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Abstract

Subtelomeres are dynamic genomic regions shaped by elevated rates of recombination, mutation, and gene birth/death. These processes
contribute to formation of lineage-specific gene family expansions that commonly occupy subtelomeres across eukaryotes. Investigating
the evolution of subtelomeric gene families is complicated by the presence of repetitive DNA and high sequence similarity among gene
family members that prevents accurate assembly from whole genome sequences. Here, we investigated the evolution of the telomere-as-
sociated (TLO) gene family in Candida albicans using 189 complete coding sequences retrieved from 23 genetically diverse strains across
the species. Tlo genes conformed to the 3 major architectural groups (a/b/c) previously defined in the genome reference strain but signifi-
cantly differed in the degree of within-group diversity. One group, Tlob, was always found at the same chromosome arm with strong se-
quence similarity among all strains. In contrast, diverse Tloa sequences have proliferated among chromosome arms. Tloc genes formed 7
primary clades that included each of the previously identified Tloc genes from the genome reference strain with 3 Tloc genes always found
on the same chromosome arm among strains. Architectural groups displayed regions of high conservation that resolved newly identified
functional motifs, providing insight into potential regulatory mechanisms that distinguish groups. Thus, by resolving intraspecies subtelo-
meric gene variation, it is possible to identify previously unknown gene family complexity that may underpin adaptive functional variation.
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Introduction
Gene families are the result of repeated rounds of gene duplica-
tion that gives rise to similar or identical paralogs through errors
in DNA replication, sister chromatid exchange, or whole genome
duplication (Tilley and Birshtein 1985; Kellis et al. 2004; Mehta
and Haber 2014; Reams and Roth 2015; Qiao et al. 2018). In most
cases, one of the paralogs is inactivated by deleterious mutations
following duplication, thereby restricting further evolutionary
outcomes of paralogy (Cliften et al. 2006; Albalat and Ca~nestro
2016). However, duplicate genes that remain functional may re-
tain the ancestral function, split the ancestral function or inter-
action networks between paralogs, or evolve specialized or novel
functions (Hughes 1994; Wapinski et al. 2007; Des Marais and
Rausher 2008; Innan and Kondrashov 2010). Retention of paral-
ogs following repeated gene duplications can lead to the forma-
tion of a complex gene family whose members have the potential
to diverge under divergent selective pressures or drift over evolu-
tionary time.

Functional studies of gene family expansion have usually fo-
cused on paralog pairs in order to simplify inferences about selec-
tive pressures on genes following amplification (Kondrashov et al.
2002; Wagner 2002; Brunet et al. 2006; Cliften et al. 2006; Guan
et al. 2007). Yeast species that have undergone whole genome

duplication or regional mutations also make studies of many
gene duplicates simultaneously convenient (Dietrich 2004; Kellis

et al. 2004; Scannell, Butler, et al. 2007; Scannell, Frank, et al. 2007;

Albertin and Marullo 2012). Studies of gene duplication demon-
strated that functional outcomes are influenced by genomic con-

text (Zhao and Boerwinkle 2002; Carreto et al. 2008; Zhu et al.
2014), gene dosage and protein complex formation (Aury et al.

2006; Veitia et al. 2008; Makino and McLysaght 2010), as well as by

gene expression level (Aury et al. 2006; Conant and Wolfe 2006).
However, the functional roles of individual paralogs from large

gene families in fungi that expanded beyond a few copies remain

largely unexplored, despite numerous developmentally and eco-
logically important gene family expansions (Brown et al. 2010;

Floudas et al. 2012; Virágh et al. 2022).
Expanded gene families are often enriched in subtelomeric

regions that are immediately adjacent to the telomeric repeats.

