
A Programming Model for GPU Load Balancing
Muhammad Osama
mosama@ucdavis.edu

University of California, Davis
Davis, California, USA

Serban D. Porumbescu
sdporumbescu@ucdavis.edu
University of California, Davis

Davis, California, USA

John D. Owens
jowens@ucdavis.edu

University of California, Davis
Davis, California, USA

Abstract
We propose a GPU fine-grained load-balancing abstraction
that decouples load balancing from work processing and
aims to support both static and dynamic schedules with a
programmable interface to implement new load-balancing
schedules. Prior to our work, the only way to unleash the
GPU’s potential on irregular problems has been to workload-
balance through application-specific, tightly coupled load-
balancing techniques.

With our open-source framework for load-balancing, we
hope to improve programmers’ productivity when devel-
oping irregular-parallel algorithms on the GPU, and also
improve the overall performance characteristics for such
applications by allowing a quick path to experimentation
with a variety of existing load-balancing techniques. Con-
sequently, we also hope that by separating the concerns of
load-balancing from work processing within our abstraction,
managing and extending existing code to future architectures
becomes easier.

CCS Concepts: • Computing methodologies → Shared
memory algorithms.

Keywords: load balancing, sparse computation, GPU, sched-
uling

1 Introduction
Graphical Processing Units (GPUs) excel at and are often
designed for regular fine-grained parallel problems, such as
General Matrix Multiplication (GEMM). In regular problems
like GEMM, neighboring threads have similar or identical
workloads and often achieve nearly 100% of peak GPU theo-
retical performance. What is much more challenging is an
application with ample fine-grained parallelism but irregu-
lar parallelism. In such applications, neighboring threads

Distribution Statement “A” (Approved for Public Release, Distribution Un-
limited).

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
PPoPP ’23, February 25-March 1, 2023, Montreal, QC, Canada
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0015-6/23/02.
https://doi.org/10.1145/3572848.3577434

running in a lockstep fashion will have different workloads—
perhaps different amounts of work—making an efficient im-
plementation on a highly parallel machine like a GPU a
significant challenge.
Consider Sparse-Matrix Vector Multiplication (SpMV),

with a sparse matrix A and a dense vector 𝑥 as inputs. SpMV
computes the output vector 𝑦 = A𝑥 and is an example of ir-
regular fine-grained parallelism. Unlike in GEMM, the sparse
matrix in SpMV can contain irregularity within the rows of
thematrix: the rows of thematrix can have different numbers
of non-zero entries. A simple mapping of one row to each
GPU thread can expose this irregularity, where neighboring
threads may be assigned different amounts of non-zeros to
process, causing threads within the same warp1 to wait on
threads with large amounts of non-zeros. The imbalance cre-
ated due to this irregularity—specifically, when the work is
not equally distributed among the parallel actors, and conse-
quently, some actors are idle while others do more work—is
defined as the load-imbalance problem.

Current implementations solve this load-imbalance prob-
lem on GPUs using application-specific load-balancing tech-
niques that aim to evenly distribute the work such that each
thread gets the same number of work items to achieve maxi-
mum performance (for instance, Merrill and Garland’s load-
balanced SpMV implementation [20]). These load-balancing
techniques are often tightly coupled with the application
itself. The load-balancing components within these imple-
mentations are both complex and often collectively the most
significant contributor to the performance of an applica-
tion. Our work here generalizes today’s application-specific
load-balancing algorithms into a clean, modular, powerful
abstraction that can be applied to many complex irregular
workloads.

In the process of building our abstraction, we identified
common load-balancing approaches currently deployedwith-
in sparse, irregular applications onGPUs: application-specific
frameworks such as GraphIt [5], Gunrock [29], and Graph-
BLAST [31]; techniques from low-level CUDA libraries such
as ModernGPU [3] and CUB [24]; and other hand-coded
implementations of load-balancing algorithms within ap-
plications such as SpMV/SpMM [10, 14, 20], triangle count-
ing [13, 16], and breadth-first search [6, 21]. We show that

1A CUDAwarp is a collection of 32 threads that execute instructions in lock-
step. Threads in a warp are divergent-free, and run in a Single Instruction
Multiple Thread (SIMT) fashion.

