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Abstract

Motivation: In the training of predictive models using high-dimensional genomic data, multiple studies’ worth of
data are often combined to increase sample size and improve generalizability. A drawback of this approach is that
there may be different sets of features measured in each study due to variations in expression measurement
platform or technology. It is often common practice to work only with the intersection of features measured in
common across all studies, which results in the blind discarding of potentially useful feature information that is
measured in individual or subsets of studies.

Results: We characterize the loss in predictive performance incurred by using only the intersection of feature
information available across all studies when training predictors using gene expression data from microarray and
sequencing datasets. We study the properties of linear and polynomial regression for imputing discarded features
and demonstrate improvements in the external performance of prediction functions through simulation and in gene
expression data collected on breast cancer patients. To improve this process, we propose a pairwise strategy that
applies any imputation algorithm to two studies at a time and averages imputed features across pairs. We
demonstrate that the pairwise strategy is preferable to first merging all datasets together and imputing any resulting
missing features. Finally, we provide insights on which subsets of intersected and study-specific features should be
used so that missing-feature imputation best promotes cross-study replicability.

Availability and implementation: The code is available at https://github.com/YujieWuu/Pairwise_imputation.

Contact: patil@bu.edu

Supplementary information: Supplementary information is available at Bioinformatics online.

1 Introduction

Individual gene expression profiles have successfully been used to
model the prognosis or risk of many diseases and disorders in personal-
ized medicine (van ’t Veer et al., 2002; Wang et al., 2005). These pre-
dictive models capture disease identification (Fakoor et al., 2013; Tan
and Gilbert, 2003), cancer subtyping (Gao et al., 2019; Huang et al.,
2018) and risks of recurrence and relapse (Ascierto et al., 2012;
Hartmann et al., 2005; Wang et al., 2004). Technological advance-
ments have seen these studies graduate from custom chips to commer-
cial tools to whole-genome sequencing. This has yielded larger-scale
experiments and, over time, the ability to combine multiple gene ex-
pression studies of the same disease outcome measured in different pa-
tient cohorts. This abundance of data has led to the use of complex
statistical prediction and machine-learning algorithms for the

development of gene signatures (Pirooznia et al., 2008; Shipp et al.,
2002; Ye et al., 2003).

A critical issue facing the translation of these gene signatures
into viable clinical tests is generalizability, or how well we expect
the predictor to perform on a new patient or set of patients.
Techniques such as cross-validation can overestimate how well a
prediction model will generalize as compared with direct evaluation
in a held-out test or validation dataset (Bernau et al., 2014). This
discrepancy is often due to cross-study heterogeneity in patient char-
acteristics, measurement platforms and study designs (Patil and
Parmigiani, 2018).

To combat the effects of cross-study heterogeneity and increase
the training sample size to improve generalization, researchers have
merged multiple studies (Xu et al., 2008). van Vliet et al. (2008)
showed that pooling datasets together will result in more accurate
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classification and convergence of signature genes. However, a major
challenge in combining these datasets is that the same gene features
may not be measured across all studies. This may be due to differen-
ces in measurement platform or variations in the same platform
when studies are conducted at different points in time.

A common strategy when faced with differing sets of measured
genes across studies is to retain only the intersection of gene features
found in all studies (Xu et al., 2005). We henceforth refer to this
method of aggregation as ‘omitting’, because it simply omits gene
expression information that is not measured in at least one study.
Taminau et al. (2014) proposed a detailed procedure for merging
datasets by taking the intersected genes of all studies followed by a
batch effect removal procedure. Although omitting provides a
simple approach for seamlessly merging studies, it comes with the
potentially high cost of discarding important predictive information
in features not contained in the intersection. Yasrebi et al. (2009)
noted that if some genes that have high diagnostic power are not
available for all studies, the aggregated data may not actually im-
prove the final predictive model.

A solution to the data loss due to omission is imputation. Zhou
et al. (2017) built LASSO models to impute missing genes across dif-
ferent studies assayed by two Affymetrix platforms for which the
probe names of one platform are a proper subset of the other. Bobak
et al. (2020) built several imputation models across studies that are
measured using a variety of gene expression platforms. Both
approaches proceed by first merging all studies together, then using
the common genes in the intersection to impute missing genes. As
the number of studies increases, the size of the intersection is likely
to decrease, resulting in a smaller candidate feature pool and less ac-
curate imputation of omitted genes. This makes merging before
imputing a less attractive option when dealing with more than
two studies, such as in the cases of the MetaGxData,
CuratedOvarianData or CuratedBreastData collections where doz-
ens of datasets may be available for combination (Ganzfried et al.,
2013; Gendoo et al., 2019; Planey and Butte, 2013). Moreover,
these previous approaches were focused on the accurate imputation
of missing genes and its effect on downstream analyses such as gene
pathway enrichment analysis. Whether or not imputation can help
improve a prediction model and make it more generalizable to exter-
nal data in this context is mostly unstudied.

