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Abstract: Cells polarize for growth, motion, or mating through regulation of membrane-bound
small GTPases between active GTP-bound and inactive GDP-bound forms. Activators (GEFs, GTP
exchange factors) and inhibitors (GAPs, GTPase activating proteins) provide positive and negative
feedbacks. We show that a reaction–di↵usion model on a curved surface accounts for key features of
polarization of model organism fission yeast. The model implements Cdc42 membrane di↵usion
using measured values for di↵usion coe�cients and dissociation rates and assumes a limiting GEF
pool (proteins Gef1 and Scd1), as in prior models for budding yeast. The model includes two types
of GAPs, one representing tip-localized GAPs, such as Rga3; and one representing side-localized
GAPs, such as Rga4 and Rga6, that we assume switch between fast and slow di↵using states. After
adjustment of unknown rate constants, the model reproduces active Cdc42 zones at cell tips and
the pattern of GEF and GAP localization at cell tips and sides. The model reproduces observed
tip-to-tip oscillations with periods of the order of several minutes, as well as asymmetric to symmetric
oscillations transitions (corresponding to NETO “new end take o↵”), assuming the limiting GEF
amount increases with cell size.

Keywords: cell polarization; mathematical model; fission yeast; reaction–di↵usion model; small
GTPases; Cdc42 oscillations

1. Introduction

The ability of cells to establish an axis for directed growth, motion, or mating relies on their
ability to localize signaling proteins at the growing or leading edge of the cell. Such processes enable
motile cells to migrate, epithelial cells to develop and maintain tissues, and neurons to grow axons and
dendrites [1–3]. Cell polarization generally arises from symmetry-breaking formation of robust protein
localization patterns along the cell membrane [4–6]. Small GTPases, such as Ras and Cdc42, play a
central role in cell polarization by switching between active GTP-bound and inactive GDP-bound
forms. A system of activators (GEFs) and inhibitors (GAPs) provide positive and negative feedbacks
for small GTPase activation and inactivation [7–10]. Through self-organization, this results in the
formation of membrane regions enriched in activated signaling proteins including Cdc42-GTP.

Extensive experimental and modeling studies in budding yeast, S. cerevisiae, have highlighted
important mechanisms in polarization, namely formation of a stable patch along the cell membrane, the
site of bud growth. These mechanisms are related to the process of Turing pattern formation [5,11–13].
Activated Cdc42 accumulates at a dominant patch where it forms slowly-di↵using aggregates
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(corresponding to a slowly di↵using local activation) that recruit the Cdc42 GEF, while at the same
time depleting it from elsewhere in the cell (a type of global inhibition) [11]. The positive feedback
through the “winner-take-all” mechanism is also enhanced by the actin system [14–18].

While polarization in budding yeast involves selection of a single growth site, some organisms can
maintain multiple active sites. This includes rod-shaped fission yeast, S. pombe, a model organism for
studies of cell shape. Many mutations perturb its normal tubular shape towards thinner, wider, round,
T-shaped, banana-shaped or other shapes [19]. Studies of fission yeast cell polarity have highlighted
several additional phenomena suggestive of a modeling approach:

(i) Fission yeast is able to maintain two stable sites of growth and Cdc42-GTP localization (at the
two tips) rather than one. After cell division, a fission yeast cell begins monopolar growth from the old
end inherited from the mother cell. The cell subsequently experiences new end take o↵ (NETO) and
enters a bipolar growth phase from both cell tips [20]. NETO transition has been described as a result
of competition over a limiting component between the two tips that can reach saturation [21–24].

(ii) Cdc42 oscillatory and fluctuating states underlie the monopolar and bipolar growth states
of fission yeast [22,25] (reminiscent of the Min protein oscillation system in bacteria [26,27]). During
mating, Ras1/Cdc42 patch appearance and disappearance dynamics are also crucial for cells to find
and polarize towards a mating partner [28]. These observations suggest that Cdc42 oscillations
and fluctuations embody an exploratory mechanism, enabling cells to adapt their growth pattern in
response to external and internal cues to maximize cell survival [22,29].

(iii) The two Cdc42 GEFs, Scd1 and Gef1, localize at cell tips, together with Cdc42-GTP [22,30–35].
By contrast, three known Cdc42 GAPs establish an intriguing pattern, with Rga4 [36–38] and Rga6 [39]
decorating primarily the cell sides while Rga3 accumulates primarily at the cell tips [40]. Fluorescence
recovery after photobleaching (FRAP) studies indicate di↵erent dynamics of Rga6 at cell tips as
compared to cell sides: the percent recovery at the cell sides is smaller than the tips over the same time
period [39].