Subtelomeres harbor a mixture of duplicated genes and repetitive

sequences from fragmented mobile genetic elements (Corcoran
et al. 1988; Riethman 2008; Kupiec 2014). In addition to copy num-

ber variation, subtelomeric genes are characterized by a rapid ac-

cumulation of mutations that can alter their expression,
structure, or function (Brown et al. 2010). Frequent recombina-

tion, elevated mutation rates via acquisition of single nucleotide
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polymorphisms and insertions/deletions (indels), and the con-
stant processes of gene duplication and disruption contribute to
subtelomeres often being the most dynamic regions of the ge-
nome (Winzeler et al. 2003; Linardopoulou et al. 2005; Carreto et al.
2008; Kasuga et al. 2009; Anderson et al. 2015; Yue et al. 2017; Chen
et al. 2018). Importantly, gene families that reside within the sub-
telomeres are often under selection from species-specific life-
styles (Mefford 2001; Dujon et al. 2004; Kyes et al. 2007;
Linardopoulou et al. 2007; Brown et al. 2010; Chen et al. 2018; Otto
et al. 2018). For example, the MAL, MEL, and SUC genes in
Saccharomyces cerevisiae allow cells to utilize different carbon
sources (maltose, melibiose, and sucrose, respectively), and fluc-
tuate in copy number depending on the available growth sub-
strate (Brown et al. 2010; Wenger et al. 2011; Dunn et al. 2012).
Likewise, the opportunistic fungal pathogen C. glabrata encodes
cell surface proteins termed EPA genes in their subtelomeres that
facilitate adhesion to human epithelia in support of colonization
and dissemination in the host (Mundy and Cormack 2009).

The expansion of several gene families involved in virulence
traits distinguishes Candida albicans, the most clinically relevant
Candida species, from closely related yeasts. Expansion of the
ALS, SAP, and LIP gene families in C. albicans increases the avail-
able repertoire of adhesins, proteases, and lipases, respectively,
which contribute to host colonization and tissue destruction
(Magee et al. 1993; Hube et al. 2000; Hoyer 2001). The most dra-
matic gene expansion occurred within the telomere-associated
(TLO) gene family, which are present in 14 copies in the C. albicans
genome reference strain SC5314, 2 copies in the most closely re-
lated C. dubliniensis species, and a single copy within all other
Candida species (Butler et al. 2009; Jackson et al. 2009). All but 1
TLO gene are found in the subtelomeres of the eight C. albicans
chromosomes where they often reside as the ultimate or penulti-
mate gene. The 14 TLO genes can be separated into 3 architec-
tural groups (a, b, and c) based on sequence variation that
clusters toward the 30 end of the gene (Van het Hoog et al. 2007;
Anderson et al. 2012). TLO genes display high levels of sequence
similarity. TLO paralogs have �97% nucleotide identity within a
clade and 82% identity between clades when excluding indels
(Van het Hoog et al. 2007; Anderson et al. 2012).

TLO genes encode a conserved N-terminal MED2 domain that
facilitates their incorporation as stoichiometric components of
the major transcriptional regulation complex Mediator (Zhang
et al. 2012). Downstream of the MED2 domain is a gene-specific
region of variable length followed by the 30 portion of the gene
that defines 3 TLO architectural types (a/b/c, see Fig. 1d). TLOb2
resides at the syntenic locus to MED2 orthologs in other Candida
species (Jackson et al. 2009) although TLOa group members ap-
pear to have given rise to TLOc genes based on inferred muta-
tional history (Anderson et al. 2012). The single TLOb group
member contains two indels relative to TLOa group sequences,
and TLOc group members are defined by an LTR rho insertion that
introduced a stop codon and truncated the coding sequence
(Anderson et al. 2012). Recent diversification of these genes in C.
albicans has resulted in variable TLO copy numbers among clinical
isolates (Hirakawa et al. 2015), consistent with rapid gene loss/
gain during in vitro passaging (Anderson et al. 2015).

Subtelomeric gene evolution in C. albicans has not been thor-
oughly explored at the individual sequence level because of the
complexities in accurately resolving paralog gene structure and
sequences from whole genome sequencing assemblies. Here, we
obtained complete sequences of the subtelomeric TLO genes in 23

well characterized strains. TLO sequences provided evidence for
complex evolutionary histories among groups in this single gene
family. Sequenced genes conformed to 1 of the 3 previously de-
fined architectural groups (a, b, c) with the exception of a small
number of truncated open reading frames. We further identified
strong conservation of a prion-like domain (PLD) in a majority of
Tloa and Tlob sequences and 2 transmembrane regions in most
Tloc proteins. Surprisingly, phylogenetic analyses suggest that
while Tlob is monophyletic, Tloc and truncated architectures
may have emerged multiple times from the Tloa architecture.
The degree of sequence divergence among groups varied signifi-
cantly with high similarity among Tlob sequences and high diver-
sity among Tloa proteins. These evolutionary processes have
resulted in diverse TLO repertoires among strains of C. albicans
the functional consequences of which remain to be investigated.

