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Verifying fine-grained optimistic concurrent programs remains an open problem. Modern program logics
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are the first to show how to retain this locality for (i) reasoning about inductive properties without the need
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1 INTRODUCTION

Concurrency comes at a cost, at least, in terms of increased effort when verifying program cor-
rectness. There has been a proliferation of concurrent program logics that provide an arsenal of
reasoning techniques to address this challenge [Bell et al. 2010; Delbianco et al. 2017; Elmas et al.
2010; Fu et al. 2010; Gotsman et al. 2013; Gu et al. 2018; Hemed et al. 2015; Jung et al. 2018; Liang
and Feng 2013; Manna and Pnueli 1995; Parkinson et al. 2007; Sergey et al. 2015; Vafeiadis and
Parkinson 2007]. In addition, a number of general approaches have been developed to help structure
the high-level proof argument [Feldman et al. 2018, 2020; Kragl et al. 2020; O’Hearn et al. 2010;
Shasha and Goodman 1988]. However, the use of these techniques has been mostly confined to
manual proofs done on paper, or mechanized proofs constructed in interactive proof assistants.
We distill from these works a concurrent separation logic suitable for automating the construction
of local correctness proofs for highly concurrent data structures. We focus on concurrent search
structures (sets and maps indexed by keys), but the developed techniques apply more broadly. Our
guiding principle is to perform all inductive reasoning, both in time and space, in lock-step with the
program execution. The reasoning about inductive properties of graph structures and computation
histories is relegated to the meta-theory of the logic by choosing appropriate semantic models.

Running Example. We motivate our work using the Harris non-blocking set data structure [Harris
2001], which we will also use as a running example throughout the paper.
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1 struct N = { val key: K; var next: N } 11 procedure find(k: K): N x N {
12 val hn = head.next
2 val tail = new N { key = co; next = ta11. 3 13 val I, In, r := traverse(k, head, hn, hn)
3 val head = new N { key = —oo; next = tail } " if ((In == r || CAS(L.next, In, r))
'

4 procedure traverse(k:K,I:N, In:N, t:N): (N*xN*N) { 5 8& !is_marked(r.next)) return (I, 1)

_ 16 else return find(k)
5 val tn = t.next
6 val tmark = is_marked(tn) KA
7 if (tmark) return traverse(k, I, In, tn) 18 procedure search(k: K) : Bool {
3 else if (¢t.key < k) return traverse(k, t, tn, tn) 19 val _, r = find(k)
9 else return (I, In, t) 20 return r.key == k
10 3} 21}

head I In r

Fig. 1. The Harris [2001] set algorithm. The lower half shows a state of the Harris set containing keys { 3,9 }.
Nodes are labeled with the value of their key field. Edges indicate next pointers. Marked nodes are shaded
gray. The blue edge between the nodes [ and In represents the state of [ before the CAS and the red edge
between [ and r the state after the CAS from Line 14. Dashed edges represent the hypothetical update chunks
that inductively capture the effect of the CAS.

We assume a garbage-collected programming language, supporting (first-order) recursive func-
tions, product types, and mutable heap-allocated structs. The language further provides a compare-
and-set operation, CAS(x.f,o0,n), that atomically sets field f of x to n and returns true if f’s current
value is o, or otherwise returns false leaving x.f unchanged.

Harris’ algorithm implements a set data structure that takes elements from a totally ordered type K
of keys and provides operations for concurrently searching, inserting, and deleting a given operation
key k. We focus on the search operation shown in Figure 1. The data structure is represented as
a linked list consisting of nodes implemented by the struct type N. Each node stores a key and a
next pointer to the successor node in the list. A potential state of the data structure is illustrated in
Figure 1. The algorithm maintains several important invariants. First, the list is strictly sorted by the
keys in increasing order and has a sentinel head node, pointed to by the immutable shared pointer
head. The key of the head node is —co. Likewise, there is a sentinel tail node with key co. We assume
—o00 < k < oo for all operation keys k. To support concurrent insertions and deletions without
lock-based synchronization, a node that is to be removed from the list is first marked to indicate
that it has been logically deleted before it is physically unlinked. Node marking is implemented
by bit-stealing on the next pointers. We abstract from the involved low-level bit-masking using
the function is_marked. A call is_marked(p) returns true iff the mark bit of pointer p is set. We say
that a node x is marked if is_marked(x.next) returns true. The sentinel nodes are never marked.

The workhorse of the algorithm is the function find. It takes an operation key k and returns a
pair of nodes (I,r) such that l.key < k < r.key, and the following held true at a single point in time
during find’s execution: r was unmarked and I’s direct successor, and [ was reachable from head.
All client-facing functions such as search then use find.

Contributions. Recall that in order to prove linearizability of a concurrent data structure, one has
to show that each of the data structure’s operations takes effect instantaneously at some time point
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between its invocation and return, the linearization point, and behaves according to its sequential
specification [Herlihy and Wing 1990]. The Harris set exhibits two key challenges in automating the
linearizability proof that are common to non-blocking data structures and that we aim to address
in our work.

The first challenge is that linearization points may not be statically fixed, but instead depend on
the interference of concurrent operations performed by other threads. We discuss this issue using
search, whose sequential specification says that the return value is true iff k is present in the data
structure. Consider a thread T executing a call search(8). Figure 1 shows a possible intermediate
state of the list observed right after the successful execution of the CAS on Line 14 during T’s
execution of search. This is also the linearization point of search for T, because the CAS guarantees
that if value 8 is present in the data structure, it must be the key of node r. Hence, if the check on r’s
mark bit on Line 15 still succeeds, then the test on Line 20 will produce the correct return value for
the search relative to the abstract state of the data structure at the linearization point. However, in
an alternative execution, a concurrently executing delete(9) may mark r before T executes Line 15,
but after T executes the CAS. In this situation, T will abort and restart causing its linearization point
to be delayed. Thus, the correct linearization point is only known in hindsight [O’Hearn et al. 2010]
at a later point in the execution when all interferences have been observed. As a consequence,
the proof must track information about earlier states in the execution history to enable reasoning
about linearization points that already happened in the past.

Our first contribution is a lightweight embedding of computation histories into separation
logic [O’Hearn et al. 2001] that supports local proofs using hindsight arguments, but without
having to perform explicit induction over computation histories.

The second challenge is that the proof needs to reason about maintenance operations that affect
an unbounded heap region. The procedure traverse guarantees that all nodes between [ and r
are marked. The CAS on Line 14 then unlinks the segment of marked nodes between I and r from
the structure making r the direct successor of I. This step is depicted in Figure 1. The blue edge
between [ and In refers to the pre state of the CAS and the red edge between [ and r to the post
state. A traditional automated analysis needs to infer the precise inductive shape invariant of the
traversed region (e.g. a recursive predicate stating that it is a list segment of marked nodes). Then,
at the point where the segment is unlinked, it has to infer that the global data structure invariant is
maintained. This involves an inductive proof argument, and the analysis needs to rediscover how
this induction relates to the invariant of the traversal.

Our second contribution is a mechanism for reasoning about such updates with non-local effects.
The idea is to compose these updates out of ghost update chunks. This is illustrated in Figure 1,
where the effect of the CAS is composed out of simpler updates that move the edge from / towards r
one node at a time (indicated by the dashed red edges). One only needs to reason about four nodes
to prove that the edge can be moved forward by one node. We refer to a correctness statement of
such a ghost update chunk as a future. The crux is to construct these futures during the traversal of
the marked segment, i.e., in lock-step with the program execution. This avoids the need for explicit
inductive reasoning at the point where the CAS takes effect. When proving the future for unlinking
a single traversed node t, we directly apply interference-free facts learned during the traversal, e.g.,
that t must be marked and can therefore be unlinked. We call this mechanism accounting. The final
future can then be invoked on Line 14 to prove the correctness of the CAS.

The focus of the paper is on the development of the new program logic rather than algorithmic
details on efficient automatic proof search. However, we have implemented a prototype tool called
plankton [Meyer et al. 2022a] that uses the logic to verify linearizability of highly concurrent search
structures automatically, provided an appropriate structural invariant is given by the user. The tool’s
implementation follows a standard abstract interpretation approach [Cousot and Cousot 1977].
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We have successfully applied the tool to verify several fine-grained non-blocking and lock-based
concurrent set implementations, including: Harris set [Harris 2001], Michael set [Michael 2002],
Vechev and Yahav CAS set [Vechev and Yahav 2008, Figure 2], ORVYY set [O’Hearn et al. 2010],
and the Lazy set [Heller et al. 2005]. All these benchmarks require hindsight reasoning. To our
knowledge, plankton is the first tool that automates hindsight reasoning for such a variety of
benchmarks. The Harris set additionally requires futures that are also automated in plankton. With
this, plankton is the first tool that can automatically verify the Harris set algorithm.
A companion technical report containing additional details is available as [Meyer et al. 2022b].

2 OVERVIEW

We aim for a proof strategy that is compatible with local reasoning principles and agnostic to
the detailed invariants of the specific data structure under consideration. In particular, we want
to avoid proof arguments that devolve into explicit reasoning about heap reachability or other
inductive heap properties, which tend to be difficult to automate.

Our strategy builds on the keyset framework [Krishna et al. 2020a; Shasha and Goodman 1988]
for designing and verifying concurrent search structures. In this framework, the data structure’s
heap graph is abstracted by a mathematical graph (N, E) where each node x € N is labeled by its
local contents, a set of keys C(x). The abstract state of the data structure C(N) is then given by
the union of all node-local contents. Moreover, each node x has an associated set of keys KS(x)
called its keyset. The keysets are defined inductively over the graph such that the following keyset
invariants are maintained: (1) the keysets of all nodes partition the set of all keys, and (2) for all
nodes x, C(x) € KS(x). For the Harris set, we define C(x) = mark(x) ? @ : { key(x) } and let
KS(x) be the empty set if x is not reachable from head and otherwise the interval (key(y), key(x)]
where y is the predecessor of x in the list (cf. Figure 2). Here, we denote by key(x) the value of field
key in a given state, and similarly for mark(x). Throughout the rest of the paper, we will follow
this convention of naming variables in a way that reflects the field dereferencing mechanism.

The keyset invariants ensure that for any node x € N and key k we have

k € KS(x) = (ke C(N) ®keC(x)) .

This property allows us to reduce the correctness of an insertion, deletion, and search for k from the
global abstract state C(N) to x’s local contents C(x), provided we can show k € KS(x). For example,
suppose that a concurrent invocation of search(k) returns false. To prove that this invocation is
linearizable, it suffices to show that there exists a node x such that both k € KS(x) and k ¢ C(x)
were true at the same point in time during search(k)’s execution. We refer to x as the decisive
node of the operation. The point in time where the two facts about x hold is the linearization point.

The ingredients for the linearizability proofs are thus (i) defining the keysets for the data structure
at hand, (ii) proving that the keyset invariants are maintained by the data structure’s operations, and
(iii) identifying the linearization point and decisive node x for an operation on key k by establishing
the relevant facts about k’s membership in the keyset and contents of x.

Our contributions focus on the automation of (ii) and (iii). While we do not automate (i), the keyset
definitions follow general principles and can be reused across many data structures [Shasha and
Goodman 1988] (e.g., we use the same definition for all the list-based set implementations considered
in our evaluation, cf. §8). In the remainder of this section, we provide a high-level overview of the
reasoning principles that underlie our new program logic and enable proof automation.