(iv) Recent evidence suggests that localization of Cdc42-GTP and Ras1-GTP to cell tips occurs
primarily through fast membrane di↵usion of Cdc42-GDP and Ras1-GDP, converting to slowly-di↵using
GTP forms at the cell tips [9,33,41]. While polarization is generally thought to require Cdc42-GDP
extraction from the cell membrane through guanine nucleotide dissociation inhibitor (GDI), the e↵ect of
the fission yeast GDI Rdi1 is relatively small as cells are able to polarize in its absence [33]. Membrane
di↵usion coe�cients and dissociation rates of Cdc42 have been previously estimated and can be
incorporated into models [33,41].

In this short article, we focus on the broad dynamic and geometric features of the fission yeast
polarization system to propose a reaction–di↵usion model that can account for the polarity transitions
and spatial pattern of Cdc42, its activators and inhibitors. The aim of this top-down approach is to (i)
indicate the minimum level of complexity required to describe the broad features mentioned above, (ii)
motivate experiments to measure unknown model parameters, and (iii) serve as a framework to more
accurately incorporate missing biological mechanisms. Compared to previous models of fission yeast
polarization [21–24,42–45], here we include GAP localization on the cell membrane, we use di↵usion
coe�cients of Cdc42-GTP and Cdc42-GDP on the cell membrane estimated in experiments, and we
implement the 3D geometry of the rod-shaped fission yeast.

To model GAP plasma membrane recruitment, we suggest a mechanism similar to our previous
model of localized membrane recruitment of Gap1, the GAP of Ras1, at the exploratory Ras1 patch
during fission yeast mating [41]. The e↵ect of local Gap1 recruitment and di↵usion around the
mating patch was to restrict the zone of Ras1 activation and regulate the lifetime of the exploratory
patch [41,46].

2. Model

We developed a system of partial di↵erential equations that implements di↵usion on a 3D curved
surface representing a fission yeast plasma membrane. We used the same numerical methods as an
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earlier study for reaction–di↵usion of Ras1 during cell mating [41,47]. In the simulations we compute
the surface concentrations of Cdc42-GDP, CD, and Cdc42-GTP, CT through di↵usion and reaction
(Figure 1). The surface representing the plasma membrane has the shape of fission yeast cells with a
cylindrical body of radius 2 µm capped by hemispherical tips at either end. We do not implement
a reaction scheme for Ras1, so in this preliminary model CT and CD can be thought to represent
the combined Ras1/Cdc42 polarity patch. The activation and deactivation of Cdc42 is regulated by
the surface concentrations of GEFs, CGEF, and two types of GAPs: GAPI, CGAPI , and GAPII that we
assume exists in two distinct di↵usive states, Cfast

GAPII
and Cslow

GAPII
, to be described below. The equations

describing Cdc42 dynamics are as follows:

@CD/@t = DDDSCD + jpD + (kn
1 + kn

2CGAPI + kn
3Cfast

GAPII
+ kn

8Cslow
GAPII

)CT � kp
0e�

s
�CGEFCD�rDCD � rnoiseCD, (1)

@CT/@t = DTDSCT + kp
0e�

s
�CGEFCD � (kn

1 + kn
2CGAPI + kn

3Cfast
GAPII

+ kn
8Cslow

GAPII
)CT � rTCT + rnoiseCD. (2)
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and one dominant tip as shown. Parameter s indicates arc length distance from the nearest cell tip. 
Colored arrows indicate association, dissociation, and diffusion along cell membrane. Cdc42-GDP 
(teal) associates, dissociates, and diffuses on the plasma membrane with diffusion coefficient 𝐷ୈ . It 
converts to slowly-diffusing Cdc42-GTP (red, diffusion coefficient 𝐷୘) by GEF (green) that is recruited 
to the membrane by Cdc42-GTP in a nonlinear manner, establishing a positive feedback (+ arrow). (B) 
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Figure 1. Modeling Cdc42 activation and regulator distribution. (A) Schematic illustrates GEF-mediated
positive feedback at cell tips, with colored regions indicating zones of active Cdc42-GTP patch. The
model equations are identical for both tips; however, they allow symmetry-breaking states and one
dominant tip as shown. Parameter s indicates arc length distance from the nearest cell tip. Colored
arrows indicate association, dissociation, and di↵usion along cell membrane. Cdc42-GDP (teal)
associates, dissociates, and di↵uses on the plasma membrane with di↵usion coe�cient DD. It converts
to slowly-di↵using Cdc42-GTP (red, di↵usion coe�cient DT) by GEF (green) that is recruited to
the membrane by Cdc42-GTP in a nonlinear manner, establishing a positive feedback (+ arrow).
(B) Schematic illustrates the negative feedback through GAPs. GAPI (purple, di↵usion coe�cient
DGAPI ) and fast-di↵using GAPII (pink, di↵usion coe�cient Dfast

GAPII
) are recruited to the membrane

through Cdc42-GTP. Fast-di↵using GAPII spontaneously converts to slow-di↵using GAPII (orange,
di↵usion coe�cient Dslow

GAPII
), while the reverse (slow to fast) is catalyzed by Cdc42-GTP. All GAPs

catalyze hydrolysis of Cdc42-GTP.

