

1 **Development of a β -cyclodextrin-chitosan polymer as active coating for**
2 **cellulosic surfaces and capturing of microcystin-LR**

3 Diego Gomez-Maldonado ^a, Ilari Filpponen ^b, Iris B. Vega Erramuspe ^a, Leena-Sisko
4 Johansson ^c, María Fernanda Mori ^d, Ramapuram Jayachandra Babu ^e, Matthew N. Waters ^f,
5 Maria S. Peresin ^{a *}

6 ^a Forest Products Development Center; College of Forestry, Wildlife and Environment,
7 Auburn University. 602 Duncan Drive, 36849, Auburn, Alabama, USA

8 ^b Department of Chemical Engineering, Alabama Center for Paper and Bioresource
9 Engineering (AC-PABE), Auburn University, Auburn, Alabama 36849, USA

10 ^c Department of Bioprocesses and Biosystems, School of Chemical Engineering, Aalto
11 University, Aalto FI-00076, Finland

12 ^d Instituto de Investigaciones en Catálisis y Petroquímica, CONICET, Facultad de Ingeniería
13 Química, Universidad Nacional del Litoral, Santiago del Estero 2829, S3000AOM Santa Fe,
14 Argentina

15 ^e Harrison School of Pharmacy, Auburn University, Auburn, AL 36849, United States

16 ^f Department of Crop, Soil and Environmental Sciences, Auburn University, Auburn,
17 Alabama 36849, USA

18

19 *E-mail address: soledad.peresin@auburn.edu

20

21 **Statistical Summary:** This article has 10053 word, 8 Figures and 1 Table. There is also 1 Table and 2 Figures
22 as supplementary information.

23 **Abstract**

24 In the search for more environmentally friendly adsorbent materials, the use of polysaccharides results
25 attractive. Especially, as they can be used as coatings to add functionality to common materials as a new avenue
26 to explore. Their inherent tendency to adsorb into each other is valuable as it adds a variety of functional groups
27 on the outmost surface layer. Our project focuses on the pre-modification of the bio-polymer chitosan (Ch) with
28 a 2,2,6,6-Tetramethylpiperidine-1-oxyl (TEMPO) oxidized β -cyclodextrin (Ch-TOCD), which was then
29 adsorbed onto the cellulose nanofibrils (CNF) surface. Furthermore, the mechanism driving the adsorption of
30 the modified chitosan onto the cellulose backbone was studied by using three different Ch-TOCD conjugates
31 possessing different degrees of substitutions. This was conducted to evaluate whether the adsorption was guided
32 by the change of the available electrostatic interactions between the amino (Ch) and the residual carboxyl groups
33 of cellulose or if the adsorption was driven by the dispersive forces of the hydroxyl groups from both
34 polysaccharides. Finally, to assess the viability of the added hydrophobic cavities (Ch-TOCD conjugate), the
35 capture of an amphiphatic toxin categorized as a monitored pollutant (microcystin-LR) was followed by Quartz
36 Crystal Microbalance with Dissipation monitoring (QCM-D) on a surface level and by High-performance liquid

37 chromatography (HPLC) when the Ch-TOCD coating was applied in CNF beads. Results showed that the
38 adsorption of Ch-TOCD was accomplished at similar levels independent of the degree of substitution. The
39 highest adsorbed amounts of microcystin-LR were 20.5 mg/g on the model coated CNF surface, and 2.36 mg/g
40 on the CNF coated beads. The successful coating of two nanocellulose systems and the positive adsorption of
41 the microcystin suggest a broad-scale application of this bio-based, low energy input coating in high-end fields
42 such as drug delivery, textile, and water restoration.

43 **Keywords:** *Active coatings, model surfaces, cellulose beads, water remediation, physical*
44 *adsorption, green chemistry.*

45 **1. Introduction**

46 Active coatings are a novel approach to modifying surfaces by adding a specific functionality
47 to existing materials without disrupting their bulk composition and modifying the
48 interactions of the surface-medium interphase[1]. This added functionality can provide
49 catalytic power to the material [2,3], stabilize it from oxidation [4], moisture [4–6], heat [7],
50 or UV exposure [6,8]; or increase adhesion and bonding of other molecules [8–10] or cells
51 [11,12]. It is an enhanced adsorption of the molecules that is needed when looking into water
52 treatment, as the capacity of the material to remove pollutants is linked to its surface
53 interaction with the water and the different pollutants [13–17]. Therefore, a variety of surface
54 interactions is preferred when developing new water adsorbents. These range from
55 electrostatic charges [18,19] to hydrophobic effects [20,21], which drive most pollutants
56 capturing onto the sorbent surfaces.

57 The development of an active coatings could enhance the activity of natural and low-cost
58 materials, like cellulose-based filters, for applications as water treatment. Moreover, this
59 without the need for complex processing methods to develop scaffolds, filters, or other
60 polymers. For this, the intrinsic affinity of β -linked polysaccharides could be easily exploited
61 as they possess the capacity to irreversibly adsorb similar glucans – such as cellulose – onto
62 their surface via dispersive forces [22,23]. Thus, cellulose fibers can be used as scaffolds
63 after forming larger and more complex structures, like yarns, aerogels, textiles, and more
64 [24–27]. Among the available polysaccharides to develop the coating, chitosan is favorable
65 as it is obtained by the partial deacetylation of chitin, which is found in exoskeletons of
66 crustaceous and fungi and known to be the second most abundant polymer in nature, after
67 cellulose [28–30]. The structure of chitosan is a linear backbone of β -(1 \rightarrow 4) 2-acetamido-2-

68 deoxy- β -D-glucose and β -(1 \rightarrow 4) 2-amino-2-deoxy- β -D-glucose with more than 65 % of the
69 deacetylated monomeric units. Because of the amino-functional groups in chitosan (with pKa
70 6.5) [31], the polymer shows a positive charge in acidic pH and brings the possibility of
71 making polyelectrolyte complexes by self-assembly with negatively charged polyelectrolytes
72 via electrostatic interactions [32].

73 Conversely, cyclodextrins are cyclic oligosaccharides formed by α -(1 \rightarrow 4) D-glucopyranose,
74 and, depending on the number of repeating units they have, are called α -cyclodextrin (6
75 monomers), β -cyclodextrin (7 monomers), or γ -cyclodextrin (8 monomers). One
76 distinguishing property of cyclodextrins is the formation of a ring that provides a cone-shaped
77 structure. This structure orients the hydroxyl groups at C2 and C3 in the wider extreme while
78 allowing hydrogen bonding between them. Meanwhile, the hydroxyl groups at C6 are placed
79 at the lower part in the exterior of the cone. This placement forms a highly hydrophobic
80 cavity that can be used to form adsorption complexes with different molecules and pollutants
81 [33]. Thus, making cyclodextrins a highly intriguing natural approach for the capture of
82 pollutants from water sources. However, the low molecular weight of these oligosaccharides
83 requires their attachment onto the surface of larger carriers to facilitate the recovery of the
84 complex (e.g., using filtration or other mechanisms such as magnetic attraction). Examples
85 of previously studied carriers for the capture of microcystin-LR are magnetic graphene [34],
86 porous silica [34], cellulose-cyclodextrin aerogels [35], and a decarboxylated PEI-coated
87 polysulfone-biomass composite fiber [37]. Furthermore, additional capturing systems have
88 been developed and tested with other target molecules; examples of these are regenerated
89 cellulose nanofibers for toluene [38], chitosan via glutaraldehyde for methyl orange [39],
90 iron oxide for heavy metals [40], multi-walled carbon nanotubes for biphenyls [41],
91 carbonaceous nanofibers for phenolphthalein [42], or simply crosslinked β -cyclodextrin-
92 based systems with larger particle size [43–45]. Unfortunately, many of these methodologies
93 involve a chemical reaction with undistinguished hydroxyl groups of cyclodextrin, thus
94 making the reaction not selective and with a high risk of blocking the active cavities. To
95 overcome this problem, selective modification can be done in C6 by green processes such as
96 TEMPO oxidation [46–48], which has recently been improved to allow neutral pH conditions
97 instead of the traditional alkaline media, which might imply chemical degradation [49,50].

98 The main advantage of the neutral TEMPO-NaClO/NaClO₂ oxidation in aqueous media is
99 that it allows the selective oxidation of the primary alcohol functional groups of β -
100 cyclodextrin to carboxylic functional groups under mild conditions, which in turn allows the
101 preparation of TEMPO-mediated β -cyclodextrin (TOCD) with low degradation rates. This
102 further allows us to use chemistry such as *N*-ethyl-*N'*-(3-(dimethylamino)propyl)
103 carbodiimide (EDC) and *N*-hydroxy succinimide (NHS) assisted coupling reactions. The
104 EDC/NHS activation approach can be used to bind the carboxyl-containing TOCD to other
105 compounds that contain amino groups such as chitosan [51–53].

106 As mentioned above, chitosan possesses amino functional groups that can be used as active
107 sites for crosslinking with other molecules that have carboxyl groups *via* EDC/NHS reaction
108 or similar chemistry. For example, Jiang *et al.* [39] used maleic anhydride and EDC to link
109 cyclodextrin to chitosan and form a network with the chitosan molecules. Similarly,
110 glutaraldehyde can be used to immobilize CD to chitosan before anchoring it to graphene, as
111 described by Li *et al.* [54]. Nevertheless, in both approaches, the orientation of the CD or the
112 use of only the amino groups is not favored. Therefore, a pretreatment such as TEMPO-
113 mediated oxidation of CD together with selective coupling chemistry could improve the
114 orientation of CD.

115 The modification of chitosan with TEMPO-oxidized β -cyclodextrin was previously done on
116 a chitosan precoated cellulose yarn [50]. However, the present work aims to modify the
117 homogenous solution of chitosan with TEMPO-oxidized β -cyclodextrin in different molar
118 ratios (Ch/TOCD 1:2, 1:1, and 3:1) and measure the resulting conjugates adsorption onto the
119 surface of cellulose nanofibrils (CNF). This will allow the comparison between the
120 electrostatic interactions and van der Waals forces in the self-assembly. Furthermore, the
121 developed system is used to capture microcystin-LR from an aqueous solution to mimic an
122 active coating material that could be used for the environmental water treatment.

123 Microcystin-LR is a toxin that impacts human health due to its ability to promote the growth
124 of tumors, predominantly in the liver [55,56]. The concentration of this toxin is increasing
125 and surpassing the upper limit established by the World Health Organization (WHO) of 1
126 $\mu\text{g/L}$ [57] in water reservoirs as a consequence of the increase in the occurrence and duration
127 of cyanobacterial blooms [58]. Microcystins are a family of toxins composed of cyclic
128 oligomers with seven amino acids, including the unique amino acid (2S,3S,8S,9S)-3-Amino-

129 9-methoxy-2,6,8-trimethyl-10-phenyldeca-4,6-dienoic acid (ADDa) at position 5. The
130 difference between the microcystin variants is given by the substitutions in positions 2 and
131 4, which are leucine and arginine for the microcystin-LR [59,60]. The ADDa amino acid
132 shared by all microcystins is highly hydrophobic due to the phenyl terminal group and the
133 long unsaturated tail, making it an ideal target anchoring point on hydrophobic active sites.
134 As shown by Archimandritis *et al.* [61], β -cyclodextrin (CD) can effectively capture
135 microcystin-LR (MC), which makes it a promising molecule to assess the viability of the
136 cavities on the active coating while targeting an emerging contaminant that is accumulating
137 in water sources every day.

138 Therefore, this work aimed to generate a cyclodextrin-chitosan polymer that can form
139 complexes with microcystin-LR and which can be used as an active coating on CNF-based
140 films and hydrogels. To evaluate the adsorption capacity of the modified chitosan, three
141 different conjugates of chitosan (Ch) and TEMPO-oxidized β -cyclodextrin (TOCD) were
142 explored. Conjugates were prepared using EDC/NHS-assisted coupling chemistry with molar
143 ratios of 1:2, 1:1, and 3:1 of the aforementioned polysaccharides, this to reach Ch-TOCDs
144 possessing different degrees of substitution (DS) values. After chemical characterization, the
145 adsorption of the modified chitosan derivatives was first evaluated at the surface level by
146 Quartz Crystal Microbalance with Dissipation monitoring (QCM-D) and the capacity to
147 remove the toxin. Finally, the best performing coating was used to coat CNF-based hydrogel
148 beads and used to remove the toxin, while the capture kinetics was followed by High-
149 performance liquid chromatography (HPLC).