Automating History Reasoning. We start with the linearizability argument. Consider a con-
current execution of search(k) that returns value b. The decisive node of search is always the
node r returned by the call to find. The proof thus needs to establish that at some point during
the execution, k € KS(r) and b & (k € C(r)) were true. The issue is that when we reach the
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Fig. 2. Some states observed during two executions of search(5) on a Harris set that initially contains the
keys 2 and 5 and no marked nodes. Each node in a state is labeled above by its keyset. If the node is reachable
from head, the right bound of the keyset interval indicates the key stored in the node (highlighted in blue).

corresponding point in the execution during proof construction, we may not be able to linearize the
operation right away because the decisive node and linearization point depend on the modifications
that may still be done by other threads before search returns. We can thus only linearize the
execution in hindsight, once all the relevant interferences have been observed.

To illustrate this point, consider the scenario depicted in Figure 2. It shows intermediate states
of two executions of search(5) on a Harris set that initially contains the keys {2,5}. The two
executions agree up to the point when state s; is reached after execution of Line 5 in the first call
to traverse (i.e., after ny’s next pointer and mark bit have been read). The execution depicted on
the bottom proceeds without interference to state s, at the beginning of Line 15 and will return
b = true. Here, the decisive node is n3 and the linearization point is s;. Note that both 5 € KS(ns)
and 5 € C(n3) hold in s;. On the other hand, the execution depicted on the top of Figure 2 is
interleaved with a concurrently executing delete(5). The delete thread marks n; before the search
thread reaches the beginning of Line 15, yielding state s, at this point. The test whether r is marked
will now fail, causing the search thread to restart. After traversing the list again, the search thread
will unlink ns from the list with the CAS on Line 14. This yields state s; when the search reaches
Line 15 again. The search thread will then proceed to compute the return value b = false. For this
execution, the decisive node is ns and the linearization point is sé.

Our program logic provides two ingredients for dealing with the resulting complexity in the
linearizability proof. We discuss these formally in §7. The first ingredient is the past predicate & p,
which asserts that the current thread owned the resource p at some point in the past. The second
ingredient is a set of proof rules for introducing and manipulating past predicates. In particular, we
will use the following three rules in our proof:

. p pure prq
HCINTRO H-HINDSIGHT ——————————— H-INFER

F{p}skip{p*op} pxoqr o(pxq) OpFoq
Rule u-1nTRO states the validity of the Hoare triple { p } skip {p * ©p } which introduces a past
predicate ©p using a stuttering step. Here, * is separating conjunction. The rule expresses that if
the thread owns p now, it trivially owned p at some past point up until now. Rule H-HINDSIGHT
captures the essence of hindsight reasoning: ownership of p can be transferred from the now into
the past, if p is a purely logical fact that is independent of the program state. Rule u-inFER states
the monotonicity of the past operator with respect to logical weakening.
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We demonstrate the use of past predicates and their associated rules by sketching the lineariz-
ability proof for executions of search(k) that follow the same code path as the one in the bottom
half of Figure 2. The proof relies on a predicate Node(x), which expresses the existence of the
physical representation of x in the heap and binds the logical variables key(x) and mark(x) to the
values stored in the relevant fields of x—it is a points-to predicate x +— key(x), mark(x), ... for all
fields of x. The predicate also expresses important properties needed for maintaining the keyset
invariants. §5 discusses the definition of predicate Node(x) in detail.

The proof proceeds by symbolic execution of the considered path. The goal is to infer

&(‘Node(r) = k € 'KS(r) A (b & k €'C(r))

as postcondition where b is the return value of search(k). This implies the existence of a linearization
point as discussed earlier. Here, we write ‘e for the expression obtained from expression e by
replacing all logical variables like mark(r) by fresh variables ‘mark(r). That is, ‘e can be thought
of as the expression e evaluated with respect to the old state of r captured by ‘Node(r) inside the
past predicate, rather than the current state.!

The symbolic execution starts from a global invariant that maintains Node(x) for all nodes x in
the heap. When it reaches Line 5 in the proof, we can establish Node(t) and Node(tn) using the
derived invariant of the traversal. The two predicates imply that if ¢ is unmarked, then its keyset
must be non-empty. In turn, this implies KS(tn) = (key(t), key(tn)], because tn is the successor
of t. Together, we deduce (a) ~mark(t) A key(t) < k Ak < key(tn) = k € KS(tn). Moreover,
the definition of C(tn) gives us (b) k € C(tn) & —mark(tn) A key(tn) = k. We let H(in, t) be the
conjunction of (a), (b), and Node(tn).

Next, we use rule u-nTRO to transfer H(tn, t) into a past predicate, yielding H(tn, t) * & (H(tn, t)).
For our proof to be valid, we need to make sure that all intermediate assertions are stable under inter-
ferences by other threads. Unfortunately, this is not the case for the assertion H(tn, t) = & (H(tn,t)).
Notably, this assertion implies that the current value of tn’s mark bit is the same as the value of its
mark bit in the past state referred to by the past predicate.

To make the assertion stable under interference, we first introduce fresh logical variables ‘key(tn)
and ‘mark(t) which we substitute for key(tn) and mark(tn) under the past operator. This yields
the equivalent intermediate assertion:

H(in t) * ©(H(tn,t)) = (‘mark(tn) = mark(tn) A ‘key(in) = key(in)) .

Next, we observe that other threads executing search, insert, and delete operations can only
interfere by marking node tn in case it is not yet marked. Such interference invalidates the equality
mark(tn) = ‘mark(tn). So we weaken it to ‘mark(tn) = mark(tn). In §4 we introduce a general
Owicki-Gries-style separation logic framework that formalizes this form of interference reasoning.
In addition, we only keep Node(tn) from H(tn, t), leaving us with the interference-free assertion

P(in,t) £ Node(tn) = ©(‘H(tn, t)) * (‘mark(in) = mark(tn)) A ‘key(in) = key(in) .

We then propagate this assertion forward along the considered execution path of search(k), ob-
taining P(In, t) when Line 15 is reached in the proof. During the propagation, we accumulate the
facts —mark(t), key(t) <k, k < key(r), and In = r according to the branches of the conditional
expressions taken along the path. As these facts are all pure, we use rule u-ninpsiGHT to transfer
them, together with the equality ‘key(In) = key(In), into the past predicate ¢ (‘H(In, t)).

Using rule u-inrer we can then simplify the resulting past predicate as follows:

&(‘Node(r) = k € 'KS(r) A (k € 'C(r) & =‘mark(r) A ‘key(r) = k)) .

10bserve that Node(r) * ®Node(r) would implicitly state that the fields of r are the same in the past and the present state.
Renaming the past state, Node(r) = ©‘Node(r), allows the fields of r to have changed between the past and present.
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Fig. 3. A compound update (top) and its decomposition into update chunks (bottom). Compound updates
may affect an unbounded number of nodes, e.g., changing their keysets. Update chunks localize this effect of
an update to a bounded (and small) number of nodes.

As we propagate the overall assertion further to the return point of search(k), we accumulate
the additional pure facts —mark(r) and b < key(r) = k. We again invoke rule a-HinDpsIGHT to
transfer these into the past predicate, together with ‘mark(r) = mark(r) and ‘key(r) = key(r).
The resulting past predicate can then be simplified with u-inFeR to finally obtain the desired:

&(‘Node(r) = k € 'KS(r) A (b e ke'C(r)) .

While this proof'is non-trivial, it is easy to automate. The analysis performs symbolic execution of
the code. After each atomic step, it applies the rules u-inTro and u-uniNDsiGHT eagerly. The resulting
past predicates are then simplified and weakened with respect to interferences by other threads.
This way, the analysis maintains the strongest interference-free information about the history of the
computation. These steps are integrated into a classical fixpoint computation to infer loop invariants,
applying standard widening techniques to enforce convergence [Cousot and Cousot 1979].

It is worth pointing out that the above reasoning could also be done with prophecies [Jung et al.
2020; Liang and Feng 2013]. However, prophecies are not amenable to automation in the same way
as past predicates. The main reason for this is the hindsight rule: it works relative to facts that have
already been discovered during symbolic execution. Prophecies would require to guess the same facts
prior to being discovered. This guessing step is notoriously hard to automate [Bouajjani et al. 2017].

Automating Future Reasoning. Our second major contribution is the idea of futures and their
governing reasoning principles. We motivate futures with the problem of automatically proving
that the Harris set maintains the keyset invariants. As noted earlier, this is challenging because the
CAS performed by find may unlink unboundedly many marked nodes. Unlinking a node changes
its keyset to the empty set. Hence, the CAS may affect an unbounded heap region. Showing that the
CAS maintains the keyset invariants therefore inevitably involves an inductive proof argument.
Our observation is that one can reason about the effect of the CAS that unlinks the marked
segment by composing it out of a sequence of update chunks that unlink the nodes in the segment
one by one as indicated in Figure 1. This yields an inductive proof argument where we reason
about simpler updates that only affect a bounded number of nodes at a time. The correctness of an
update chunk com is represented by a future ( P ) com( Q ). A future can be thought of as a Hoare
triple with precondition P and postcondition Q. However, futures inhabit the assertion level of
the logic, rather than the meta level. The crux of our program logic is that it allows one to derive
a future on the side in a subproof, while proving the correctness of the thread’s traversal of the
marked segment. The advantage of this approach is that one can reuse the loop invariant for the
proof of traverse towards proving the correctness of { P ) com( Q ). This aids proof automation: the
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analysis no longer needs to synthesize an induction hypothesis for reasoning about the affected
heap region out of thin air at the point where the CAS is executed. In a way, traverse moonlights as
ghost code that aids the correctness proof of the CAS.

At the point where the CAS is executed, the proof then invokes the constructed future. A future
can thus be thought of as a subproof that is saved up to be applied at some future point.

This idea is illustrated in Figure 3. The top left of the figure shows a state that is reached during
the traversal of the marked segment from [ to tn. The transition at the top depicts the effect of the
update [.next := tn applied to this state. The update unlinks the marked nodes between [ and tn in
one step. The correctness of this update is expressed by the future

F £ (P next(l) = Inx* mark(In) ) l.next:=tn (P = next(l) = tn)

where P is an appropriate invariant holding the relevant physical resources of the involved nodes.
We derive this future by composing two futures for simpler update chunks as depicted at the bottom
half of Figure 3. The left resp. right update chunk is described by the future F; resp. F, as follows:

F; £ (Pxnext(l) = In* mark(In) ) Lnext:=t (P=next(l) =t)
Fy, 2 (Pxnext(l) = t * mark(t) = next(t) = tn) l.next:=tn (P=next(l) =tn) .

The future F, is derived inductively during the traversal of the marked segment from [ to ¢ using
the same process that we are about to describe for deriving F. The future F, can be easily proved
in isolation. In particular, the precondition mark(t) implies C(¢) = @. Hence, the keyset invariant
C(t) € KS(t) is maintained. The condition next(t) = tn guarantees that the update does not affect
keysets of other nodes beyond t and n.

We would now like to compose F; and F, using the standard sequential composition rule of
Hoare logic to derive the future

F' £ (Pxnext(l) = In+* mark(In) ) Lnext:=t;l.next:=tn (Px*next(l) = tn) .

Once we have F’, we get F by replacing the command l.next :=t; l.next := tn in F’ with l.next :=tn
using a simple subsumption argument.