https://orcid.org/0000-0003-1616-6817
https://orcid.org/0000-0003-1523-9199
https://orcid.org/0000-0001-6582-8237
https://doi.org/10.1145/3572848.3577434

PPoPP ’23, February 25-March 1, 2023, Montreal, QC, Canada M. Osama, S. D. Porumbescu, and J. D. Owens

with a simple, intuitive, powerful abstraction, these load-
balancing schedules can be extended to support irregular
workloads that are more general than the specific problem
for which they were designed. We demonstrate this by using
sparse-linear-algebra-based load balancing for data-centric
graph traversal kernels.
Writing high-performance load-balancing code is com-

plex, in large part because this code must perform many
roles. Among other tasks, it must ingest data from a specific
data structure, perform user-defined computation on that
data, and schedule that computation in a load-balanced way.
The key insight in our abstraction is to separate the concerns
between workload mapping (the load-balance task) and work
execution (the user-defined computation), where we map
sparse formats (such as Compressed Sparse Row (CSR)) to
simple abstraction components called work atoms, tiles, and
sets. These fundamental components are expressed as com-
posable C++ ranges and range-based for loops, and are used
to build load-balancing schedules. Programmers can then
use these APIs to build load-balanced, high-performance
applications and primitives. Expressed in this way, we can
reconstruct existing application-dependent load-balancing
techniques that address irregularity to be more general, port-
able, and programmable. The contributions of our work are
as follows:

1. We present a novel abstraction for irregular-parallel
workloads on GPUs. Our abstraction at a high level al-
lows programmers to develop sparse, irregular-parallel
algorithms with minimal code while delivering high
performance.

2. We design and implement a set of intuitive APIs, avail-
able in our open-source GPU load-balancing frame-
work, built on the proposed abstraction using CUDA-
C++ ranges and range-based for loops.

3. We show the ease of implementing new load-balancing
schedules by implementing a novel cooperative groups-
based load-balancing schedule, described in Section 5.2,
which is a generalization of previous thread-, warp-,
and block-level load-balancing schedules [30].

4. We provide state-of-the-art SpMV performance as a
benchmark with a geomean of speedup of 2.7× for
the SuiteSparse Matrix Collection [11] over cuSparse’s
state-of-the-art implementation using simple heuris-
tics and 3 GPU load-balancing schedules.

2 Design Goals
Our programming model focuses on the broad category of
fine-grained nested data parallelism. Load-balancing task-
level parallelism requires a different approach and is beyond
the scope of this work. This section highlights the design
goals of our load-balancing abstraction:

Achieve high performance. First and foremost, the goal
of our work is to achieve the high performance of existing-
load balancing algorithms for irregular applications. Our ab-
straction cannot come at the cost of significant overhead or
performance degradation. We measure our success in achiev-
ing high performance by comparing the performance of our
abstraction against the performance of existing hardwired
implementations.

A composable and programmable interface. Importan-
tly, we do not want to restrict the user to a library interface
that takes control of the larger system. Programmers strongly
prefer to adopt new software components that fit into their
control structures rather than require them to adopt a new
control structure. We want to allow the users to (1) maintain
control of GPU kernel boundaries (kernel launches), (2) be
able to add new load-balancing algorithms, and (3) compose
new load-balanced primitives from existing load-balancing
APIs. We measure the programmability of our work by com-
paring the Lines of Code (LOC) of our abstraction against
existing implementations and show composability by im-
plementing a new load-balancing algorithm in terms of our
existing APIs.

Extensible to new applications. We aim to decouple
and extend application-specific load-balancing techniques
to new irregular-parallel domains. Our abstraction seeks to
promote the reuse of existing load-balancing techniques for
new applications. We use SpMV as a benchmark application
implemented using three different load-balancing techniques,
some of which were previously used to implement parallel
graph analytics kernels [5, 6, 10, 29].

Facilitate the exploration of optimizations. A key goal
of our abstraction is to facilitate the exploration of optimiza-
tions for a given application by switching the underlying
load-balancing algorithms used to balance the work. We
want to encourage our users to experiment with heuristics
and new load-balancing techniques to discover what works
best for their application needs. We measure the success of
this goal by optimizing SpMV’s performance response for
a large corpus of sparse matrices across several different
load-balancing techniques.