150 **2. Materials and methods**

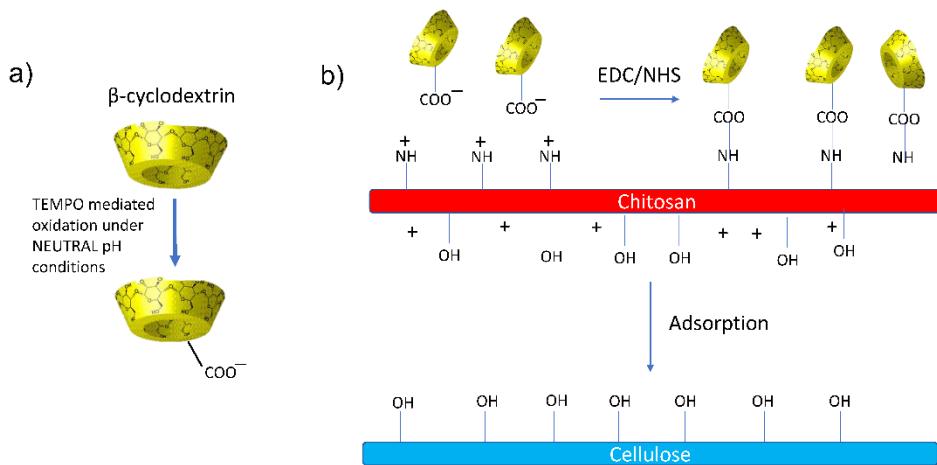
151 **2.1. Materials**

152 Bleached cellulose nanofibrils (CNF, 2.76%, pH 6.3) were produced at the Forest Products
153 Development Center at Auburn University from bleached kraft pulp starting with mixed
154 softwood kindly provided by a North American Mill (more information of this material can
155 be found at [36]). β -cyclodextrin (CD, > 95 % purity) and *N*-hydroxysuccinimide (NHS,
156 98.0% purity) were obtained from Tokyo Chemical Industry (Portland, OR, U.S.). The
157 utilized chitosan (DS_{acetylation} of 0.15, MRU 167.3 g/mol) was purchased from Alfa Aesar
158 (Haverhill, MA, U.S.), while sodium chlorite (80% purity) was obtained from BeanTown

159 Chemical (Hudson, NH, U.S.). Sodium hypochlorite (12.5 % w/w, 2 M in water) was bought
160 from VWR chemicals (Radnor, PA, U.S.). 2,2,6,6-tetramethylpiperidinoxy (TEMPO, 98 %
161 purity) was purchased from Acros Organics (Geel, Belgium) and 3-(3-
162 Dimethylaminopropil)-1-ethyl-carbodiimide hydrochloride (EDC, 99.9% purity) was
163 obtained from Chem-Impex International (Wood Dale, IL, U.S.). Meanwhile, polyethylene
164 glycol (PEG, Mw 10 000) and polyethylenimine, branched (PEI, Mw 25 000, Mn 10 000)
165 were obtained from Aldrich (San Luis, MO, U.S.). Microcystin-LR (MC, > 95 %) was
166 purchased from Cayman Chemicals (Ann Arbor, MI, U.S.); and sodium hydroxide (50 %
167 w/w) was purchased from J.T. Baker (Phillipsburg, NJ, U.S.). The water used was deionized
168 and purified with a Thermo Scientific Barnstead Nanopure (18.2 MΩ cm). Unless specified,
169 all the weights in this paper are expressed on oven dry basis.

170 **2.2. Synthesis of TEMPO oxidized β -cyclodextrin (TOCD)**

171 β -cyclodextrin was carboxylated by neutral TEMPO-NaClO-NaClO₂ oxidation in aqueous
172 media (Figure 1a) [50,62]. For this, 5 g of β -cyclodextrin was dissolved in 450 mL of sodium
173 phosphate buffer (0.05 M, pH 6.8). Then 0.08 g of TEMPO (0.1 mmol/g) and 5.65 g of
174 sodium chlorite (80 %, 10 mmol) were added to the cyclodextrin solution. Simultaneously,
175 the 2 M sodium hypochlorite was diluted to a 0.1 M in the buffer, and 23 mL of this dilution
176 was added in one step to the reactive solution to obtain a final concentration of 5 mmol
177 (1.0 mmol NaClO/g of CD). The reaction was conducted in a closed flask for 19.5 h under
178 ambient conditions and a constant stirring of 500 rpm.


179 After modification, TEMPO-oxidized β -cyclodextrin (TOCD) was purified by dialysis
180 against ultrapure water (18.2 Ω) in a 100-500 Da dialysis membrane tube, then concentrated
181 with reverse dialysis in PEG before freeze-drying.

182 **2.3. Synthesis of chitosan-cyclodextrin polymers (Ch-TOCD)**

183 The synthesis of Ch-TOCD was performed with three different molar ratios, which were
184 calculated from the functional groups (NH₂ and COOH) of the participating polysaccharides
185 (Chitosan and TEMPO-oxidized β -cyclodextrin). Molar ratios of 1:2, 1:1, and 3:1 were
186 chosen, and the syntheses were conducted (Ch/TOCD 1:2, 1:1, and 3:1) in a total volume of
187 50 mL following the same sequence of steps. A scheme of the methodology utilized is
188 presented in Figure 1b. First, the TOCD was dissolved in 1% acetic acid (125, 50, and 50 mg)
189 to obtain a final concentration of 0.05%, and then 1-ethyl-3-(3-dimethylaminopropyl)

190 carbodiimide (EDC) was added to a final concentration of 0.05 M of EDC. The resulting
191 solution was stirred before adding N-hydroxysuccinimide (NHS) to obtain a final
192 concentration of 0.2 M of NHS. Next, chitosan was added from a stock solution (1%chitosan
193 in 1% acetic acid, w/w) to obtain 25 mg, 25 mg, and 50 mg, respectively. The reaction was
194 stopped after 24 h by adding ethanolamine (61 μ L, 0.1M). Purification and concentration
195 were done by five cycles of washing by using 30 KDa Pall-membrane centrifugation tubes
196 (Macrosep Advance Centrifugal Device, Pall Corporation) at 3000 rpm for 1 h.

197

199 **Figure 1.** Scheme of the reactions used for the generation of the chitosan-g-cyclodextrin (Ch-TOCD) coating
200 (a) TEMPO mediated oxidation of the β -cyclodextrin, and (b) grafting of the TOCD to chitosan by EDC/NHS
201 chemistry and immobilization onto cellulosic materials by adsorption.

202

203 *2.4. Nanocellulose bead generation*

204 A 1.4% consistency cellulose nanofibril alkaline solution was generated, targeting a final
205 concentration of 7 % w/w NaOH and 12% w/w urea mixed at -10°C with a recirculating bath.
206 Once dissolved, the cold solution was added dropwise to 50 mL of 2 M nitric acid solution
207 in a graduated cylinder. After 10 min in the coagulation bath, the obtained beads were
208 transferred into a reservoir with ultrapure water and thoroughly washed under a continuous
209 flow of ultrapure water overnight.

210 The coating was done by immersing the neutralized beads into a 50 mM NaOAc buffer pH
211 5 containing 0.05 wt.% of the chitosan or the Ch-TOCD derivatives for 24 h, followed by
212 washing with ultrapure water until neutral pH was obtained.

213 The solid content was calculated by taking five wet beads and drying them in an aluminum
214 pan at 105 °C overnight. The dry mass was obtained, and dry content was calculated by the
215 difference between their dry and wet weight, i.e., moisture content. All measurements were
216 done by triplicates.

217 **2.5. Characterization techniques**

218 **TEMPO oxidized β -cyclodextrin (TOCD) titration**

219 Degree of oxidation (DO) was determined by pH and conductivity titration methods, based
220 on the calculations reported by da Silva Perez [63] and the standard SCAN-CM 65:02. For
221 this, TOCD suspension was first brought to pH 3 with 10 mM HCl to assure the protonation
222 of all present acid moieties. After freeze-drying, 30-40 mg of TOCD in acidic form were
223 dissolved in 15 mL of 10 mM HCl and titrated with 10 mM NaOH by adding 1 mL every
224 5 min and measuring pH and conductivity with a VWR symphony B30PCI multiprobe
225 conductometer. The degree of oxidation was then calculated by the following equation:

$$DO = 162(V2 - V1)c/[w - 36(V2 - V1)c] \quad (1)$$

226 Where V1 and V2 are the amount in L of NaOH used to reach the end points 1 and 2,
227 respectively; c is the concentration of the base in mol L⁻¹, and w is the dry weight of the
228 sample. V1 and V2 were determined by the second derivative of pH curve (or conductivity
229 curve), using the volumes where the graph crossed the origin.

230 **Fourier-transform infrared spectroscopy (FTIR)**

231 The degree of oxidation (DO) was also estimated by FTIR spectroscopy measurements.
232 Before the measurements, TOCD was treated with a 0.01 M HCl until a final pH of 3 was
233 achieved to get the compound in the acid form. This eliminated the interference between the
234 band involving the out-of-phase COO⁻ stretching vibration in the carboxylic salt, and the
235 band observed due to the presence of adsorbed water (~1640 cm⁻¹) [64]. DO was then
236 measured by calculating the ratio of the intensity of the carbonyl band (1730 cm⁻¹) to the
237 stronger cellulose backbone band (1050 cm⁻¹). Both TOCD and Ch-TOCD samples were
238 analyzed for characterization of KBr pellets on a PerkinElmer Spotlight 400 FT-IR Imaging
239 System (Massachusetts, US) with a transmission accessory and a resolution of 4 cm⁻¹. First,
240 a background spectrum was measured, which was carried out before each set of
241 measurements with the same number of scans. To lower the noise in the spectrum bands, 128

242 scans per spectrum were measured by duplicates in different areas of the sensor. Data was
243 processed with Spectrum 6 Spectroscopy Software (PerkinElmer, Massachusetts, US).

244 **X-ray Photoelectron Spectroscopy (XPS)**

245 Surface characterization of pure and modified chitosan powders was carried out using the
246 AXIS Ultra DLD Photoelectron spectrometer (Kratos Analytical, Manchester, UK), under
247 neutralization. Samples were mounted on the sample holder with UHV compatible carbon
248 tape, together with an in-situ reference of pure cellulose [65] and pre-evacuated overnight.
249 Surface elemental content was calculated from low-resolution wide scans, while C 1s, O 1s,
250 and N 1s high-resolution regional spectra were utilized for more detailed chemical
251 information. Data was collected from 2-4 locations for each sample. The data was analyzed
252 using CasaXPS software, with the C-O component of high-resolution C 1s signal at 286.7 eV
253 as the binding energy reference [66,67]. The spectra were fitted assuming Gaussian-
254 Lorentzian distribution for each peak, with a Shirley background and FWHM restrictions
255 [68].

256 **Elemental Analysis (EA)**

257 Freeze-dried samples were processed in an ECS 4010 Elemental Combustion System CHNS-
258 O from Costech Analytical technologies, Inc (Firenze, Italy), and data were analyzed with
259 the ECS60 software. Nitrogen- and Carbon content were collected and fitted into standard
260 curves with correlations of 0.99996 and 0.99998 for N and C, respectively. C/N molar ratio
261 is reported.

262 **Quartz Crystal Microbalance with Dissipation Monitoring (QCM-D) measurements**

263 The generation of the CNF surfaces, adsorption of Ch-TOCD, and capture of microcystin-
264 LR (MC) were all studied on gold-coated quartz sensors in a QSense Analyzer from Biolin
265 Scientific (Västra Frölunda, Sweden). The basic principle of the QCM-D is the following:
266 changes in frequency (Hz) of a piezoelectric sensor that has a base resonance of 5 MHz, and
267 its overtones 15, 25, 35, 45, 55 and 75 MHz are measured; the changes in the frequency
268 resonance are proportional to the change in mass on the sensor. Because the surface is
269 interacting with a flow of matter only, those changes are correlated to the mass adsorption
270 on the sensors surface [69–71]. Sauerbrey [72] determined the relationship between changes
271 in frequency and mass for rigid layers, uniformly distributed on the surface of the sensor and
272 with lower values of mass than the mass of the crystal with the following equation:

$$\Delta m = C * \Delta F * n^{-1} \quad (2)$$

273 Where the constant for 5 MHz crystals (C) is equal to -17.7 ng/cm², ΔF is the change in
274 frequency and n is the overtone number. Since most of the polymeric systems do not generate
275 a rigid layer, Sauerbrey's equation underestimates the adsorbed mass; some other models
276 have been generated to address the changes of mass, like Voigt's and Maxwell's. These
277 models take in to account the density, and the dynamic and static viscosity of the adsorbed
278 materials as well as the crystal's [73].

279 The dissipation factor ΔD is related to the viscoelastic properties of the layers formed on the
280 crystal, as it translates the relationship of energy dissipation from the sensor to the fluid and
281 the energy stored (3); it can be measured as it is inversely proportional to the decay time
282 constant (τ) and the resonant frequency (f) as it is shown in equation 4 [73].

$$D = \frac{E_{dissipated}}{2\pi E_{stored}} \quad (3)$$

$$D = \frac{1}{\pi f \tau} \quad (4)$$

283
284 If the generated film is viscous, energy is dissipated due to the oscillation of the layer; more
285 energy is lost and longer decay times are present which translates to a decrement in the D
286 factor [74]. When more energy is stored, as the surface is being rigidize, increments in the
287 D-factor will be observable [74].

288 All measurements were made at 25 °C with a constant flow of 100 µL/min on gold coated
289 crystals. First, a 0.1 % (m/v) solution of PEI was passed as anchoring solution, followed by
290 a 0.1 % (m/v) CNF solution to cover the sensor and form 2-D model films. For the chitosan-
291 cyclodextrin polymers, a concentration of 0.5 mg/mL was used in a 50 mM NaOAc buffer at
292 pH 5, and 50-mM ionic strength adjusted with NaCl; and 10 µg/mL of microcystin-LR in the
293 same buffer. Only the changes of the third overtone are presented to make the figures explicit.
294 Mass was calculated using the Broadfit model (based on the Voight model) with dissipation
295 dependency from frequency changes, this at the DFind Software from Biolin Scientific
296 (Västra Frölunda, Sweden); densities were 1030, 1200, 1770, and 1299 g L⁻¹ respectively for
297 PEI, CNF, chitosan, its derivatives, and Microcystin-LR.