However, sequential composition requires that the postcondition of F; implies the precondition of
F,. Unfortunately, the precondition of F, makes the additional assumptions mark(t) and next(t) = tn
that are not guaranteed by F;. Now, observe that both facts are readily available in the outer proof
context of the traversal: next(t) = tn follows from Line 5 of traverse and mark(t) is obtained from
the condition on Line 7. We transfer the facts from the outer proof context into F,. This eliminates
them from the precondition and enables the sequential composition to obtain F’. We refer to this
transfer of facts as accounting. In a concurrent setting, accounting is sound provided the accounted
facts are interference-free. This is the case here since the next fields of marked nodes are never
changed and marked nodes are never unmarked. We explain this reasoning in more detail in §6.

The idea of futures applies more broadly. They are useful whenever complex updates are prepared
in advance by a traversal (as e.g. in Bw trees [Levandoski et al. 2013] and skip lists [Fraser 2004]).

3 PROGRAMMING MODEL

We develop our reasoning principles in the context of concurrency libraries, which offer code to
client applications that may be executed by an arbitrary number of threads. With this definition,
not only the previously discussed search structures but also storage structures like stacks or lists
and mutual exclusion mechanisms form concurrency libraries, and our techniques will apply to
them as well. In this section, we formalize concurrency libraries. Our development is paramet-
ric in the set of states and the set of commands, following the approach of abstract separation
logic [Calcagno et al. 2007; Dinsdale-Young et al. 2013; Jung et al. 2018].
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States. We assume that states form a separation algebra, a partial commutative monoid (2, *,emp).
For the set of units emp C ¥ we require that (i) for all s € X, there exists some 15 € emp with
s* 15 = s and (ii) for all distinct 1, 1" € emp, 1 = 1" is undefined. We use s; # s, to indicate definedness.

Predicates are sets of states p € P(Z). To simplify the exposition, we stay on the semantic level and
do not introduce an assertion language. Predicates form a Boolean algebra (P(Z),U,N, C, ™, @, %).
Separating conjunction p * qlifts the composition from states to predicates. This yields a commutative
monoid with unit emp. Separating implication p - q gives residuals:

prq = {s1*sy | sS1€EP Asy€q A si#s;} and p-+q = {s | {st*p C q} .

In our development, (X, *,emp) is a product of two separation algebras (2¢, *g,emp) and
(2L, *L, emp| ). We require emp = empg X emp;, € X C 3¢ X 2. In addition, X must be closed
under decomposition: if (g1 *G gz, I * I2) € Z then (gy,1;) € 2, forall g3, g, € g and Iy, 1, € ;.

For (g, 1) € ¥ we call g the global state and | the local state. States are composed component-wise,
(g1, 11) *(g2, o) = (g1 *G g2, |1 *L I2), and this composition is defined only if the product is again in 3.

LEMMA 3.1. (2, % emp) is a separation algebra.

Commands. The second parameter to our development is the set of commands (COM, [—]) that
may be used to modify states. The set may be infinite, which allows us to treat atomic blocks as
single commands. The effect of commands on states is defined by an interpretation. It assigns to
each command a non-deterministic state transformer [[com] that takes a state and returns the set of
possible successor states, [com] : = — P(X). We lift the state transformer to predicates [Dijkstra
1976] in the expected way, [[com]|(p) = Usep[ com]| (s). We assume to have a command skip that is
interpreted as the identity. For the frame rule to be sound, we expect the following monotonicity to
hold [Calcagno et al. 2007; Dinsdale-Young et al. 2013], for all p, g, o:

[com(p) € g implies [com](p*o0) C g0 . (LocCom)

We handle commands that may fail as in [Calcagno et al. 2007] by letting them return abort which
is added as a new top element to the powerset lattice P(Z), so that (LocCom) is trivially satisfied.

Concurrency Libraries. Having fixed the set of states and the set of commands, a concurrency
library is defined by a single program that is executed in every thread. The assumption of a single
program can be made without loss of generality. The program code is drawn from the standard
while-language ST defined by:

st == com | st+st | st;st | st”.

The semantics of the library is defined in terms of unlabeled transitions among configurations.
A configuration is a pair cf = (g, pc) consisting of a global state g € X and a program counter
pc : N — 3| X ST. The program counter assigns to every thread, modeled as a natural number,
the current local state and the statement to be executed next. We use CF to denote the set of all
configurations. A configuration (g, pc) is initial for predicate p and library code st, if the program
counter of every thread yields a local state (I, st) where the code is the given one and the state
satisfies (g, |) € p. The configuration is accepting for predicate g, if every terminated thread (I, skip)
satisfies the predicate, (g,I) € g. We write these configuration predicates as the following sets

Init,s: = {(g, pc) | Vi, 1, st.pc(i)=(I,st)=(g,]) epAst=st}
Accg = {(g po) | Vi, 1. pe(i) = (I, skip) = (g, 1) € ¢} .
The unlabeled transition relation among configurations is defined in Figure 4. It relies on a labeled

transition relation capturing the flow of control. A command may change the global state and the
local state of the executing thread. It will not change the local state of other threads. A computation
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com =% skip skip; st ik gt st* SKPy okip + st; st*
i€ { 1,2 } sty com, St’l sty com, sty (gg, ]2) (S [[COIT]]] (gl, |1)
sty + sty KB st sty; sty < sti; sty (g1, pc[i = (I, st1)]) — (ga, peli = (I, st2)])

Fig. 4. Transition relation — C CF X CF based on the control-flow relation — < ST x COM x ST.

of the library is a finite sequence of consecutive transitions. A configuration is reachable if there is
a computation that leads to it. We write Reach(cf) for the set of all configurations reachable from
cf and lift the notation to sets where needed.

4 OWICKI-GRIES FOR CONCURRENCY LIBRARIES

We formulate the correctness of concurrency libraries as the validity of Hoare triples { p} st { ¢ }.
A Hoare triple is valid if for every configuration cf that is initial wrt. p and st, every reachable
configuration cf” is accepting wrt. . The definition refers to all threads executing the library code.

Definition 4.1. E{p} st { g} = Reach(Init,) CAcc.

To establish this validity, we develop a thread-modular reasoning principle [Owicki and Gries
1976] that proceeds in two steps. First, we verify the library code as if it was run by an isolated
thread using judgments of the form P,I I+ {p} st {q}.

The Hoare triple of interest is augmented by two pieces of information. The set P contains the
intermediary predicates encountered during the proof of the isolated thread. The set I contains
the interferences, the changes the isolated thread may perform on the shared state. The notion of
interference will be made precise in a moment. Recording both sets during the proof is an idea we
have taken from [Dinsdale-Young et al. 2013, Section 7.3].

The second phase of the thread-modular reasoning is to check that the local proof still holds in
the presence of other threads. This is the famous interference-freedom check. It takes as input the
computed sets P and I and verifies that no interference can invalidate a predicate, denoted by &y P.

Interference. An interferenceis a pair (o, com) consisting of a predicate and a command. It represents
the fact that from states in o environment threads may execute command com. A state (g, |) held by
the isolated thread of interest will change under the interference to a state in

[(o.com](g.D) = {(g.1) | Tz (1) €0 A (g,12) € [com](g.11) }

We consider every state (g, |;) € o that agrees with (g, [) on the global component, compute the
post, and combine the resulting global component with the local component I. The agreement of
different threads on the global state is precisely what is used in program logics like RGSep [Vafeiadis
2008; Vafeiadis and Parkinson 2007]. We lift [[ (o, com)] to predicates in the expected way.

We only record interferences that have an effect on the global state. An interference (o, com) is
effectful, denoted by eff (o, com), if it changes the shared state of an element in o:

eff(o,com) = 3(gy, 1) € 0.3(g2, 12) € [com] (g1, 11).82 # g1 -

The thread-local proof computes a set of interferences. For a predicate o and a command com,
the interference set is inter(o,com) = {(o,com)} if eff(o,com) and inter(o,com) = @ otherwise.
We consider interference sets up to the operation of joining predicates for the same command,
{(p,com)} U {(g,com)} = {(p U g, com)}. Then inter(o,com) C I means there is no interference to
capture or there is an interference (r, com) € I with o C r. We write I+ r for the set of interferences
(0% r, com) with (o, com) € I Similarly, we write P« r for the set of predicates p * r with p € P.
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[com]l(p) € q pcyp PLLir{p'}st{qd} qcgq
COM-SEM INFER-SEM
{q}, inter(p,com) - {p} comn{ q} PiUP, L UL - {p}st{q}
P,I[Il—{p}st{q} P],I[] ||-{p}5t1{q} Pz,ﬂz"—{q}stz{o}
FRAME SEQ
Psxolsor {pxo}st{qg*o} {GUPLUP,, iUl - {p} sty;sta {0}
PIr{p}st{p} PL,Lir{p}sti{q} Pk {p}sta{q}
OOP " CHOICE
{pyUPR I {p}st'{p} PiUP, UL F{p}sti+sta{q}

Fig. 5. Program logic.

The interference-freedom check takes as input a set of interferences I and a set of predicates P. It
checks that no interference can invalidate a predicate, [[ (0, com)]|(p) < p for all (o, com) € I and all
p € P. If this is the case, we write & P and say that the set of predicates P is interference-free wrt. I.

The interference-freedom check is non-compositional, and in manual/mechanized program
verification this has been the reason to prefer rely-guarantee methods [Feng 2009; Vafeiadis 2008;
Vafeiadis and Parkinson 2007]. From the point of view of automated verification, the difference
does not matter. After all, there is no compositional way of computing the relies and guarantees.

Program Logic. To verify library code as if it was run by an isolated thread, we derive (augmented)
Hoare triples using the proof rules in Figure 5. The rules are standard except that they work on
the semantic level. This is best seen in rule com-sem, which explicitly checks the postcondition for
over-approximating the postimage. The rule only adds the postcondition to the set of predicates to
be checked for interference freedom. Similarly, the consequence rule inFer-sem neither adds the
strengthened precondition nor the weakened postcondition. We can freely manipulate predicates
as long as there is an interference-free predicate between every pair of consecutive statements,
rule seQ. To ensure this for loops which may be left without execution, rule roor adds p to the set
of predicates. The initial predicate of the overall Hoare triple is added to the set of predicates by
the assumption of Theorem 4.2.

THEOREM 4.2 (SOUNDNESS). P,I I+ {p}st{q} and &P and peP imply E{p}st{q}.

Linearizability. We extend the above program logic in order to utilize it for linearizability proofs.
Our extension draws on ideas from atomic triples [da Rocha Pinto et al. 2014]. That is, we enforce
that every operation linearizes exactly once and satisfies a given sequential specification when doing
so. In the context of concurrent search structures (CSS), sequential specifications ¥ take the form:

¥ = {C.CSS(C) } op(k) {v.3C". CSS(C’") xUP(C,C", k,v) } .

The sets C and C’ are the logical contents of the structure before and after operation op(k). The
predicate CSS(C) connects the structure’s physical state with the logical contents C. The relation
UP(C, C’, k,v) encodes the admissible updates and the expected return value v of op(k).