Non-Goals
In addition to the above design goals, we also define our
non-goals:

Targeting other parallel architectures. Although we
believe the lessons learned should apply to other parallel
architectures, we explicitly target NVIDIA’s CUDA architec-
ture and programming model [23]. Many components of our
abstraction leverage CUDA’s compute hierarchy of threads,
warps and blocks mapped onto the physical streaming mul-
tiprocessors, the oversubscription model of assigning more
work than the number of processors to fully saturate the

A Programming Model for GPU Load Balancing PPoPP ’23, February 25-March 1, 2023, Montreal, QC, Canada

underlying hardware, and CUDA’s Cooperative Groups pro-
gramming model [18], described in Section 5.2, to achieve
high performance.

Multi-GPU support. Thiswork focuses on load-imbalance
issues for a single GPU and does not consider multi-GPU
single-node or multi-node systems, although these are inter-
esting directions for future work.

3 Our Load-Balancing Abstraction
The key insight behind our GPU load balancing abstraction is
the separation of concerns between the mapping of the work
items to processing units and work execution. We divide our
abstraction into three key concepts (illustrated in Figure 1),
each of which describes a different aspect of an implementa-
tion: (1) defining the work; (2) defining the workload balance
across GPU threads, warps or blocks; and (3) defining the
work execution and computation per thread on the balanced
work. This separation allows us to cleanly divide the work be-
tween an application developer and a load-balanced-library
developer and facilitates the exploration of optimizations
by mixing different load-balancing techniques and sparse-
irregular algorithms. Sidebar 1 presents a practical example
of the motivation for our load balancing abstraction.

3.1 Input from Sparse Data Structures
We begin with our input data expressed in some form of
sparse data structure. Examples of such data structures in-
clude, but are not limited to, Compressed Sparse Row (CSR)
and Coordinate (COO) formats. The goal of the first stage of
our abstraction is to map the input data format to a common
data framework and vocabulary that is the input to the next
stage. This vocabulary has three simple components that
together express the input data:

1. Awork atom, a single unit of work that is to be sched-
uled onto the processors (for example, a non-zero el-
ement of a sparse matrix). We assume that all work
atoms have an equal cost during execution.

2. A work tile, a logical entity represented as a set of
work atoms (for example, a row of a sparse matrix).
Work tiles may have different costs during execution.
As we highlighted in the introduction, work is most
logically parallelized over work tiles but is often most
efficiently parallelized over work atoms, and mapping
between work tiles and work atoms may be expensive
and complex.

3. A tile set, a set of work tiles that together comprise
the entire working problem (for example, a sparse ma-
trix). In our abstraction, the tiles within a tile set must
be independent (and thus can run in parallel across
multiple processors).

This mapping between sparse formats and atoms/tiles/tile
sets is defined by the user. Though we have not implemented

Sidebar 1 A practical example of the existing, predominant
approach to load-balancing sparse-irregular workloads.

Consider an SpMV implementation on the GPU provided in
the open-source CUDA CUB library [24]. CUB implements
and maintains the SpMV algorithm presented in the paper by
Merrill and Garland [20]. Merge-based SpMV, explained in
detail in Section 5.2.1, is a CSR-based, perfectly load-balanced
SpMV, where each thread gets an even share of work, and
the amount of work is defined by the total number of matrix
rows and the total number of non-zeros, summed. In the
reference, this highly efficient, state-of-the-art implemen-
tation took 1,100 lines of code (LoC) (or 503 LoC of kernel
code) across 3 files (not including a 4th file required for a
segmented fixup step of an additional 234 LoC). In contrast,
the actual computation of SpMV within this reference imple-
mentation is expressed within a single for-loop and 4–5 LoC!
This disparity between the LoC required to map the work
items to processing units in a load-balanced way and the
LoC required to express the desired computation is the key
motivation behind our work. Additionally, the CUB imple-
mentation is specifically dedicated to the SpMV algorithm
and would require a significant rewrite to apply it to other al-
gorithms, evenwithin the same computing domain. One such
example of this exact rewrite is by Yang et al., who extend
merge-path load balancing from SpMV to a Sparse-Matrix
Dense-Matrix Multiplication (SpMM) implementation [30].
The load-balancing algorithm in both works is the same but
applied to different computations, which motivates the need
for reuse.