In this article, we propose a pairwise strategy, in which instead
of merging all available studies together at the outset to build an im-
putation model for missing gene features, we merge two studies at a
time and perform imputation within the pair. We then repeat this
imputation procedure for all possible pairs of studies and average
imputed values for features that are missing across multiple pairs be-
fore training a prediction model. Inspired by the concept of know-
ledge transfer proposed by Vapnik and Izmailov (2015), which
posits that some functional forms of the existing features could po-
tentially capture missing information, we examine the ability of
both linear and polynomial regression to impute missing features
and use LASSO models (Hastie et al., 2009) both for imputation
and for outcome prediction. Our strategy can be implemented using
any imputation method applicable to the data types being studied,
and we evaluate both traditional and machine learning-based imput-
ation methods. Lastly, we consider the impact of using only features
selected as ‘important’ (highly associated with the predictive out-
come of interest) across both studies within a given study pair (‘Core
Imputation’) versus using all available features (‘All Imputation’)
when building study-specific imputation models. Here, we revisit
the question of whether some form of feature selection and a result-
ing smaller and more focused set of candidate features is preferable
to applying regularization to a larger set of candidate features
(Demir-Kavuk et al., 2011; Spooner et al., 2020).

The article is organized as follows: Section 2 presents formal no-
tation for the general pairwise strategy to impute study-specific
missing genes across multiple studies, as well as the specific ‘Core’
and ‘All’ methods. Section 3 presents a simulation study that evalu-
ates the performance of the pairwise strategy and the ‘Core’ and
‘All’ methods. Section 4 describes a real data analysis predicting the

expression of the gene ESR1 across multiple curated breast cancer
studies. Section 5 concludes with a discussion.

2 Materials and methods

2.1 Problem statement
Let s ¼ 1; 2; . . . ; S index the studies for aggregated analysis, with ns

individuals and ps genes in study s. Let Xs denote the gene expres-
sion dataset for the sth study. Xs is a ns � ps matrix where each row
represents an individual and each column represents the measure-
ment values for a particular gene. Let Y s be a ns � 1 column vector
of the response variable of the sth study. For a pair of studies s and j,
denote by Gsj; Gs=j and Gj=s the set of genes that are found in both
studies, unique to study s and unique to study j, respectively. Let
jGsjj ¼ psj, where j � j is the cardinality of a set. It follows that jGs=jj ¼
ps � psj and jGj=sj ¼ pj � psj. Denote the gene expression matrix for
a subset of genes G in study s as Xs;G. Throughout the article, we as-
sume that psj > 0 for every pair of (s, j) (complete notation table in
Supplementary material S1).

Our goal is to impute study-specific missing genes to augment
the candidate gene set used for building a predictive model. To this
end, we propose a pairwise approach where imputation is applied
for two studies at a time, as the available intersection of genes across
any two studies will tend to be larger than that across all S studies.
For studies s and j, the pairwise approach uses Gsj to construct im-

putation models of every gene in Gs=j separately using data from

study s, based on which the expression profiles in Gs=j will be

imputed for study j. The same procedure applies to the imputation
of genes in Gj=s for study s. The imputed studies s and j both then

contain the same set of genes Gs [ Gj (see Fig. 1). We repeat this pair-

wise approach for all
S
2

� �
pairs of studies. If a particular gene in

one study is imputed multiple times across pairs, we average its
imputed values over all imputations. The result from a single imput-
ation may be overfit to its pair and may not generalize well across
pairs. We follow the philosophy of ensemble modeling (Zhang and
Ma, 2012) which suggests that averaging across pairs will limit over-
fitting and outperform the single-best imputation model. Training
only with observed data and averaging genes imputed multiple times
makes the pairwise strategy invariant to the order in which pairs of
studies are constructed.