To enforce exactly one linearization point, we use update tokens [Vafeiadis 2008] of the form
Obl(¥) and Ful('¥,v). The former states that an operation has not yet encountered its linearization
point, it is still obliged to linearize. The latter states that the linearization point has been encountered
and that value v must be returned to comply with ¥. Technically, the update tokes are thread-
local ghost resources. We assume the program semantics to simply ignore this ghost component.
Note that having thread-local update tokens does not allow for proving impure future-dependent
linearization points as they require intricate helping protocols where threads exchange their
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PIr{a}com{b}
a C CSS(C) b C CSS(C) a € ©(CSS(C) NUP(C,C,k,0))

LIN-NONE LIN-PAST
P I, {a}com{b} P, Tk, { Obl(¥) *a} skip { Ful(¥,0) *xa}

a € CSS(C) PIwr{a}com{b} b C CSS(C') N UP(C,C’, k,v)
P, I g, { Obl(¥) *a} com { Ful(¥,0) « b}

LIN-NOW

Fig. 6. Proof rules handling linearizability tokens for commands. Rule LIN-PAST is detailed in §7.

update tokes through the global state so that other threads can resolve them. A generalization is
straight-forward, but we prefer the simpler setting to not distract from our contributions.

To prove linearizability, we introduce a new proof system I-;, that coincides with I from Figure 5
except that it replaces rule com-sem with the rules from Figure 6 (ignore rule rin-rast for now,
we explain it in §7). The new rules handle the update tokens, leaving the task of establishing the
validity of the actual Hoare triple to the base proof system I-. To do this, Rule Lin-NoNE ensures that
the command does not change the logical contents of the structure, meaning that the update tokens
are unaffected. Rule Lin-vow converts the update token Obl(¥) into Ful(¥,v) if the command is
a linearization point satisfying the sequential specification ¥. This conversion is applicable only
once (because Obl(¥) is not duplicable), which makes sure there can be at most one linearization
point. Note that this rule handles both pure and impure linearization points. Similar to atomic
triples [da Rocha Pinto et al. 2014], the rule requires threads to observe the very moment the
linearization point occurs. To ensure there is at least one linearization point, we require the
operation’s postcondition to contain the appropriate fulfillment token Ful(¥, v). Formally, we seek
to establish Hoare triples of the following form:

i { C. CSS(C) * ObI(¥) } op(k) {v. IC’. CSS(C’) * Ful(¥,0) } .

We take the derivability of such a Hoare triple as the ground truth for linearizability, trusting that
a semantic result connecting the derivability to a statement about computation histories would be
routine to derive [Liang and Feng 2013].

5 REASONING ABOUT KEYSETS USING FLOWS

Recall from §2 that we localize the reasoning about the abstract state C(N) of the data structure to
the contents C(x) of a single node x using its keyset KS(x). In this section, we define the keysets
as a derived quantity that we can reason about locally in a separation logic. Then, we use this
formalism to define the node-local invariant Node(x) of our running example. This node-local
invariant is used by our tool to fully automatically generate a proof of the Harris set (cf. §8).

We derive the keyset of a node x from another quantity 1S(x), the node’s inset. Intuitively, k €
IS(x) if a thread searching for k will traverse node x. For the Harris set, we define 1S(head) = [ -0, 0]
and for every other node we obtain IS(x) as the solution of the following fixpoint equation:

1S(x) = Ugmee 1S(¥) N (y.key, ] .
Here, the set of edges E is induced by the next pointers in the heap. If we remove those keys k
from IS(x) for which a search leaves x (i.e., if k > x.key in the Harris set), we obtain KS(x). These
definitions ensure for free that the keysets are disjoint, the first of our keyset invariants. They also
generalize to any search structure [Shasha and Goodman 1988].
To express keysets in separation logic, we use the flow framework [Krishna et al. 2018, 2020b].
In this framework, the heap is augmented by associating every node x with a quantity flow(x) that
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is defined as a solution of a fixpoint equation over the heap like the one defining the inset above.
Assertions describe disjoint fragments of the augmented global heap, similar to classical separation
logic. The augmented heap fragments are called flow graphs. In addition to tracking the flow of
each node, a flow graph also has an associated interface consisting of an inflow and an outflow.
The inflow in(y, x) captures the contribution to the flow of x inside the heap fragment via an edge
from a heap node y outside the fragment, and conversely for the outflow out(x, y). Flow graphs fg
and fg’ compose if they are disjoint and their interfaces are compatible (i.e., the composed flow
graph fg = fg’ has the same flow as the components). The framework then enables local reasoning
about the effects of heap updates on flow graphs. In essence, if a local update inside a region fg of a
larger flow graph fg * fg’ maintains fg’s interface, then the flow in fg’ does not change. Hence, any
property about fg’, such as that each of its nodes x satisfies the keyset invariant C(x) € KS(x),
can be framed across the update. Note that the flow and interfaces associated with the physical
heap constitute ghost state. Intuitively, they are recomputed after each update.

For the remainder of the paper, it suffices to know that we instantiate the framework such that a
node’s inset can be obtained from its flow. To apply the framework to concurrent search structures
and to reason locally about their sequential specifications, we define the CSS predicate from §4 by:

CSS(C) £ 3N. Inv(C,N,N),

where N is the set of nodes the search structure is composed of and Inv(C, N’, N) is a search
structure specific invariant. The invariant is parameterized in C and N as well as a subset N € N
for which Inv(C, N’, N) holds actual resources. It must ensure that C is the contents of the subregion
N’,ie. C = C(N’). It must also ensure the keyset invariant C(x) C KS(x) for all x € N’. Krishna
et al. [2018, 2020b] show how the two constraints allow us to split and merge the invariant for
disjoint subregions of the structure for the purpose of framing. It is this splitting/merging that
localizes the reasoning. The following definition makes the desired property formally precise.

Definition 5.1. An invariant Inv is decomposable if it satisfies:
Inv(C,N] W N;,N) < 3C;1Cz. C=C1WC2 A Inv(Cy, N, N) * Inv(Cz, N, N) .

For linearizability, it thus suffices to identify a small subregion that contains the decisive node
of the operation. A search for key k, for instance, only requires the region Inv(Cy, {x}, N) with
k € KS(x) in order to linearize its return value v because we obtain

Inv(C’, N\ {x}, N) xInv(Cy, {x}, N) Ak € KS(x) Ao = (k€ Cy) + IC.CSS(C) Av=(keQC) .

As shown in [Krishna et al. 2020a], there is a generic construction for a decomposable Inv that
works for all search structures. To avoid additional technical machinery, we next present a simplified
version of this construction that is specific to the Harris set and similar list-based search structures.

The Harris Set Invariant. We represent predicates pC X syntactically using separation logic
assertions that are for the most part standard. In particular, we use boxed assertions | A | that are
inspired by RGSep [Vafeiadis 2008; Vafeiadis and Parkinson 2007] to mean that A is interpreted in
the global state. Unboxed assertions are interpreted in the local state. A points-to predicate takes
the form x + (sel; : #;, flow : toy, in : tj;) and describes a flow graph consisting of a single node x.
Here, each sel; is a field selector and ¢; is a term denoting the field’s associated value. The ghost
field f1low stores x’s flow and in stores its inflow. The semantics of assertions is [A] C =.

We next define the resources associated with a node x, its inset, and keyset. In proofs, we will
assume that assertions are existentially closed, and will omit the corresponding outer quantifiers.
Formulas like Node(x) defined in the following introduce logical variables like mark(x) that are
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visible beyond Node(x), for example, to define the keyset term KS(x). We define:

Node(x) = ‘ x > (mark: mark(x), next: next(x), key: key(x), flow: flow(x), in: in(x)) ‘
IS(x) £ x = head ? [—00, 0] : flow(x) KS(x) £ IS(x) \ (key(x), oo]
C(x) = mark(x)? @ : {key(x) } C(N) £ Uyen C(x) .

With these definitions in place, we define the invariant Inv(C, N’, N) that is maintained by each
subregion N’ C N of a Harris set structure consisting of nodes N

Inv(C,N’,N) £ C = C(N’)  HD(N) 3K x € N’. Node(x) * ' (x) * p?(x) * ¢°(x, N) # ¢ ()
HD(N) £ head € N * key(head) = — oo * = mark(head)
@' (x) £ —mark(x) = I1S(x) # @
@ (x) 21S(x) # @ = [key(x),o0) C IS(x)
@ (x,N) £ {x, next(x)} N A (key(x)=c0 = —mark(x))
@*(x) £ Vy,z. in(x)(y, x) #@ * in(x) (2,x) 2@ = y=z .

Formula ¢!(x) captures that all unmarked nodes are reachable from head. Formula ¢?(x) implies
the second keyset invariant C(x) C KS(x) and will also allow us to establish k € KS(x) at the
appropriate points in the proof. Formula ¢*(x) ensures N’ C N and that N is closed under traversal
of next pointers. It also implies that the tail node is unmarked. Finally, ¢*(x) implies that there
exists at most one path from head to each x that a traversal would actually follow. This is needed to
prove that unlinking marked nodes from the structure preserves the invariant. It is worth noting
that the invariant does not put many constraints on the data structure shape. The sole purpose is to
provide enough information to reason about the keysets. If N is clear, we abbreviate Inv(C, N’, N)
to Inv(C, N”). The invariant of the Harris set is decomposable as per Definition 5.1.

LeEMMA 5.2. The Harris set invariant Inv(C, N’, N) is decomposable.

6 FUTURES

We now make our program logic future-proof. We refer to the set of nodes affected by an update
as the update’s footprint. An update affects a node x if it changes a field value of x or the flow at
x. The footprint of an update on a flow graph is in general larger than the footprint of the same
update on the underlying heap graph alone. For instance, l.next :=r does not abort as long as the
location at [ is in the heap graph. However, if the same command is executed on a flow graph, it
will typically require other nodes such as r and l.next to be present in order for the command not
to abort. This is because the command may change the flow of these other nodes. For instance,
the footprint of the CAS(l.next, In,r) on Line 14 of Figure 1 comprises the entire marked segment
between [ and r, because it changes the flow and hence the keysets of all nodes in the segment. We
introduce futures to reason about updates with such unbounded footprints.

As futures admit general reasoning principles, we study them in the abstract semantic setting of
§4 and then apply the developed principles to our concrete running example.

Reasoning about Futures. Futures are expressed in terms of weakest preconditions. We define
the weakest precondition wp(com, gq) of a command com and predicate g in the expected way:
wp(com, q) = {s €2 | [com](s) € q}. The weakest precondition of the sequential composition
comy; comy is also defined as usual: wp(coms; comy, q) = wp(comy, wp(comy, q)).

Definition 6.1. Futures are (p) com( q) = p -+ wp(com, q).
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p € wp(com, q) wp(comy; comy, 0) € wp(com, 0)
F-INTRO F-SEQ
emp C (p)com(q) (p)com (q)*(q)comy (o) < (p)com(o)
P2 S P Q1<
F-INFER
(pr)com(qr) S (pz)com(qz) F-FRAME (p)com(g) < (p*o)com(g*o)

F-ACCOUNT p* {p*q)com(o) C (q)com(o) F-INVOKE p* (p)com(q) C wp(com, q)

Fig. 7. Implications among futures.

Readers familiar with Iris [Jung et al. 2018] will note that our definition of futures resembles Iris’
notion of Hoare triples. Technically, Hoare triples in Iris are duplicable resources (they are guarded
by a persistence modality) while our futures are not (they may carry resources and are therefore
subject to interference). However, one can directly encode our definition of futures in Iris via wp.
The key novelty of our approach is the way futures are used, in particular the reasoning technique
of accounting and composition as showcased in §2.