all of them, we believe our mapping abstraction here is flexi-
ble enough to express a wide variety of existing sparse data
formats in the literature [12] in such a way that they are
suitable for load balancing in our abstraction’s next stage.
As well, we have already included several common sparse
formats (CSR, CSC, COO) in our load-balancing library im-
plementation so that users can simply select and use them
without having to implement them. Given a mapping to
atoms/tiles/tile sets, we can next implement a load-balancing
algorithm that can parallelize over work atoms or tiles trans-
parently from the computation’s perspective.

3.2 Defining Load Balancing
By expressing workloads through an abstraction that cap-
tures work at differing levels of granularity (i.e., tile set,
atoms, and tiles), we can more easily distribute computa-
tion evenly across the GPU’s available resources. Given a
user-defined input tile set and associated sequences of atoms
and tiles, along with a user-selected partitioning algorithm,
our load-balancing stage outputs subsequences of atoms and
tiles assigned to processor ids (i.e., where atoms or tiles will
be processed).

PPoPP ’23, February 25-March 1, 2023, Montreal, QC, Canada M. Osama, S. D. Porumbescu, and J. D. Owens

Load balance scheduler2

1

3 6

Sparse Data Structure Iterator Representation Load Balancing

User-defined
Computation

(kernel)

User-defined
Computation

(kernel)

Work Execution

Thread0

Work Atoms and Tiles

Thread1

atoms iter = 0,1,2,3
tile iter = 0,1,2,3

atoms/tile = 0,1,3,0
values = 1,3,6,2

Thread0 Thread1

Figure 1. Load balancing as a simple pipeline of the three key concepts of our abstraction: (1) sparse data structures represented
as iterators, (2) load-balancing algorithm that partitions the work onto threads, and (3) user-defined computation consuming
the balanced work and executing on each thread.

The resulting assignment of subsequences to processor ids
is critical to effectively balancing workloads across process-
ing elements and is generally problem- and dataset-specific.
The user must specify the necessary sequences. Ideally, an or-
acle would take these sequences and select the most optimal
subsequences for every processing element. Finding such an
oracle is an open problem and thus we provide the next best
thing: the ability for users to choose and experiment from
a set of predefined schedules and the ability to implement
their own schedules. In general, load-balancing algorithm
designers must balance between the cost of scheduling and
the benefits from better scheduling. A schedule could be as
straightforward as assigning processing elements to tiles
with arbitrary numbers of atoms (e.g., rows with an arbi-
trary number of non-zeros in a sparse matrix) to something
more complicated/expensive that takes on a more holistic ap-
proach to work (e.g., considering work across multiple rows
with a varying number of non-zeros in a sparse matrix).

3.3 Defining Work Execution
The final component of our load-balancing abstraction ex-
presses the irregular-parallel computation itself. The previ-
ous stage inputs load-imbalanced work and load-balances
it; this stage then consumes that load-balanced work by
performing computation on it. The scope of what compu-
tation can be expressed is extensive, and is only limited by
how the load-balanced work, represented as sequences, can
be consumed within a CUDA kernel. Since the framework
does not assume control of the kernel, anything you can
write in a CUDA kernel will also work in our framework.
For instance, programmers can express a mathematical op-
eration performed on each atom or each tile of the work,
or build cooperative algorithms that not only consume the
work assigned to each thread but also combine the results
with neighboring threads to implement more complex algo-
rithms such as parallel reduce or scan. Practical examples
that we have implemented in our framework (see Section 4.3
and 5.3) using this abstraction include, but are not limited
to, sparse-linear algebra kernels, such as Sparse-Matrix and
Sparse-Tensor contractions, and data-centric parallel graph

algorithms, such as Single-Source Shortest Path (SSSP) and
Breadth-First Search (BFS) built on a neighborhood traversal
kernel.

We expect typical users of our library will only write their
own code for this stage of the abstraction and use standard
data structures and load-balancing schedules that are already
part of our library. However, those users can also implement
custom data formats and load-balancing schedules.