298 Gold crystals were previously cleaned with NH₄OH, H₂O, H₂O₂ hot solution (at ratio of 5:1:1,
299 w/w) at 60 °C for 15 min, followed by 15 min in ultrapure water, and 1 min in piranha

300 solution (at ratio of 3:1, w/w of H₂SO₄ and H₂O₂, respectively) with abundant rinsing and 30
301 min in Novascan PSD Series Digital UV Ozone System (Iowa, US).

302 **High Performance Liquid Chromatography (HPLC)**

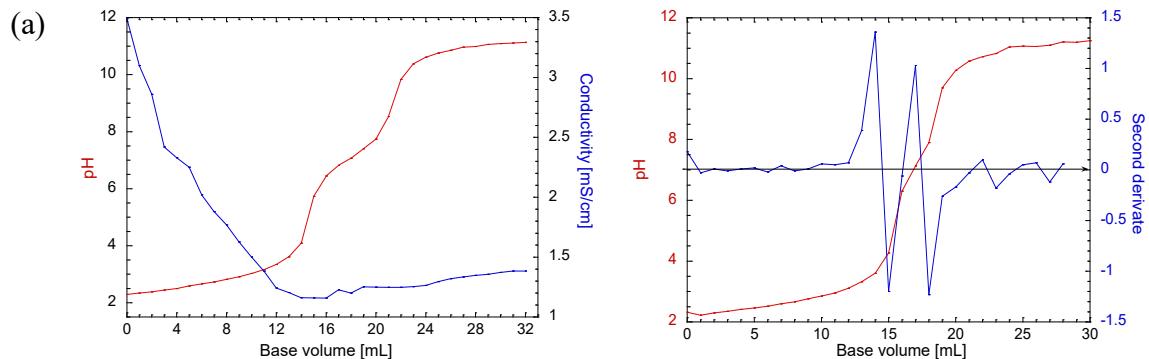
303 For the analysis of microcystin, the EPA method 544 was adapted. Briefly, ca. 200 mg of
304 swollen uncoated and coated bead were placed in 10 mL of solutions containing 6.5 µg/mL
305 at room temperature and constant stirring. 150 µL aliquots were taken at the corresponding
306 time and analyzed in a Waters Alliance HPLC (Model No. e2695, Waters Corp., Milford,
307 MA, USA) system equipped with a solvent management system 2695 and detected by a
308 photodiode array detector (PDA, 2998). The system also counts with a thermostatically
309 controlled column compartment and an autosampler. The method used was adapted from the
310 one described by Meriluoto & Codd [60]. Briefly, a C-18 column (55x4 mm) was used as
311 stationary phase, and 0.05 % trifluoroacetic acid (TFA) aqueous solution/0.05 % TFA
312 acetonitrile with linear gradient at a flow rate of 1 mL/min, and 10 µL injections using the
313 autosampler in cycles of 9 min. The retention time was 4.2 min and correlation of the samples
314 to the standard curve was of 0.9997. All experiments were done by duplicates and averaged.
315 The analysis of the data was performed using Empower® 3 software (Waters Corp., Milford,
316 MA, USA).

317 **Kinetics.**

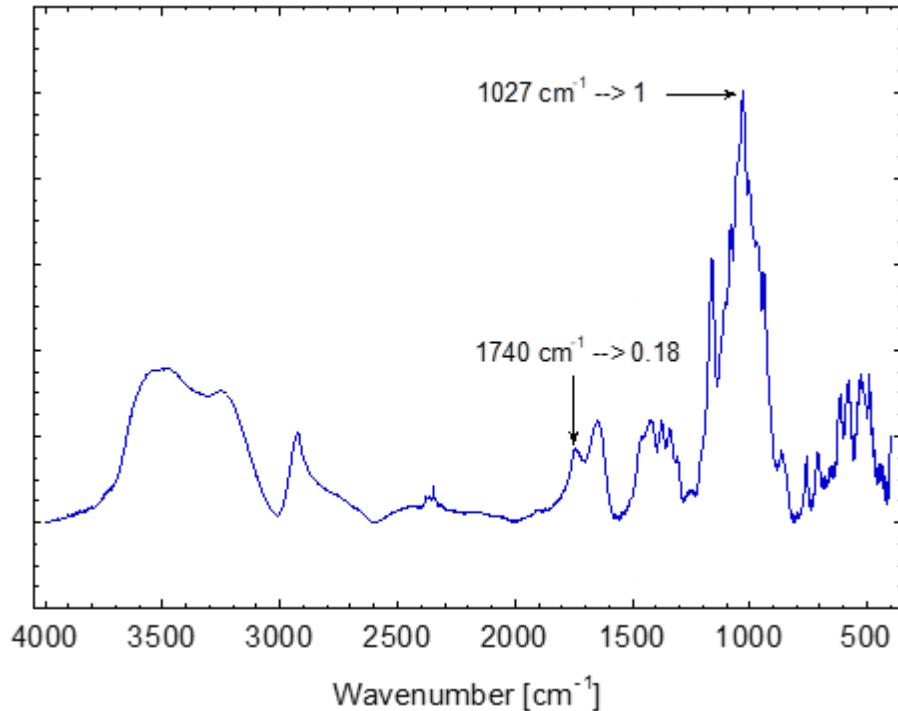
318 The fitting of the data to calculate rate constants (k₂) and adsorbed amounts in equilibrium
319 (q_e) was done for a pseudo-first order and pseudo-second order models when possible,
320 following the equations given in by Tran et al. [30]. Briefly, for pseudo-second order:

$$\frac{t}{qt} = \frac{1}{h} + \frac{t}{qe} \quad (5)$$

321 where h = k₂q_e², and k₂ being the pseudo-second order rate constant of sorption, respectively.
322 q_e is the amount of analyte adsorbed at equilibrium (mg/g), and qt is the amount of analyte
323 adsorbed at any time (mg/g).


324 **3. Results and discussion**

325 **3.1. TEMPO-mediated oxidation of β-cyclodextrin**


326 The modification of the β-cyclodextrin was confirmed by the presence of the band
327 corresponding to the carboxyl group (1740 cm⁻¹) installed during the TEMPO mediated

328 oxidation (Figure 2b and Figure S1). Likewise, the FTIR (Figure S1) did not show signals in
329 the C-H region that could correspond to aldehyde formation, suggesting that the selection of
330 the milder reaction with TEMPO at neutral pH conditions helped to retain the structure of
331 the cyclodextrin, and therefore its capacity to capture molecules [50]. Moreover, the increase
332 in the signal at 1650 cm^{-1} likely relates to the O-H bending of the installed COOH groups
333 which is in agreement with the previous studies [50,75].

334 To investigate the degree of oxidation (DO) of the β -cyclodextrin, the inflexions points found
335 in the pH titration graph presented in Figure 2a were used to identify the point in which the
336 functional groups reached a pKa point. Such inflexion points were observed between the
337 volumes 14 and 16 mL for the first point, and 20 and 24 mL in the different repetitions: giving
338 an averaged DO of 0.29. Considering that only C6 in the glucose monomer is reactive in the
339 TEMPO-mediated oxidation reaction, the maximum DO possible equals to 1 [76]. Therefore,
340 0.29 is approximate two sevenths of it, indicating the modification of at least one C6 in each
341 β -CD. This selective modification would ideally help in the further grafting of the chitosan,
342 as it would assure that C6 is the carbon interacting with the polymers, thus leaving the cavity
343 exposed to capture the pollutant and avoiding the closure of the cavity by random
344 immobilization.

(b)

345 **Figure 2.** (a) Conductivity and pH titration of TEMPO oxidized beta-cyclodextrin (left) and determination of
346 inflection points for volumes determination (right). (b) FT-IR spectrum (KBr method) of the TEMPO-mediated
347 oxidized beta-cyclodextrin showing the carbonyl band (1740 cm^{-1}) and C-O stretching (1027 cm^{-1}).

348

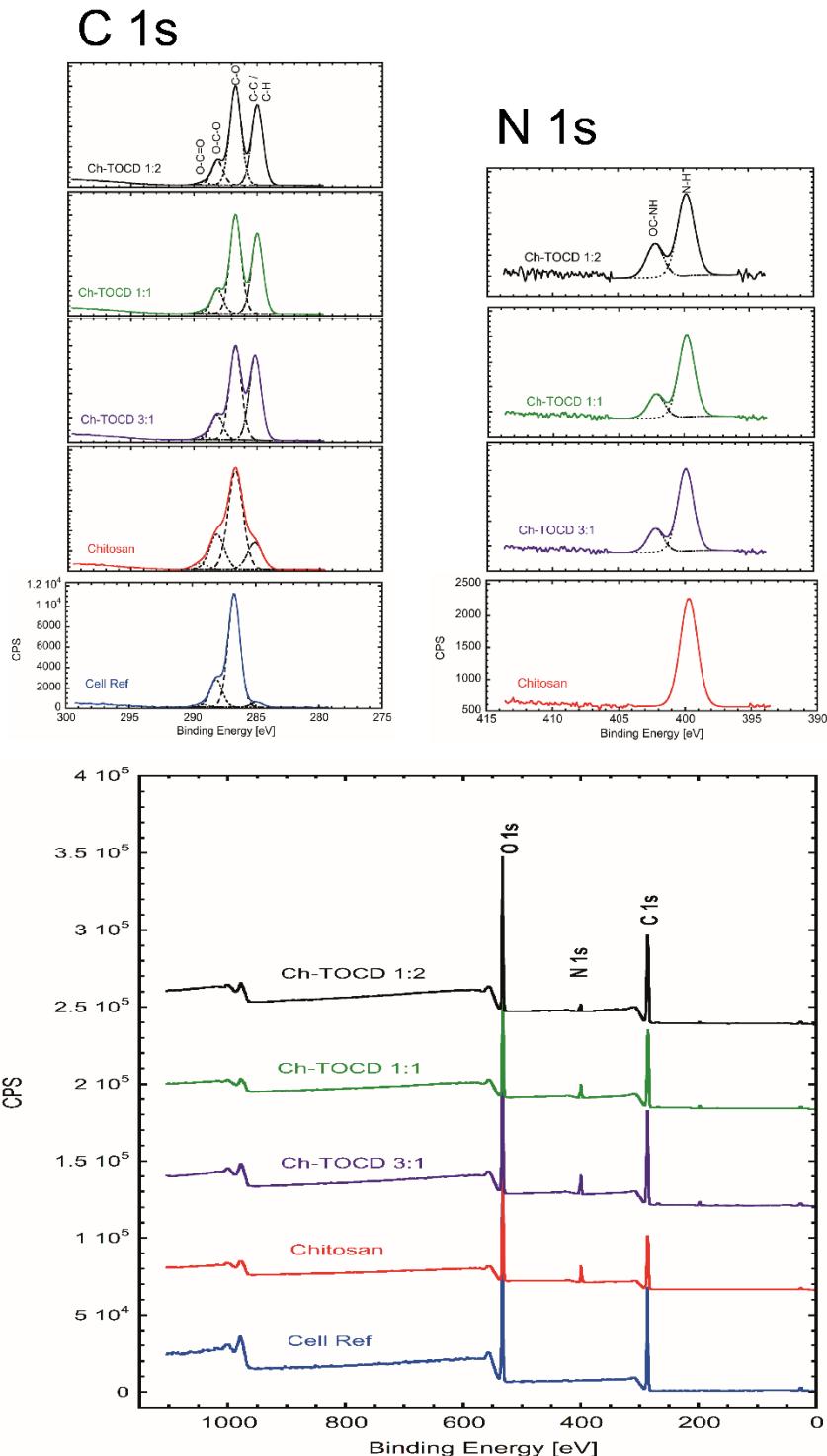
349 FTIR spectrum in Figure 2b displays a shift in the C-O stretching band, which is traditionally
350 found at 1050 cm^{-1} to 1027 cm^{-1} . This shift is suggested to be derived from the cyclic structure
351 as observed for other cyclodextrin spectra [75]. Moreover, the ratio of this band and the
352 carbonyl band (1740 cm^{-1}) after normalization and baseline correction was found to be 0.18,
353 which in turn means that approximately one to two of the seven monomeric units of β -
354 cyclodextrin are oxidized [77]. This result is in agreement with the titration results and with
355 the previously presented theory of the maximum amount of accessible monomeric units (3)
356 of β -cyclodextrin before the possible steric hindrance starts to appear [46].

357 As titration is considered more accurate method for the determination of the degree of
358 oxidation, several repetitions were performed with similar results, confirming this
359 modification even between different batches.