Here DS is the Laplace–Beltrami operator, and D here and below represents di↵usion coe�cients.
Symbols k and r indicate reaction and membrane dissociation rate constants, respectively. Superscripts
p and n indicate positive and negative feedback contributions, respectively. Constant rate jpD represents
uniform association of Cdc42-GDP to the plasma membrane from a cytoplasmic pool, which we
assume has a constant concentration. We used prior experimentally estimated di↵usion coe�cients and
membrane dissociation constants rD and rT, which are assumed to implicitly include the e↵ect of GDI
Rdi1. In Equations (1) and (2), GAPs promote conversion of Cdc42-GTP to Cdc42-GDP and the reverse
conversion is promoted by GEFs. Activation of Cdc42 by GEFs is biased to occur close to the cell tips,
where it should be enhanced through microtubule-based tip delivery of Tea proteins, restriction of
activation zone through the endoplasmic reticulum (ER), and possibly actin polymerization [32,48–50].
This is implemented through the exponential term where s is the arc length distance to the closest tip
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(Figure 1) and parameter � indicates the scale over which activation at cell tips is assumed to occur. The
model allows for random activation of Cdc42-GDP with rate rnoise, implemented similarly as in [41].

Accumulation of GEFs in response to Cdc42-GTP is assumed to occur through an autocatalytic
mechanism that has a functional form similar to the positive feedback proposed for S. cerevisiae
polarization [11]. In this positive feedback mechanism, a finite amount of GEF in the system is assumed
to be distributed in quasi-static equilibrium with higher proportions at sites with higher active Cdc42
concentration:

CGEF = kp
1EcCT/V + kp

2EcC2
T/V, (3)

Ec = Ec
tot/(1 +

Z h
kp

1CT/V + kp
2C2

T/V
i
da
⌘
, (4)

where Ec is the available number of GEF molecules in the cytoplasm, Ec
tot is the total number of GEF

molecules in the cell, and V is the cell volume. In Equation (4), the integral is over the cell’s surface
area. The quasi-static approximation is introduced for simplicity, to avoid additional parameters
related to a GEF concentration field in the model; earlier work has shown this approximation is
valid in the limit of su�ciently fast GEF membrane dissociation rate [11,41]. Membrane-bound
Cdc42 GEFs Scd1 and Gef1 are indeed localized at the cell tip, where they are expected to form
complexes with Cdc42-GTP [22,30,31,35]. Within the simplifying quasi-static approximation, we are
thus consistently assuming a GEF membrane di↵usion coe�cient similar to that of Cdc42-GTP. The
nonlinear dependence in Equation (4) leads to a positive feedback strong enough to break symmetry
and establish a Cdc42-GTP patch [5], and is supported by experiments showing recruitment of GEF
Scd1 depends on sca↵old protein Scd2, which itself depends on Cdc42-GTP [35].

In the model, we include a negative inhibitor that we designate GAPI, which accumulates at
cell tips through Cdc42-GTP-mediated recruitment, and provides a nonlinear negative feedback able
to generate fluctuations and oscillations. Including such a component is motivated by the observed
tip localization of Rga3 [40], but we also bundle together all tip-localized inhibition mechanisms of
Ras1 and Cdc42 through Gap1, Pak1 and actin. We assumed a functional form similar to the Ras1
GAP, Gap1, recruitment to the exploratory mating patch [41] and the negative feedback for Cdc42
oscillations in budding yeast [51]:

@CGAPI /@t = DGAPI DSCGAPI + kn
4Ch

T/(kh
sat + Ch

T) � rGAPI CGAPI . (5)

The second term on the right hand side represents cooperative recruitment at small Cdc42-GTP
concentrations, reaching a plateau for concentration above ksat. We used a value h = 2 that was su�cient
to provide delayed negative feedback needed for oscillations.

To generate a spatial pattern of inhibitors such as Rga4 and Rga6, which accumulate in “collar” or
“corset” shapes around growing cell tips [36–39], we make the bold assumption that these inhibitors
that we collectively call GAPII are also recruited to the plasma membrane through Cdc42-GTP (similar
to GAPI). We further assume that GAPII proteins that di↵use away from the cell tip convert to
slowly-di↵using forms, possibly through binding to each other, thus accumulating away from the
active region. Support for such a di↵erential mobility along the plasma membrane is the observation
of larger FRAP recovery of Rga6 at cell tips compared to cells sides, and a pattern of FRAP recovery
consistent with Rga6 membrane di↵usion [39]. The dynamics of the fast and slow GAPII components
are described by:

@Cfast
GAPII

/@t = Dfast
GAPII

DSCfast
GAPII

+kn
5CT � kn

6Cfast
GAPII

+ kn
7Cslow

GAPII
CT � rfast

GAPII
Cfast

GAPII
, (6)