4 High-Level Framework Implementation
Our GPU load-balancing framework implements the abstrac-
tion described in Section 3 using C++17 and CUDA. In our
system, programmers use CUDA/C++ to develop irregular-
parallel algorithms and implement new load-balancing sched-
ules. Per our design goals of composable APIs, extensibil-
ity, and reuse, this and the following section introduce the
implementation details of our API, and how it is used to
develop new applications that promote the reuse of high-
performance load-balancing techniques available within the
framework. We also explore a new load-balancing method
(Section 5.2) built on CUDA’s Cooperative Groups model.
Furthermore, we identify how our work can be used to facil-
itate the exploration of optimizations for a given application
such as SpMV.

4.1 Implementing Sparse Data Structures
Our framework translates sparse data structures (e.g., COO,
CSR, CSC) into work atoms, work tiles, and tile sets (Sec-
tion 3.1) using simple C++ iterators. C++ iterators are objects
that point to some element in a range of elements and en-
able iteration through the elements of that range using a
set of operators. For example, a counting_iterator is an
iterator that represents a pointer into a range of sequen-
tial values [1]. Our framework requires the user to define
three important iterators using C++: (1) an iterator over all
work atoms; (2) an iterator over the work tiles; and (3) an
iterator over the number of atoms in each work tile. (Our
library already supports several common sparse data struc-
tures.) Using these iterators, the load-balancing schedule can
then determine and distribute load-balanced work across the

A Programming Model for GPU Load Balancing PPoPP ’23, February 25-March 1, 2023, Montreal, QC, Canada

1 // Simple iterators for atoms and tiles.
2 counting_iterator<int> atoms_iter(0, nnz);
3 counting_iterator<int> tile_iter(0, rows);
4 // Iterator over the atoms within tile i.
5 auto atoms_per_tile = make_transform_iterator(
6 tile_iter,
7 [tile_iter, row_offsets]
8 __host__ __device__(const int& i) {
9 return (row_offsets[tile_iter[i + 1]] -
10 row_offsets[tile_iter[i]]);
11 });

Listing 1. Compressed-Sparse Row (CSR) format expressed
within our framework using C++17. The CSR format de-
scribes a matrix using three arrays: (1) column indices of
nonzero values; (2) the extent of rows (row offsets); and
(3) the nonzero values. Since the CSR data structure does
not contain arrays that point to indices of atoms and tiles
(nonzeros and rows), in the listing above we define atom
and tile iterators as simple counting iterators from 0 to the
total number of nonzeros (nnz) and from 0 to the total rows
in the matrix (rows), respectively (Lines 2–3). The iterator
over the atoms-per-work-tile is expressed using a transform
iterator, which computes the expression within a provided
function for each tile id. For CSR, this is simply the row offset
of the current tile subtracted from the offset of the next tile
(Lines 5–11).

underlying hardware. Listing 1 shows how our abstraction
expresses the commonly used CSR format as a tile set within
our framework.

4.2 Implementing Load-Balancing Schedules
Perhaps the most straightforward schedule is scheduling
each work tile onto one GPU thread. This approach is com-
mon in the literature and practice [3, 10, 21, 26, 30]; although
this strategy is ineffective in the presence of significant load
imbalance across tiles, we use it here as an example to illus-
trate how load balancing is defined within our framework.
The inputs are the three iterators from the last stage

plus an atom and tile count. The load-balance algorithm
developer, then, implements tiles() and atoms() proce-
dure calls, which return the C++ range of tiles and atoms
to be processed by the current thread, effectively creating
a map between assigned processor ids and segments of the
workload. Listing 2 shows a complete example of the thread-
mapped schedule. Although a simple algorithm, it can de-
liver high performance for well-balanced workloads with
coarse-grained parallelism (a small number of atoms per
tile), such as multiplying a sparse vector by a dense vector.
Furthermore, our abstraction is not limited to only simple
scheduling algorithms, as Section 5.2 provides examples of
more complex load-balancing algorithms.