360 **3.2. TOCD grafting to chitosan.**

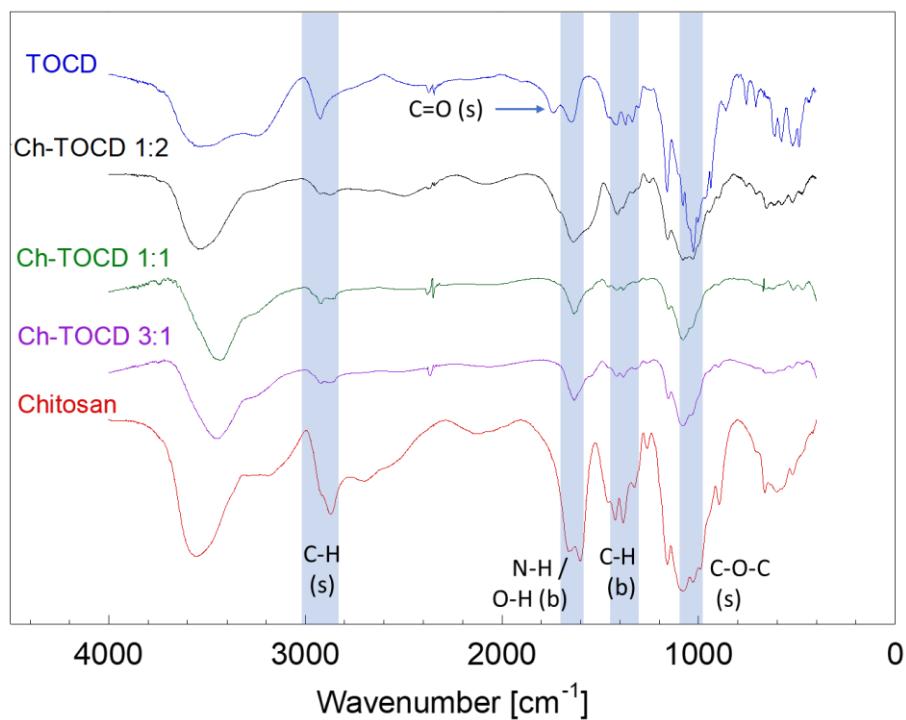
361 To assure the successful modification of chitosan, elemental analysis, FTIR, and XPS
 362 measurements were performed. In Table 1, the percentages of C and N are presented as well
 363 as the C:N ratio, which was used to calculate the degree of substitution (DS) values for
 364 chitosan and Ch-TOCD conjugates. It is worth mentioning that the maximum DS for the
 365 conjugates is 0.85 as the deacetylation degree of chitosan is 0.85. Ch-TOCD 1:2 displays the
 366 highest DS of 0.57, while the Ch-TOCD 1:1 and Ch-TOCD 3:1 have similar DS values of
 367 0.28 and 0.30, respectively. The similarity of the DS of the Ch-TOCD 3:1 and 1:1 could be
 368 related to the lower concentration (in relation to Ch) of TOCD used, which could have
 369 hindered the coupling efficiency.

370


371 **Table 1.** Elemental Analysis of Chitosan derivatives and Degree of substitution estimation.

	%C	%N	C/N	DS
Chitosan	40.38	7.35	6.41 ± 0.01	0.03
Ch-TOCD 3:1 (NH ₂ : COOH)	39.91	5.95	7.81 ± 0.1	0.30
Ch-TOCD 1:1 (NH ₂ : COOH)	40.03	6.27	7.44 ± 0.3	0.28
Ch-TOCD 1:2 (NH ₂ : COOH)	40.05	5.22	8.95 ± 0.4	0.57

372

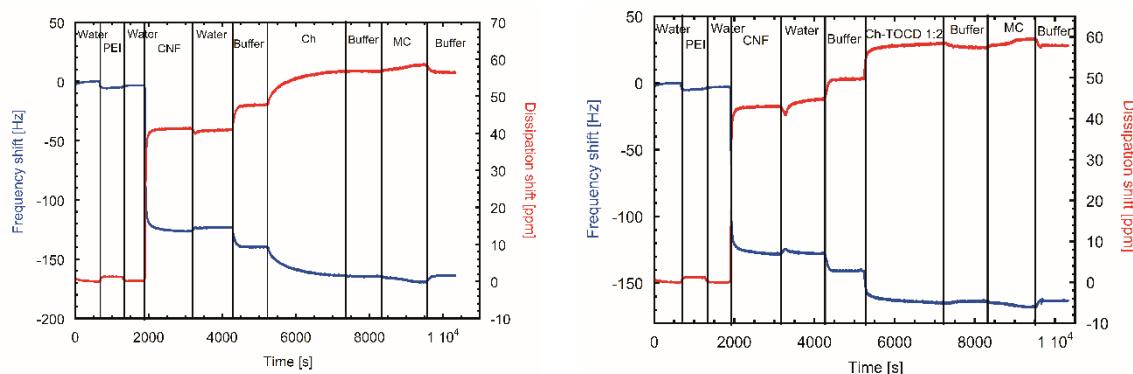

373 XPS was used to verify the modification of amine groups of the chitosan. The results of the
 374 wide energy region spectra, the high-resolution C1 and N1 are shown in Figure 3 and their
 375 atomic concentration percentages, carbon/nitrogen (C/N) ratio, and signal locations are
 376 summarized in Table S1 (Please see SI). Overall, three signals were present in the modified
 377 materials, the one corresponding to carbon centered at 286.7 eV, a nitrogen signal centered
 378 at 401 eV, and the oxygen centered at 533 eV. When the percentage of the elements was
 379 calculated, the first indication of the modification was the shift from the original 60.0% C of
 380 the chitosan. In the case of the Ch-TOCD 3:1, the C decreased to 58.3%, while the other 2
 381 conjugates (Ch-TOCD 1:1 and Ch-TOCD 1:2) showed increases of 68.0% and 67.8%,
 382 respectively. Conversely, the N% decreased as the content of cyclodextrin increased, from
 383 7.7% of the pure chitosan to 7.1% for the Ch-TOCD 3:1, 6.3% for Ch-TOCD 1:1, and as low
 384 as 3.0% for Ch-TOCD 1:2. It should be noted here that the above trend has been seen in other
 385 systems using EDC/NHS chemistry for crosslinking [78].

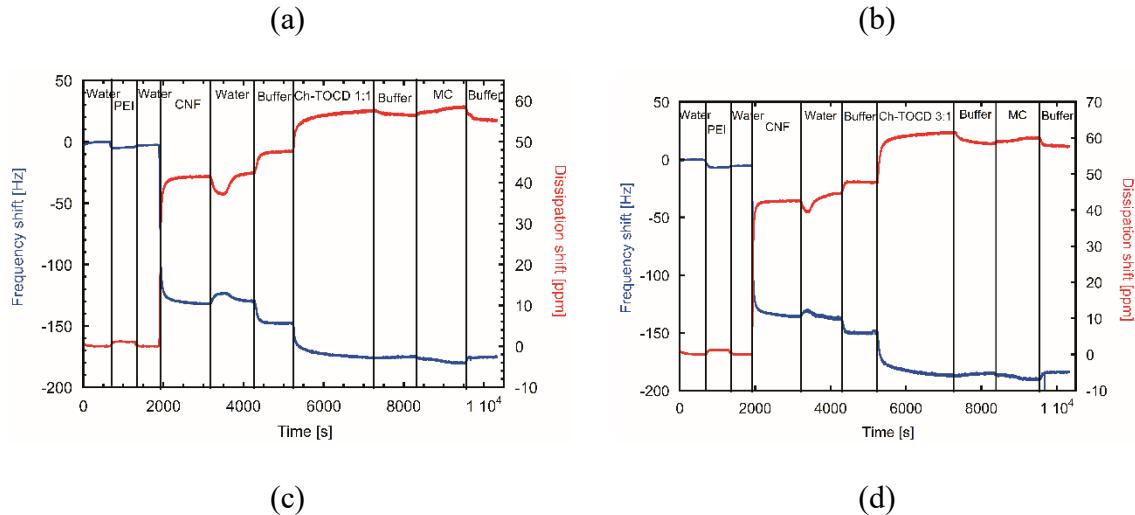
386 The close observation of the carbon in the high-resolution plots revealed that the carbon
387 signal was deconvoluted into 4 clear peaks. The C-H and C-C show at 285 ± 0.2 eV with a
388 slight shift to higher energy when the C-N was present [65]. An increase of signal can be
389 mainly observed for the pure chitosan when compared to the cellulose reference and for the
390 conjugates as new C-C and C-H are added as the amount of cyclodextrin increases. However,
391 the C-N signal is traditionally located at 286.1 ± 0.1 eV [79], which overlaps with the C-O
392 signal when the nitrogen becomes more surrounded by oxygen as is the case while the amount
393 of cyclodextrin is increased. Therefore, at 286.7 eV the C-O peak was observed with a more
394 defined peak as the number of crosslinking increased. The signal related to O-C-O was found
395 at 288.1 ± 0.1 eV, and the signal corresponding to O-C=O was located at 289.1 ± 0.05 eV.
396 Meanwhile, the high-resolution N1s plot showed two define signals, one at 399.8 ± 0.1 eV
397 from the unmodified amine groups [80] and the second for formed OC-NH bonds at $402.1 \pm$
398 0.1 eV [78,81]. Here, the Ch-TOCD 1:2 presented lower relative values of N% while
399 compared with the other two conjugates, suggesting that the additional C% in the sample can
400 be attributed to the presence of the cyclodextrins. Moreover, when the rations of the coupled
401 nitrogen (OC-NH) against the amino groups (N-H), are compared, a larger contribution of N
402 species is seen for the Ch-TOCD 1:2 than for the other two conjugates (Table S1).
403 To get a better perspective of the modification, the C/N ratio (Table S1) was also calculated
404 similarly to the elemental analysis presented above (Table 1). There a greater difference
405 between the derivatives was calculated, with the Ch-TOCD 1:2 having 2.1x and 2.8x higher
406 ratios than the 1:1 and 1:3, respectively, and 2.9x higher that the pure chitosan. This further
407 confirms the higher presence of cyclodextrin -and their C- for the 1:2 derivative, which is
408 also present and exposed in generated surfaces and should be available for the generation of
409 inclusion complexes.

414 Furthermore, FTIR spectra was obtained for all the different conjugates (Figure 4). It should
 415 be noted here that the carbonyl band at 1740 cm^{-1} is clearly visible for the TOCD, whereas
 416 the conjugates do not possess such a band. This can be explained by the formation of the
 417 amide bonds between the carboxyl groups of TOCD and the amine groups of chitosan, which
 418 should reduce the carbonyl band originating from protonated carboxylic acid. Moreover, the
 419 NH bending band of derivatives was decreased while compared to that of the chitosan. This
 420 is likely due to the overlapping of the signal from the newly formed -CONH- linkages at the
 421 bands around 1645 to 1550 cm^{-1} [78]. Other changes can be seen in the bands related to the
 422 CH bonding, which may be explained by the presence of a high number of such bonds and
 423 the differences of the mobility between the polymer chains. Finally, it is worth mentioning
 424 that the band used to normalize the spectra was 1079 cm^{-1} for chitosan and all the derivatives,
 425 while for TOCD, C-O-C a band at 1027 cm^{-1} was used. However, the spectrum for Ch-TOCD
 426 2:1 displayed nearly the same intensity in both bands, indicating a higher content of TOCD.
 427 The overlapping of the NH, OH-C=O, and HN-C=O between 1700 - 1500 cm^{-1} , also confirms
 428 a higher degree of modification in the Ch-TOCD 1:2.

429

430
 431 **Figure 4.** FTIR spectra comparison of the chitosan derivatives and the pristine materials.
 432

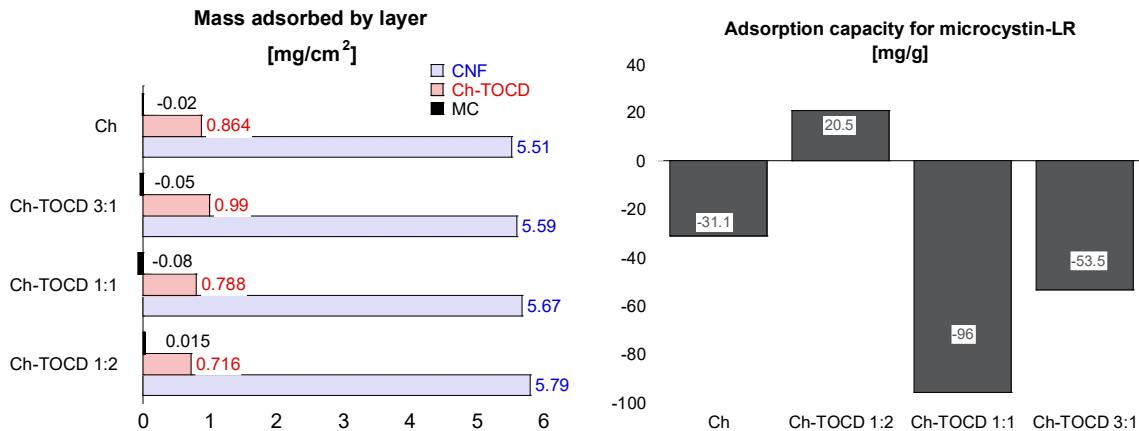

433 **3.3. Adsorption of Ch-TOCD onto CNF and microcystin-LR capture on the model
434 surface.**


435 The QCM-D sensograms for the formation of the CNF surface, the adsorption of the
436 materials, and the capturing of microcystin-LR in saline conditions are shown in Figure 5.
437 All sensograms have a reproducible frequency shift of – 5.08 and -124.50 Hz and dissipation
438 shift of 1.15 and 43.17 ppm for the adsorption of both PEI and CNF.

439 The adsorption of the Ch and Ch-TOCDs onto the CNF surface in the 50 mM buffer medium
440 revealed frequency shifts of -24.71 ± 0.04 , -22.76 ± 0.07 , -27.13 ± 0.05 , and -35.56 ± 0.16
441 Hz for Ch, Ch-TOCD 1:2, Ch-TOCD 1:1, and Ch-TOCD 3:1, respectively. It is noteworthy
442 that the total adsorbed mass does not seem to correlate with the DS value as the unmodified
443 chitosan had adsorption level comparable to that of the chitosan-cyclodextrin DS 0.57.