2.2 Imputation under incomplete validation set and

sparse signals
The pairwise approach must be refined before it can be used for
practical applications. The main limitation of the approach as stated
is 2-fold: (i) it assumes that all studies are for training and no valid-
ation study is present; (ii) all genes that appear in at least one study
should be included in the final prediction model. The first assump-
tion makes cross-study validation inaccessible while the second
can lead to overfitting and increase the computational cost of the
approach if ps is large. Therefore, we propose the following ‘Core’
and ‘All’ variations of the generic pairwise approach, with ‘Core’
using selected cross-study genes to build the imputation model
and ‘All’ using all available genes in the studies. The algorithm
statements of the ‘Core’ and ‘All’ variations are provided in
Supplementary material S2.3.

2.2.1 ‘Core’ pairwise approach

Before introducing the methods, we make the assumption that the
response variable is not available in the validation set. For each
study, suppose not all genes are predictive of the outcome, and due
to the mixture of signal and noise, a common pre-processing step to
filter to a subset of genes that are most related to the outcome is
applied. For example, in each training study, we can select the top q
genes with the largest magnitudes of coefficient estimates from
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LASSO, where the response is the outcome and the predictors are
the expression values of the genes.

The ‘Core’ pairwise approach takes two training sets denoted by
Ti and Tj as a pair, and imputes the missing genes in T i; T j and the
validation set (V). In the preliminary screening stage, suppose in
each training set that the top q predictive genes are selected for the
final prediction model. Due to study heterogeneity, different sets of
genes may be chosen from the two training sets, and we denote them
as Qi and Qj, respectively. Furthermore, let QV be all the available
genes in V, H ¼ Qi [Qj; H1 ¼ Qi \Qj \QV and H2 ¼ H H1. The
idea of ‘Core’ pairwise approach is to impute the genes in H2 that
are not shared by all of the three studies using genes in H1 that are
common across all studies. Note that for the ‘Core’ pairwise ap-
proach, the genes used for imputation are all predictive of the out-
come in at least one of the training sets. To properly perform ‘Core’
imputation, three different scenarios need to be considered: (i) if a
gene is found in only one of Qi and Qj and is also missing in QV , an
imputation model will be built in the training set that has this gene
available, and imputation will be performed for the other training
set and V; (ii) if this gene is not missing in QV , then no imputation is
needed in V since we can use the original values of this gene; (iii) if a
gene is available in both Qi and Qj but is missing in QV , then we
merge T i and T j together to train a single imputation model for this
gene and impute in V. If we have S>2 training sets, we can repeat

the above procedure for all possible
S
2

� �
pairs of training sets com-

bined with the additional validation set V, and if a gene is imputed
multiple times, we take the average over the multiple imputed values
as the final imputation.

We provide a more in-depth illustrative example as well as an al-
gorithm statement in Supplementary material S2.

2.2.2 ‘All’ pairwise approach

The ‘Core’ pairwise approach introduced above will only use the
genes in H1, which are the genes that are predictive of the outcome
in training sets, to impute the missing genes in H2. However, it is
possible that genes not selected for predicting the outcome (i.e. genes
not in H) are still helpful for imputing the missing gene expression
values. Therefore, another imputation strategy is to use the intersec-
tion of all available genes from the three studies instead of focusing
only on the intersection of the top predictive genes.

Denote Qc
i and Qc

j as the other existing genes in Ti and T j but not
in Qi and Qj, and let Hc ¼ Qc

i [Qc
j ; Hint ¼ ðQi [Qc

i Þ \ ðQj [Qc
j Þ

\QV . The idea of the ‘All’ pairwise approach is to use genes in Hint to
impute the study-specific missing genes in H2. Note that the genes in
Hint are the intersection of all the available genes in T i;T j and V, and
thus not necessarily predictive of the outcome. Four scenarios require
consideration (i) if a gene is completely missing (e.g. not in Qi nor in
Qc

i ) in one of the training sets and QV , an imputation model will be

built for this gene in the training set that has this gene and imputation

will be performed for the other training set and V; (ii) if this gene is
available in QV , then no imputation is needed in V since we can use

the original values of this gene; (iii) if the gene is found in Hc (i.e. this
gene is not predictive of the outcome in one of the training sets, but still
exists) but is completely missing in QV , the training set that has this

gene missing in the top q predictive gene list can still use its original
value, and then we merge the two training sets together to build a sin-

gle imputation model for this gene and imputation will be performed
in V; (iv) if the gene is found in both Hc and QV , all studies will use
their original values and no imputation is needed. An illustrative

example and algorithm statement are provided in the Supplementary
material S2.