1 class schedule_t {
2 // Construct a thread-mapped schedule.
3 __host__ __device__
4 schedule_t(atoms_it_t atoms_it,
5 tiles_it_t tiles_it,
6 atoms_it_t atoms_per_tile_it,
7 size_t num_atoms, size_t num_tiles) :
8 m_atoms_it(atoms_it), m_tiles_it(tiles_it),
9 m_atoms_per_tile_it(atoms_per_tile_it),
10 m_num_atoms(num_atoms),
11 m_num_tiles(num_tiles) {}
12 // Range of tiles to process in "this" thread.
13 // Stride by grid dimension.
14 __host__ __device__ auto tiles() {
15 auto begin = m_tiles_it(blockDim.x * blockIdx.x
16 + threadIdx.x);
17 auto end = m_tiles_it(m_num_tiles);
18 return range(begin, end)
19 .step(gridDim.x * blockDim.x);
20 }
21 // Range of atoms to process in "this" thread.
22 __host__ __device__ auto atoms(
23 const std::size_t& tile) {
24 auto begin = m_atoms_per_tile_it[tile];
25 auto end = m_atoms_per_tile_it[tile + 1];
26 return range(begin, end).step(1);
27 }
28 };
29 using schedule_t = thread_mapped_schedule_t;

Listing 2. A thread-mapped load-balancing algorithm ex-
pressed as C++ ranges, incorporating the atoms and tiles
defined as iterators from Listing 1. Each tile is mapped to a
thread, where the thread id corresponds to the index of the
tile in the tile set. All atoms within a tile are sequentially
processed by the thread. After a tile is processed, a thread
is mapped to the next tile, obtained by striding the index by
the grid size of the kernel.

4.3 Implementing Work Execution
Our framework is designed to explicitly let the user own the
kernel launch boundary. Owning a CUDA kernel boundary
means that the user is responsible for maintaining and con-
figuring launch parameters and implementing the CUDA
kernel used to define the application. Although this design
decision comes at a cost of convenience and simplicity, it of-
fers significant flexibility in what users can express through
our abstraction. This design decision is motivated by the fol-
lowing reasons. (1) Users are not required to add a complex
dependency to their existing workflow/libraries, therefore
making code maintenance simpler and more scalable as they
do not have to rely on our framework to incorporate new
CUDA constructs and features. (2) Users are free to express
anything and everything CUDA allows within their kernels
while consuming our load-balanced C++ ranges. This allows

PPoPP ’23, February 25-March 1, 2023, Montreal, QC, Canada M. Osama, S. D. Porumbescu, and J. D. Owens

for versatility in what can be expressed, as the users can
now specify multiple load-balanced work domains, range-
based for loops, and even fusing multiple computations to
build more complex algorithms within a single kernel. (3)
Higher-level APIs can be used to build simpler higher-level
abstractions that do own the kernel boundary and provide
simpler APIs at the cost of flexibility.

As an input to this stage, users consume the load-balanced
C++ ranges to implement their computation. This can be
done in multiple ways, but one of the most common pat-
terns is a nested range-based for loop that loops over all
the assigned tiles and atoms ranges. Listing 3 shows a sim-
ple example of a CUDA kernel that implements the SpMV
algorithm the using CSR format and thread-mapped load-
balancing algorithm described in Listings 1 and 2. In this
example, the outer for loop within each thread iterates over
the assigned rows of the sparse matrix (tiles), and the inner
loop sequentially processes the assigned nonzeros (atoms)
within each row. In Section 5.3 we implement and discuss
more complex kernels and computations.

5 Implementation Details
5.1 Flexible, Composable CUDA-enabled Ranges
The composability of load-balanced primitives and applica-
tions using our API is a conscious design choice within our
framework supported through the use of CUDA-enabled C++
ranges. Our framework does not own the kernel boundary
(kernel launch), which forces our APIs to be focused and
contained within the kernels. This allows programmers to
build and maintain their own kernels while still benefiting
from our framework’s load-balancing capabilities. This is
largely implemented using device-wide C++ functions and
classes tagged with CUDA’s __device__ keyword.2 We im-
plemented and expose several different types of specialized
ranges that were particularly useful in implementing load-
balanced schedules:

• step_range: A range that iterates from begin to end
in steps of step. Useful for defining load balancing
schedules that require a custom stepping range or
process a constant number of work items per thread
(which can be defined using step).

• infinite_range: A range that iterates from begin to
infinity. Useful for defining load balancing schedules
in persistent kernel mode [32], where the kernel persis-
tently runs until all work is consumed or an algorithm
has converged.