@Cslow
GAPII

/@t = Dslow
GAPII

DSCslow
GAPII

+ kn
6Cfast

GAPII
� kn

7Cslow
GAPII

CT � rslow
GAPII

Cslow
GAPII

. (7)

Both fast and slow forms can hydrolyze Cdc42-GTP, at di↵erent rates as shown in Equations (1)
and (2). We also assumed that Cdc42-GTP can catalyze conversion of Cslow

GAPII
and Cfast

GAPII
through the kn

7
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terms in Equations (6) and (7) (since otherwise the distribution of Cslow
GAPII

would be peaked at the tips
instead of away from cell tips). Though we are not aware of experimental evidence in support of the
latter assumption, this process might occur through release of slow Cslow

GAPII
from a protein complex

after binding to Cdc42-GTP.
For most of this study we kept cells at a fixed reference length of 8 µm, and other parameters as in

Table 1. The area of each Voronoi cell used in the discretization of the surface area was between 0.017
to 0.046 µm2. We used a simulation time step of 0.01 s and started the simulations from an unpolarized
state, with Cdc42-GDP at the concentration it would have at steady state in the absence of activation
(CD = jpD/rD) plus or minus small relative random fluctuations. We also initialize a smaller random
CT field and checked the evolution of the system over hundreds or thousands of seconds.

Table 1. List of parameters in reaction–di↵usion equations, their reference value in the simulations,
and their physical meaning in the model. Unless indicated, the values were estimated or adjusted to
match experimental observations as mentioned in the main text.

Variable Reference Value Description

DT 0.02 µm2/s Di↵usion coe�cient of Cdc42-GTP from [33]
DD 0.2 µm2/s Di↵usion coe�cient of Cdc42-GDP from [33]

DGAPI 0.03 µm2/s Di↵usion coe�cient of GAPI, estimated
Dfast

GAPII
0.0625 µm2/s Di↵usion coe�cient of fast GAPII, estimated

Dslow
GAPII

0.005 µm2/s Di↵usion coe�cient of slow GAPII, estimated
kn

1 0.000625/s Spontaneous rate Cdc42-GTP hydrolysis, adjusted

kn
2 0.00325 µm2/s Rate constant of GAPI-mediated Cdc42-GTP hydrolysis,

adjusted

kn
3 0.00125 µm2/s Rate constant of fast GAPII-mediated Cdc42-GTP

hydrolysis, adjusted

kn
4 250/s Rate constant of Cdc42-GTP-mediated GAPI recruitment,

adjusted

kn
5 0.03/s Rate constant of Cdc42-GTP-mediated GAPII recruitment,

adjusted
kn

6 2/s Rate of fast GAPII conversion to slow form, adjusted

kn
7 0.025 µm2/s Cdc42-GTP-mediated conversion of slow to fast GAPII,

adjusted

kn
8 0.0005 µm2/s Rate constant of slow GAPII-mediated Cdc42-GTP

hydrolysis, adjusted

ksat 600/µm2 Saturating concentration of GAPI negative feedback,
adjusted

kp
0 0.0025 µm2/s Rate constant of GEF-mediated Cdc42-GDP activations,

adjusted

kp
1 0.5 µm3 Linear rate constant of GEF recruitment to Cdc42-GTP,

adjusted

kp
2 0.1 µm5 Quadratic rate constant of GEF recruitment to Cdc42-GTP,

adjusted
Ec

tot 250 Total pool of GEFs, estimated

jpD 2.4/s/µm2 Flux of Cdc42-GDP from cytoplasm to membrane,
estimated

rT 0.005/s Rate of Cdc42-GTP dissociation from membrane from [33]
rD 0.03/s Rate of Cdc42-GDP dissociation from membrane from [33]

rGAPI 0.01/s Rate of GAPI dissociation from membrane, adjusted
rfast

GAPII
0.0125/s Rate of fast GAPII dissociation from membrane, adjusted

rslow
GAPII

0.0025/s Rate of slow GAPII dissociation from membrane, adjusted

rnoise 0.0021/s Rate of random Cdc42-GDP conversion to Cdc42-GTP,
adjusted

� 2.5 µm GEF activation scale at cell tips, estimated
L 8 µm Cell length
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3. Results

3.1. Goals

We explored our model’s ability to capture basic phenomenology of fission yeast Cdc42 polarization
by adjusting the unknown rate constants while using reported estimates for the membrane di↵usion
coe�cients and dissociation rates of Cdc42-GTP and Cdc42-GDP. The desired phenomena include:
(i) ability of the system to exhibit asymmetric, symmetric, and oscillatory states; (ii) a pattern of
polarity transitions as function of changing rate constants matching fission yeast polarity change
with cell growth; (iii) oscillatory states with periods in the range of 4–6 min [22]; (iv) enhancement of
Cdc42 concentration (combined Cdc42-GDP and Cdc42-GTP) by 2–3-fold at cell tips compared to cell
sides [33]; (v) establishment of micron-scale active regions at cell tips [22,32,33,52]; (vi) accumulation
of GAPI at cell tips and GAPII in collar/corset manner away from cell tips.

