is sometimes infeasible due to privacy issues. To deal with these
situations, researchers have investigated how to mitigate unfairness when we do not have full access to sensitive
attributes. The main idea of these studies is that, while we do not have direct access to the unobserved sensitive
attributes, they are often correlated with some other observed attributes. For example, the races could be correlated
with the zip codes [24]. As such, we could mitigate the racial unfairness even without knowing the races by
treating the individuals with a certain zip code as the minority group. This is because if zip codes can divide
the individuals in a similar way as races, mitigating unfairness with zip codes will have similar effects as races.
Note that whether this idea is effective highly depends on the degree of the correlations between the sensitive
attribute and the other attributes. Some attributes could have strong correlations with the sensitive attribute
while the others may only have weak correlations. For example, it is well known that vocal pitch correlates with
gender. In this case, the vocal pitch could serve as an almost perfect substitute for gender. In contrast, in the case
of races and zip codes, while they have a good correlation in general, the exact correlation may differ in different
cities and countries. Thus, a specific zip code may not necessarily correspond to exactly one race. The degree of
correlations will determine the fairness performance of the mitigation algorithms since they highly rely on such
correlations to achieve fairness.

Proxy Fairness [38] explores this idea by addressing fairness on proxy groups, i.e., the groups identified based
on the correlated observed attributed, as substitutes for the sensitive groups. In the above example, we can define
the proxy groups based on the zip code as substitutes for races. In this way, any existing fairness mitigation
techniques could be applied to the proxy groups, which could also indirectly address the fairness issues in
the true sensitive groups. In [38], they formulate a constraint optimization problem on the proxy groups and
surprisingly observe that such a simple strategy could work well in practice. However, the authors also note
that the effectiveness of the idea depends on the choice of fairness metric and the alignment between the proxy
groups and the true sensitive groups. This approach requires careful selection of the proxy features and could
only meet some specific needs.

Another direction focuses on improving Rawlsian Max-Min Fairness [70], which aims at maximizing the utility
of the worst-case group, i.e., the group with the lowest utility. The methods in this line of research also rely on
the correlated observed attributes for unfairness mitigation. The main idea is to identify the regions with higher
classification errors using the observed attributes and give a higher weight to the individuals within these regions
to optimize the worst-case performance. One noteworthy training strategy is based on Distributionally Robust
Optimization (DRO) [40]. The assumption behind is that the performance of minority groups is sacrificed when
achieving the overall performance since the contribution of minority groups to the overall loss is significantly
less than that of majority groups, that is, the minority group is underrepresented during the training. To address
this issue, DRO minimizes

Ep[L(D:0) - nl, (3)
where L(D; ) is the classification loss, [-], drops the instances with loss smaller than #, and 5 is a dual variable
controlling the threshold for small loss. This objective function can optimize the worst-case performance in that
both the dual variable 5 and the squared term can up-weight the samples with high losses. However, DRO may
suffer from the risk of focusing on optimizing the performance of outliers since the losses of outliers are usually
above the threshold.

A tfollow-up work proposes to address this limitation with adversarial reweighted learning [55]. In this work,
the Rawlsian Max-Min Fairness objective is formulated as a minimax problem of a zero-sum game between
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two players, where one player tries to minimize the reweighted loss function, and the adversary player aims to
maximize the loss by assigning the weights. The weight assignment is achieved by a neural network that takes
as input the observed features and outputs a value between 0 to 1 as the weight. During the training process,
the adversary tends to assign higher weights to the instances with higher losses, and the other player will focus
more on these instances to optimize the worst-case performance. A linear adversary is used and shown to deliver
the best performance since it can mitigate the impact of the noisy outliers.

3.1.3 Beyond sensitive attributes.

While previous research efforts mainly center on sensitive attributes, there exist fairness scenarios that are
irrelevant to sensitive attributes and instead focus on the fairness issues in specific application domains.We note
that such fairness problems can be very specific may not be encountered in other domains.

Paper matching problem [52] is a typical scenario that falls into this subcategory. It aims at automatically
matching reviewers to the papers in the reviewing process. Instead of addressing fairness problems across
sensitive groups, they focus on fairness regarding papers and reviewers. Specifically, they identify two fairness
goals in paper reviewing: (1) the reviewers assigned to a paper should collectively possess sufficient expertise,
and (2) each reviewer should have a reasonable workload in terms of the number of the assigned papers. On one
hand, each paper is treated as an individual, and the assignment should be in fair in terms of the expertise of the
assigned reviewers. On the other hand, each reviewer is expected to be fairly treated in terms of workloads. Both
of these fairness goals do not involve sensitive information . The paper matching problem can be formulated
as a global optimization problem that maximizes the sum of affinities, which are scores indicating the affinity
of reviewer-paper pairs. Then, the two fairness goals are achieved via adding constraints to the optimization
process.