444 While the MC-LR was introduced onto the aforementioned surfaces, a frequency decrease of
445 ca. 5 Hz was observed for the Ch-TOCD 1:2, Ch-TOCD 1:1 and Ch-TOCD 3:1. The
446 adsorption of MC-LR onto Ch surface resulted in a frequency decrease of 4 Hz. However, a
447 buffer rinsing was found to release the mass from the surfaces as a decrease in dissipation
448 and an increase in frequency were observed for all the systems. In fact, the final dissipation
449 values of Ch, Ch-TOCD 1:1 and Ch-TOCD 3:1 were found to be below the initial level of
450 MC-LR adsorption. Conversely, the surface containing Ch-TOCD 2:1 also showed
451 desorption, but with the final dissipation value remaining above the initial adsorption of MC-
452 LR. Observed frequency and dissipation shifts can be attributed to the desorption of
453 previously bound salts and water, rather than the interactions of polysaccharides with the
454 MC-LR.

455


456 **Figure 5.** QCM-D sensograms of surface generation of CNF with chitosan and Ch-TOCD conjugates, followed
457 by the adsorption of microcystin on 50 mM NaOAc buffer. Chitosan surface (a), Chitosan-TOCD molar ratio
458 1:2 (b), 1:1 (c), and 3:1 (d).

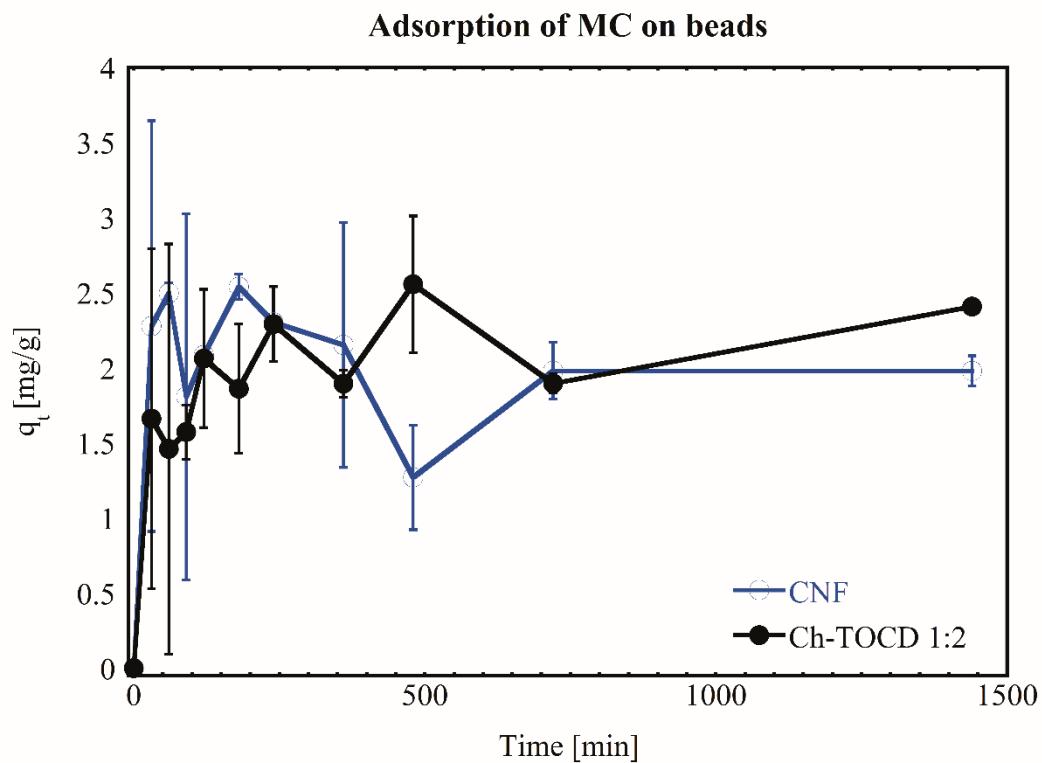
459

460 The corresponding adsorbed masses were calculated by fitting the QCM-D data into the
461 BroadFit model and the obtained results are shown in Figure 6. It can be seen that the
462 adsorbed masses of Chitosan, Ch-TOCD 1:1 and Ch-TOCD 3:1 onto the CNF surface are
463 slightly higher than that of the Ch-TOCD 1:2. This may be partially explained by the number
464 of unconjugated amino groups available for hydrogen bonding and electrostatic interaction
465 with the CNF as well as by the different solubility of the Ch-TOCD conjugates in water, i.e.,
466 the larger presence of cyclodextrin (higher DS, Ch-TOCD 1:2) increased the water solubility
467 of the conjugate, and therefore its adsorption to the surface is less favored [82]. However,
468 the adsorption behavior of the rest of the polymers did not follow the correlation between the
469 number of unconjugated amino groups and the electrostatic driven adsorption. These results
470 indicate that the combined effect of H-bonding between β -(1 \rightarrow 4) polysaccharides and the
471 preferent entropic behavior - the exchange of bound water for the less soluble polymers – are
472 the main driving mechanisms for the adsorption [83].

473 Positive MC-LR adsorption was only observed in the case of the surface coated with Ch-
474 TOCD 1:2. However, as previously suggested, frequency values returned to the original ones
475 before the MC adsorption while positive changes in dissipation were present after rinsing,
476 which indicates swelling. This suggests that the changes observed in adsorbed mass are most

477 likely a tradeoff between toxin adsorption and loss of salts and release of water molecules.
 478 Adsorption capacity was estimated to be 20.5 mg/g for the Ch-TOCD 1:2 coated surface.
 479

480 **Figure 6.** Mass adsorbed onto the PEI surface represented as layers of each individual component (left), and
 481 total adsorbed mass of microcystin on chitosan and Ch-TOCD surfaces (right).

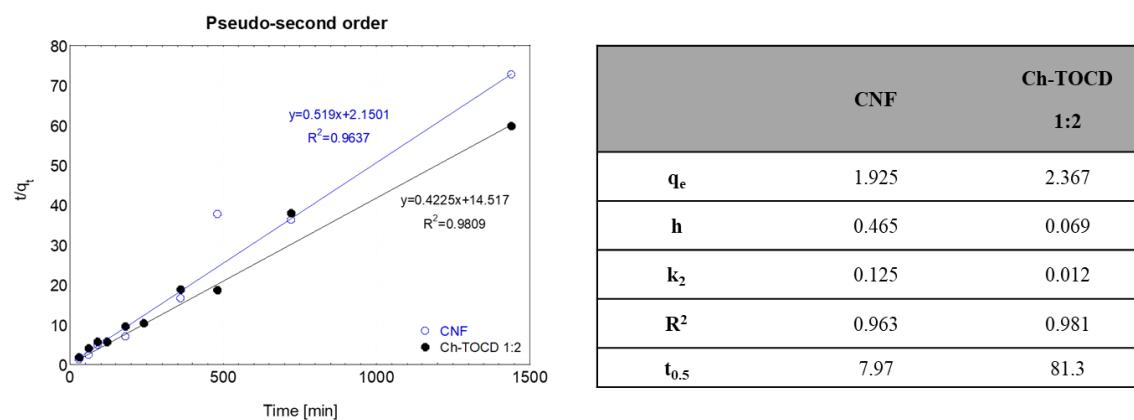

482

483 *3.4. Adsorption of Ch-TOCD onto CNF beads and microcystin-LR capture on 3-D
 484 environment.*

485 MC-LR adsorption was also investigated by using a 3-D model comprising CNF beads which
 486 were produced by dissolving the lignocellulosic material in the sodium/urea solvent system
 487 followed by its regeneration in nitric acid media [84–86]. In this work, a mechanically
 488 produced bleached softwood nanocellulose was used as a starting material. It should be noted
 489 here that beads of similar size, shape, and structure as those produced by using dissolving
 490 pulp were obtained [87]. Figure S1a indicates the successful adsorption/coating of the
 491 TOCD-modified chitosan on the CNF beads as the solid content is increasing from a $2.6 \pm$
 492 0.3% (uncoated CNF) to a maximum of $3.3 \pm 0.2\%$ (coated with the Ch-TOCD 1:2). The
 493 coating process was also monitored by the elemental analysis (Figure S2b). The carbon
 494 content decreased from 55% for the CNF beads to around 39% for the coated beads; however,
 495 the N% was between 0.12 and 0.15% for the different coated beads, showing no clear trend
 496 as the DS of the coating changed. Finally, FTIR spectra of the coated and uncoated systems
 497 were not conclusive regarding groups containing nitrogen, for coated and uncoated CNF.
 498 Contrary to what it was observed with the coated CNF, in the case of TOCD with higher

499 content of TOCD, a clear band of unmodified carboxyl groups was observed around 1750
500 cm^{-1} , and the stretching of the free C-H of the cyclodextrin around 2900 cm^{-1} (Figure S2c).
501 Based on the previous results, the CNF beads coated with Ch-TOCD 1:2 was selected as a
502 matrix to evaluate the MC-LR adsorption which was followed by HPLC analysis. As can be
503 seen from the adsorption kinetics (Figure 7), the initial adsorption of MC-LR occurs faster
504 with uncoated CNF beads (control) while compared to that of coated CNF beads. However,
505 the final adsorbed amount of MC-LR was found to be slightly higher when coated CNF beads
506 were used, i.e., after 24 h exposure to the MC-LR solution, the coated CNF beads were able
507 to capture 2.4 mg/g of the pollutant while the capture with uncoated CNF beads reached 1.9
508 mg/g. It is worth mentioning here that these values are higher than those reported for cellulose
509 surface regenerated by dissolving the cellulose in ionic liquids without chitosan, but lower
510 than for the composite generated with 20% of chitosan which has an adsorption of around 20
511 mg/g [30].

512


513

514 **Figure 7.** Adsorption kinetics of the CNF beads and CNF beads coated with Ch-TOCD 1:2 on a $6.5 \mu\text{g/mL}$
515 solution of MC-LR over 24 h.

516

517 After fitting the adsorption data into pseudo-second order kinetic model (Figure 8), the
 518 equilibrium adsorption of MC-LR was 1.92 mg/g for the uncoated CNF beads and of 2.36
 519 mg/g for the coated CNF beads with a R^2 of 0.96 and 0.98, respectively. When the k value
 520 was analyzed, the saturation half-time was found to be 7.97 min for the uncoated CNF beads
 521 and 81.3 min for the coated CNF beads. This significantly longer saturation half-time clearly
 522 indicates that the adsorption of MC-LR on the coated CNF beads rather follows the passive
 523 pathway than is driven by the cavity-substrate interactions and/or osmotic effects which are
 524 traditionally observed for cellulosic hydrogel-based adsorbents [83]. Furthermore, as only
 525 0.7% of the mass of the coated bead corresponds to the coating -(Figure S2a), the slow
 526 kinetics can also be related to the hindered availability of active sites on the surface rather
 527 than the osmotic equilibrium of the concentration of MC-LR on the media and the bead.

528

529

530 **Figure 8.** Pseudo-second order kinetic model for the uncoated CNF beads and CNF beads coated with Ch-
 531 TOCD 1:2.

532

533 These results show a successful coating of the CNF beads with the chitosan-cyclodextrin
 534 polymer, which had an active site that interacts with MC-LR through a different mechanism
 535 than the uncoated beads. However, the data obtained from the HPLC is ten-fold lower than
 536 the adsorption calculated from the 2D model (thin films) with QCM-D. This difference may
 537 be attributed to the differences in coverage and diffusion profiles of the CNF beads and thin
 538 films.

539 Presented methodology for the coating of the CNF beads with chitosan-cyclodextrin
 540 copolymer opens new venues for adding hydrophobic cavities on bio-based materials which

541 could be used for either capturing toxic aromatic molecules (e.g. chlorophenols) or for slow
542 delivery of active ingredients (e.g. estradiol) in sutures or other fibers. [50,88,89].

543

544 **4. Conclusions**

545 In this work, a biopolymer-based concept for water purification was explored. Our approach
546 comprises the modification of chitosan with TEMPO oxidized β -cyclodextrin and the
547 subsequent adsorption of the synthesized conjugate (Ch-TOCD) onto cellulose surface,
548 which was used as a platform to capture an amphipathic toxin (microcystin-LR). Three
549 different conjugates were prepared by using EDC/NHS coupling chemistry with varied molar
550 ratios of the functional groups (NH₂ and COOH) of the starting polymers. The adsorption of
551 the conjugates on two distinct cellulose surfaces, namely cellulose nanofibrils (CNF) thin
552 films and CNF beads, was monitored by Quartz Crystal Microbalance with Dissipation
553 monitoring (QCM-D) and High-performance liquid chromatography (HPLC).

554 Finally, the coated nanocellulose-based materials were tested for their capacity to capture
555 microcystin-LR. It was found that the CNF thin film coated with Ch-TOCD 1:2 was able to
556 retain 20.5 mg/g whereas the CNF beads were able to capture only 2.36 mg/g. The difference
557 in these values is most likely a consequence of an incomplete saturation of the coating on the
558 beads. However, the difference in the kinetic modelling between the non-coated and coated
559 CNF beads reflects a clear variation in adsorption mechanisms between the two materials.
560 The successful adsorption of the coating on the lignocellulosic structure, as well as their
561 capacity to adsorb an amphipathic molecule driven by its hydrophobic residue, airs that this
562 bio-based coating has potential for a wide range of applications from drug delivery to water
563 treatment.