• grid_stride_range: A specialized case of step range
that iterates from begin to end in steps of step using
the CUDA kernel’s grid size. Also supports block and

2A method decorated with the __device__ keyword allows the CUDA
compiler to generate a device-callable entry point. This allows the code to
be called from within kernels [23].

1 // Implements load-balanced SpMV kernel.
2 __global__ void spmv(const size_t rows,
3 const size_t cols, const size_t nnz,
4 const int* offsets, const int* indices,
5 const float* values, const float* x,
6 float* y) {
7 // Configure load-balancing.
8 // Input: iterators defined for CSR format.
9 schedule_t config(
10 atoms_iter, tile_iter,
11 atoms_per_tile_it,
12 nnz, rows);
13 // Consume rows using a range-based for loop.
14 for (auto row : config.tiles()) {
15 type_t sum = 0;
16 // Consume atoms using a range-based for loop.
17 for (auto nz : config.atoms(row))
18 sum += values[nz] * x[indices[nz]];
19 y[row] = sum;
20 }
21 }
22 // Launches SpMV kernel.
23 constexpr size_t blocks = 256;
24 size_t grid = (rows + blocks - 1) / blocks;
25 spmv<<<grid, blocks>>>(rows, cols, nnz,
26 offsets, indices, values, x, y);

Listing 3. Sparse-Vector Matrix Multiplication (SpMV) im-
plemented within our load-balancing abstraction using
range-based nested for loops. The sparse matrix is repre-
sented using a CSR-based format, where 𝑥 is the dense input
vector and 𝑦 is the dense output vector (𝑦 = 𝐴𝑥). Lines 9–12
use the load-balancing schedule implemented in Listing 2
and the iterators defined in Listing 1 to construct the load-
balanced work to be processed. Lines 14 and 17 show the for
loops within each thread, which iterate over the assigned
rows of the sparse matrix and sequentially process the as-
signed atoms within each row. Line 18 shows the actual
computation performed on each work atom (nonzero), and
Line 19 writes the result to the dense output vector 𝑦.

warp stride variants that iterate in steps of the block
or warp size, respectively.

5.2 Implementing Non-Trivial Load-Balancing
As we describe in Section 5.1, we can decouple and express
existing load-balancing techniques as a set of C++ ranges.
To illustrate the potential of this abstraction, we begin by
decoupling and expressing a state-of-the-art load-balancing
algorithm known as merge-path [17] previously used for bal-
ancing CSR-based SpMV and SpMM [20, 30], and implement
three additional load balancing algorithms (warp-, block-
and group-mapped), all of which are available in our library
for programmers to use. Our new group-mapped algorithm
is a tile-per-group-based schedule, where a group is defined

A Programming Model for GPU Load Balancing PPoPP ’23, February 25-March 1, 2023, Montreal, QC, Canada

as a collection of threads of any arbitrary size (not limited
to a warp or block size). Our group-mapped schedule is a
generalization of the tile-per-thread, -warp or -block sched-
ules [5, 21] using CUDA’s Cooperative Groups programming
model [18].

5.2.1 Merge-path load balancing. In the language of a
sparse matrix, merge-path assumes that each non-zero in
the matrix and each new row in the matrix are an equivalent
amount of work, then evenly divides nnzs+rows work across
the set of worker threads. Each thread then performs a 2-D
binary search within the nonzero indices and row offsets
of a CSR matrix to find the starting position of the row
and nonzero it needs to process. Threads then sequentially
process the rows and nonzeros from the starting position
until they reach the end of their assigned work [20].

We implement this algorithm as a load-balancing schedule
in our abstraction by expressing it in two steps: (1) Setup:
The initialization step of the C++ schedule class computes
the number of work units per thread, conducts a binary
search as described above, and stores the starting position
of each tile and atom in a thread-local variable. (2) Ranges:
The second step of the algorithm builds the ranges for each
thread to process as “complete” tiles and “partial” tiles [20].
If a thread’s atom range lies entirely within one tile, it is
“complete”, and is processed in a simple nested loop. If a
thread’s range crosses a tile boundary, the thread processes
its work in a separate nested loop.
Because we decouple the load-balancing method (Sec-

tion 4.2, and above) from work execution (Section 4.3), we
can use this merge-path implementation to implement not
only SpMV but also any other algorithm whose work can
be divided into tiles and atoms, e.g., a graph neighborhood-
traversal algorithmused to implement breadth-first search [29].
Just as importantly, the merge-path schedule is now no
longer limited to a CSR-based sparse format. Supporting
other formats only requires building the necessary slightly
more complex iterators that are able to count atoms per tile
(the computation that the CSR implementation achieves with
the row offsets array in Listing 1).