3.2 Disparate Treatment Mitigation

Disparate treatment mitigation can be achieved by penalizing the discrimination towards individuals with
different sensitive attributes in objectives, i.e., similar individuals in different groups should be treated as similarly
as possible. The methods in this research line often rely on task-specific metrics to measure the similarity between
individuals. The idea is applicable to both classical machine learning models and deep models, where fairness is
usually achieved by formulating a constrained optimization problem or adding regularization terms to the loss
functions.

Fairness Through Awareness [30] is a representative approach for traditional classifiers. The key idea is to
formulate a fair classifier as a constrained optimization problem, which minimizes the (linear) classification loss
subject to a fairness constraint. Specifically, given a distance metric between individuals d(-, -) and a distance
measure between outputs D(+, -), for any pair of individuals x, and x,, the model is optimized subject to
(D, d) — Lipschitz property:

D(fp(xa), fo(xp)) < d(xa. %), (4)

where f is the model and fp(x) denotes the prediction result of x. The above constraint expresses that the
distance of the outputs is bounded by the distance of the corresponding inputs. In this way, similar individuals
(i.e., the distance of inputs is small) will also have similar outcomes (i.e., the distance of outputs is also small since
it is bounded by the distance of inputs), which will lead to individual fairness. If fp is linear, the optimization
problem can then be expressed as a linear programming that can be solved efficiently. Here, the two distance
metrics D(-,+) and d(-,-) are key to achieve the goal of “treating similar individuals similarly”. Since fp(x) is
essentially a probability distribution, a straightforward choice for D(:, ) is a statistical distance metric between

ACM Trans. Knowl. Discov. Data.



14« Mingyang Wan, Daochen Zha, Ninghao Liu, and Na Zou

two probability distributions P and Q on a finite domain A (i.e., there are A possible outcomes), denoted by

Du(P,Q) =5 )" IP(a) - Q(a)], ©)
acA
where Dy (P, Q) is the total variation distance, and two very different distributions tend to have larger statistical
distances and vice versa. d(-,-) is a task-specific metric describing the similarity level of two individuals, which
highly depends on the task.

An alternative idea for disparate treatment mitigation is counterfactual fairness [54], which leverages the causal
tramework to model the sensitive attributes. A decision is considered fair to an individual if the prediction is the
same for the actual and counterfactual worlds. One representative example of counterfactual fairness modeling
is counterfactual logit pairing [36], which is a robustness term that penalizes the norm of the logit difference
between a pair of an actual example and their counterfactual example. Another similar work proposes to remove
the direct effect of the sensitive attribute with regularization [26], which aims to minimize the difference between
an actual individual and a counterfactual individual that belongs to a different sensitive group.

Other studies have designed constraints or regularizers for different kinds of tasks or models with linear or
non-linear mappings. Some representative examples include adding fairness regularizers for achieving fairness in
regression tasks [8], and learning fair decision trees [4].

3.3 Hybrid Methods for Explicit Bias Mitigation

Disparate impact mainly addresses group-level fairness issues but could not handle individual-level ones. Similarly,
disparate treatment focuses on individual-level rather than group-level fairness. However, there are hybrid
scenarios that fall beyond these two categories. This subsection reviews two representative ones: subgroup
tairness that defines fairness in the subgroup-level and hybrid methods that attempt to achieve both group- and
individual-level fairness.

Rather than defining fairness purely at the group- or individual-level, subgroup fairness [48] defines fairness
over a combinatorially large number of subgroups. [48] gives a toy example as a failure of group-level fairness,
called fairness gerrymandering. Consider a problem with two sensitive attributes including race and gender,
where men/women and whites/blacks are equally represented in the target population. Suppose a binary classifier
predicts positive if and only if an individual is a black man or a white woman, then the positive rate is 50% within
each sensitive group. That is, the classifier will be considered to be fair under a disparate impact metric; however,
it is unfair to black men or white women. Motivated by this example, [48] proposes to address subgroup fairness,
where the classifier is expected to satisfy the fairness constraints for each possible subgroup. The proposed
solution formulates the problem as a two-player zero-sum game between a Learner and an Auditor, where the
Learner’s decision space is the classifier itself, and the Auditor has the decision space of subgroups. This game
can be solved with Fictitious Play with provably asymptotic convergence. Their follow-up work [49] further
empirically shows that this approach works well in various datasets and demonstrates that subgroup fairness
can be satisfied with the reasonable cost in terms of computational resources and accuracy. Unlike group-level
or individual-level fairness, this research line focuses on fairness at the subgroup-level. Intuitively, subgroup
tairness will reduce to group-level fairness if there is only one subgroup and will become individual-level fairness
if there is only one individual for each subgroup.