Figure 7 gives the implications we use for reasoning about futures. Rule r-inTro turns an ordinary
Hoare triple that proves the correctness of a command com into a future. Rules r-iNrEr and F-FRAME
correspond to rules inrEr-sem and rrame for Hoare triples. Rule r-invoke allows us to invoke a
future ( p) com( g) at the point in the proof where the update chunk com is actually executed. That
is, we can use this rule to discharge the premise of rule com-sem.

The composition of ghost update chunks is implemented by rule r-seo. It is similar to the rule for
sequential composition in Hoare logic with two important differences. First, it requires a separating
conjunction of the futures for the update chunks com; and com;,. The reason is that futures may carry
resources. Second, it replaces the composition of com; and com, by a new update chunk com that is
equivalent. Unlike rule seq, rule r-seq does not take into account interferences on the intermediate
assertion p. This is correct, since update chunks represent ghost computation that takes effect
instantaneously, meaning com; and com; are executed uninterruptedly at the moment when the
new update chunk com is invoked.

Finally, rule r-account enables the partial invocation of a future { p* q ) com{ 0) by eliminating
the premise p if it is present in the current proof context. We refer to this rule as accounting. We have
already seen in §2 that accounting is useful to enable the composition of two futures using r-seq.
Note that if p is subject to inference, so is the future ( q) com{ 0) obtained from rule r-accounr.

LEMMA 6.2. Rules F-INTRO, F-SEQ, F-INFER, F-FRAME, F-rACCOUNT, F-INVOKE are sound (valid implications).

Proving the Harris Set Invariant. We demonstrate the versatility of futures by using them to
prove that the CAS on Line 14 of the Harris set preserves the invariant of the data structure. Figure 8
shows the proof outline. The code is equivalent to the one in Figure 1, except that the mark bits
have been made explicit. We discuss the key aspects of the proof in more detail.

The precondition of traverse contains the predicate TIinv(C, N, M, [, In, Imark, t). It is the invari-
ant of traverse and states that the data structure’s invariant Inv(C, N) is maintained. Additionally,
the precondition contains the future Fut(M, [, In, t). It captures the fact that the segment from /
to t consisting of the nodes M \ {,t } can be safely unlinked via the update l.next := t, provided
I.next = Inand —mark(l). After the update, the future guarantees that we have (key(I), co] C flow(t),
a crucial fact we will later use in the linearizability proof (cf. §7). It also guarantees that the contents
of the modified segment is not changed by the update.
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22 TInv(C,N, M, In, Imark,t) = Inv(C,N) = C(M) € C({L,t}) * —Ilmark * key(l) <k<oo «{l,Int }CMCN
23 Fut(M,LIn,t) = (P(M, 1, In, t,In) ) Lnext:=¢ ( Q(M, L, In t,t) )

24 P(M,LInt,u) 2 Inv(C({Lt}),M) «{Lt} € M= next(l) =u * ~mark(l)

25 QML Int,u) = Inv(C({Lt}),M) ={Lt} CM = next(l) =u * —mark(l) = (key(l),oo] C flow(t)

2 { ANMC. Tinv(C, N, M, L, In, Imark, t) = Fut(M, 1, In, t) }

27 procedure traverse(k: K, I: N, In: N, Imark: Bool, t: N) {

28 val tn, tmark = atomic {t.next, ¢.mark}
29 {TInv(C, N, M, L, In, Imark, t) = Fut(M,1,In, t) = tn € N = (tmark = mark(t) = tmark = next(t) = tn) }

30 if (tmark) {

31 {Tlnv(C,N,M, L, In, Imark, t) = Fut(M, 1, In,t) = tn € N = mark(t) = mark(t) = tmark = next(t) = tn}
32 {Tlnv(C, N, M, L, In, Imark, tn) = Fut(M,, In, tn) }

33 return traverse(k, I, In, tn)

34 } else if (t.key < k) {

35 {Tlnv(C, N, M, 1, In, Imark, tn) = Fut(M,1, In, tn) = key(t) < k }

36 return traverse(k, t, tn, tmark, tn)

37 } else {

38 {Tlnv(C, N, M, 1, In,Imark, t) = Fut(M,l,In,t) = t #head * t#1 * key(l) <k < key(t) }

39 return (I, In, Imark, t)

T3
11 { (1, In,Imark,r). AN M C. Tinv(C, N, M, I, In, Imark, r) = Fut(M, 1, In,r) = r#head = r#1 = key(l) <k < key(r) }

Fig. 8. Proof outline showing that Harris set traverse prepares the CAS from search. The preparation guaran-
tees that the CAS will maintain the invariant. We capture this with a future.

To satisfy the precondition when invoking traverse from find, observe that the invocation is of
the form traverse(k, head, hn, hn) where hn stems from hn = head.next. The invariant of traverse,
TInv(C, N, {head, hn}, head, hn, hmark, hn), follows from the data structure invariant Inv(C, N). The
future Fut(M, head, hn, hn) can be obtained trivially via r-inTro because the update head.next := hn
has no effect if next(head) = hn.

The postcondition of traverse contains the invariant TInv(C, N, M, [, In, Imark, r) and the future
Fut(M, [, In, r). By applying rule r-invoxe, we can use the future to prove the correctness of the case
where the CAS(l.next, In,r) at Line 14 (Figure 1) succeeds. The remaining facts of the postcondition
state that traverse has found the part of the data structure that contains the search key k if present.

The most interesting part of the proof is the transition between Lines 31 and 32, particularly the
transition from Fut(M, [, In, t) to Fut(M, [, In, tn). Here, we need to extend the marked segment M
by adding tn. This step involves an application of r-seg to compose the update chunk for I.next :=¢
with the one for l.next := tn. We elaborate this step in detail, extending the discussion in §2.

We start from Fut(M, [, In,t) and use rule r-rrame to extend both sides of this future with
Inv(C(tn), tn). The resulting future can be rewritten into the form

< P(Lt, tn,In) = Inv(o, M\ {Lt tn}) > lnext:=t < QL t, tnt) * Inv(a, M\ {L ¢t tn}) >
where
P(L t, tn,u) Inv(C({Lt,tn}),{Lt,tn}) * next(l) =u * —mark(l)
QL t tnu) = Inv(CHLu tn}),{Lt tn}) = next(l) =u * —mark(l) * (key(l), 0] C flow(t) .

I3

|>

This future plays the role of { p) com; ( ¢) in our application of rule r-seq. To obtain the future
playing the role of { ¢ ) com; ( 0), we proceed in multiple steps. First, we use r-INTRO to derive

< Is(l, t,tn, t) * next(t) = tn* mark(t) > l.next :=tn (Q(l, t, tn, tn) > .
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To satisfy the premise of r-inTrRO, we need to show that (i) the update l.next := tn is frame-
preserving, i.e., the interface of the flow graph consisting of the nodes {/, ¢, tn} does not change,
and (ii) the invariants ¢’(x) are preserved for all x € {l,t, tn}. First observe that ~mark(l) and
@' (1) imply IS(I) # @. Using key(I) < oo, ¢*(t), and the fixpoint equation defining insets, we obtain
1S(¢) = IS(I) N (key(l), ] # @. From ¢*(t) and mark(t) we obtain key(t) # oo. Thus, using similar
reasoning as above, we conclude IS(tn) = IS(t) N (key(t), ] # @. The inset and inflow of [ are
unaffected by the update, so its invariant is trivially preserved. For ¢, let 1S’ (t) = @ denote the new
inset. Since t is marked, this means that all its invariants are preserved and its content is empty.
The new inset of tn is IS’ (tn) = IS(I) N (key(l), oo]. Observe that we have IS(tn) C IS’ (tn) # @, so
the invariants for tn are also maintained. Finally, to show that the interface of the modified region
remains the same, it suffices to prove I1S(tn) N (key(tn), co] = 1S’ (tn) N (key(tn), oo]. This holds
true if key(t) < key(tn), which follows from ¢?(tn) and @ # 1S(tn) C (key(t), oo].

Next, we apply r-account for next(t) = tn* mark(t) from the proof context and use r-rramE to
add the remaining part Inv(@, M \ {1, ¢, tn}) of the segment M as a frame. This yields

(P(Lt, tnt)xInv(a, M\ {1 t,tn})) Lnext:=tn { Q(Lt, tn tn)*Inv(a, M\ {Lt,tn})).

We can now use r-seQ with this future and the one derived above. Note that the premise of the rule
follows easily because com; and com; update the same memory location and com, = com. We obtain

(P(Lt,tnIn)«Inv(2, M\ {Lt,tn}) ) Lnext:=tn (Q(Lt, tn tn) = Inv(2, M\ {Lt,tn})).
Applying r-inrER and introducing a fresh existential M’, we rewrite this into the form
M =MuU{Lttn}x < P(M' 1, In, tn,In) «te M’ > l.next:=tn <Q(M’, L, In, tn, tn) > .

Now, we apply r-account one more time for t € M’ and use tn € N, In € M, and M C N from the
proof context, to obtain

M CN x {LIntn} CM * Fut(M',l,In, tn) .

This allows us to reestablish Tinv(C, N, M’, [, In, Imark, tn) « Fut(M’, [, In, tn). As M’ and M are
existentially quantified, we can finally rename M’ to M, which yields the assertion on Line 32.

Checking Interference Freedom. We briefly discuss why the proof is interference-free relative
to other threads performing set operations. First, all commands maintain Inv(C, N) and N can only
grow larger. Next, assertions depending on the field key are interference-free since a node’s key is
never changed after initialization. Similarly, mark is only changed monotonically from false to true.
Moreover, next is only changed for unmarked nodes (e.g., the proof guarantees =mark(l) in the
successful case of the CAS on Line 14 and the insert operation provides a similar guarantee). This
is why assertions such as mark(t) on Line 31 are interference-free. Because of that, the contents
C(M\ {l,t}) cannot change. Finally, futures constructed using rule r-inTro are always interference-
free. All remaining futures are constructed by accounting interference-free facts or by composing
interference-free futures via r-seQ.

7 HISTORIES

We next present an extension of our developed theory that allows us to reason about separated
computation histories. We integrate a form of hindsight reasoning for propagating knowledge
between current and past states—hindsight is a key technique to handle non-fixed linearization
points [Feldman et al. 2018, 2020; Lev-Ari et al. 2015; O’Hearn et al. 2010]. We develop the new
theory again in the general setting of §3 and §4 and then apply it to our running example.