3.2. Dynamical States Observed in Parameter Scan

Through a systematic but non-exhaustive scan of unknown rate constants (see Table 1), we were
able to show that the system of Equations (1)–(7) provides a mechanism with solutions that can describe,
to di↵erent extents, all the desired phenomena mentioned above. The model also accounted for the
geometric features of fission yeast cells through our implementation of reaction–di↵usion equations on
a curved surface.

For a large range of model parameter values, the system converged to stationary solutions that
were either asymmetric (MPS, monopolar stable) or symmetric (BPS, bipolar stable), as shown in
Figure 2. Because both tips have identical rate constants, the MPS states represent symmetry-breaking
states. The zones of activation were always found at one or both of the tips since we bias Cdc42
activation to the cell tip region.

For the MPS and BPS examples in Figure 2, the concentration of Cdc42 at activated cell tips is
enhanced by a factor of 2–3 compared to cell sides: This is due to accumulation of Cdc42-GTP at cells
tips, consistent with prior experiments [33]. The concentration profile of Cdc42-GDP exhibits a small
dip closer to the active cell tip: This reflects the di↵usive flux of Cdc42-GDP towards the active cell tip
that is balanced by di↵usive flux and dissociation of Cdc42-GTP away from the tip. In the MPS states,
the lagging tip maintained active Cdc42 at lower concentrations compared to the dominant tip.

The profiles of Figure 2 also show the localization of GAPI at the active cell tip and GAPII in a
collar/corset manner away from the cell tips. The concentration of GAPII peaks around the active tip
region, which is in qualitative agreement with profiles of Rga4 in microscopy images [36,38] (though
perhaps more exaggerated compared to experiments).

Another common solution of the system was states exhibiting symmetric anticorrelated oscillations,
as shown in Figure 3A and Video S1. These BPO (bipolar oscillatory) states had similar active tip
concentration profiles to the stationary states of Figure 2; however, the dominant active tip kept
switching from one tip to the other, as observed during Cdc42 fluctuations and oscillations after
NETO [22].
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Figure 2. Examples of asymmetric stationary (monopolar stable, MPS) and symmetric stationary
(bipolar stable, BPS) solutions. The system evolved to these stationary states over a time course in the
order of hundreds of seconds from an initially unpolarized state. (A) Concentrations as a function of
arc length distance from cell tip and snapshots showing the concentration of Cdc42-GTP and GAPII
(sum of Cslow

GAPII
and Cfast

GAPII
). Parameter values as in Table 1, except for ksat = 900/µm2 and Etot

C = 700.
(B) Same as panel A but for a BPS state. Parameter values same as in Table 1, except for Etot

C = 1800.

A characteristic feature of Cdc42 dynamics in fission yeast is the anticorrelated fluctuations and
oscillations of Cdc42-GTP before NETO, a period of the cell cycle where cells grow in a monopolar
manner and Cdc42 activity is larger at the old end [22]. We found that such dynamical states are also
observed by our proposed dynamics, though a finer tuning of parameters is required as compared to
MPS, BPS and BPO states. We found that the system of Equations (1)–(7) can generate asymmetric
oscillations that persist undamped; however, within our desired set of criteria listed at the beginning
of the Results section, we only found asymmetric damped oscillatory states (MPDO), as shown in the
example of Figure 3B. Additional sources of noise in cells (not included in our model) may convert those
states to long lived anti-correlated fluctuations and oscillations [43,53]; thus we interpret the existence
of MPDO dynamics as consistent with the asymmetric oscillations and fluctuations of Cdc42-GTP
before NETO.
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oscillations (monopolar with damped oscillations, MPDO) solutions. (A) Graph shows concentration of
Cdc42-GTP at each tip, as a function of time starting from an unpolarized state with both tips inactive.
The concentration profiles of the other components in the system that are not shown follow the same
trends as in the stationary states of Figure 2. Snapshots show Cdc42-GTP and total GAPII profiles every
200 s once the system evolved to a periodic pattern. Parameter values same as shown in Table 1 except
kn

5 = 0.01/s and Etot
C = 500. (B) Same as panel A, but for an MPDO case where the system eventually

evolves to a stationary asymmetric state through damped, anticorrelated oscillations. Snapshots show
Cdc42-GTP and total GAPII profiles every 200 s, starting at 1000 s. Parameter values same as shown in
Table 1, except Etot

C = 210.