Materials andmethods
Amplification and sequencing of individual TLO
paralogs
Candida albicans strains used in this study are listed in
Supplementary Table 4. Overnight cultures of each C. albicans
strain were grown overnight in 3 ml of liquid YPD medium on a
rotary drum at 30�C. DNA was purified from these cultures using
the MasterPure Yeast DNA Purification Kit (Epicenter/Lucigen).
Purified DNA was used to amplify each TLO gene using a centro-
meric chromosome arm specific primer (ALO36-48 and ALO60)
paired with a conserved TLO start site primer (ALO35)
(Supplementary Fig. 1). Primer sequences are listed in
Supplementary Table 5. The Accustart Taq DNA polymerase HIFI
kit (Quantabio, USA) was used according to the manufacture’s in-
struction with the following cycling conditions: 1 cycle (3 min at
94�C), 35 cycles (20 s at 94�C, 30 s at 55�C, 1 min at 68�C), and
1 cycle (1 min at 68�C). Amplified products were examined on
agarose gels by electrophoresis to confirm single, clean ampli-
cons. Single-product amplification reactions were then purified
using a magnetic bead approach (Berensmeier 2006). Purified
DNA was sent for Sanger sequencing at the Genomics Shared
Resource within the Ohio State University Comprehensive Cancer
Center.

Sequencing was performed with primers oriented toward the
TLO start site (ALO49-59 and ALO61) to sequence the amplified
product (Supplementary Fig. 1). Chr4R was sequenced using the
TLO start site primer. A minimum of 2 independent sequencing
reactions were performed for each TLO amplicon. The conserved
start site primer was used to resolve any ambiguous sequence
near the start codon.

Phylogenetic reconstructions
Consensus TLO nucleotide sequences were translated into amino
acid sequences using the CUG fungal translation table (alterna-
tive yeast nuclear code—translation table 12). Sorted alignments
were built from the 189 consensus Tlo sequences using MAFFT
v.7 (Katoh and Standley 2013). Sequences were divided by group
architecture (a, b, c); where TLOb-like sequences contained 1 large
and 1 small insertion, TLOc-like sequences were interrupted by
an LTR, and TLOa-like sequences contained neither of these
events. Domain extraction was conducted for all full length
sequences and also in isolation of the MED2 domain using
HMMER v3.3.2 (Eddy 2011). ModelFinder (Kalyaanamoorthy et al.
2017) within IQ-TREE (Nguyen et al. 2015) was used for
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evolutionary model testing. Maximum likelihood phylogenies
were run with 1000 bootstrap replicates within IQ-TREE using the
ultrafast bootstrap (UFBoot) (Hoang et al. 2018) method under the
best evolutionary model. Bootstrapped trees were then exported
as Newick trees for visualization.

Constraint analyses
Monophyletic node architectures (Supplementary Table 6) were
constructed in Mesquite v3.70 (http://www.mesquiteproject.org,
last accessed 05/01/2021). Constrained topologies generated in
IQ-TREE were compared by the Direct Computation with

(a) (b) (c)

Fig. 1. Tlo architectures across Candida albicans isolates. a) A maximum likelihood (ML) phylogeny of 189 translated TLO sequences was constructed
under the JTTDCMut þ G4 evolutionary model in IQTree. Identical sequences were collapsed into a single taxon prior to analysis. Support values are
the percentage of 1000 IQTree UFBoot method. Terminals correspond to identical sequences with color indicating Tlo architectures (Tloa, solid cyan;
Tlob, solid yellow; Tloc, solid pink; truncated, dashed red lines). b) The frequency of TLO sequences being found on each chromosome arm is indicated
as a heat map. Internal denotes TLOa34 from SC5314. c) The distribution of defined Tlos in the genome for each of the 23 C. albicans strains is indicated
as a heat map. Strains are color coded by MLST clade as described in Hirakawa et al. (2015). d) Each Tlo architecture is indicated based on the presence
or absence of sequence features color coded by group. LTR denotes long-terminal repeat and MED2 indicates a functional domain. Predicted PLD and
TMDs are indicated with grey bars. e) The relative representation of Tlo architecture is indicated for each chromosome arm as a percentage of the total
number of complete sequences. f) A whole genome phylogeny of 23 C. albicans strains. Clusters of genetically related strains are outlined in black boxes.
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Mutabilities revised JTT model (JTTDCmut) with a gamma of four
categories (Kosiol and Goldman 2005; Nguyen et al. 2015).
Statistical analysis of these constraints is reported in Table 1.