One idea to achieve both disparate impact and disparate treatment is based on constrained optimization. A
notable example is Maxmin-Fair Ranking [35], which aims to optimize individual fairness under group fairness
constraints. Specifically, this paper focuses on a ranking problem, where people or items are assigned scores that
indicate the relevance to the query. It is important that the ranking system should be fair since the result will
have a direct tangible impact on the people or items being ranked. This paper formulates a minimax problem to
minimize individual unfairness while enforcing the group fairness constraints that are derived from sensitive
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Fig. 4. Some representative techniques for implicit mitigation of bias, where different techniques often focus on different
phases of the model. Contrastive learning methods mitigate disparate treatment by minimizing the mutual information
between the representations obtained from positive samples (x+) and negative samples (x—), which have similar non-sensitive
attributes but different sensitive attributes (it often operates on the input and the hidden layers). Disentangled learning
approaches mitigate the disparate impact by learning disentangled sensitive and non-sensitive representations and using the
obtained non-sensitive representations for downstream applications (it often only operates on the hidden layers). Adversarial
learning strategies use an auxiliary adversary network to minimize the predictive probability of the sensitive attributes from
the representations and mitigate the bias extracted in the representation (it often operates on the hidden layers and the
output layers).

attributes:

r’ € arg maxminV (r, x), (6)

res  xeX

where r or r’ denotes a ranking of the individuals, § denotes the subset of the rankings that satisfy the group
fairness constraints, V (r, x) denotes the utility of x if we place x according to rank r; that is, our goal is to maximize
the worst-case utility across individuals under the group fairness constraints. Based on this formulation, the
paper further improves the individual treatment with randomization, i.e., deriving a probability distribution over
valid rankings instead of obtaining a deterministic solution. The optimization can be solved with combinatorial
optimization in polynomial time.

4 IMPLICIT UNFAIRNESS MITIGATION

Implicit unfairness mitigation refers to the algorithms which detect and eliminate discrimination via repre-
sentations. These approaches are mainly designed for deep models, where learning representations is crucial.
They seek to remove bias from the learned representations such that the resulting predictions will also be less
biased. Note that, as discussed in Section 2, an unbiased prediction may not necessarily be fair. Nevertheless,
in most cases, it has been reported in many implicit mitigation methods that removing bias aligns with the
common fairness goals [19, 37, 87]. Figure 4 illustrates some representative techniques for implicit mitigation,
which can be grouped into impact-driven methods and treatment-driven methods. The impact-driven methods
focus on debiasing the model to reduce group-level unfairness, while the treatment-driven approaches focus
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Table 4. A summary of implicit mitigation methods.

Fairness Goal

| Training Techniques | Method

Impact-Driven

Adversarial Learning
(Prediction-layer)

Adversarial Debiasing [87]
Adversarial Recidivism Application [80]

Adversarial Learning
(Hidden-layer)

Censored Representation [31]
Transferable Representations [60]
Re-embeds word vector [78], Fair Word Embedding [32]

Disentanglement
(Hidden-layer)

Flexibly Fair [37]
Disentangled Representations [58]

Contrastive Debiasing [19], Multi-CLRec [89]
Conditional Contrastive [79], Fair Graph [53]
Fairness-aware Data Augmentation [53]
Flexibly Fair [37], Intersected Fair [65]

Fair Graph Embeddings [15]

Treatment-Driven | Contrastive Learning

Disentanglement

Hybrid methods Adversarial Learning

on the unfairness at the individual level. Some representative techniques for impact-driven methods include
adversarial learning and disentangled representation learning, where the former uses an adversary to remove
the sensitive information from the representations, and the latter decorrelates the sensitive and non-sensitive
information to preserve unbiased representations for downstream applications. Alternatively, contrastive learning
achieves treatment-driven debiasing by enforcing similar representations for positive and negative sample pairs.
In addition, some hybrid methods have been proposed to tackle both disparate impact and disparate treatment. A
summary of the implicit mitigation methods is tabulated in Table 4.

4.1 Impact-Driven Debiasing

The goal of impact-driven debiasing is to obtain representations that cannot infer sensitive attributes. As such, the
resultant predictions will be less biased towards any sensitive groups. Based on which parts of the representations
are targeted, the existing studies mainly fall into prediction-layer debiasing and hidden-layer debiasing.