3.3. Structure of Solutions in Parameter Space

Since fission yeast cells transition from asymmetric Cdc42 oscillations and fluctuations prior to
NETO to symmetric oscillations and fluctuations after NETO [22], the MPDO and BPO states are
biologically relevant. To better understand the requirements to observe such states in the simulations,
we varied two parameters, kp

0 and kn
2 , describing the strength of positive and negative feedbacks in the

system, focusing on a region around the rarer MPDO solutions, as shown in Figure 4. We found that all
of the dynamical states of Figures 2 and 3 arose in the neighborhood of MPDO, with higher values of
both kp

0 and kn
2 resulting in BPO. MPDO states were observed in between MPS and BPO states when the

examined positive feedback parameter was above a threshold; below the threshold, the system results
in weakly active BPS states. We note that along the boundaries of dynamical state regions of Figure 4,
the system might settle to a di↵erent pattern from run to run, which indicates regions with multiple
solutions may “co-exist” [22]. We did not explore the coexistence behavior in detail in this work.

We next asked if the model is consistent with transition from MPDO to BPO around NETO. We
anticipate the MPDO to BPO transition to occur as a result of the increase of a limiting component with
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cell growth. We thus, varied the parameter that describes the total amount of GEF in the system, Etot
C ,

together with a parameter that influences the negative feedback strength, ksat, to help unfold the
pattern of dynamical transitions in Figure 5A. We observed that, indeed, for ksat above 600/µm2 there is
a large region in parameter space corresponding to MPDO, shifting to BPO as the total amount of GEF
in the system is doubled. Interestingly, at even larger Etot

C (above 1400) the system reverts to BPS. This
is consistent with the uncorrelated small fluctuations of active Cdc42 in long cdc25-22 cells [22].
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Cdc42-GTP patch regions becomes as small as a single Voronoi region of the discretized cell surface.
Other parameters same as Table 1.
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Figure 5. Structure of dynamical states reached, as function of total GEF amount (Etot
C ) and negative

feedback parameter ksat. Results show the final state reached by a single simulation for each set of
parameters over time course of 800–1200 s, starting from an unpolarized state. Other parameters same
as Table 1. (A) Reference simulations. For ksat = 600�900/µm2, the system can transition from MPDO to
BPO with increasing Etot

C , a behavior consistent with the dynamical change observed under cell growth
around NETO. (B) Same as panel A but reducing the rate of GAPII recruitment to the cell tips, as might
occur in rga4D or rga6D cells. The BPO region is observed to expand compared to panel A, while the
region corresponding to MPS and MPDO states shrinks.
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To further demonstrate how the model captures the transition around NETO, we used the
parameter values suggested from Figure 5A, to perform simulations at di↵erent fixed cell lengths with
ksat = 650/µm2 and increasing the total GEF in proportion to cell volume such that Etot

C = 300 for cell
length L = 7 µm. Indeed, the simulations of Figure 6A show a transition from MPDO to BPO at around
the cell length where NETO occurs (9.5 µm [20]). Very long cells with L = 35 µm in Figure 6A revert to
BPS, consistent with the behavior of long cdc25-22 cells [22], as mentioned in the preceding paragraph.
The distribution of Cdc42, GEF and GAPs maintains the same features with increasing length, with the
Cdc42 patch becoming more intense and slightly narrower with increasing length (Figure 6B).
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Figure 6. Results of simulations at di↵erent fixed cell lengths, L, and increasing the total GEF in
proportion to cell volume, as indicated in each graph. Other parameters same as Table 1, except for ksat

= 650/µm2. (A) Plots of Cdc42-GTP concentration at each tip (red and black curve) as a function of time
starting from an unpolarized state with both tips inactive. System transitions from MPDO to BPO and
BPS with increasing L. (B) Concentrations as a function of arc length distance from cell tip for a cell of
length 7 µm (left, at steady asymmetric state) and length 14 µm (right, after 1060 s of simulation of cell
undergoing symmetric oscillations, at an instant with a dominant left tip).



Cells 2020, 9, 1769 11 of 17

3.4. Simulations with Reduced GAPII Recruitment

Motivated by prior experimental studies of Rga4 and Rga6 deletion mutants [22,36,39], in our
model we reduced the rate of GAPII recruitment to the cell tips by a factor of two (described by
parameter kn

5). We repeated the scan of the values of Etot
C and ksat and plot the resulting states in

Figure 5B. Interestingly, this change lead to an expansion of the BPO region, a significant shrinkage of
the MPS region and disappearance of MPDO states (within the resolution of the scan).

The behavior observed in Figure 5, when reducing parameter kn
5 , does not appear to closely relate

to prior experimental observations: rga4D cells demonstrate more pronounced symmetric oscillations
compared to wild-type; however, they also exhibit asymmetric states [22,36]. Meanwhile rga6D cells
have been found to be slightly more monopolar, with smaller relative Cdc42 fluctuations compared to
wild-type [39]. This comparison to experiments suggests that there is more to polarity regulation of
these mutant cells than simply changing a single rate constant of our model (see recent results in [54]).