PLD identification
PrionW (Zambrano et al. 2015) was used to predict PLDs based on
an amyloid core and predicted pWALTZ score. PLAAC analysis
(Lancaster et al. 2014) was used to identify the strength to which
PLD calls conformed to the canonical yeast PLD architecture
based on hidden Markov modeling (Supplementary Fig. 4).

Identification of predicted transmembrane
domains in Tlog group members
The Protein Homology/analogY Recognition Engine V 2.0 (Phyre2)
web portal (Kelley et al. 2015) was used on “Expert Mode” to gener-
ate structural predictions for the 68 Tloc group members from C.
albicans. A FASTA file containing the 68 Tloc protein amino acid
sequences was edited to remove any gaps and non-letter charac-
ters before it was submitted to the “Batch Processing” portal of
Phyre2. Default parameters were used when applicable. Domain
regions were then mapped back to the Tloc group member
MAFFT alignment for visualization.

Data visualization
Data visualization was conducted using R version 3.6.3. Bar
charts were generated using Microsoft Excel. Newick format trees
were visualized using FigTree v1.4.4 (http://tree.bio.ed.ac.uk/soft
ware/figtree/, last accessed 08/01/2021). Sequence conservation
and consensus were visualized using Jalview (Waterhouse et al.
2009). Amino acid sequence logos were visualized using the R
package “ggseqlogo” (Wagih 2017) and colored using the default
ClustalX coloring scheme (Thompson et al. 1994).

Results
Short-read sequencing of 23 C. albicans clinical isolates failed to
accurately incorporate sequence variants into subtelomeric
genes known to be present in the resulting assemblies (Hirakawa
et al. 2015). These isolates capture much of the diversity present
in C. albicans as they originate from different geographic regions,
body sites of isolation, and a range of clades within the species
(Butler et al. 2009; Hirakawa et al. 2015; Cuomo et al. 2019). To de-
termine intraspecies variation in C. albicans subtelomeric genes,
we employed a chromosome-arm specific amplification and se-
quencing strategy that is capable of identifying any TLO gene pre-
sent on a given chromosome arm through the use of centromeric
chromosome arm-specific primers in combination with a primer
that binds to a conserved sequence at the TLO start codon
(Supplementary Fig. 1). Resolved full length sequences facilitated

characterization of gene architecture and mapping of structural
and location data to a comprehensive gene phylogeny. This en-
abled the inference of trends in TLO molecular evolution and pos-
sible key events in the diversification of TLO genes across C.
albicans.

Candida albicans has a positionally and
architecturally diverse TLO repertoire
TLO-specific amplification was performed for both subtelomeres
of all 8 C. albicans chromosomes in the 23 genetic backgrounds.
Each of the resulting 299 amplicons were Sanger sequenced bidi-
rectionally to produce 189 total full TLO gene sequences, repre-
senting between 4 and 14 products for each isolate (Fig. 1, a and
b). Consistent with the genome reference strain SC5314, the right
arm of chromosome 2 (Chr2R), Chr6R, and Chr7L did not yield
any amplification products for any strain, indicating these chro-
mosome arms do not encode TLO genes in C. albicans. All Tlo
sequences contained an intact MED2 domain and were subse-
quently sorted into 3 TLO architectural groups based on similarity
within an MAFFT alignment of the inferred protein sequences
(Fig. 1d). In total, 89 sequences conformed to the Tloa group gene
architecture, 22 sequences to the Tlob group, and 68 sequences
to the Tloc group. Conservation of specific Tlo sequences among
related strains was evident in some cases but only in a minority
of sequences (Fig. 1c). The number of amplified TLO genes nor
their relative representation among the three groups (a/b/c) cor-
related with multilocus sequence type (MLST) clade designations
(Supplementary Table 1). Additionally, nonsense mutations dis-
rupted 10 additional TLO sequences that are predicted to encode
a complete MED2 domain but very little C-terminal peptide se-
quence and, therefore, did not conform to the a/b/c group archi-
tecture.