4.1.1 Prediction-Layer debiasing.
Prediction-layer debiasing aims at mitigating the bias at the prediction layer. This idea is often achieved in
a “backward" way through adversarial learning. The optimization problem is formulated as a minimax game
between a predictor and an adversary, where the goal is to maximize the predictor’s ability to predict the labels
based on the representations and minimize the adversary’s ability to predict the sensitive attributes from the
representations. In this sense, accurate predictions are achieved without relying on sensitive attribute information.
Consider a predictor fy that is trained to accomplish the task of predicting ¢ given x with the loss function
L(D:8) using a gradient-based method (illustrated in the right part of Figure 4). The output layer of the predictor
then serves as the input of another adversary network Ay that aims to predict sensitive attributes x;. The adversary
is jointly trained with the predictor to ensure that the predictor satisfies the desired fairness condition but still
performs well on the prediction task. More formally, the objective can be written as the following minimax
problem:

mginmaxL(Z); 0) + L(D; ), (7)
¢
where L(D; ¢) is the adversarial loss that indicates the prediction error of sensitive attributes.
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A representative work [87] has investigated this idea and presented a general formulation of using adversarial
learning to mitigate the unwanted bias. This paper shows that the framework can be used to achieve various
fairness conditions by adjusting the inputs of the adversarial network based on the fairness definitions. To achieve
demographic parity, the adversary will predict the sensitive attributes from the prediction 7 since demographic
parity only cares about the percentages of a positive outcome. The adversary can get both ¢ and the ground
truth y for equalized odds because it relies on the ground truth to calculate true positive and false positive rates.
For equal opportunity, we can only feed the training data with y = 1 to the adversary so that only the true
positive rates are considered. This work demonstrated the effectiveness of such adversarial learning framework in
mitigating the racial unfairness on income prediction tasks. Note that, although the adversarial network designs
are tailored for the fairness measurements, we still use the term debaising since the core principle is still enforcing
the representations to be less biased.

A follow-up work further verified the generality of the adversarial learning framework by applying it to
criminal history datasets [80]. The task is to predict the offenders’ recidivism based on the attributes of the
offenders, which is widely adopted for a decision-making system in the USA Criminal Justice. It is found that
there are severe racial biases in criminal history datasets. They use an adversarial network to predict race from
the recidivism. The adversarial training penalizes the prediction network if the race is predictable from the
recidivism prediction. By adding this adversary network, we can counteract racial discrimination in the criminal
history dataset. It is reported that, compared with the standard recidivism prediction model, the adversarial
training can decrease the false positive gap from 0.05 to 0.01, and false negative gap from 0.27 to 0.02, with no
clear drop of accuracy [80].

4.1.2 Hidden-Layer debiasing with adversarial learning.

Hidden-layer debiasing aims to mitigate the bias on latent representations learned in intermediate layers. A
representative work is learning censored representation [31]. The model consists of four components: an encoder,
a decoder, an adversary, and a predictor. The encoder maps input x to a latent representation z while the decoder
takes as input z and the sensitive attributes to reconstruct x. The adversary tries to predict the sensitive attributes
trom latent representation z. Finally, the predictor predicts the output based on z. The objective can be formulated
as

mgin m;xL(D; 0) + L(D; ¢) + L (D; 0), (8)

where L(D; ¢) denotes the adversarial loss, and L.(9; #) denotes the reconstruction loss. Without L,.(9; ), the
objective is very similar to the adversarial learning used in prediction-layer debiasing in Eq. 7 with the only
difference that the input of the adversary is a hidden-layer. The parameters are optimized with alternate gradient
descent and gradient ascent steps. In the first step, the adversary is fixed, and we update the weights of the
encoder, the decoder, and the predictor with gradient descent. Then, the adversary takes a step to maximize
the loss with the other components fixed. In this way, the representation converges to the point that removes
sensitive information.

A follow-up work explores learning adversarially fair and transferable representations [60]. They assume
a model with similar components, including an encoder, a decoder, an adversary, and a predictor network.
Unlike [31], they address the specific choices of adversarial objectives so that the representations can more closely
align with the debiasing goals. In addition to classification tasks, they also demonstrate that the method can
remove the bias in transfer learning. It has been shown that this method has theoretical grounding for certain
debiasing objectives and is effective in classification and transfer learning tasks.

The idea of adversarial debiasing has been extended and explored on unsupervised tasks. A notable example is
Deep Fair Clustering (DFC) [56]. The key idea is to separately conduct the clustering algorithm on each sensitive
group to obtain pseudo assignments of the instances. These pseudo assignments can be treated as the predicted

ACM Trans. Knowl. Discov. Data.



18 « Mingyang Wan, Daochen Zha, Ninghao Liu, and Na Zou

“classes”. In this way, we can apply adversarial debiasing designed for supervised learning to the clustering
problem. Their empirical results suggest this simple adaptation of adversarial debiasing to clustering problems
can make the generated clusters significantly more balanced.