Read-and-validate Pattern. Optimistic implementations commonly have future-dependent lin-
earization points: whether or not a thread’s next action is its linearization point depends on future
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42 val S = /x last index */ 58 procedure inc(k: Int) {
43 val arr = new Int[S+1] { @, ..., @ } 59 if (k > S) return false
60 FAACarr[k], 1)

44 procedure copy() { return t
61 urn true

45 val res = new Int[S] { @0, ..., @ }

46 { arr — i, ..., i * rest> jo,..., Js * /\;3:0 Jn <in } 62}

47 for (val k in [0, S1) res[k] = arr[k]

g {areio..., is * res > jo,. .., Js % Ny Jn < in} skip

s {areio. .., is % res > jo,. .., Js x ©(arr Vg, ..., s) # No_gjn < Vin Sin}

50 for (val k in [0, S1) {

51 {arr = gy, Is * res = jo, ..., Js = ©(arr — \iO ))))) \iS) * Af,:[) Jn £ Yip <ip * Ai\,;ul Jn = \in}
52 if (res[k] '= arr[k]) restart

53 {arr = g, ..., is ® res+— jo,..., Jjs * & (arr - Yig, ..., Vi) * Ai:n Jjn < Vip <ip Aﬁ:[] Jn ="in }
54 }

55 { arr — i, ..., is % res \ig, ..., Vig = & (arr = Vi, .. ., ‘is) }

56 return res

57}

Fig. 9. A simple array of counters. The counters can be incremented individually. The entire array can be
snapshot in an optimistic fashion, resulting in a non-fixed linearization point.

interferences from other threads. This issue often arises in uses of the read-and-validate pattern
where threads (i) read out some shared heap region, (ii) later on validate the read value, and (iii) suc-
ceed with their operation if the validation succeeds or roll-back otherwise. The read and validation
step are neither executed atomically nor within a critical/lock-protected section. Hence, the read
heap region is subject to interference and may change.

The Harris set employs the read-and-validate pattern. Method find, for instance, validates (some
of) the values read by traverse by re-reading them with the CAS on Line 14. If the CAS fails, so
does the validation and find rolls back by restarting. Method traverse implements the pattern
with a more intricate validation and roll-back mechanism: the next field of node ¢t read on Line 5
is validated by inspecting t’s mark bit, Line 7, and if the mark bit is set then the validation of
traverse’s search for the right node fails and continues with the subsequent nodes.

The pattern is not restricted to search structures. For an example, consider the counter array from
Figure 9. The implementation maintains an array arr of S+ 1 integer counters. Counters are individ-
ually increased by 1 using inc. A snapshot of the counter array is created by copy. As a first stage, a
simple copy res of the array is created by reading out the individual counter values non-atomically,
Line 47. In a second stage, the copy is validated against the current counter values, Lines 50 to 52.
The procedure is restarted if there are any discrepancies. Otherwise, the copy is guaranteed to be
a consistent snapshot of the counter array as of the moment immediately after the last counter
was read on Line 47. It is worth noting that, while the copy is being validated, some counters that
have been validated already may be changed. Nevertheless, the validation succeeds (rightfully so).

The read-and-validate pattern in copy results in a future-dependent linearization point. As alluded
to above, the linearization point is the moment the last counter is read on Line 47. However, this
moment depends on whether the subsequent validation will succeed. This, in turn, is unpredictable
and not under the control of the executing thread.

To handle this in a proof, we suggest the following strategy which mimics closely the behavior
of the implementation. During the first stage, we track the interference-free fact that the entries of
the copy array res are less than or equal to the current value of the corresponding counter, j, < i,
for all n. This fact follows easily from the counters increasing monotonically. Then, we snapshot
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the current counter array into a past predicate, Line 49. (Technically, this requires the skip on
Line 48, cf. Lemma 7.11 below.) Note that we rename the counter values i, under the past predicate
to ‘i,. Because i, = ‘i, at the moment of the snapshot, we obtain j, < ‘i, for all n. However, the
equality i, = ‘i, is not interference-free as the counters may change, but the point in time and thus
the values the past predicate refers to are fixed. This justifies our renaming to ‘i,. As before, we
record that the counter values under the past predicate are less than or equal to the current counter
values, ‘i, < i, for all n. During the second stage, a successful validation implies that the k-th
copy is equal to the current counter, ji = ix. Together with the estimate ji < iy < ik, we obtain
Jk = ‘ix. Overall, this means that the copy res corresponds to the counter array snapshot in the past
predicate, Line 55. Hence, res is a consistent snapshot of the counters in the sense that there was a
point in time where the counter array was equal to res—the operation is linearizable as desired. In
the following, we formalize past predicates and show their usefulness for linearizability proofs.

History Separation Algebras. Recall that our states are taken from a separation algebra (Z, *, emp).
We refer to a non-empty sequence of states ¢ € X* as a computation history. Computation his-
tories also form a separation algebra by lifting the composition on states as follows. First, for
sequences ¢ = s;---s, and 7 = t;---t, with - denoting sequence concatenation, the compo-
sition o * 7 is defined, written o # 7, iff n = m and for all i we have s; #t;. In this case, we let
o*T = (s %t1) -+ (sp*ty). The set of units is given by emp™.

LEMMA 7.1. (Z*, % emp™) is a separation algebra.

Predicates g, b, ¢ C€ Z* now refer to sets of computations. We lift the semantics of commands to
computation predicates in the expected way.

Definition 7.2. [[com]](o.s1) £ {o-s1-s2 | sz € [com](s1) }.

However, the locality assumption (LocCom) on the semantics of commands that is needed for
the soundness of framing does not necessarily carry over from state predicates to computation
predicates. If we want to frame computation predicates, we have to make an additional assumption.

Definition 7.3. A predicate a C 3* is frameable, if it satisfies Yo.¥s. 0-s€a = o-s-s€a
LEMMA 7.4. Ifc is frameable, [[ com]]| (a* c) C [[ com]] (@) = c.

We lift the semantics of concurrency libraries to history separation algebras (X X Z)*. The
notions of initial and accepting configurations as well as soundness remain unchanged except that
they now range over computation predicates instead of state predicates. The technical details of
this lifting are straightforward. The soundness guarantee in Theorem 4.2 continues to hold for
history separation algebras modulo a subtlety. We can only apply rule rrame if the predicate to be
added is frameable in the sense of Definition 7.3.

THEOREM 7.5 (SOUNDNESS). P,I I+ {a}st{b} and P andaec P imply E{a}st{b}.

Frameable Computation Predicates. We next discuss general principles for constructing frame-
able computation predicates from state predicates.

Definition 7.6. A state predicate p C X yields the following predicates over computations histories:
(i) The now predicate _p = ¥* - p.
(ii) The past predicate &p = E* - p- X",

The now predicate refers to the current state. The past predicate allows us to track auxiliary infor-
mation about the computation. These predicates work well in our setting in that they are frameable.

LEmMA 7.7. (i) _p and &p are frameable. (ii) If a and b are frameable, so are axb,anN b, and aU b.
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Frameability is not preserved under complementation and separating implication. However, the
now operator is compatible with the SL operators in a strong sense.

LEMMA 7.8. _(p®q) = _p® _q forall® € {N, U, =}, (p)=_p, false=_false, true=_true,
and_pC _qiffpCq.

For the past operator, we rely on the properties stated by the following lemma. In particular, the
last equivalence justifies rule v-inFER used in §2.

LEMMA7.9. _pC &p, true = Otrue, truex &p = O (p* true), false = & false, O (p+q) C Op* g,
Op*0qC O(p=q), ©(pNg S OpN &g &(pUg) =0pUoqandop C Oqiff p<Cq.

The interplay between computation predicates and commands is stated in the following lemma.
Recall that we defined wp(com, @) = {o | [[com]](c) C a}.

LEMMA 7.10. We have (i) wp(com, _p) = _wp(com, p), and (ii) wp(com, ©p) = &p U wp(com, _p).

The first identity of Lemma 7.10 implies that interference checking for a now predicate reduces
to inference checking for the underlying state predicate. The second identity implies that past
predicates are interference-free for all commands.

Next we justify rule u-inTro used in §2. Recall that this rule provides a way to record information
about the current state in a past predicate so that we can use this information later in the proof.
This involves a stuttering step.

LEMMA 7.11. _p C wp(skip,_p* &p).

Hindsight Reasoning. We now use history separation algebras to justify the hindsight reasoning
principle introduced in §2. The key idea is state-independent quantification, and best explained with
reference to an assertion language. An assertion language over computations will support quantified
logical variables. As those quantifiers live on the level of computations, the resulting valuation of
the logical variables will be independent of (the same for all) the states inside the computation. This
means facts that we learn about the variables in one state will also be true in all other states. In
particular, if we learn facts about a quantified variable now, we can draw conclusions in hindsight.
We illustrate this on an example. In the assertion Jov.(&(x — v) * _(v = 0)), the logical variable v
is quantified on the level of computations, meaning its value is independent of the actual state in
the computation. We learn that now v is zero, and since the valuation is state independent, v has
also been zero when x pointed to it. Hence, from the now state we can conclude, in hindsight, that
also ¢ (x — 0) holds. This is indeed a consequence of the previous assertion (entailment holds).
Rather than moving to an assertion language, we formalize this reasoning on the semantic level.

For hindsight reasoning, we construct a product separation algebra ¥ X I. The first component is
the above state separation algebra (Z, %, emp). We refer to the second component as the valuation
separation algebra (I, %, I), because its elements can be understood as variable valuations. There
are no requirements on I, it is just an arbitrary set, but we note that it is also the set of units. The
multiplication * between valuations i, j € I is defined if and only if i = j, in which case i =i = i.

The semantics of commands [[com] is lifted to predicates of the product separation algebra
by leaving the valuation component untouched. We then lift ¥ X I to a separation algebra of
computation histories (X x I)* as before. We adapt the definition of _p and ¢p for p C (X x I)* so
that the valuation component is kept constant over the whole computation, in accordance with the
lifted semantics of commands:

P =ACEX{ID (D) | (sD)epr op = {EX{iN - (s)-Ex{iD)" | (s)ep}.
Separation logic assertions are called pure, if they are independent of the heap and only refer to
the valuation of logical variables. In the semantic setting, we define a predicate p to be pure, if it
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leaves the heap unconstrained, p = ¥ X 7 for some J C I. The following lemma then justifies rule
H-HINDSIGHT used in §2.

LEMMA 7.12. Ifp is pure, then _px &q = &(p*q).

Linearizability in Hindsight. Past predicates together with the hindsight principle have an
appealing application in linearizability proofs: they allow for retrospective linearization. That is,
the proof does not need to observe the very moment when a thread executes the linearization point.
It suffices to show that the linearization point must have occurred in the past, after the remainder
of the thread’s execution has been observed. This is inspired by concurrent data structure practice,
like the read-and-validate pattern from before. To support this kind of linearizability argument, we
extend the proof system IFj;, from §4 with rule Lin-past from Figure 6, repeated here for convenience:

a € &(CSS(C) N UP(C,C,k,v))
P, 1 Iy, { ObI(¥) % a} skip { Ful(¥,0) *a} .

The rule formalizes our intuition. It trades the update token ObI(¥) for Ful('?, v) if a past predicate
can certify that the sequential specification was satisfied at some point during the computation,
i.e., a linearization point definitely occurred. It is worth stressing that the way past predicates are
introduced (cf. Lemmas 7.9 and 7.10) guarantees that they refer to a moment during the execution
of the corresponding operation, as required for linearizability. Also observe that the precondition of
the rule requires the linearization point to be pure. With the restriction to pure linearization points,
we avoid the complexity of ensuring that there is a one-to-one correspondence between updates of
the logical contents of the structure and threads claiming an update as their linearization point.
Put differently, our rule exploits the fact that arbitrarily many threads may linearize in a single
state that satisfies a pure case of the sequential specification.

LIN-PAST

Proving Linearizability of the Harris Set. By using the now predicate, we obtain a conservative
extension of separation logic. In the following, the application of the now operator is kept implicit:
a state predicate that occurs in a context expecting a computation predicate is interpreted as a now
predicate. This is justified by Lemma 7.8.