3 Results

3.1 Simulation
3.1.1 Comparison between pairwise and merged approaches

We perform a simulation study to compare the performance of our

proposed pairwise approach to the merged approach, where we first
merge all studies together and use the intersection of variables across

all studies to impute study-specific missing variables. We generate
four training studies and one external validation study with sample
size of 100 for each study, and we evaluate the performance of the

imputation methods in terms of the prediction root mean square
error (RMSE) in the validation dataset. The overall RMSE is

averaged over 300 simulation iterations.
The data for each study is generated from a model following a

similar data generation mechanism as in van Vliet et al. (2008):

Y ¼ b1X1 þ � � � þ b5X5 þ b�1X�1 þ � � � þ b�5X�5 þ �; (1)

where

X
X�

� �
�MVNð0:1;RÞ

with the variance and covariance being 1 and 0.5, respectively.
To create study-specific patterns of missingness across the four

training studies, we fix X1, X2 to be common to all studies, while

varying the number of missing variables among X3; . . . ;
X5;X

�
1; . . . ;X�5 across the four training sets. The validation set is

complete, and no imputation is needed.
To predict the outcome of interest, we compare the omitting

method where only the intersected variables common across all

studies are used for predicting the outcome, pairwise linear and
polynomial imputation, and merged linear and polynomial imput-
ation. Table 1 summarizes the imputation models for the study-

Fig. 1. Flow chart of the pairwise imputation approach for study-specific missing genes
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specific missing variables and the final prediction models for each
method.

Figure 2a shows the RMSE of prediction on the validation set
from different imputation methods and the omitting method over
the 300 simulation iterations. The omitting method consistently has
the worst performance of all methods, and the two pairwise imput-
ation methods have relatively better performance than the corre-
sponding merged imputation methods. To formally compare the
performance of different methods by accounting for variation across
iterations, we performed pairwise Wilcoxon tests on the RMSE.
Figure 2b graphically presents the test results, where each method is
represented by a single point ordered by the median RMSE over the
300 simulation replicates. The color of the line connecting any two
methods indicates the significance level of the test result: a red line
indicates that the P-value is <0.01; a green line indicates that the P-
value is >0.01 but <0.05; and a blue line indicates that the P-value
is >0.05 (P-values are Bonferroni adjusted for multiple compari-
sons). For the cases with P-values <0.05, we add a directed arrow to
indicate the direction of the test, such that the method to which the
arrow points has significantly smaller median prediction RMSE.
Above each method, we report the proportion of simulation repli-
cates for which that method obtained the smallest prediction
RMSE in the validation set across the 300 simulation replicates. As
shown in the figure, when the proportion of missingness is 10–40%,
the pairwise linear imputation method has significantly better
performance than the other methods, while when the proportion of
missingness is 50–70%, the pairwise polynomial imputation method
has slightly smaller prediction RMSE. In Supplementary Figure S1a,
we plot the log RMSE ratio between different imputation methods

and the omitting method: log RMSE from the imputation methods
RMSE from the omitting method

� �
; and

Supplementary Figure S1b shows the log RMSE ratio between the
pairwise imputation methods and the merged imputation methods.
We also show the average difference in the number of intersected

variables used to impute the study-specific missing variables be-
tween the merged imputation methods and the pairwise imputation
methods as the cross-points in Supplementary Figure S1(b). The
cross-points show that as the proportion of missing variables
increases, the pairwise imputation methods have increasingly larger
numbers of intersected genes that can be used to impute the study-
specific missing genes as compared to the corresponding merged
imputation methods, and the largest discrepancy occurs when the
proportion of missing genes is 30%. However, as more genes are
missing, the difference approaches 0. This pattern matches with the
trend in the log RMSE ratio shown in the same figure, where it ini-
tially decreases, but then increases to 0.