Recently, hidden-layer debiasing methods have also been developed for sentiment analysis in natural language
processing. Demographic identity terms, i.e., the words that can reflect the demographical information of an
individual, can show unfair sentiment polarity. For example, the national origin terms like American, Mexican,
or names that tend to belong to African American demographics like Darnell should be neutral with respect
to sentiment. However, these words are shown to have positive or negative sentiment in the embedding space.
To address this problem, in [78], the authors remove the discriminated sentiment correlations from the word
embedding through adversarial training, which re-embeds word vectors without distorting the meaning. Intu-
itively, this regime minimizes the ability of the adversary to predict the sentiment polarity while maximizing
the learner’s ability to preserve the word vector after debiasing. By combining these two objectives in gradient
update, they obtain the debiased word embeddings. Another work has explored similar methods for fair word
embedding [32]. This work focuses on reaching text-driven representations that are blind to the attributes we
wish to protect. They show that adversarial training is effective for debiasing but may introduce instability in
training, which makes the adversary score untrusted. Potential directions to improve the results include tuning
the capacity and weights of the adversary and using several adversaries as a combination.

4.1.3 Hidden-Layer debiasing with disentanglement.

Disentangled representation learning is another strategy for hidden-layer debiasing. The main assumption is that
the sensitive and non-sensitive attributes are entangled in the generated representation by an underlying mixing
mechanism. To make the prediction results fair across sensitive groups, disentangled representation learning
aims at extracting the sensitive information out of the representation and preserving the effective, informative
and unbiased representation for downstream applications. Disentangled representation learning often considers
a generative model that takes the form [66]:

p(xz) = p(xlz) | | p(z0), (9)

where it is assumed that the observation x is controlled by ! independent factors zy, 2y, ..., z;. The goal of disen-
tangled representation learning is to learn the z such that each dimension in z corresponds to no more than one
semantic factor that controls the variation of the data. For example, in image analysis, one dimension of z could
extract the eyeglasses of a human face, and the other dimensions represent other parts of the human face [77].
Generally, disentangled representation learning has shown advantages in various applications in terms of its
interpretability and generalizability of models [7].

In the context of model fairness, the existing work has studied disentangled representation learning in two
settings with or without sensitive attributes. On one hand, disentangled representation learning is an effective
way to achieve fairness with known sensitive attributes [37]. Consider the encoder and decoder structure in the
middle part of Figure 4, and let b denote the sensitive latent factors. The model training objective is to learn the
encoder and decoder while encouraging low MI(b, z), where MI(, -) denotes mutual information. The model is
rewarded for decorrelating the latent dimensions of b and z from each other. The model can be trained in an
end-to-end fashion by combining a prediction loss. One benefit of this approach is that it is very flexible; we can
consider multiple sensitive attributes in training and debias with different subsets of the sensitive attributes at
the test time.

On the other hand, the effectiveness of disentangled representation learning has also been demonstrated even
when the sensitive attributes are unobserved in the training data [58]. It applies standard disentangled representa-
tion techniques to the model without considering sensitive attributes and conducts a large number of experiments
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to study the relationship between the disentanglement scores and fairness. Specifically, the standard disentangled
representation learning will encourage each factor (i.e., an element in the representation vector) of the learned
representation to be semantically independent of the other factors. Here, the specific semantic depends on the
context of the task. For example, for the task of learning disentangled face representations [77], disentanglement
aims to enable each element of the representation vector to control a different facial attribute, such as the skin
color, hair length, sunglasses color, etc. The disentangled representations have many desirable properties, such
as interpretability (i.e., we can explain each facial attribute based on the disentangled representations) [2], and
better generalization ability (the disentangled representations could capture domain invariant features and be
less susceptible to overfitting) [17]. The experiments of [58] show that the disentangled representations obtained
by the standard disentangled representations learning procedure can improve the fairness in the downstream
task. They surprisingly found that disentanglement is consistently correlated with increased fairness. A potential
reason for why it works is that disentanglement makes the non-sensitive semantic factors less dependent of the
sensitive attributes, which inherently makes the predictions less dependent on the sensitive attributes. Since the
sensitive attributes are unobserved in training, the method may help us to avoid biases that we are not aware of.

4.2 Treatment-Driven Debiasing

The aim of treatment-driven debiasing is to generate similar representations for inputs with similar non-sensitive
attributes but different sensitive attributes. Unlike impact-driven debiasing that mainly decorrelate sensitive
information from models for group-level fairness, treatment-driven debiasing focuses on fairness modeling at the
individual-level. The existing treatment-driven debiasing methods mainly target fairness issues from individual
comparison. for example, “Is it fair that A is chosen but not B?". This is often achieved in a “forward" way with a
contrastive learning framework, where the model is trained to generate similar and dissimilar representations
tor the positive and negative sample pairs, respectively, to reduce the effect of sensitive attributes. The positive
sample pairs are often the ones with the same sensitive attributes but different non-sensitive attributes, while the
negative sample pairs often have the same or similar non-sensitive attributes but different sensitive attributes. The
positive and negative samples can be either selected from the training data or constructed with data augmentation.