The model, nevertheless, captures some of the properties of rga4D and rga6D cells when plotting
the Cdc42-GTP and GEF profiles around an active tip (Figure 7). We find a wider profile of Cdc42
activation, as observed in rga4D cells that have larger cell diameter compared to wild-type cells [32,52].
Similarly, rga6D have been found to be wider than wild-type cells and rga4Drga6D double mutants are
wider than either single mutants [39].
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Figure 7. Plot of Cdc42-GTP and GEF concentration gradient when the rate of GAPII recruitment
to the cell tips is kn

5 = 0.03 /s (empty symbols) and for the same parameters with reduced rate of
kn

5 = 0.015 /s (solid symbols), as might occur in rga4D cells. Other parameters are the same as Table 1
except ksat = 450 /µm2, such cases result in BPO oscillations (see Figure 5B). This plot shows the
concentration profiles at the dominant tip ~ 20 s after Cdc42-GTP tip concentration peaks, and after
at least 1000 s of simulation time. The half-widths are larger with reduced GAPII recruitment rate:
An exponential fit to the Cdc42-GTP profile gives a decay length 0.64± 0.01 µm and 0.72± 0.01 µm,
respectively. The left-most point on the x axis corresponds to the left tip, as in Figure 2.

4. Discussion

The model presented in this work generalizes the delayed di↵erential equations (DDE) model of
Das et al. [22] for fission yeast. To reproduce observed Cdc42 dynamics, the previous model included
competition between the two tips for a limiting component, assumed the existence of a positive
activation feedback, assumed a maximum (or saturation) of tip activity, and included negative feedback
through an explicit time delay. By assuming that the limiting component increases in amount with cell
growth, this prior DDE model generated the transition from asymmetric to symmetric oscillations
(identified here as MPDO and BPO states, respectively) that occurs with cell growth. The properties
of such a DDE system together with di↵usion along one dimension have been studied in detail by
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Xu and Bresslo↵ [42]. Cerone et al. [23] also performed a detailed analysis of tip competition without
oscillations at a level of ordinary di↵erential equations.

In the current system of partial di↵erential equations formulated on a surface in the shape of
fission yeast, we associate the limiting component of Das et al. [22] with the GEF system, assuming a
functional form for the positive feedback borrowed from studies of budding yeast polarization [11].
This limiting component enables transition from asymmetric to symmetric states with increasing
amount of GEF. Unlike Das et al. we do not have an explicit parameter to saturate tip concentration
and we do not have explicit time delay. These properties are assumed to be provided by the GAP
system, for which we assume nonlinear dynamics similar to a prior model of transient Cdc42 patch
competition in budding yeast [51]. Motivated by Khalili et al. [41], where we studied how Ras1 patch
scans the cell membrane through appearance and disappearance, we assumed that GAPs of Cdc42 are
recruited to the cell tip through Cdc42-GTP, similar to the recruitment of Gap1 to the mating patch, by
Ras1-GTP [41,46].

Here we associated the nonlinear negative feedback necessary for emergence of oscillations with
the function of tip-localized GAPs (“GAPI”). However we note that deletion of the tip-localized
Rga3 did not significantly change Cdc42 oscillations compared to wild-type cells [40]. While it is also
conceivable that negative regulation occurs by di↵usion-limited supply of Cdc42-GDP at activated
cell tips, this depletion is relatively small in Figure 2. In this figure, Cdc42-GTP accumulates at
cell tips at concentrations that exceed Cdc42-GDP concentration at cell sides by a factor of 2–3, as
observed experimentally [33] when using di↵usion coe�cients close to experimental estimates [33].
One important component that we did not include explicitly is Pak1 kinase, which has been proposed to
mediate negative regulation through GEF phosphorylation in both fission and budding yeast [22,55,56],
and, more recently, in positive feedback regulation in fission yeast [35].

We modeled accumulation of Rga4 and Rga6 along the cell sides by recruitment of a fast-di↵using
GAPII (representing both of these proteins) at cell tips, spontaneous conversion of fast-di↵using GAPII
to a slow-di↵using form, and conversion of slow- to fast-di↵using GAPII in the activated tip region.
While such a mechanism can lead to the desired e↵ect of a collar of enhanced concentration of GAPII
around the growing tip, additional experimental support of such di↵erential mobility is still needed.
The postulated GAPII mechanism may relate to how proteins Pom1 and Tea4, which peak at active cell
tips, bind Rga4 and negatively regulate it away from active cell tips [48,50], and the actin-dependence
of Rga6 recruitment [39], though we did not explicitly include them in the model. Direct binding of
Rga4 and Rga6 to the cell sides from the cytoplasm could be an additional mechanism that should be
incorporated into the model to better capture the polarity process.