564 **Supplementary Information**

565 Table S1 presents the XPS extracted data showing the position of each deconvoluted signal,
566 the atomic content percentage of each bond, and the C/N ratio for the cellulose and chitosan
567 references as well as the modified materials. Figure S1 presents the comparison between the
568 spectra from β -cyclodextrin, and TEMPO mediated oxidized β -cyclodextrin. Figure S2 has
569 the Physicochemical comparison of the uncoated cellulose beads coated with chitosan (Ch)

570 and chitosan-TOCD conjugates (Ch-TOCD 1:1, Ch-TOCD 1:2 and Ch-TOCD 3:1) by a)
571 solid content; b) elemental analysis; and c) FTIR spectra.

572 **CRediT authorship contribution statement**

573 **Diego Gomez-Maldonado:** Conceptualization, Methodology, Investigation, Writing. **Ilari Filpponen:**
574 Conceptualization, Methodology, Supervision, Writing. **Iris B. Vega Erramuspe:** Methodology, Investigation.
575 **Leena-Sisko Johansson:** Investigation, Resources. **María Fernanda Mori:** Investigation, Writing.
576 **Jayachandra Babu Ramapuram:** Methodology, Resources. **Matthew N. Waters:** Methodology, Resources.
577 **Maria S. Peresin:** Conceptualization, Methodology, Supervision, Resources, Writing.

578 **Conflicts of Interest**

579 The authors declare no conflict of interest.

580 **Acknowledgements**

581 This work was supported by the National Science Foundation CAREER award 2119809 through the BMAT
582 program in the Division of Materials Research and the EPSCoR program. Support was also provided by the
583 USDA National Institute of Food and Agriculture, Hatch program (ALA013-17003) and McIntire-Stennis
584 program (1022526). The School of Forestry and Wildlife Sciences at Auburn University's financial support to
585 complete this work is much appreciated. This work made use of Aalto University Bioeconomy Facilities (the
586 XPS statement), the FinnCERES – Competence Centre for the Materials Bioeconomy support is highly
587 appreciated.

588 **References**

589 [1] E. Shim, Smart surface treatments for textiles for protection, in: Smart Text. Prot., Elsevier, 2013: pp.
590 87–126. <https://doi.org/10.1533/9780857097620.1.87>.

591 [2] S. Solgi, R. Ghorbani-Vaghei, S. Alavinia, Application of copper iodide nanoparticles immobilized
592 porous polysulfonamide gel as an effective nanocatalyst for synthesis of aminoindolizines, J. Porous
593 Mater. (2020). <https://doi.org/10.1007/s10934-020-00989-8>.

594 [3] J. Guo, I. Filpponen, P. Su, J. Laine, O.J. Rojas, Attachment of gold nanoparticles on cellulose
595 nanofibrils via click reactions and electrostatic interactions, Cellulose. 23 (2016) 3065–3075.
596 <https://doi.org/10.1007/s10570-016-1042-7>.

597 [4] P.K. Huang, J.W. Yeh, T.T. Shun, S.K. Chen, Multi-principal-element alloys with improved oxidation
598 and wear resistance for thermal spray coating, Adv. Eng. Mater. 6 (2004) 74–78.
599 <https://doi.org/10.1002/adem.200300507>.

600 [5] M. Parvinzadeh, F. Alimohammadi, A. Shamei, Surface & Coatings Technology Preparation of water-
601 repellent cellulose fibers using a polycarboxylic acid / hydrophobic silica nanocomposite coating, Surf.

602 Coat. Technol. 206 (2012) 3208–3215. <https://doi.org/10.1016/j.surfcoat.2012.01.006>.

603 [6] T.T. Isimjan, T. Wang, S. Rohani, A novel method to prepare superhydrophobic, UV resistance and
604 anti-corrosion steel surface, Chem. Eng. J. 210 (2012) 182–187.
605 <https://doi.org/10.1016/j.cej.2012.08.090>.

606 [7] E. Larsson, C.C. Sanchez, C. Porsch, E. Karabulut, L. Wågberg, A. Carlmark, Thermo-responsive
607 nanofibrillated cellulose by polyelectrolyte adsorption, Eur. Polym. J. 49 (2013) 2689–2696.
608 <https://doi.org/10.1016/j.eurpolymj.2013.05.023>.

609 [8] M. Zhang, W. Ma, J. Cui, S. Wu, J. Han, Y. Zou, C. Huang, Hydrothermal synthesized UV-resistance
610 and transparent coating composited superoleophilic electrospun membrane for high efficiency oily
611 wastewater treatment, J. Hazard. Mater. 383 (2020) 121152.
612 <https://doi.org/10.1016/j.jhazmat.2019.121152>.

613 [9] F. Kayaci, Z. Aytac, T. Uyar, Surface modification of electrospun polyester nanofibers with
614 cyclodextrin polymer for the removal of phenanthrene from aqueous solution, J. Hazard. Mater. 261
615 (2013) 286–294. <https://doi.org/10.1016/j.jhazmat.2013.07.041>.

616 [10] Z. Karim, S. Claudpierre, M. Grahn, K. Oksman, A.P. Mathew, Nanocellulose based functional
617 membranes for water cleaning: Tailoring of mechanical properties, porosity and metal ion capture, J.
618 Memb. Sci. 514 (2016) 418–428. <https://doi.org/10.1016/j.memsci.2016.05.018>.

619 [11] R.H. Fang, A. V. Kroll, W. Gao, L. Zhang, Cell Membrane Coating Nanotechnology, Adv. Mater. 30
620 (2018) 1–34. <https://doi.org/10.1002/adma.201706759>.

621 [12] J. Groll, J. Fiedler, E. Engelhard, T. Ameringer, S. Tugulu, H.A. Klok, R.E. Brenner, M. Moeller, A
622 novel star PEG-derived surface coating for specific cell adhesion, J. Biomed. Mater. Res. - Part A. 74
623 (2005) 607–617. <https://doi.org/10.1002/jbm.a.30335>.

624 [13] I. Ali, New generation adsorbents for water treatment, Chem. Rev. 112 (2012) 5073–5091.
625 <https://doi.org/10.1021/cr300133d>.

626 [14] W.J. Huang, B.L. Cheng, Y.L. Cheng, Adsorption of microcystin-LR by three types of activated carbon,
627 J. Hazard. Mater. 141 (2007) 115–122. <https://doi.org/10.1016/j.jhazmat.2006.06.122>.

628 [15] D. Gomez-Maldonado, I.B. Vega Erramuspe, I. Filpponen, L.-S. Johansson, S. Lombardo, J. Zhu, W.
629 Thielemans, M.S. Peresin, Cellulose-Cyclodextrin Co-Polymer for the Removal of Cyanotoxins on
630 Water Sources, Polymers (Basel). 11 (2019) 2075. <https://doi.org/10.3390/polym11122075>.

631 [16] K.L. Spence, R.A. Venditti, O.J. Rojas, Y. Habibi, J.J. Pawlak, The effect of chemical composition on
632 microfibrillar cellulose films from wood pulps: Water interactions and physical properties for
633 packaging applications, Cellulose. 17 (2010) 835–848. <https://doi.org/10.1007/s10570-010-9424-8>.

634 [17] M.S. Peresin, A.H. Vesterinen, Y. Habibi, L.S. Johansson, J.J. Pawlak, A.A. Nevzorov, O.J. Rojas,
635 Crosslinked PVA nanofibers reinforced with cellulose nanocrystals: Water interactions and
636 thermomechanical properties, J. Appl. Polym. Sci. 131 (2014) 1–12. <https://doi.org/10.1002/app.40334>.

637 [18] D. Zeng, J. Wu, J.F. Kennedy, Application of a chitosan flocculant to water treatment, Carbohydr.
638 Polym. 71 (2008) 135–139. <https://doi.org/10.1016/j.carbpol.2007.07.039>.

639 [19] J. Trygg, E. Yildir, R. Kolakovic, N. Sandler, P. Fardim, Anionic cellulose beads for drug encapsulation

640 and release, *Cellulose*. 21 (2014) 1945–1955. <https://doi.org/10.1007/s10570-014-0253-z>.

641 [20] M.O. Adebajo, R.L. Frost, J.T. Kloprogge, O. Carmody, S. Kokot, Porous Materials for Oil Spill
642 Cleanup: A Review of Synthesis and Absorbing Properties, *J. Porous Mater.* 10 (2003) 159–170.
643 <https://doi.org/10.1023/A:1027484117065>.

644 [21] B. Arkles, Hydrophobicity, Hydrophilicity and Silanes, *Paint Coatings Ind.* (2006) 114.
645 <https://doi.org/10.1016/j.micromeso.2005.05.031>.

646 [22] T. Mishima, M. Hisamatsu, W.S. York, K. Teranishi, T. Yamada, Adhesion of β -D-glucans to cellulose,
647 *Carbohydr. Res.* 308 (1998) 389–395. [https://doi.org/10.1016/S0008-6215\(98\)00099-8](https://doi.org/10.1016/S0008-6215(98)00099-8).

648 [23] K. Junka, I. Filpponen, L.S. Johansson, E. Kontturi, O.J. Rojas, J. Laine, A method for the
649 heterogeneous modification of nanofibrillar cellulose in aqueous media, *Carbohydr. Polym.* 100 (2014)
650 107–115. <https://doi.org/10.1016/j.carbpol.2012.11.063>.

651 [24] A. Dufresne, *Nanocellulose: From nature to high performance tailored materials*, 2nd ed., De Gruyter,
652 Germany, 2017.

653 [25] J.W.C. Dunlop, P. Fratzl, Biological Composites, *Annu. Rev. Mater. Res.* 40 (2010) 1–24.
654 <https://doi.org/10.1146/annurev-matsci-070909-104421>.

655 [26] K. Pillai, F. Navarro Arzate, W. Zhang, S. Renneckar, Towards Biomimicking Wood: Fabricated Free-
656 standing Films of Nanocellulose, Lignin, and a Synthetic Polycation, *J. Vis. Exp.* (2014) 1–14.
657 <https://doi.org/10.3791/51257>.

658 [27] H. Dong, J.F. Snyder, D.T. Tran, J.L. Leadore, Hydrogel, aerogel and film of cellulose nanofibrils
659 functionalized with silver nanoparticles, *Carbohydr. Polym.* 95 (2013) 760–767.
660 <https://doi.org/10.1016/j.carbpol.2013.03.041>.

661 [28] P. Kumar Dutta, J. Dutta, V.S. Tripathi, Chitin and chitosan: Chemistry, properties and applications, *J.*
662 *Sci. Ind. Res.* 63 (2004) 20–31. <https://doi.org/10.1002/chin.200727270>.

663 [29] R.S. Blackburn, Natural polysaccharides and their interactions with dye molecules: Applications in
664 effluent treatment, *Environ. Sci. Technol.* 38 (2004) 4905–4909. <https://doi.org/10.1021/es049972n>.

665 [30] C.D. Tran, S. Duri, A. Delneri, M. Franko, Chitosan-cellulose composite materials : Preparation ,
666 Characterization and application for removal of microcystin, *J. Hazard. Mater.* 253 (2013) 355–366.

667 [31] H. Sashiwa, Y. Shigemasa, R. Roy, Dissolution of Chitosan in Dimethyl Sulfoxide by Salt Formation,
668 *Chem. Lett.* 29 (2004) 596–597. <https://doi.org/10.1246/cl.2000.596>.

669 [32] P. Mocchiutti, C.N. Schnell, G.D. Rossi, M.S. Peresin, M.A. Zanuttini, M. V. Galván, Cationic and
670 anionic polyelectrolyte complexes of xylan and chitosan. Interaction with lignocellulosic surfaces,
671 *Carbohydr. Polym.* 150 (2016) 89–98. <https://doi.org/10.1016/j.carbpol.2016.04.111>.

672 [33] W. Saenger, T. Steiner, Cyclodextrin Inclusion Complexes: Host–Guest Interactions and Hydrogen-
673 Bonding Networks, *Acta Crystallogr. Sect. A Found. Crystallogr.* 54 (1998) 798–805.
674 <https://doi.org/10.1107/S0108767398010733>.

675 [34] A. Sinha, N.R. Jana, Separation of microcystin-LR by cyclodextrin-functionalized magnetic composite
676 of colloidal graphene and porous silica, *ACS Appl. Mater. Interfaces.* 7 (2015) 9911–9919.
677 <https://doi.org/10.1021/acsami.5b02038>.

678 [35] D. Gomez-Maldonado, A.M. Reynolds, L.-S. Johansson, D.J. Burnett, J.B. Ramapuram, M.N. Waters,
679 I.B. Vega Erramuspe, M.S. Peresin, Fabrication of aerogels from cellulose nanofibril grafted with β -
680 cyclodextrin for capture of water pollutants, *J. Porous Mater.* 28 (2021) 1725–1736.
681 <https://doi.org/10.1007/s10934-021-01109-w>.

682 [36] D. Gomez-maldonado, A.M. Reynolds, L. Johansson, D.J. Burnett, J. Babu, M. Waters, I.B.V.
683 Erramuspe, M.S. Peresin, Fabrication of aerogels from cellulose nanofibril grafted with β -cyclodextrin
684 for capture of water pollutants . Keywords, (n.d.) 1–17.