Finally, we also consider a scenario that better resembles real
gene expression data, where each dataset contains both genes that
are predictive of the clinical outcome as well as genes that are
irrelevant to the outcome. The data generation mechanism is as
follows:

Yi ¼ b1X1;i þ b2X2;i þ b3X3;i þ � � � þ b5X5;i

þb6X�1;i þ � � � þ b10X�5;i
þb11Z1;i þ � � � þ b20Z10;i þ �i

; (2)

where X1;i; . . . ;X5;i;X
�
1;i; . . . ;X�5;i are generated the same way as in

Equation (1), while Z1;i; . . . ;Z10;i follow a multivariate normal dis-
tribution with mean 0.1, standard deviation 1 and correlation coeffi-
cient 0.2. We restrict the coefficients b11 ¼ b12 ¼ � � � ¼ b20 ¼ 0,
such that Z1; . . . ;Z10 can be regarded as the genes that are irrelevant
to the clinical outcome. We also vary the number of missing varia-
bles in Z1; . . . ;Z10 to explore the performance of the pairwise im-
putation and merged imputation in the presence of missing
irrelevant variables. Detailed simulation results can be found in
Supplementary Figure S2, where the pairwise imputation method
consistently has a smaller RMSE of prediction on the validation set
compared to the merged imputation method regardless of the num-
ber of missing relevant or irrelevant genes.

3.1.2 Comparison between the ‘Core’ and ‘All’ pairwise methods

To mimic genomic datasets, we perform another simulation study
where the signature genes for predicting the outcome of interest are
sparse in the whole dataset. For illustrative purposes, we have two
training sets, and we will make predictions on another validation set
that also has missing genes. Since Section 3.1.1 suggests that the
pairwise strategy generally performs better than the merged strategy
in terms of prediction RMSE, in the subsequent simulation study,
we provide a focused comparison of the ‘All’ and ‘Core’ pairwise
strategies described in Section 2.2.

We generate data as follows, with the sample size of each study
set to be 100:

Yi ¼ b1X1;i þ � � � þ b20X20;i þ b21X�1;i þ � � � þ b40X�20;i

þb41Z1;i þ � � � þ b160Z120;i þ �i
; (3)

where X1; . . . ;X20;X
�
1; . . . ;X�20 jointly follow a multivariate normal

distribution with mean 0.1, variance 1 and covariance 0.5.
Z41; . . . ;Z120 jointly follows a multivariate normal distribution with
mean 0, variance 1 and correlation coefficient 0.2. We restrict the
corresponding coefficients b41; . . . ; b160 ¼ 0 such that Z1; . . . ;Z120

can be regarded as the genes that are irrelevant to the outcome
of interest. In simulation, X1 �X20 are available to all datasets, and
we deliberately set 10 of the genes among X�1; . . . ;X�20, and 50

Table 1. Imputation methods considered for comparison

Methods Imputation model Final predicting model

Omitting — LASSO

Pairwise linear imputation LASSO with linear terms of intersected variables LASSO

Pairwise polynomial imputation LASSO with polynomial terms of intersected variables LASSO

Merged linear imputation LASSO with linear terms of intersected variables LASSO

Merged polynomial imputation LASSO with polynomial terms of intersected variables LASSO

Fig. 2. (a) The RMSE of prediction on the validation set for different imputation

methods and the omitting method. (b) Pairwise paired Wilcoxon test of the median

RMSE of different imputation methods and omitting method over 300 simulation

replicates. ‘PP’, ‘MP’, ‘PL’ and ‘ML’ stand for pairwise polynomial, merged polyno-

mial, pairwise linear and merged linear imputation, respectively. A red line indicates

that the Bonferroni adjusted P-value from the paired Wilcoxon test is <0.01; a green

line indicates that the adjusted P-value is >0.01 but <0.05; and a blue line indicates

that the adjusted P-value is >0.05; and the method to which the arrow is pointing

has a significantly smaller median RMSE. The number above each method presents

the proportion of times each method has the smallest prediction RMSE in the valid-

ation set across the 300 simulation replicates (A color version of this figure appears

in the online version of this article)
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irrelevant genes among Z1; . . . ;Z120 to be missing for both the train-
ing and validation sets. Therefore, for each study, we have 20 com-
mon predictive genes, 10 study-specific predictive genes and 70
study-specific irrelevant genes.