We demonstrate the reasoning power of the resulting logic by proving linearizability of the
Harris set search operation. The proof outline is in Figure 10, reusing our earlier proof of traverse.
The code of find makes the semantics of the CAS explicit. We have also eliminated the case In ==r
before the CAS. This focuses the discussion on a single linearization point.

Asin §2, we decorate logical variables occurring below a past operator with a prime to consistently
rename existentially quantified variables in order to avoid clashes with variables describing the
current state. For example, ‘next(x) will refer to the old value of x’s next field in some past state.

We proceed with the proof. First, we focus on the overall linearizability argument in search. To
that end, observe the history assertion resulting from a call to find, Line 89:

O(Inv(’C,"N) * r € N x k € ‘KS(r)) * =‘mark(r) * key(r)="key(r) .
Following our discussion from §2, the keysets guide the proof in the sense that k € ‘KS(r) means

that r is the decisive node for search (k). We localize the reasoning to this decisive node by rewriting
the invariant Inv(‘C, ‘N) under the past operator along Lemma 5.2:

Inv(‘C\{k}, 'N\ {r}) = Inv(*C(r), {r}) .
The lemma is applicable as its precondition C('\N'\ {r }) N { k } = @ follows from contraposition: if
there was a non-r node with k in its contents, then k was also in its keyset by the invariant, which

2Compared to §2, we record here the full invariant Inv(*C, ‘N) under the past operator, not just the predicate Node(r).
This is needed to be compatible with the sequential specification and rule LIN-PAST.
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63 Past(r) = key(r) =‘key(r) = (‘mark(r) = mark(r)) = &(Inv(*\C,'N) = r € ‘N = “(k € KS(r)))
64 {HCN. lnv(C,N)*—OO<k<oo}
65 procedure find(k: K) : N x N {

66 val hn, hmark = atomic {head.next, head.mark}
67 {TInv(C, N, {head, hn}, head, hn, hmark, hn) = Fut({head, hn}, head, hn, hn) }
68 val [, In, lmark, r = traverse(k, head, hn, hmark, hn)
69 {TInv(C,N,M, L In,Imark,r) = Fut(M, 1, In,r) = r#head * r#1 = key(l) <k£key(r)}
70 val succ = atomic { // CAS
71 l.next == In && Il.mark == Imark ? {
Inv(C,N) = Fut(M,l,In,r) * C(M) C C(L,r) * next(l) = In

{ w« —mark(l) = {1l In,r} € M C N = key(l) < k < key(r) }
73 [.next :=r

Inv(C,N) «{L,r} € N = (key(l),o0] C flow(r)
{ x key(l) < k < key(r) } {HCN' Inv(C, N) = Oo<k<oo}
s skip « Obl(search(k))

Inv(C,N) #{Lr} C N = (key(l), ] C flow(r) 87 procedure search(k: K) : Bool {
{ * key(l) < k < key(r) = Past(r) } 8 val _, r = find(k)

72

74

76

Inv(C,N) # r € N * =*mark(r)
77 } true : false 89
2 } x Past(r) = Obl(search(k))
79 {Inv(C.N) «{Lr} C N = (succ = Past(r)) } %  val res = r.key ==
” if (succ 88 'r.mark) { Inv(C,N) = r € N = Obl(search(k))
81 {Inv(C,N) = {Lr} € N * =‘mark(r) = Past(r) } x &(Inv(*C,"N) = res © ke'C)
82 return (I, r) 92 {Inv(C,N) * Fu](search(k),res)}
83 } else find(k) 93 return res
84} % }

& {(Lr). ACN. Inv(C,N) * {L,r } SN+ ="mark(r) * Past(r) } o5 {res. 3CN. Inv(C,N) = Ful(search(k), res) }

Fig. 10. Proof outline showing that Harris set search preserves the data structure invariant and is linearizable.

contradicts the disjointness of keysets because k € ‘KS(r). So we get k € ‘C(r) iff k = ‘key(r). By
the above localization, this means k € ‘C iff k = ‘key(r). Because the key of r has not changed,
key(r)="key(r), we arrive at k € ‘C iff k = key(r). That is, the current value of r.key reveals
whether or not k has been in the contents of the data structure at some point in the past. With this,
it is immediate that the past predicate certifies the existence of a linearization point for the usual
sequential specification of search:

{C.CSS(C) } search(k) {res. CSS(C) * reso keC} .

We know that res is equal to the truth of the equality k = key(r). Hence, we can linearize in
hindsight using rule Lin-pasT from above.

To prove the postcondition of find, we need to establish that at some point during the execution
of find, k € KS(r) and —mark(r) were satisfied. This is on Line 74, but we determine r’s mark bit
only later as execution continues past the condition on Line 80. The high-level proof idea is, thus,
to record r’s keyset and mark bit on Line 74 in the past assertion shown on Line 76 (we explain this
step in more detail below). We then propagate the assertion on Line 76 into the then branch of the
conditional (using Lemma 7.10). The logical variables link the past and current state, which allows
us to apply hindsight reasoning (rule u-uHinDsiGHT). Specifically, on Line 81 we know that mark(r)
is false in the current state. Then, using ‘mark(r) = mark(r), we can conclude that ‘mark(r) is also
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false, thus learning retrospectively the crucial fact about the past state at Line 74. We then transfer
this pure fact into the past predicate to derive C(r) = { key(r) } and thus res & k € C’ on Line 91.

We briefly discuss the mechanical aspects of deriving the past predicate on Line 76. We start with
the intermediate assertion established on Line 74 in the earlier proof. First, using key(l) < k and
(key(1), 0] € flow(r) we derive k € I1S(r). Then, using k < key(r) we obtain k € KS(r). We then
perform a stuttering step to record a copy of this assertion below a past operator using rule H-INTRO.
The resulting assertion is not interference-free since the current state of r referred to inside the
past assertion can be changed by concurrent threads. So we perform a series of weakening steps by
introducing fresh logical variables to arrive at the assertion on Line 76.

It is worth pointing out that the proof of find relies on the future constructed in §6 and the fact
that its update is pure, Line 73. To see this, we rewrite the assertion from Line 72 along Lemma 5.2:

Inv(C\C({Lr}),N\M) = Inv(C({[,r}),M) = Fut(M, [, In,r) .

Then, we frame out Inv(C \ C({1,r }), N \ M) and use the remaining Inv(C({ L, r }), M) to invoke
the future Fut(M, [, In, r). This gives Inv(C({ I, r }), M) which, combined with the frame, results in
Inv(C, N). Consequently, the update does not alter the logical contents of the structure so that
rule Lin-NoNE is applicable. This also justifies framing out the update token before invoking find
from within search on Line 88—the update token is not needed for the proof of find.

We note that throughout the entire proof, all explicit inductive reasoning was carried out at the
level of the program logic in lock-step with the program execution, using only local facts about the
nodes in the data structure captured by the resource invariant, futures, and history predicates. In
particular, we did not need explicit inductive reasoning over heap graph predicates or computation
histories. All such reasoning is carried out for free by our developed meta-theory.

8 PROTOTYPE IMPLEMENTATION

We substantiate our claim that the presented techniques aid automation and are useful in practice.
To that end, we implemented a C++ prototype called plankton [Meyer et al. 2022a]. plankton takes
as input the program under scrutiny and a candidate node invariant. It then fully automatically
generates a proof within our novel program logic, establishing that the given program is linearizable
and does adhere to the given invariant. We give a brief overview of plankton’s proof generation
and report on our findings. We stress that the present paper focuses on the theoretical foundations
and as such does not give a detailed discussion of plankton’s implementation.

Implementation. The proof generation in plankton is implemented as a fixpoint computation that
saturates an increasing sequence Iy C Iy C - - - of interference sets [Henzinger et al. 2003]. Initially,
the interference set is empty, Iy = @. Once Iy has been obtained, a proof of the input program with
respect to I is constructed and the interferences I, discovered during this proof are recorded,
yielding Ii1 = I U Ipey. A fixpoint I, = I is reached if no new interference is found, I = Ij4;.
The proof generated for I is then the overall proof for the input program.

For efficiency reasons, it is crucial to reduce the size of the computed interference sets [Vafeiadis
2010b]. We reduce an interference set I by dropping any interference (o, com) that is already covered,
that is, there is (r, com) € I with o C r.

Given an interference set I, plankton constructs a proof I I { po } fun { q} for each function
fun of the input program. The proof construction starts from the precondition p,, which captures
just the invariant, as done, e.g., in Figure 10. From there, the rules of the program logic (Figure 5)
are applied to inductively construct the postcondition. As I is fixed, plankton does not track the
predicates P. We elaborate on the interesting ingredients of the proof construction.

Rule com-sem for atomic commands com requires plankton to compute [[com] (p) for some precon-
dition p. The behavior of [[com] (p) is prescribe by the standard axioms of separation logic [O’Hearn
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et al. 2001]. If com updates the heap, however, we have to additionally infer a flow footprint such
that, roughly, (i) all nodes updated by com are contained in the footprint, (ii) the interface of the
footprint remains unchanged by the update, and (iii) after the update all nodes inside the footprint
still satisfy their node-local invariant. As discussed in §5, this localizes the update to the footprint:
the nodes outside the footprint continue to satisfy the invariant. plankton chooses the footprint
by collecting all nodes whose (non-flow) fields are updated by com and adds those nodes that are
reachable in a small, constant number of steps. If this choice does not satisfy (i), verification fails.
The restriction to finite footprints is essential for automating (ii) and (iii). Yet, the restriction does
not limit our approach: unbounded footprints are handled with futures, as seen in §6. Conditions (ii)
and (iii) are then encoded into SMT and discharged using 73 [de Moura and Bjerner 2008]. Lastly,
we apply the interferences I to [[com] (p). The result is ¢ = [I] ([com] (p)) whose computation is
inspired by [Vafeiadis 2010b]. Overall, we obtain I - { p} com { ¢ }.

Rule roor requires a loop invariant I for program st* and precondition p such thatI - {I}st{I}
and p C I. To find one, plankton generates a sequence Iy, I, . .. of candidates. The first candidate is
Iy = p. Candidate I,,4; is obtained from a sub-proof I I+ { I,, } st { I, } whose pre- and postcondition
are joined, i.e., I,+; = I, U I,. Intuitively, this join corresponds to the disjunction I, U I,. For
performance reasons, however, plankton uses a disjunction-free domain [Rival and Mauborgne
2007; Yang et al. 2008], which means the join is actually weaker than union. A loop invariant I = I,
is found, if the implication I,,+; € I, holds.

A core aspect of our novel program logic are history and future predicates. plankton tries to
construct a strongest proof for the input program. Hence, new history and future predicates are
added eagerly to an assertion p whenever it participates in a join or interference is applied to it.
The rational behind this strategy is to save information from p in a history/future before it is lost.
More specifically, all boxed points-to predicates from p that are subject to interference are added to
a new history predicate. New futures are introduced either from scratch with rule r-intro followed
by rule r-account or from existing futures with rules r-seo and r-rrame. It is worth pointing out
that plankton uses rule r-accounT only to account duplicable facts, as in the proof from Figure 8.
The introduction of futures is guided by a set of candidates. These candidates are computed upfront
by collecting all CAS commands in the input program. A CAS may be dropped from the candidates if
its footprint is statically known to be finite, e.g., because it only updates the mark bit of a pointer or
inserts a new (and thus owned) node. The approach discovers the necessary futures needed for our
experiments. Avoiding unnecessary futures produced by this method is considered future work.