685 [37] S. Kim, Y.S. Yun, Y.E. Choi, Development of waste biomass based sorbent for removal of cyanotoxin
686 microcystin-LR from aqueous phases, *Bioresour. Technol.* 247 (2018) 690–696.
687 <https://doi.org/10.1016/j.biortech.2017.09.164>.

688 [38] G. Yuan, M. Prabakaran, S. Qilong, J.S. Lee, I.M. Chung, M. Gopiraman, K.H. Song, I.S. Kim,
689 Cyclodextrin functionalized cellulose nanofiber composites for the faster adsorption of toluene from
690 aqueous solution, *J. Taiwan Inst. Chem. Eng.* 70 (2017) 352–358.
691 <https://doi.org/10.1016/j.jtice.2016.10.028>.

692 [39] Y. Jiang, B. Liu, J. Xu, K. Pan, H. Hou, J. Hu, J. Yang, Cross-linked chitosan/ β -cyclodextrin composite
693 for selective removal of methyl orange: Adsorption performance and mechanism, *Carbohydr. Polym.*
694 182 (2018) 106–114. <https://doi.org/10.1016/j.carbpol.2017.10.097>.

695 [40] A.Z.M. Badruddoza, Z.B.Z. Shawon, W.J.D. Tay, K. Hidajat, M.S. Uddin, Fe 3O 4/cyclodextrin
696 polymer nanocomposites for selective heavy metals removal from industrial wastewater, *Carbohydr. Polym.*
697 91 (2013) 322–332. <https://doi.org/10.1016/j.carbpol.2012.08.030>.

698 [41] D. Shao, G. Sheng, C. Chen, X. Wang, M. Nagatsu, Removal of polychlorinated biphenyls from
699 aqueous solutions using β -cyclodextrin grafted multiwalled carbon nanotubes, *Chemosphere* 79 (2010)
700 679–685. <https://doi.org/10.1016/j.chemosphere.2010.03.008>.

701 [42] P. Chen, H.W. Liang, X.H. Lv, H.Z. Zhu, H. Bin Yao, S.H. Yu, Carbonaceous nanofiber membrane
702 functionalized by beta-cyclodextrins for molecular filtration, *ACS Nano*. 5 (2011) 5928–5935.
703 <https://doi.org/10.1021/nn201719g>.

704 [43] S. Khaoulani, H. Chaker, C. Cadet, E. Bychkov, L. Cherif, A. Bengueddach, S. Fourmentin, Wastewater
705 treatment by cyclodextrin polymers and noble metal/mesoporous TiO₂photocatalysts, *Comptes Rendus
706 Chim.* 18 (2015) 23–31. <https://doi.org/10.1016/j.crcl.2014.07.004>.

707 [44] H. Liu, X. Cai, Y. Wang, J. Chen, Adsorption mechanism-based screening of cyclodextrin polymers
708 for adsorption and separation of pesticides from water, *Water Res.* 45 (2011) 3499–3511.
709 <https://doi.org/10.1016/j.watres.2011.04.004>.

710 [45] H. Kono, K. Onishi, T. Nakamura, Characterization and bisphenol A adsorption capacity of β -
711 cyclodextrin-carboxymethylcellulose-based hydrogels, *Carbohydr. Polym.* 98 (2013) 784–792.
712 <https://doi.org/10.1016/j.carbpol.2013.06.065>.

713 [46] A.R. Khan, P. Forgo, K.J. Stine, V.T. D'Souza, Methods for selective modifications of cyclodextrins,
714 *Chem. Rev.* 98 (1998) 1977–1996. <https://doi.org/10.1021/cr970012b>.

715 [47] C.F. Huang, C.W. Tu, R.H. Lee, C.H. Yang, W.C. Hung, K.Y. Andrew Lin, Study of various diameter

716 and functionality of TEMPO-oxidized cellulose nanofibers on paraquat adsorptions, *Polym. Degrad.*
717 *Stab.* 161 (2019) 206–212. <https://doi.org/10.1016/j.polymdegradstab.2019.01.023>.

718 [48] C.F. Huang, J.K. Chen, T.Y. Tsai, Y.A. Hsieh, K.Y. Andrew Lin, Dual-functionalized cellulose
719 nanofibrils prepared through TEMPO-mediated oxidation and surface-initiated ATRP, *Polymer*
720 (*Guildf.*) 72 (2015) 395–405. <https://doi.org/10.1016/j.polymer.2015.02.056>.

721 [49] T. Saito, A. Isogai, TEMPO-mediated oxidation of native cellulose. The effect of oxidation conditions
722 on chemical and crystal structures of the water-insoluble fractions, *Biomacromolecules*. 5 (2004) 1983–
723 1989. <https://doi.org/10.1021/bm0497769>.

724 [50] H. Orelma, T. Virtanen, S. Spoljaric, J. Lehmonen, J. Seppälä, O.J. Rojas, A. Harlin, Cyclodextrin-
725 Functionalized Fiber Yarns Spun from Deep Eutectic Cellulose Solutions for Nonspecific Hormone
726 Capture in Aqueous Matrices, *Biomacromolecules*. 19 (2018) 652–661.
727 <https://doi.org/10.1021/acs.biomac.7b01765>.

728 [51] M. Prabaharan, S. Gong, Novel thiolated carboxymethyl chitosan-g- β -cyclodextrin as mucoadhesive
729 hydrophobic drug delivery carriers, *Carbohydr. Polym.* 73 (2008) 117–125.
730 <https://doi.org/10.1016/j.carbpol.2007.11.005>.

731 [52] H. Orelma, I. Filpponen, L.S. Johansson, M. Österberg, O.J. Rojas, J. Laine, Surface functionalized
732 nanofibrillar cellulose (NFC) film as a platform for immunoassays and diagnostics, *Biointerphases*. 7
733 (2012) 1–12. <https://doi.org/10.1007/s13758-012-0061-7>.

734 [53] M. D’Este, D. Eglin, M. Alini, A systematic analysis of DMTMM vs EDC/NHS for ligation of amines
735 to Hyaluronan in water, *Carbohydr. Polym.* 108 (2014) 239–246.
736 <https://doi.org/10.1016/j.carbpol.2014.02.070>.

737 [54] L. Li, L. Fan, M. Sun, H. Qiu, X. Li, H. Duan, C. Luo, Adsorbent for hydroquinone removal based on
738 graphene oxide functionalized with magnetic cyclodextrin-chitosan, *Int. J. Biol. Macromol.* 58 (2013)
739 169–175. <https://doi.org/10.1016/j.ijbiomac.2013.03.058>.

740 [55] T. Li, P. Huang, J. Liang, W. Fu, Z. Guo, L. Xu, Microcystin-LR (MCLR) Induces a Compensation
741 of PP2A Activity Mediated by α 4 Protein in HEK293 Cells, (2011).

742 [56] K.A. Loftin, J.M. Clark, C.A. Journey, D.W. Kolpin, P.C. Van Metre, D. Carlisle, P.M. Bradley, Spatial
743 and temporal variation in microcystin occurrence in wadeable streams in the southeastern United States,
744 *Environ. Toxicol. Chem.* 35 (2016) 2281–2287. <https://doi.org/10.1002/etc.3391>.

745 [57] Word Health Organization (WHO), Cyanobacterial toxins: Microcystin-LR in Drinking-water, *Guidel.*
746 *Drink. Qual.* 2 (1998).

747 [58] S. Merel, M.C. Villarín, K. Chung, S. Snyder, Spatial and thematic distribution of research on
748 cyanotoxins, *Toxicon*. 76 (2013) 118–131. <https://doi.org/10.1016/j.toxicon.2013.09.008>.

749 [59] R. Al-Ammar, A. Nabok, A. Hashim, T. Smith, Microcystin-LR produced by bacterial algae: Optical
750 detection and purification of contaminated substances, *Sensors Actuators, B Chem.* 209 (2015) 1070–
751 1076. <https://doi.org/10.1016/j.snb.2014.11.063>.

752 [60] J. Meriluoto, G.A. Codd, Cyanobacterial Monitoring and Cyanotoxin Analysis, 2005.
753 <https://doi.org/10.1002/9781119068761>.

754 [61] A.S. Archimandritis, T. Papadimitriou, K.A. Kormas, C.S. Laspidou, K. Yannakopoulou, Y.G.
755 Lazarou, Theoretical investigation of microcystin-LR, microcystin-RR and nodularin-R complexation
756 with α -, β -, and γ -cyclodextrin as a starting point for the targeted design of efficient cyanotoxin traps,
757 Sustain. Chem. Pharm. 3 (2016) 25–32. <https://doi.org/10.1016/j.scp.2016.02.001>.

758 [62] T. Saito, M. Hirota, N. Tamura, S. Kimura, H. Fukuzumi, L. Heux, A. Isogai, Individualization of Nano-
759 Sized Plant Cellulose Fibrils by Direct Surface Carboxylation Using TEMPO Catalyst under Neutral
760 Conditions, Biomacromolecules. 10 (2009) 1992–1996. <https://doi.org/10.1021/bm900414t>.

761 [63] D. da Silva Perez, S. Montanari, M.R. Vignon, TEMPO-mediated oxidation of cellulose III,
762 Biomacromolecules. 4 (2003) 1417–1425. <https://doi.org/10.1021/bm034144s>.

763 [64] P.J. Larkin, “IR and Raman Spectroscopy - Principles and Spectral Interpretation,” 2011.
764 <https://doi.org/10.1016/b978-0-12-386984-5.10001-1>.

765 [65] L. Johansson, J.M. Campbell, O.J. Rojas, Cellulose as the in situ reference for organic XPS. Why?
766 Because it works, Surf. Interface Anal. 52 (2020) 1134–1138. <https://doi.org/10.1002/sia.6759>.

767 [66] L.S. Johansson, J.M. Campbell, Reproducible XPS on biopolymers: Cellulose studies, Surf. Interface
768 Anal. 36 (2004) 1018–1022. <https://doi.org/10.1002/sia.1827>.

769 [67] G. Beamson, D. Briggs, High resolution XPS of organic polymers: The Scienta ESCA 300 database,
770 John Wiley & Sons, Chichester, 1992.

771 [68] N. Fairley, V. Fernandez, M. Richard-Plouet, C. Guillot-Deudon, J. Walton, E. Smith, D. Flahaut, M.
772 Greiner, M. Biesinger, S. Tougaard, D. Morgan, J. Baltrusaitis, Systematic and collaborative approach
773 to problem solving using X-ray photoelectron spectroscopy, (2021).
774 <https://doi.org/10.1016/j.apsadv.2021.100112>.

775 [69] KSV Instruments Ltd, What Is a Quartz Crystal Microbalance – Qcm, (2002) 1–10.

776 [70] M. V. Voinova, M. Jonson, B. Kasemo, “Missing mass” effect in biosensor’s QCM applications,
777 Biosens. Bioelectron. 17 (2002) 835–841. [https://doi.org/10.1016/S0956-5663\(02\)00050-7](https://doi.org/10.1016/S0956-5663(02)00050-7).

778 [71] A. Example, Dissipative QCM, Langmuir. (1991) 1–3.

779 [72] G. Sauerbrey, Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung,
780 Zeitschrift Für Phys. 155 (1959) 206–222. <https://doi.org/10.1007/BF01337937>.

781 [73] M. V. Voinova, M. Rodahl, M. Jonson, B. Kasemo, Viscoelastic acoustic response of layered polymer
782 films at fluid-solid interfaces: Continuum mechanics approach, (1998) 1–22.
783 <https://doi.org/10.1238/Physica.Regular.059a00391>.

784 [74] X. Turon, O.J. Rojas, R.S. Deinhammer, Enzymatic kinetics of cellulose hydrolysis: A QCM-D study,
785 Langmuir. 24 (2008) 3880–3887. <https://doi.org/10.1021/la7032753>.

786 [75] H. JIANG, Z. YANG, X. ZHOU, Y. FANG, H. JI, Immobilization of β -Cyclodextrin as Insoluble β -
787 Cyclodextrin Polymer and Its Catalytic Performance, Chinese J. Chem. Eng. 20 (2012) 784–792.
788 [https://doi.org/10.1016/S1004-9541\(11\)60249-8](https://doi.org/10.1016/S1004-9541(11)60249-8).

789 [76] T. Saito, I. Shibata, A. Isogai, N. Suguri, N. Sumikawa, Distribution of carboxylate groups introduced
790 into cotton linters by the TEMPO-mediated oxidation, Carbohydr. Polym. 61 (2005) 414–419.
791 <https://doi.org/10.1016/j.carbpol.2005.05.014>.

792 [77] Y. Habibi, H. Chanzy, M.R. Vignon, TEMPO-mediated surface oxidation of cellulose whiskers,
793 Cellulose. 13 (2006) 679–687. <https://doi.org/10.1007/s10570-006-9075-y>.

794 [78] C. Lai, S. Zhang, X. Chen, L. Sheng, Nanocomposite films based on TEMPO-mediated oxidized
795 bacterial cellulose and chitosan, Cellulose. 21 (2014) 2757–2772. <https://doi.org/10.1007/s10570-014-0330-3>.

797 [79] P.C. Li, G.M. Liao, S.R. Kumar, C.M. Shih, C.C. Yang, D.M. Wang, S.J. Lue, Fabrication and
798 Characterization of Chitosan Nanoparticle-Incorporated Quaternized Poly(Vinyl Alcohol) Composite
799 Membranes as Solid Electrolytes for Direct Methanol Alkaline Fuel Cells, *Electrochim. Acta*. 187
800 (2016) 616–628. <https://doi.org/10.1016/j.electacta.2015.11.117>.