For preliminary feature screening, we applied LASSO and
selected the top n;n ¼ 30; 40; . . . ;100 genes with the largest abso-
lute coeffecients associated with the outcome. Figure 3a shows the
RMSE of prediction on the validation set for the omitting, ‘Core’
and ‘All’ imputation methods. Figure 3b and c shows the paired
Wilcoxon test results on the RMSE. Supplementary Figure S3a
shows boxplots of the log RMSE ratio of the ‘Core’ and ‘All’ imput-
ation methods to the omitting method, and Supplementary Figure
S3b shows boxplots of the log RMSE ratio of the ‘Core’ imputation
method to the ‘All’ imputation method. Across these figures, both
‘Core’ and ‘All’ imputation methods have better prediction perform-
ance than the omitting method. When the number of top genes
included is small, ‘All’ imputation has a smaller prediction RMSE
than ‘Core’ imputation method, while when the number of genes
included is large (>60 or 70), ‘Core’ imputation works better. We
hypothesize that LASSO may inevitably include noise among the top
predictive genes while some signal will be neglected, and thus when
the number of top genes included for prediction is small, ‘All’ imput-
ation has the advantage of access to more informative genes to im-
pute missing genes. However, when the number of genes included is
large, most signals will be selected by LASSO and therefore both
‘Core’ and ‘All’ imputation will use approximately the same number
of truly informative genes for imputation, while for ‘All’ imputation,
more noise will be included in the imputation model, yielding less
accurate imputation. In addition, we consider a scenario where
X1; . . . ;X20 are generated from a multivariate normal distribution
but X�1; . . . ;X�20 are generated as a complex, non-linear function of
X1; . . . ;X20, in particular using sine and cosine functions. The simu-
lation results are presented in Supplementary Figures S4 and S5, and
we observe similar patterns.

3.2 Sensitivity analyses
Apart from using linear regression and polynomial regression as the
imputation models, we also explore using more complex machine
learning algorithms such as Random Forest, Support Vector
Machines and Multiple Imputation. Supplementary Figures S9 and
S10 show the prediction RMSE. Regardless of which imputation al-
gorithm is used, the pairwise strategy consistently has smaller pre-
diction RMSE than the corresponding merged approach.

Supplementary Figures S7 and S8 show the prediction RMSE
when three studies are used for imputation at a time rather than
two. The pairwise strategy consistently has a lower prediction

RMSE than imputation across three studies at a time. The difference
in performance is due to the pairwise strategy retaining a larger set
of intersected features to be used for imputation. As the number of

studies used in the subset increases, the subset imputation approach
will converge to the merging approach.

We varied the number of training sets used across 3, 6 or 9 train-

ing datasets; results are shown in Supplementary Figures S11 and
S12. The pairwise strategy consistently has smaller prediction
RMSE than the merged approach regardless of the number of train-

ing sets. As the number of training sets increases, the intersection
used by the merged strategy will shrink while the intersection used
for any pair in the pairwise strategy will remain roughly the same

size.
We also assess the impact of cross-study heterogeneity when gen-

erating data. For Equation (1), X is still generated from a multivari-
ate normal distribution with mean 0.1, variance 1 and covariance
0.5. To generate X�, we first generate the study-specific mean slopes

ck � Nð0; s2Þ. In the kth study, X�j ; j ¼ 1; . . . ; 5 is generated as XcT
k;j,

where ck;j �MVNðck;1Þ. Therefore, s2 controls the study hetero-
geneity of the relationship between X and X� across studies, and

larger s2 corresponds to more heterogeneous X � X� relationships
across studies. For Equation (2), to generate Z, we additionally gen-
erate the study-specific mean lk � Nð0; s2Þ for the kth study, and

Z1; . . . ;Z10 are obtained from a multivariate normal distribution
with mean 0:1þ lk with variance 1 and covariance 0.2. Figure 4
and Supplementary Figures S13–S15 show the corresponding results.

We observe that even under study heterogeneity, both the pairwise
and merged strategies have smaller prediction RMSE than the omit-
ting method, and the pairwise strategy consistently has better predic-

tion performance than the corresponding merged strategy. This is
attributable to the added robustness of the ensemble approach
implemented in the pairwise strategy, where the final imputation is

an average of imputations from multiple prediction models.
Ensembling in this manner can smooth over cross-study heterogen-
eity and exceed the advantage of the larger sample size used by the

merged model (Guan et al., 2019).
Lastly, we compare the run time of the pairwise imputation and

merged imputation strategies. Supplementary Figure S20 shows the
run time for linear pairwise and merged strategies when data are
generated following Equation (1) across 3, 6 and 9 training studies.