We obtained good representation of TLO sequences for most
chromosome arms, which revealed a clear pattern of TLO gene
representation. TLOb2 genes were consistently recovered only
from ChrRR. The other chromosome arms contained either only
TLOc sequences or a mix of TLOa and TLOc genes. Extensive TLOa/
c group swapping was observed on Chr2L and Chr7R, while the
only intact loci on Chr3L, Chr3R, and Chr6L encoded TLOc group
members (Fig. 1e).

Transcription factors (TFs) containing PLDs can form phase-
separated condensates in C. albicans that regulate cell identity
(Frazer et al. 2020). We speculated similar molecular mechanisms
may regulate transcriptional activators, including Tlo proteins.
Indeed, 91 of 189 Tlos contained a previously unidentified puta-
tive PLD (Fig. 1d; Supplementary Table 2). PLDs were restricted to
Tloa and Tlob group proteins, although some Tloa and Tlob
sequences lacked a recognizable PLD (e.g. ChrRR in L26, ChrRR in
P37005; Supplementary Fig. 2).

Immunoprecipitation and mass spectrometry previously con-
firmed Tloa and Tlob proteins associate with Mediator as pre-
dicted Med2 orthologs but failed to identify Mediator-bound Tloc
proteins (Zhang et al. 2012). Scanning the Tloc sequences for un-
known motifs uncovered 2 putative transmembrane domains
(TMDs) in the C-terminal 50 amino acids (AA) in all but 2 Tloc
group members (Fig. 1d). Specifically, the Tloc sequence on
Chr4R of P78042 contained only one predicted TM region, and
none were predicted in Tloc4, a previously described Tloc trunca-
tion on Chr1R of SC5314 (Anderson et al. 2012). The 2 predicted
transmembrane helices are separated by a short 3 AA cytoplas-
mic loop that would place most of the Tloc protein, including the
Med2 domain, on the internal face of the mitochondrion.

Table 1. Results of constraint analyses.

Constraint P-valuea LogL

None (maximal likelihood tree) 0.693 �2983.985
Alpha monophyletic 0.015 �3054.839
Beta monophyletic 0.583 �2986.888
Gamma monophyletic 0.134 �3020.201
Beta gamma both monophyletic 0.134 �3020.201
Truncated monophyletic 0.021 �3030.799
Truncated free, architectures monophyletic 0.086 �3024.149
Group architectures each monophyletic 0.004 �3069.540

a

P-AU reported: P-value of approximately unbiased (AU) test (Shimodaira
2002). Significant differences (P-value < 0.05) between the best unconstrained
and constrained topologies are indicated by bolding.
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The MED2 domain is highly conserved across TLO
genes
The N-terminal MED2 domain defines TLO genes as Med2 homo-
logs that are incorporated as subunits of the larger Mediator com-
plex (Yin and Wang 2014; Plaschka et al. 2016). A HMMER search
for defined protein motifs recovered the conserved MED2 domain
in all 189 Tlo sequences and identified 90 homologous amino
acid positions that are present in all sequences. Maximum likeli-
hood phylogenetic analysis of the Tlo MED2 domain alignment
did not recover distinct a/b/c clades previously inferred using
structural architecture (Supplementary Fig. 2). Minimal branch
lengths separated most Tlo MED2 sequences with the major ex-
ception of the TLOs on Chr6L in P37037 and P78048. These 2
MED2 sequences are strongly separated from the rest of the phy-
logeny by amino acid variants that begin two-thirds of the way
through the MED2 domain (Chr6L in P37037; 71–90 AA, Chr6L in
P78048; 62–90 AA).