A representative work leverages data augmentation and contrastive learning to debias pre-trained text en-
coders [19]. Specifically, for each sentence in the training data, another sentence with the same semantic meaning
but in a different bias direction is generated. Then a contrastive learning loss is used to maximize the mutual
information between the representations of two sentences. Additionally, a regularizer is used to minimize the
mutual information between the obtained embedding and the sensitive words. Another example uses condi-
tional contrastive learning [79] to remove the effect of sensitive attributes in self-supervised representations.
Specifically, the goal of conditional contrastive learning is to obtain similar and dissimilar representations for
conditionally-correlated and conditionally-unrelated data, respectively. Here, the condition refers to sensitive
attributes. We consider an example of removing gender information from the learned representations. Assuming
that we condition on female, the positive pair are data from a female and the corresponding representation from
the same female, and the negative pairs are the data from a female and the representations of another female. The
positive and negative samples for males can be chosen in a similar fashion. The representations trained in this
way will only learn to distinguish the inputs from the same gender but not across genders, which could exclude
the gender information from the learned representations. The debiased representations can then be used in other
downstream tasks without the undesirable sensitive attributes information.

Some studies have designed contrastive learning strategies tailored for other data types and tasks, such as
graph data [53] and candidate generation tasks in recommender systems [89]. In graph data, nodes with similar
attributes (including sensitive attributes) tend to be connected. As a result, the graph representation learning
methods that exploit the topological structures tend to amplify the bias. To reduce this undesirable effect, [53]
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proposes a fairness-aware data augmentation framework, including a feature masking strategy which assigns a
larger masking probability to the features that are correlated with the sensitive attributes, and an edge deletion
strategy based on whether the sensitive attributes are the same between neighboring nodes. The proposed
contrastive learning loss could mitigate the propagation of bias in the graph. Though not targeting sensitive
attributes, [89] proposes a contrastive learning strategy to mitigate bias against the under-recommended products
for candidates generation in large-scale recommender systems, where the goal is to retrieve a small set of entities
from a large corpus. They implement a fixed-size first-in-first-out queue to accumulate positive and negative
samples for contrastive learning,. It is shown that the model trained with the contrastive loss achieves better
tairness on the under-recommended products.

4.3 Hybrid Methods for Implicit Bias Mitigation

Some studies have investigated hybrid methods that address both disparate impact and disparate treatment. A
representative line of work is termed compositional fairness, where the model is expected to flexibly accommodate
different subsets of sensitive attributes, addressing the fairness issues at the subgroup-level.

One strategy to achieve compositional fairness is disentangled representation learning. As we discussed in
Section 4.1.3, the key idea of disentangled representation learning is to extract sensitive information out of the
representation so that predictors trained on the non-sensitive latent factors are less biased [37]. One advantage of
disentangled representation learning is that it can cope with multiple sensitive attributes, and a subset of sensitive
attributes can be selected for inference to achieve compositional fairness. Follow-up research has designed more
fine-grained disentangled strategies by additionally modeling the intersected information between sensitive
and non-sensitive attributes [65] and applied the technique to specific applications, such as facial attribute
classification for the hospital no-show [16].

Adversarial learning is an alternative way to achieve compositional fairness. This strategy has been explored
on graph data to learn fair graph embeddings [15]. The key idea is to train multiple filters to refine the graph
embeddings without particular sensitive attributes, where each filter corresponds to one sensitive attribute. For
each filter, a discriminator is defined to predict the corresponding sensitive attribute from the filtered node
embeddings. The discriminator is trained with an adversarial loss so that the filter is learned to produce unbiased
representations. This design allows us to flexibly apply combinations of the filters to achieve compositional
tairness. Although this paper focuses on graph embedding, the idea can be easily generalized and applied to other
data types as well.

5 DISCUSSIONS

Prior work has approached machine learning fairness in different directions and proposed various in-processing
unfairness mitigation techniques. It is important for the researchers and practitioners to understand the differences
among the existing methods. In this section, we provide general discussions on how to choose an appropriate
algorithm in real-world applications. We mainly focus on the application scenarios that different methods can
tackle and discuss from the perspectives of fairness measurements, task scenarios, base machine learning models,
and predictive performance.