Evaluation. We used plankton to automatically verify linearizability of fine-grained state-of-the-art
set implementations from the literature: a lock-coupling set [Herlihy and Shavit 2008, Chapter 9.5],
the Lazy set [Heller et al. 2005], FEMRS tree [Feldman et al. 2018] which is a variation of the
contention-friendly binary tree [Crain et al. 2013, 2016], Vechev&Yahav 2CAS set [Vechev and
Yahav 2008, Figures 8 and 9], Vechev&Yahav CAS set [Vechev and Yahav 2008, Figure 2], ORVYY
set [O’Hearn et al. 2010], Michael set [Michael 2002], Harris set [Harris 2001], and a variation with
wait-free search of the Michael and Harris set algorithms. For the FEMRS tree, plankton cannot
handle the maintenance operations because they have updates with an unbounded footprint that
is not traversed. This is a limitation of our current future reasoning. However, we are not aware
of any other tool that can automatically verify even this simplified version of FEMRS trees. Also,
plankton is the first tool to automate hindsight reasoning for the Harris set.

The results are summarized in Table 1. The first three columns of the table list (i) the number of
iterations until the fixpoint I}, is reached, (ii) the size of I, and (iii) the number of future candidates.
The next five columns list the percentage of runtime spent on (iv) rule com-sem, (v) future reasoning,
(vi) history reasoning, (vii) joins, and (viii) applying interferences. The last column gives (ix) the
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Table 1. Experimental results for verifying set implementations with plankton, conducted an Apple M1 Pro.

Benchmark #lter #[j;, #Cand Com. Fut. Hist. Join Inter. Lineariz.

11% 15% 43% 15% 8% 46s v

Do
(&}
Do

Fine-Grained set

Lazy set 2 6 2 10% 13% 54% 11% 5% 77s
FEMRS tree (no maintenance) 2 5 2 19% 0% 49% 1% 9% 130s v/
Vechev&Yahav 2CAS set 2 3 1 14% 0% 33% 31% 9% 125s v/
Vechev&Yahav CAS set 2 4 1 15% 7% 39% 23% 6% 54s v
ORVYY set 2 3 0 17% 0% 40% 26% 6% 47s
Michael set 2 4 2 11% 29% 30% 15% 6% 306s v
Michael set (wait-free search) 2 4 2 11% 28% 30% 15% 6% 246s v
Harris set 2 4 2 7% 8% 19% 32% 4% 1378s V/
2 4 2

Harris set (wait-free search) 8% 10% 17% 34% 3%  1066s Vv

overall runtime, averaged across 10 runs, and the linearizability verdict (success is marked with V).
Across all benchmarks we observe that two iterations are sufficient to reach the fixpoint Iz the
first iteration discovers all interferences, the second iteration confirms that none are missing. This
is remarkable because the first iteration uses [y = @, i.e., considers the sequential setting. Further,
we observe that most benchmarks spend significantly more time reasoning about the past than
the future. The reason is twofold. (1) Introducing new futures either succeeds, meaning that a
future candidate is resolved and can be ignored going forward, or it fails fast, which we attribute
to Z3 finding counterexamples much faster than proving the validity of our SMT encoding of
heap updates. (2) For histories, we do not have a heuristic identifying candidates. Instead, we
eagerly introduce histories upon interference. We also apply hindsight reasoning eagerly. Lastly,
we observe that the overall runtime tends to increase with the nesting depth and complexity of
loops, as plankton requires several loop iterations (often between 3 and 5) to find an invariant. A
proper investigation of how finding loop invariants affects the overall runtime is future work.

We also stress-tested plankton with faulty variants of the benchmarks. All buggy benchmarks
failed verification. Note that plankton does not implement error explanation techniques, which are
beyond the scope of the present paper.

9 RELATED WORK

Program Logics with History and Prophecy. Program logics have been extended by mechanisms
for temporal reasoning in various ways [Abadi and Lamport 1991; Bell et al. 2010; Delbianco et al.
2017; Fu et al. 2010; Gotsman et al. 2013; Hemed et al. 2015; Liang and Feng 2013; Manna and Pnueli
1995; Parkinson et al. 2007; Schneider 1997; Sergey et al. 2015].

The work closest to ours is HLRG [Fu et al. 2010], a separation logic based on local rely-
guarantee [Feng 2009] that tracks and reasons about history information, and its variation [Gotsman
et al. 2013]. The separation algebra behind HLRG is constructed like ours. The focus of [Fu et al.
2010; Gotsman et al. 2013], however, are temporal operators in the assertion language and means
of reasoning about them in the program logic. We only have now and past, but add the ability to
propagate information between them. The simplicity of our approach enables automation ([Fu
et al. 2010; Gotsman et al. 2013] has not been implemented in any automated or interactive tool, as
far as we know). A minor difference is that we work over general separation algebras to integrate
flows [Krishna et al. 2018, 2020b] easily and make the requirement of frameability explicit.
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A program logic with temporal information based on different principles appears in [Delbianco
et al. 2017; Sergey et al. 2015]. There, histories are sub-computations represented by timestamped
sets of events. The product of histories is disjoint union. While highly expressive, we are not aware
of implementations of the approach. Since our goal is automated proof construction, we strive for
assertions that are simple to prove, instead.

A separation logic for proving producer-consumer applications is proposed in [Bell et al. 2010].
The logic uses history but is domain-specific and provides no mechanism to reason about the
temporal development. A non-blocking stack with memory reclamation is verified in [Parkinson
et al. 2007]. The proof relies on history information stored in auxiliary variables and manipulated
by ghost code. The ghost code is justified by informal arguments (outside the program logic). We
do not consider memory reclamation as it can be verified separately [Meyer and Wolff 2019, 2020].
Beyond linearizability, history variables have recently been used to give specs to non-linearizable
objects [Hemed et al. 2015].

Several separation logics have been extended with prophecy variables [Jung et al. 2020; Liang
and Feng 2013], which complement history-based reasoning with a mechanism to speculate about
future events. However, prophecies are not well-suited for automatic proofs because they rely on
backward reasoning [Bouajjani et al. 2017].

History reasoning has been used early on in program verification [Abadi and Lamport 1991]. In
program logics [Manna and Pnueli 1995; Schneider 1997], the focus has been on causality formulas
which, in our notation, take the form _p = ©q. Our history reasoning is more flexible, in particular
incorporates hindsight reasoning (see below), and inherits the benefits of modern separation logics.

Overall, the existing program logics with history are heavier than ours while missing the
important trick of communicating information from the current state to the past by means of logical
variables shared between the two.

Hindsight Reasoning. The idea of propagating information from the current state into the past is
inspired by the recent hindsight theory [Feldman et al. 2018, 2020; Lev-Ari et al. 2015; O’'Hearn et al.
2010]. Hindsight lemmas ensure that information about a data structure obtained by sequential
reasoning (typically the reachability of keys) remains valid for concurrent executions. The argument
behind such results is that the existence of a sequentially-reachable state implies the existence
of a related concurrently-reachable state in the past. The implication requires that updates to the
structure do not interfere with the reachability condition one tries to establish (forepassing condition
in [Feldman et al. 2020]).

So far, hindsight reasoning has been limited to pencil-and-paper proofs, with the exception
of the poling tool [Zhu et al. 2015]. poling automates the specific hindsight lemma of O’Hearn
et al. [2010]. Unlike histories, it does not immediately generalize to other forms of retrospective
reasoning, like [Feldman et al. 2018, 2020; Lev-Ari et al. 2015].

Our program logic makes past states explicit and can be understood as a formal framework in
which to execute hindsight reasoning. Indeed, the sequential-to-concurrent lifting of hindsight
matches the thread-modular nature of our logic. Executing hindsight arguments in our framework
brings several benefits. For our engine, hindsight arguments provide a strategy for finding history
information. For hindsight theory, it not only gives the classical benefits of program logics like
precision and mechanization resp. automation. One also inherits the other features of our logic. We
found futures indispensable to prove the Harris set. As an interesting remark, our work solves a
limitation that has been criticized in [Feldman et al. 2020], namely that the local-to-global lifting of
the keyset theorem would not apply to optimistic algorithms with future-dependent linearization
points. We simply invoke the theorem below past predicates.
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A limitation of the existing hindsight theory as well as our work is that it does not apply to
algorithms with impure future-dependent linearization points like the Herlihy-Wing queue [Herlihy
and Wing 1990]. We leave the extension of the theory to such algorithms as future work. However,
pure future-dependent linearization points are more common in concurrent data structures.

Atomic triples in TADA [da Rocha Pinto et al. 2014], CAP [Dinsdale-Young et al. 2010], and
Iris [Jung et al. 2015] are specifications that justify a logical notion of atomicity for operations
whose execution may take more than one physical step. This makes them suitable for compositional
reasoning about nested modules with logically atomic specifications. The lifting of our program
logic to prove linearizability is inspired by the reasoning principles underlying atomic triples.

When it comes to pure future-dependent linearization points, our retrospective linearization with
rule Lin-pasT compares favorably to atomic triples. Proofs relying on atomic triples must typically
implement intricate helping protocols that transfer ownership of the update tokens Obl(¥) and
Ful(¥,v) between the thread that is linearized and the thread where the linearization point occurs.
This is necessary because the update token trade must happen at the very moment when the
linearization point occurs [Jung et al. 2020; Patel et al. 2021]. Our technique avoids such helping
protocols altogether, which aids proof automation.

Futures. Our futures are nothing but Hoare triples in separation logic (with separating implication),
and their use as assertions is well-known from program logics like Iris [Jung et al. 2018]. What we
add is the observation that futures capture complex heap updates by iteratively combining futures of
small updates found during the traversal preparing the complex update. This iterative combination
is the key novelty of our development. It allows us to reason about updates of unbounded heap
regions by means of updates of bounded regions.

Futures can be thought of as the opposite of atomic triples in that they prove the specification of
a single physically atomic command like a CAS using a sequence of logical ghost steps.

A method for automatically handling updates affecting unbounded heap regions is proposed in
[Ter-Gabrielyan et al. 2019], however, their method is tailored towards reachability. Being Hoare
triples, our futures are not restricted to a specific class of properties.

Automation. There is a considerable body of work on the automated verification of concurrent
data structures. For static linearization points, there are tools [Abdulla et al. 2013] and well-chosen
abstract domains [Abdulla et al. 2018]. For dynamic linearization points, there are reductions to
safety verification [Bouajjani et al. 2013, 2015, 2017]. Common to these works is that, in the end, they
rely on a state-space search whereas our approach reasons in a program logic. Notably, the poling
tool [Zhu et al. 2015] extends cave [Vafeiadis 2009, 2010a,b] to support dynamic linearization points,
e.g., to verify intricate stacks and queues (which our tool plankton does not support because they
are not search structures). Related is also [Itzhaky et al. 2014] in the sense that flows in particular
can express heap paths. But we are not interested in verification condition generation and complete
reductions to SMT, but rather proof generation, including invariant synthesis.

Other promising tools automating program logics include Starling [Windsor et al. 2017], Caper
[Dinsdale-Young et al. 2017], Voila [Wolf et al. 2021], and Diaframe [Mulder et al. 2022]. However,
these are closer to proof-outline checkers when compared to our tool. In particular, they do not
perform loop invariant and interference inference or try to identify linearization points. Instead,
they target more complex logics that are not designed for ease of automation.
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