Monophyly is only strongly supported for the
TLOb architecture
We built an MAFFT alignment of the homologous sequences
among all TLO genes and further refined the output manually.
Application of maximum likelihood to infer evolutionary rela-
tionships among architectures supported monophyly of Tlob
genes, whereas Tloa and Tloc sequences were intermixed
(Fig. 1a). To test for monophyly of each Tlo architecture, con-
straint analyses (Table 1) were performed on each Tlo architec-
ture independently and in all possible pairings. Constrained
analyses that forced each individual architecture into a single
node using the full dataset rejected the monophyly of the Tloa
[approximately unbiased (AU) test; P ¼ 0.015) and truncated
architectures (AU test; P ¼ 0.021). Monophyly was not rejected for
the Tlob and Tloc architectures using the full dataset, but mono-
phyly of Tloc was rejected in an alignment that excluded the
truncated sequences (AU test; P¼ 2.09E�3). Assuming that TLOb
is the ancestral architecture based on shared synteny between
the ChrRR locus and chromosomes encoding MED2 homologs in
other Candida species (Jackson et al. 2009), these results suggest
that TLOa genes likely arose more than once by duplication of
TLOb, and TLOc architectures arose from TLOa, possibly only once
and subsequently expanded. Truncated architectures arose from
both TLOa and TLOc sequences.

TLOb sequence architectures are conserved
Twenty-two sequences were identified as TLOb architectures
based, in large part, on the presence of 2 defining indels toward
the 30 end of the gene when compared with other TLO architec-
tures. Analysis of 189 Tlob homologous positions revealed rela-
tively little divergence among these sequences (Fig. 2a). Only 3
positions encoded amino acid variants in the full alignment of all
22 Tlob sequences (AA 117, 152, and 298 in the full alignment).
Most variation in Tlob sequences involved expansion or contrac-
tion of one of the defining indels rather than amino acid substitu-
tions. Sequence variants in Tlob genes clustered immediately
after the MED2 domain in the first of 2 Tlob-defining indels and
corresponded to copy number variation of a tandem repeat that
codes for a “TIDD/E” amino acid sequence (Fig. 2b). Eight Tlob
sequences contained 1 or 2 fewer “TIDD/E” amino acid repeats
compared with the SC5314 reference genome. The Tlob sequence
in isolate L26 contained a nonsense mutation at amino acid posi-
tion 209, shortening this Tlob protein by 63 AA but did not inter-
rupt either the MED2 domain or the TLOb-specific indels.

TLOa genes are highly diversified
Radiating sequence diversity was present among TLOa members

with most genes encoding a unique sequence relative to all other

group members (Fig. 3a). To identify other conserved functional

domains in Tloa genes, we inferred the consensus alignment of

all Tloa sequences. Two regions displayed high conservation in

the alignment: the N-terminal MED2 domain and a second region

covering the putative C-terminal PLD (Fig. 3b). Truncation of four

Tloa sequences by nonsense mutations occurs immediately

downstream of the predicted PLD, but these genes still clustered

with Tloa sequences.

TLOc sequences cluster around gene-specific
clades
The remaining 68 sequences in the dataset are truncated in an

identical location by a single rho LTR 30 insertion that defines the

TLOc architecture. The conserved sequence of the LTR insertion

includes the 2 predicted TMDs. Altogether, 129 homologous sites

were present in a Tloc alignment that included 90 sites in the

MED2 domain. The Tloc-only phylogeny had moderate to strong

bootstrap support at terminal nodes that contained highly simi-

lar sequences to single SC5314 Tloc genes (Fig. 4a). Removal of

two truncated TLOc sequences (TLOc4 and Chr4R in P78042) in-

creased the total number of informative sites from 129 to 156 but

did not significantly alter the phylogenetic relationships among

the Tloc sequences.
Two-thirds of the Tloc protein alignment (122/183 sites) is

identical across sequences. Although the MED2 domain was

expected to be conserved, the sequence within the Tloc-defining

rho LTR insertion was also surprisingly conserved (36/53 identical

sites, Fig. 4b). Nine of the 17 variant sites in the LTR insertion are

due to Tloc16-like sequences that encode a distinct C-terminal

nine amino acid peptide (VRYRVGLPS) with no notable similarity

to other C. albicans genes.
TLOa-like sequences remain downstream of the rho LTR inser-

tion that define the TLOc architecture (Anderson et al. 2012).