An important assumption in the model was that Cdc42 activation is biased towards cell tips.
We can relax this assumption by taking the limit of parameter � being very large. With the reference
parameter values of Table 1, this results in uniform Cdc42 activation and loss of polarization. A
further increase in positive feedback rate constant kp

0 enables symmetry breaking: the model can then
readily generate localized stable or oscillating patches of Cdc42-GTP, GEF, and GAPI, surrounded
by a ring of high concentration of GAPII, forming at random locations on the simulated membrane
(Figure 8A). This behavior of the model may relate to how loss of Orb6 kinase results in round cell
morphologies by directing cell growth to the cell sides: Orb6 has been implicated in excluding Gef1
from accumulation to cell sides [31] and enhancing positive feedback at cell tips through Ras1 [57], in
addition to other functions [58]. Stable side patch formation in the absence of cell tip bias may also
relate to how T-shaped mutants initiate side projections [21].

The plots of Figures 2–7 show estimated concentrations; however, we note that these numbers
can be rescaled by adjustment of the unknown rate constants. In the model we accounted for
whole-cell mass conservation of the limiting component, the GEF, but assumed a constant cytoplasmic
concentration for everything else. Future improvements of the model would include accounting for
mass conservation of all the system’s components, as well as for the free energy flow associated with
GTP hydrolysis and non-equilibrium transport required to maintain concentration gradients. The
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model proposed here, together with previous modeling e↵orts, could also serve as a starting point
for further quantitative investigations that include additional biological components that influence
polarization, including the cytoskeleton [33], Gef1 phosphorylation [52], vesicle tra�cking, and ER [49],
as well as independent consideration of Ras1 from Cdc42 [35].
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Figure 8. Snapshots of model results when Cdc42 activation is not biased at cell tips (limit of �!1 ).
With other parameters same as Table 1, the system towards uniform activation. (A) Patch appearance
and disappearance for kp

0 = 0.01 µm2/s increased four times compared to Table 1. (B) Traveling wave
behavior with parameters from Table 1 except kp

0 = 0.01 µm2/s and kn
5 = 0, which eliminates GAPII.

Our model implements similar mechanisms proposed for budding yeast polarization [11,51,59],
including formation of active Cdc42-GTP patch through GEF-mediated nonlinear positive feedback,
competition of di↵erent patches for a limiting component, and GAP-mediated negative feedback.
This combination of feedbacks leads to patches of Cdc42-GTP that oscillate out of phase, as occurs
transiently in budding yeast before the establishment of a dominant patch [51]. However, the overall
dynamics we obtain are somewhat di↵erent and include the NETO polarity transition as well as stable
symmetric and asymmetric oscillations. Another di↵erence is the more prominent role of membrane
di↵usion of Cdc42-GDP and GAPs across the whole cell in our fission yeast model, as opposed to
the di↵usion in the cytoplasm and the patch region in budding yeast. How non-equilibrium fluxes
through the cytoplasm versus the membrane impact pattern formation dynamics could be a topic for
further investigation. Another similarity to prior budding yeast models, is the control of patch width
through side GAP accumulation (implemented through di↵erent transport mechanisms): Budding
yeast controls Cdc42 patch size in part through an inhibitory ring of septin-bound GAPs around the
zone of Cdc42 activation [59].

A question of relevance in the broader context of cellular morphogenesis and its regulation by
negative feedbacks, is why fission yeast uses GAPs with such di↵erent membrane localizations for
its polarization process. In principle, one negative regulator could be su�cient for oscillations, for
example models of the bacterial Min system, using similar reaction–di↵usion mechanisms to this work,
reproduce tip to tip MinD oscillations with MinE as a single negative inhibitor [27]. One negative
inhibitor was also su�cient to contain and localize an activation zone in our prior model of Ras1
mating patch exploratory dynamics through fast di↵usion of Gap1 around the active Ras1 zone [41].
Perhaps the combination of cell tip and cell side inhibitors allows for better control of a localized
activation region with precise size over µm scales, as needed for stable tubular projections. Prior
theoretical analysis further suggests that stability of cell diameter over successive divisions requires
that the growth zone width do not vary strongly with cell diameter [60]. For example, Figure 7
shows how reduction of GAPII recruitment rate can promote a wider Cdc42 patch, features seen in
cells with deleted Rga4, which have a wider Cdc42 patch and cell diameter. To further illustrate the
implications of GAP regulation in the model, consider the case where relaxing the assumption of
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tip-biased activation leads to a localized stable or oscillating patches of Cdc42-GTP surrounded by a
ring of high concentration of GAPII (Figure 8A). Further eliminating GAPII by setting kn

5 = 0 results in
a more di↵use Cdc42-GTP zone that moves as a traveling wave around the cell surface, chased by the
only remaining inhibitor GAPI (Figure 8B). Thus, the system changes qualitative behavior, similar to
the traveling Rho waves in larger cells [61] and to the reconstituted traveling Min waves [27], which
can also be described by reaction di↵usion equations [27,61]. We thus, speculate that use of multiple
GAPs allows for a robust dynamical landscape that suits fission yeast’s tubular growth pattern, under
conditions when this might not be possible by positive feedback and geometry alone [62,63].
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