Since imputation models will be built multiple times, the pairwise

Fig. 3. (a) RMSE of prediction on the validation set for the Omitting, ‘Core’ and

‘All’ imputation method across the 300 simulation replicates. Left panel:

b1 ¼ � � � ;¼ b20 ¼ 5; b�1 ¼ � � � ;¼ b�10 ¼ 10; Right panel: b1 ¼ � � � ;¼ b20 ¼ 10; b�1 ¼
� � � ;¼ b�20 ¼ 5; (b, c) Pairwise paired Wilcoxon test on RMSE between Omitting,

‘Core’ and ‘All’ imputation methods for scenarios when X�’s have larger and

smaller coefficients than X’s, respectively. The P-values are adjusted using

Bonferroni correction for multiple comparisons

Fig. 4. Add study heterogeneity in the X � X� relationship. The baseline method for

comparison is omitting
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approach takes longer, and this can be exacerbated by the total
number of studies.

3.3 Real data analysis
We apply the ‘Core’ and ‘All’ pairwise strategies with polynomial
imputation to impute study-specific missing genes on microarray
datasets from the ‘curatedBreastData’ Bioconductor package
(Planey and Butte, 2013). We selected studies numbered 12093,
16446, 17705, 20181, 20194, 2034, 25055 and 25065 because they
all used the Affymetrix Human Genome U133A chip for microarray
gene expression measurements. The sample sizes of these studies
range from 54 to 286, with a total of 1328 patients across studies.

We apply the ‘Core’ and ‘All’ strategies to predict the expression
level of the gene ESR1. In each experiment, we take four studies as
training sets and a fifth study is chosen as the validation set. The im-
putation and the final predictive models are all performed using
LASSO.

We restrict our analysis to the top 1000 most variable genes in
each study. This induces heterogeneous missing patterns across our
candidate studies, as the set of 1000 highest-variance genes varies
across studies. The distribution of the variability of the genes for
each study is shown in Supplementary Figure S16. In general, the
variability is similar across studies. Around 35% of the top 1000
variable genes are common across all eight studies, with each study
having around 650 study-specific genes that are missing in at least
one of the eight studies. We perform a principal component analysis
on the intersected genes and plotted the first two principal compo-
nents annotated by study shown in Supplementary Figure S17. We
observe that even after batch effect correction, there still exists some
study heterogeneity since there are two distinct clusters with each
cluster consisting of four studies.

Since not all genes are predictive of the outcome, for the screen-
ing step, we fit a LASSO model to predict ESR1 based on other gene
expression levels in each study and select the genes with a larger
magnitude of coefficients. We then vary the numbers of top predict-
ive genes we select in each study to predict the expression of ESR1.
Figure 5a shows the RMSE of prediction on the validation set for
the omitting, ‘Core’ and ‘All’ strategies. When the number of top
genes selected for predicting the outcome in each study is fewer than
400, the ‘All’ strategy has better performance than the omitting
method. But as the number of predictive genes included in each
study reaches 600, the RMSE from ‘Core’ and ‘All’ strategies seem
to be similar in performance to omitting. Figure 5b shows the paired
Wilcoxon test results on the RMSE between the three methods.
Contrary to the boxplots of the marginal RMSE in Figure 5a, the
‘All’ strategy consistently has a significantly smaller prediction
RMSE than the omitting method. Figure 5b therefore contains the
paired information comparing different methods that is not reflected
by simply comparing the marginal RMSE of prediction.
Supplementary Figure S6a shows the log RMSE ratio of the ‘Core’
and ‘All’ strategies to the omitting method as we vary the number of
top predictive genes included for predicting the outcome, and

Supplementary Figure S6b shows the log RMSE ratio of the ‘Core’
to ‘All’. Consistent with the paired Wilcoxon test in Figure 5b, we
observe that regardless of the number of genes we have included to
predict ESR1 expression levels, the median log RMSE ratios of the
‘All’ imputation strategy is always smaller than 0, indicating that
more than half of the experiments have a decrease in the RMSE by
employing the ‘All’ imputation strategy to account for the study-
specific missing genes.

We also vary the number of training sets in each experiment.
Supplementary Figures S18 and S19 show the prediction RMSE in
the testing set when we use 2 or 7 training sets. We observe that the
‘All’ strategy consistently yields smaller prediction RMSE and is
robust against the number of top predictive genes that are included
for analysis. The ‘Core’ strategy is less robust and is sometimes
worse than the omitting method. This is likely due to ‘All’ using a
larger gene set for building imputation models than ‘Core’, using
genes that are not predictive of the outcome but still informative for
imputing missing genes. When the number of top predictive genes
increases to 500 or 600, the three methods have comparable per-
formance. In this scenario, most truly predictive genes are already
included in the datasets and imputing the remainder does not impact
the eventual prediction model trained.