These sequences in SC5314 retain strong similarity to one an-

other and the C-terminal end of Tloa proteins (Supplementary

Fig. 3a). Inclusion of these sequences in the Tlo phylogeny did not

significantly alter the topology of the tree and interspersed place-

ment of Tloa and Tloc sequences (Supplementary Fig. 3b).

Gene disrupting mutations do not show any clear
patterns
Ten TLO genes contained ORF-disrupting mutations that signifi-

cantly truncated the coding sequence. The TLO located on ChrRL

in P60002 experienced a frameshift due to a single nucleotide in-

sertion, while nonsense mutations disrupted all other TLO genes.

Most of the genes contain a premature stop between 130 and 154

AA, shortly after the MED2 domain, where sequence conservation

immediately declines at AA92 in the alignment (Supplementary

Fig. 3). It was possible to determine the architecture prior to trun-

cation for each of these sequences, and this architecture is con-

sistent with placement in the TLO phylogeny (Fig. 1;

Supplementary Table 3). The TLOs on Chr4R in P76055, P60002,

and GC75 share a 34 amino acid C-terminal peptide with no simi-

larity to any other C. albicans protein that we hypothesize is a re-

sult of Chr4R sequence divergence following truncation.
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Discussion
Interrogation of expanded gene families often relies exclusively
on variation present in the genome reference strain without con-
sidering additional intraspecies sequence diversity and is espe-
cially true for comparison of paralogs in subtelomeric gene
families. Genetic variation in the C. albicans TLO subtelomeric
gene family among 23 clinical strains expands our understanding
of the of evolutionary processes shaping the gene repertoire dur-
ing gene family expansion. Expansion and differentiation of the
TLO family into 3 groups has resulted in distinct sequence conser-
vation outcomes, ranging from strong conservation to diversifica-
tion. Conserved segments of each TLO group alignment highlight
previously overlooked functional domains that may contribute to
functional diversification among paralogs. Together, this work
reveals the balance between gene sequence diversification and
novel functional motif conservation during subtelomeric gene
family evolution that can confer unique attributes to gene sub-
sets.

Expansion of the C. albicans TLOs likely occurred through

multiple independent events. Only the Tlob architectural group

is clearly monophyletic in C. albicans and may reflect its posi-

tion as the ancestral TLO structure. The conserved position of

TLOb2 on ChrRR and the synteny of the position with MED2

orthologs in other Candida species (Jackson et al. 2009) raises

the hypothesis that it may maintain the ancestral function. In

support of this, both TLOb2 and the syntenic Candida dublinien-

sis TLO1 contribute to filamentation (Haran et al. 2014;

Uppuluri et al. 2018). The TLOa group appears then to have

emerged multiple independent times in the C. albicans lineage

via loss of the two indels that distinguish these architectural

groups. If the TLO phylogeny is correct, it is most parsimonious

to infer that the insertion of the rho LTR into the TLOa se-

quence to produce the TLOc architecture occurred multiple

times. However, the common insertional position into TLOa by

the same retroelement type that resulted in TLOc and con-

straint analysis suggests the possibility of a single insertion
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event or this consistency could be the result of a region partic-
ularly vulnerable to disruption.

Most surprising from our analysis was that different TLO
groups within the single expanded gene family have experienced
disparate modes of sequence diversification. At one extreme,
monophyletic Tlob sequences have undergone very little se-
quence diversification despite our hypothesis that they represent
the root of the TLO expansion. At the other extreme, Tloa proteins
have undergone less constrained evolution and explore a wide
swath of sequence space (Povolotskaya and Kondrashov 2010).
This could reflect a longer amount of time for evolution to act on
individual homologs or altered selective pressures on this gene
architecture, which may no longer maintain the ancestral func-
tion. Lastly, the TLOc sequences fall between these opposing
extremes with clearly delineated clades that correspond to the
TLOc genes present in SC5314. The most parsimonious explana-
tion for the TLOc architecture is that TLOc paralogs have come
under purifying selection following sequence diversification that
occurred early in the diversification of C. albicans since many
unrelated strains retain the same sequence in the same locus.
That 2 paralogous genes, the ancestral TLOa and TLOb have such
different diversification patterns highlights the potential of gene
family diversification to facilitate species adaptation. Organismal
benefit may be derived from the alternative protein–protein inter-
actions and transcriptional states conferred by incorporation of

unique TLO structures and sequences into the transcriptional
regulatory complex Mediator. Formation of alternate regulons by
production of different Mediator types may operate as a bet hedg-
ing mechanism in the same cell or among cells in a population.
Indeed, a vast excess of Tlo to Mediator in C. albicans (Zhang et al.
2012; Haran et al. 2014; Liu et al. 2016) could allow TLO genes to
take unconstrained or additional evolutionary strategies inde-
pendent of their orthologous role as Mediator components.