The selection of fairness measurements is often the first decision we need to consider since it defines the
fairness goals. This is particularly important for the explicit methods, where constraints and regularization
terms are designed according to the used measurements. However, due to the subjectivity of fairness, there is
no universal agreement about which measurement is better. In practice, some fairness measurements can be
incompatible. For example, demographic parity demands each sensitive group to have an equal percentage of
positive outcomes, while overall accuracy equality requires an equal accuracy. These two measurements will
be fundamentally opposed if different sensitive groups have very different positive rates in the ground truth.
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In this case, if both of these two measurements are used, then the unfairness can never be fully eliminated.
From a broader context, the appropriate fairness measurements depend on application scenarios, e.g., what legal
restrictions are in place, which measures apply, and who gets to decide the relevant measures (e.g., researchers,
business owners, or all people affected by the predictions and decisions), which should be discussed from the
views of other disciplines, such as laws and social science. From the computational perspective and for machine
learning research purposes, one who is only interested in the algorithm design may assume that the suitable
measurements are given.

The task scenarios can often imply which mitigation algorithms are suitable. First, different tasks often have
different data characteristics and training schemes. A notable example of the impact of data is graph [22], which
describes complex relationships and interactions among nodes. A recent study shows that graph structure can
amplify unfairness through message passing [44]. Thus, to achieve fairness in graph data, we need a tailored
design to counter such amplification, which is often not considered in the mitigation algorithms built on tabular
data. Second, different training schemes will often impact the algorithm design. For instance, semi-supervised and
unsupervised settings demand tailored designs to leverage unlabeled data to mitigate unfairness [75, 88]. Thus,
the algorithm design highly depends on the tasks at hand. Third, due to privacy reasons, we may not have access
to sensitive attributes in some applications. If the sensitive attributes are unfortunately not available in a task,
then most of the existing mitigation methods will be inapplicable. We instead need to resort to the algorithms
that do not require sensitive attributes [38, 40, 55].

The base machine learning models, which often vary in different application scenarios, can put constraints
on what mitigation algorithms can be adopted. Firstly, implicit methods can only be applied to deep learning
models but not traditional machine learning models since it focuses on debiasing the representations. Thus, for
traditional machine models, we often need to design explicit constraints or regularization terms, or resort to
pre-processing or post-processing solutions. Secondly, many already complex machine learning systems, such
as the recommender system deployed at Facebook [1], often do not allow one to make significant changes to
the model. In this case, some mitigation techniques, such as disentangled representation learning, may require
broad changes in the model design and be hard to adopt. We refer interested readers to [28, 71] for detailed
discussions of how to achieve fairness with minimum modifications on the batch sampling [71] and decoders [28].
However, we note that in some cases (e.g., using any demographic information would be considered unfair), such
minimal modifications may not be acceptable. Instead, fairness needs to be considered throughout the entirety
of a machine learning process, and applying these techniques needs to be a deliberate choice based on the real
situations.

Finally, fairness will influence the predictive performance of machine learning models. However, in this survey,
we will not discuss the quantitative relation between fairness and predictive performance since it is often subject
to datasets, algorithms, application domains, and whether the hyperparameters are well-tuned. We believe we
can not have an affirmative answer without a comprehensive and fair benchmarking of the existing methods. It is
worth noting that the relation between predictive performance and fairness is controversial in the existing work.
While most studies found that their relationship is a trade-off [21, 33, 46], some argued that they are sometimes
in accord [83]. Readers who are interested in fairness and predictive performances and their relationship may
refer to [83].

6 RESEARCH CHALLENGES

In-processing methods for machine learning fairness have attracted increasing attention in the community and
received significant progresses in recent years. However, there are still several remaining research challenges to
be investigated.
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Fairness with Missing Sensitive Attributes. While most of the existing studies assume that the sensitive
attributes information is available in the dataset, sensitive attributes may not be disclosed or available in many real-
world applications. Some laws have imposed restrictions on the use of sensitive information, e.g., the General Data
Protection Regulation (GDPR) explicitly requires businesses to protect the personal data for citizens of European
Union. Thus, it is a crucial problem to address fairness issues with missing sensitive attributes information. How
to achieve fairness in machine learning models remains to be a challenge if very few or even no individual’s
sensitive attribute is known. Research in this direction is relatively lacking in the literature [40, 55, 74]. More
efforts are needed to investigate how to achieve fairness with missing or limited sensitive attributes information.

Fairness with Multiple Sensitive Attributes. The current in-processing techniques mainly focus on address-
ing the unfairness induced by one sensitive attribute. When multiple sensitive attributes exist, the model that is
tair for one sensitive attribute could still be unfair for other sensitive attributes. For instance, both gender and race
could lead to unfairness in the Adult dataset. The fair model that is designed solely for women will still be likely
to be unfair for black women. Additionally, in many real-world scenarios, it is necessary yet challenging to design
a model that can flexibly accommodate different fairness needs. For example, we could only require the model to
be fair towards gender while we may need to simultaneously consider gender, race, and age in other scenarios.
However, the model trained solely for mitigating gender unfairness may not perform well when simultaneously
considering gender, race, and age, and vice versa. This practical problem, i.e., how we can accommodate different
combinations of sensitive attributes to achieve fairness in different subgroups, is relatively less studied [15, 48, 49]
and needs more future work to explore.