4 Discussion

In this article, we propose a pairwise strategy to apply imputation
methods which account for differing feature sets across multiple
studies when the goal is to combine information across studies to
build a predictive model. Compared with the traditionally conveni-
ent method of discarding non-intersected genes or the simpler ap-
proach of merging studies together and imputing using genes shared
by all studies, our method maximizes common genes for imputation
based on the intersection between two studies at a time. Our simula-
tion studies show that the pairwise method has significantly better
performance than the omitting and merged methods in terms of the
RMSE of prediction on an external validation set. This advantage is
more pronounced when there are more studies or when there is
cross-study heterogeneity in the inter-gene relationships, and the
pairwise method exhibits the best performance no matter the under-
lying imputation model (e.g. regression, ML and multiple
imputation).

Since only a subset of genes are likely to be relevant to the out-
come of interest and because the external validation sets may also
have genes missing systematically, we also compared ‘Core’ and
‘All’ variations of the pairwise method. Our simulation studies here
show that both the ‘Core’ and ‘All’ methods will decrease the RMSE
of prediction compared to the omitting method, with ‘All’ demon-
strating better performance than ‘Core’, especially when the number
of genes included for prediction is small. In our real data examples,
‘All’ imputation again has better performance than ‘Core’ and
‘Core’ imputation tends to be more volatile than ‘All’ imputation. In
examining the resulting imputation and prediction models, we find

Fig. 5. (a) RMSE of prediction on the validation set for Omitting, ‘Core’ and ‘All’ imputation methods. (b) Pairwise paired Wilcoxon test on the RMSE between Omitting,

‘Core’ and ‘All’ imputation methods
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that we are less successful at selecting relevant features using LASSO
as we were in simulation when the data-generating mechanism was
simple and well defined.

When ‘Core’ imputation is successful, following Spooner et al.
(2020) we conjecture that this is because using features that are
known to be predictive of the outcome across studies to build imput-
ation models is more reliable and robust to cross-study heterogen-
eity than using a mixture of cross-study and study-specific features
(‘All’ imputation). In ‘All’ imputation, it is possible that a study-
specific feature which is only coincidentally predictive within that
study will replace a more reliable cross-study feature from the inter-
section, and while the resulting imputation model would exhibit
good performance for that study, it may not generalize well to
imputing the same missing feature across studies. We echo the con-
clusion of Spooner et al. (2020) that in some cases, feature selection
can be more effective than penalization/regularization, and that
even if the cross-study selected features are a subset of all features
fed to the regularizing model, there may be study-specific features
that the regularization prefers.

One limitation of the ‘Core’ and ‘All’ strategies is that neither
method is using an optimal gene set to impute the study-specific miss-
ing genes. ‘Core’ imputation relies only on genes that are predictive
of the outcome while completely neglecting other genes that might be
informative of those missing genes even though they are not predict-
ive of the outcome. ‘All’ imputation uses as many genes as possible
for imputation with many ‘noise’ genes being included; those add-
itional ‘noise’ features will also lead to less precise imputation of the
missing genes. Moreover, an implicit assumption of our imputation
procedure is that the genes are missing at random (MAR). If the
MAR assumption is violated, for instance, if the missingness mechan-
ism also depends on the outcome, then the imputation might yield
even worse predictive performance. We also conduct the bulk of our
simulations with a linear model data-generating mechanism, which
preserves the interpretability of the induced missingness patterns, but
is likely a simplification of practical data-generating mechanisms
(however, we do explore more complex associations in the supple-
ment and observe similar patterns).

The observed robustness of the pairwise imputation strategy
compared to merging against study heterogeneity in the inter-gene
relationships is likely introduced via the averaging approach we
implemented to harmonize imputations of the same gene from mod-
els trained in different study pairs. This approach can be viewed as a
simplified version of the multi-study stacking framework (Patil and
Parmigiani, 2018), which utilizes ensemble learning to provide gen-
eralizable predictions even in presence of moderate to large study
heterogeneity (Guan et al., 2019; Zhang and Ma, 2012). We plan to
investigate whether the original multi-study stacking framework can
be used to further improve the performance of our imputation strat-
egies as the next steps.

To formally compare the performance of different imputation
methods, we applied a pairwise Wilcoxon test on the median RMSE
of prediction between different methods. Another future direction of
research is on hypothesis tests for rigorous comparison of the per-
formance of different methods that accounts for simulation vari-
ation, multiple comparisons and study heterogeneity across multiple
studies.
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