801 [80] G. Lawrie, I. Keen, B. Drew, A. Chandler-temple, L. Rintoul, P. Fredericks, L. Grøndahl, Interactions
802 between Alginate and Chitosan Biopolymers Characterized Using FTIR and XPS, (2007) 2533–2541.

803 [81] A.M. Ferraria, S. Boufi, N. Battaglini, A.M.B. Do Rego, M. Reivilar, Hybrid systems of silver
804 nanoparticles generated on cellulose surfaces, *Langmuir*. 26 (2010) 1996–2001.
805 <https://doi.org/10.1021/la902477q>.

806 [82] T. Ristić, T. Mohan, R. Kargl, S. Hribernik, A. Doliška, K. Stana-Kleinschek, L. Fras, A study on the
807 interaction of cationized chitosan with cellulose surfaces, *Cellulose*. 21 (2014) 2315–2325.
808 <https://doi.org/10.1007/s10570-014-0267-6>.

809 [83] S. Lombardo, W. Thielemans, Thermodynamics of adsorption on nanocellulose surfaces, *Cellulose*. 26
810 (2019) 249–279. <https://doi.org/10.1007/s10570-018-02239-2>.

811 [84] J.J.J. O'Neill, E.P. Reichardt, Method of producing cellulose pellets, 2543928, 1951.

812 [85] P. Trivedi, T. Saloranta-Simell, U. Maver, L. Gradišnik, N. Prabhakar, J.-H. Smått, T. Mohan, M.
813 Gericke, T. Heinze, P. Fardim, Chitosan–Cellulose Multifunctional Hydrogel Beads: Design,
814 Characterization and Evaluation of Cytocompatibility with Breast Adenocarcinoma and Osteoblast
815 Cells, *Bioengineering*. 5 (2018) 3. <https://doi.org/10.3390/bioengineering5010003>.

816 [86] J. Trygg, P. Fardim, M. Gericke, E. Mäkilä, J. Salonen, Physicochemical design of the morphology and
817 ultrastructure of cellulose beads, *Carbohydr. Polym.* 93 (2013) 291–299.
818 <https://doi.org/10.1016/j.carbpol.2012.03.085>.

819 [87] D. Gomez-Maldonado, I. Filpponen, J.A. Hernandez-Díaz, M.N. Waters, M.L. Auad, L.-S. Johansson,
820 I.B. Vega-Erramuspe, M.S. Peresin, Simple functionalization of cellulose beads with pre-propargylated
821 chitosan for clickable scaffold substrates, *Cellulose*. 28 (2021) 6073–6087.
822 <https://doi.org/10.1007/s10570-021-03905-8>.

823 [88] F. Zhang, W. Wu, S. Sharma, G. Tong, Y. Deng, Synthesis of Cyclodextrin-functionalized Cellulose
824 Nanofibril Aerogel as a Highly Effective Adsorbent for Phenol Pollutant Removal, *BioResources*. 10
825 (2015) 7555–7568.

826 [89] M.H. Mohamed, L.D. Wilson, J. V. Headley, K.M. Peru, Investigation of the sorption properties of β -
827 cyclodextrin-based polyurethanes with phenolic dyes and naphthenates, *J. Colloid Interface Sci.* 356
828 (2011) 217–226. <https://doi.org/10.1016/j.jcis.2010.11.002>.

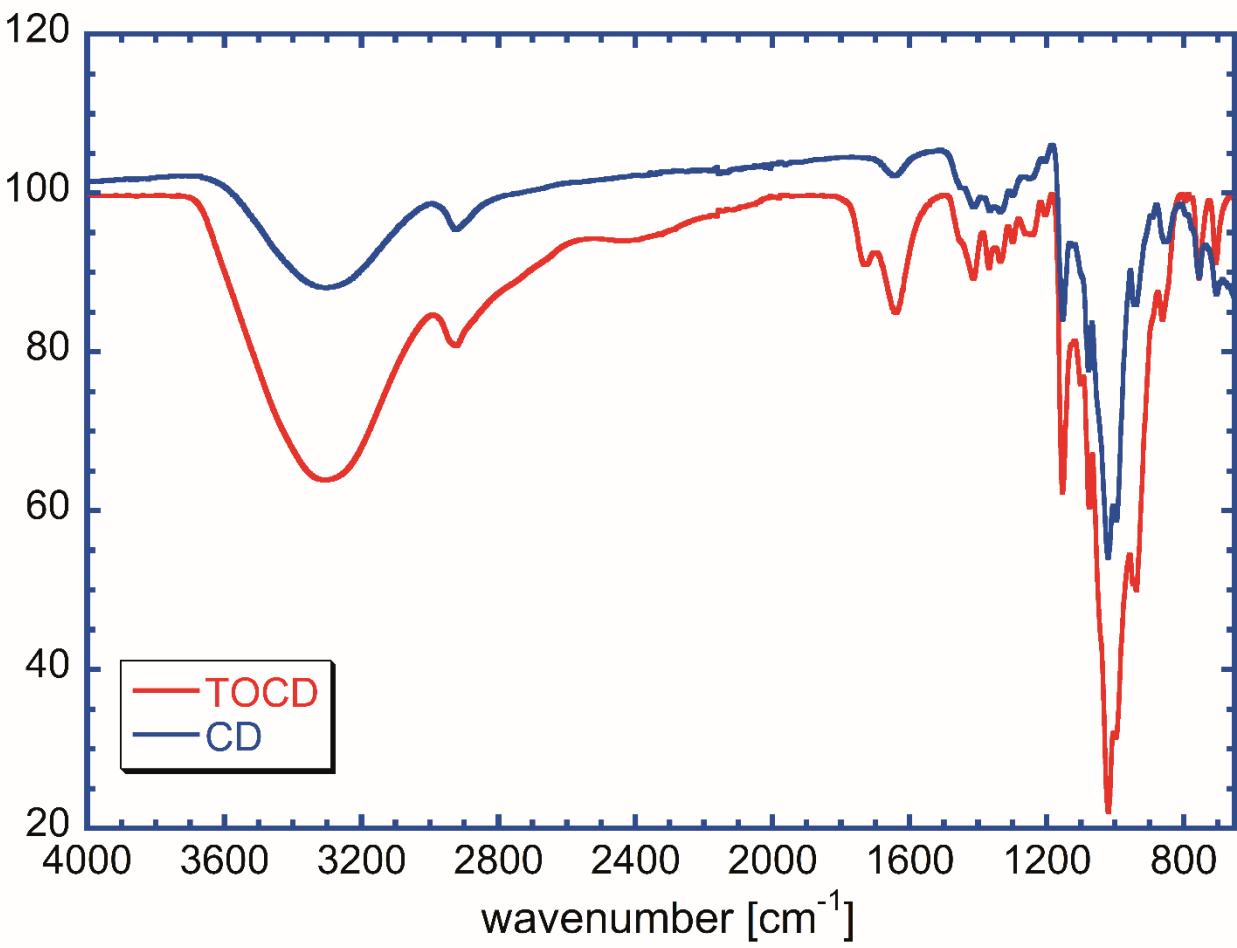
829

830

831 **Supplementary Information**

832

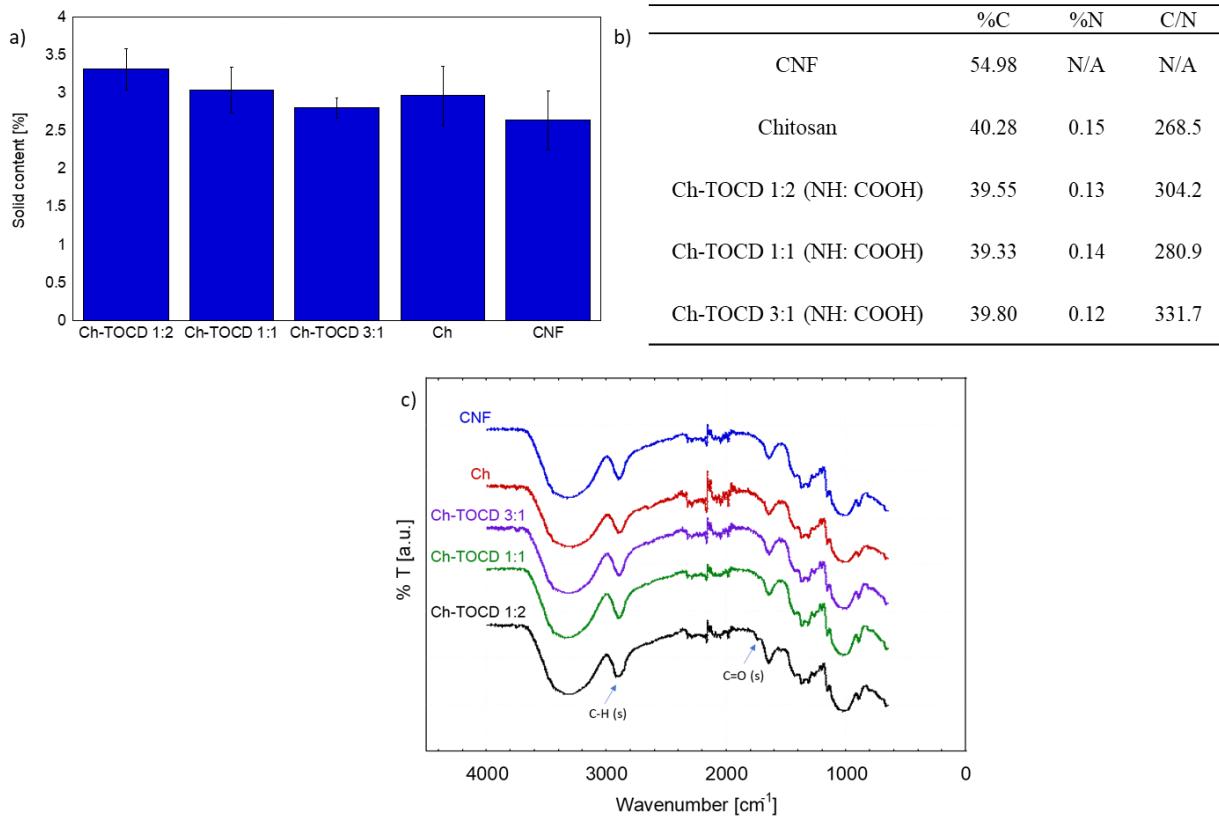
833 **Development of a β -cyclodextrin-chitosan polymer as active coating for**
834 **cellulosic surfaces and capturing of microcystin-LR**835 Diego Gomez-Maldonado ^a, Ilari Filpponen ^b, Iris B. Vega Erramuspe ^a, Leena-Sisko
836 Johansson ^c, María Fernanda Mori ^d, Ramapuram Jayachandra Babu ^e, Matthew N. Waters ^f,
837 Maria S. Peresin ^{a *}838 ^a Forest Products Development Center; College of Forestry, Wildlife and Environment,
839 Auburn University. 602 Duncan Drive, 36849, Auburn, Alabama, USA840 ^b Department of Chemical Engineering, Alabama Center for Paper and Bioresource
841 Engineering (AC-PABE), Auburn University, Auburn, Alabama 36849, USA842 ^c Department of Bioprocesses and Biosystems, School of Chemical Engineering, Aalto
843 University, Aalto FI-00076, Finland844 ^d Instituto de Investigaciones en Catálisis y Petroquímica, CONICET, Facultad de Ingeniería
845 Química, Universidad Nacional del Litoral, Santiago del Estero 2829, S3000AOM Santa Fe,
846 Argentina847 ^e Harrison School of Pharmacy, Auburn University, Auburn, AL 36849, United States848 ^f Department of Crop, Soil and Environmental Sciences, Auburn University, Auburn,
849 Alabama 36849, USA


850

851

852 **Table S1.** XPS extracted data showing the position of each deconvoluted signal, the atomic content percentage
853 of each bond, and the C/N ratio for the cellulose and chitosan references as well as the modified materials.

Atomic Concentration (%)						
	position (eV)	Cellulose reference	Chitosan	Ch-TOCD 3:1	Ch-TOCD 1:1	Ch-TOCD 1:2
C 1s	C-H/ -C-C	285.0 \pm 0.2	1.9	9.1	8.4	28.0
	C-O	286.7	44.0	33.4	39.7	31.0
	O-C-O	288.0 \pm 0.2	10.8	11.9	9.6	8.1
	O-C=O	289.3 \pm 0.2	1.0	2.0	0.8	1.0
N 1s	N-H	399.8 \pm 0.1	N/A	7.7	5.5	4.8
	OC-NH	402.1 \pm 0.1	N/A	-	1.6	1.4
O 1s		533.2	42.7	32.3	34.4	25.7
Ratio C/N		N/A	7.8	8.2	10.9	22.9


854

855

856 **Figure S1.** FTIR-ATR spectra of the unmodified β -cyclodextrin (CD) and the TEMPO mediated oxidized
857 cyclodextrin (TOCD).

858

859

860 **Figure S2.** Physicochemical comparison of the uncoated cellulose beads coated with chitosan (Ch) and
 861 chitosan-TOCD conjugates (Ch-TOCD 1:1, Ch-TOCD 1:2 and Ch-TOCD 3:1) by a) solid content: b) elemental
 862 analysis; and c) FTIR spectra.

863

864