Fairness Measurements Selection. Since the design of the mitigation techniques is often inspired by the
desired fairness measurements, selecting an appropriate fairness measurement is crucial and depends on the
situations at hand. For example, the input of adversarial debiasing [87] depends on the selected fairness mea-
surement because different information is needed for different measurement metrics. Specifically, the prediction
i is used to calculate demographic parity, whereas both the prediction ¢ and the ground truth y are need for
equalized odds. It is very likely that a fair model in terms of one measurement remains unfair when evaluated
with a different measurement. It is a practical need to understand the effect of fairness measurement on algorithm
design to achieve fairness with respect to a single measurement or a combination of multiple measurements.
This can help the practitioners to achieve the desired fairness outcome in real-world deployments.

Balance between Group and Individual Fairness. Due to the different goals of group and individual fairness,
the existing mitigation techniques often only focus on one of them. However, the model that is optimized to
achieve group-level fairness may not be fair in terms of individual-level fairness, and vice versus. In some certain
application scenarios, it is desirable to achieve both group and individual fairness. For example, when ranking
the items for users in recommender systems, we may aim to minimize the discrepancy between the rankings of
each pair of individuals with different sensitive attributes while preserving the overall fairness in the group-level.
Such goal could be formulated as a constraint optimization problem, e.g., optimizing individual-level fairness
under group-level fairness constraints [35]. More studies are encouraged to investigate the relationships between
the group- and individual-level fairness and the techniques to achieve both of them.

Integration of Interpretation and Fairness. Despite the success of machine learning models, they are often
been criticized to be uninterpretable. Various interpretable machine learning techniques have been proposed to
better understand and debug the model [27], which could serve as the tools to detect and mitigate bias to achieve
fairness [29]. For example, in sentiment analysis, local interpretation could detect race biases by getting the feature
importance for all the features [51]. Also, local interpretation could serve as regularization terms to achieve
fairness by enforcing the predictions to be less dependent on the sensitive attributes [57, 72]. Many interpretation
techniques could be potentially adapted to achieve machine learning fairness since the interpretation on features
expose the effect of sensitive attributes on the decision-making process. Despite the promise in leveraging this
relationship to achieve fairness, interpretation itself remains to be a challenge since it may trigger the artifacts
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without careful design [27]. More work on investigating interpretation and particularly the relationship between
interpretation and fairness will facilitate the understanding of fairness and motivate the design of unfairness
mitigation algorithms.

Relationship between Fairness and Model Performance. Intuitively, if we regard the fairness goals as
constraints that limit the decision space of the machine learning model, fairness goals will clearly make the
model performance suffer because the resulting set of the possible decision spaces is a subset of the original one.
A consensus achieved in most previous work is that the relationship between fairness and model performance
is trade-off [21, 33, 46]. However, a recent study reveals that fairness and accuracy are sometimes in accord,
e.g., in some semi-supervised tasks [83]. Additionally, due to the subjectivity of fairness, different fairness goals
may affect or be affected by model performance differently. As the previous work mainly focuses on empirical
studies, a systematic and theoretical investigation of the relationship between fairness and model performance,
particularly, under what conditions (such as which fairness goals), improving fairness could also improve model
performance, is an important future direction.

Datasets and Benchmarks for Machine Learning Fairness. Benchmark datasets that exhibit discrimination
against certain groups of people are what propels us forward in designing unfairness mitigation algorithms.
However, benchmark datasets are lacking in the community. The existing studies mainly perform experiments
and analyses on a very limited number of small-scale datasets. More efforts in constructing datasets, especially
large-scale datasets with demographic information, are encouraged to enable a full exposure of fairness problems.
Efforts on benchmarking the existing algorithms under different fairness measurements will also facilitate the
research.

7 CONCLUSIONS

In this survey, we present an overview of the current progress of in-processing techniques which focus on
modeling design for improving machine learning fairness. Specifically, we categorize the existing techniques into
explicit and implicit mitigation methods based on where the fairness issues are tackled in the model. Furthermore,
we summarize how each category of methods could be used to mitigate disparate impact (group-level bias),
disparate treatment (individual bias), and other mixed scenarios. Finally, we introduce the remaining challenges
to be addressed for future research efforts, advocating deeper understandings of fairness and the development of
datasets and benchmarks to facilitate future methods design.
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