The molecular role of a PLD in regulating availability of
Mediator subunits has emerged as a common post-
transcriptional regulatory mechanism (Zhu et al. 2015; Batlle et al.
2021). The PLD predicted in the majority of TLOa and TLOb paral-
ogs contains a characteristic amyloid core required for phase
transition of master regulators that define cell states in eukary-
otic species (Hnisz et al. 2017). Recent work demonstrated similar
mechanisms regulate C. albicans TFs that govern transition be-
tween the white and opaque cell states (Frazer et al. 2020). Given
that TLOa and TLOb sequences function interchangeably as the
Med2 subunit of Mediator (Zhang et al. 2012, 2013), it is tempting
to speculate that Tlos form liquid-like droplets to sequester ex-
cess Tlo from Mediator or with Mediator itself. Sequestration of
Tlo may alter general transcriptional activity of Mediator or
change the patterns of RNA Polymerase II (PolII) recruitment to
promoters by increasing association of Mediator with a subset of
available Tlos (Haran et al. 2014).
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Alignment of the Tloc revealed the strong conservation over
the LTR insertion that defines this TLO group. Conservation of
this insertion indicated an embedded functional domain that led
to the identification of TMDs that may anchor Tloc proteins in
the outer mitochondrial membrane or internally in cristae. How
their putative membrane association contributes to their as-
cribed function in Mediator is unclear since this complex is
expected to require free diffusion and may suggest a

mitochondrial function completely independent of its canonical
role in Mediator (Mamouei et al. 2021).

Truncation of 10 genes by nonsense mutations appears to
have resulted in MED2 domains with little downstream sequence.
MED2 homologs in ascomycetes tend to contain an N-terminal
MED2 domain followed by an extended C-terminal tail. Yet, the
Med29 metazoan counterpart to fungal Med2 lacks the C-termi-
nal extension in its role in the Mediator tail (Rengachari et al.
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2021). Retention of the MED2 domain should allow association
with Mediator, but how this affects recruitment of PolII and gene
expression when lacking the C-terminal end to interact with TFs
is unclear.

This investigation reinforced previous work showing frequent
“movement” of TLO paralogs between chromosome arms
(Anderson et al. 2015). Interestingly, the chromosome arms con-
taining TLOa group sequences also always contain TLOc sequen-
ces in other isolates, suggesting that the more recently emerged
TLOc genes may be more flexible in occupying various chromo-
somal position compared with TLOa genes. This is consistent
with the unidirectional invasion and replacement of TLOa by
TLOc genes during passaging experiments with SC5314 (Anderson
et al. 2015). While an eventual complete replacement of TLOa
group members by TLOc genes may be expected in this frame-
work, a divergent function of TLOc genes from TLOa paralogs may
restrict their abundance among the TLO repertoire. Lastly, the
placement of TLOb is consistently on ChrRR in each sequenced
isolate may have resulted from the absence of a telomere recom-
bination element (TRE) adjacent to TLOb2, previously noted in
SC5314 (Freire-Benéitez et al. 2016). Disruption of a TRE reduced
rates of loss of heterozygosity on single chromosome arms and
may similarly reduce interchromosomal recombination and gene
“movement” to other chromosome arms when absent.

Altogether, this work demonstrates that subtelomeric gene
family diversity is likely significantly underrepresented when us-
ing a single genome reference strain for eukaryotic species. As a
result, current perspectives of genome evolution in functional
subtelomeric sequences may be incomplete or skewed based on
the limited data available in a single isolate. As seen for C. albi-
cans TLO genes, expansion to include a strain collection revealed
sequence diversification and the evolutionary histories of individ-
ual or groups of genes that were otherwise hidden.
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