5.2.2 Warp- and block-level load balancing. The goal
of a warp- or block-level load-balancing schedule is to assign
an equal share of tiles to each warp or block, which are then
sequentially processed. The work atoms within each tile will
be processed in parallel by the available threads within a
warp or a block. Each thread strides by the size of the warp
or block to process a new work atom until the end of work
is reached.

The imbalance across different processing units is left for
the hardware scheduler to handle. This scheduler depends on
the oversubscriptionmodel of CUDA, where the programmer
can launch a larger number of warps or blocks than the GPU
can physically schedule at any given time. As the processing

units finish processing their work, new ones are scheduled
from the oversubscribed pool [5, 21].

5.2.3 Group-level load balancing. Group-level load bal-
ancing generalizes warp- and block-level schedules. Instead
of requiring that group sizes are the size of a warp or block,
as above, this method leverages CUDA’s Cooperative Groups
(CG) programmingmodel [18] to allow programmer-specified
dynamically sized groups of arbitrary size. Within these
groups, the CG model permits detailed control of the group’s
synchronization behaviors as well as simple parallel group-
level collectives such as reduce or scan. We leverage this
powerful tool to implement a generalized group-level load
balancing schedule, effectively giving us the warp- and block-
level schedules above for free when the group size equals
that of a warp or a block.

Our schedule assigns work tiles to a group, and each group
looks at its equal share of tiles and computes the number
of atoms for each tile and stores it in a scratchpad memory
(CUDA’s shared memory). The group then performs a paral-
lel prefix-sum, a widely used parallel algorithm that inputs
an array and produces a new array where the element at
any position is a sum of all previous elements [4]. We use
this prefix-sum array for two purposes: (1) the last element
of a prefix-sum array indicates the aggregated number of
work atoms that a group has to process, and (2) the posi-
tion of each sum in the prefix-sum array corresponds to the
work tile to which those atoms belong. The setup phase of
the schedule builds the prefix-sum arrays per group in the
scratchpad memory, and the ranged-loop of the schedule re-
turns the atom to process in each thread. The corresponding
tile, if needed, is obtained by a simple get_tile(atom_id)
operation, which executes a binary search within the prefix-
sum array to find the tile corresponding to the atom being
processed.
Relying on the CG model for this load-balancing sched-

ule has a unique advantage of configuring the group size
(effectively software constructs that directly map onto the
hardware) per the shape of the problem and the underlying
hardware architecture. For example, targeting GPUs where
the warp size is not 32 threads (AMD’s GPU architecture
supports a warp size of 64 [2]) is now possible with a sim-
ple compile-time constant, or configuring the group size to
perfectly align with the structure of the problem.

5.3 Application Space
Our work definition (Section 3.1), composable APIs (Sec-
tion 5.1), and multiple sophisticated, high-performance load-
balancing schedules (Section 5.2) together provide for a ver-
satile and extensible framework with plenty of room for
application-specific optimizations. In Listing 3 we already
demonstrated how to implement the SpMV algorithm using

PPoPP ’23, February 25-March 1, 2023, Montreal, QC, Canada M. Osama, S. D. Porumbescu, and J. D. Owens

1 // ... Inside the CUDA kernel.
2 // Loop over all the assigned rows.
3 for (auto row : config.tiles()) {
4 // Loop over all the columns of Matrix B.
5 for (auto col : range(size_t(0), B.cols)
6 .stride(size_t(1))) { /// < New Loop
7 float sum = 0;
8 // Loop over all the assigned nonzeros.
9 for (auto nz : config.atoms(row))
10 sum += values[nz] * B(nz, col);
11 // Output the sum to Matrix-C.
12 C(row, col) = sum;
13 }
14 }

Listing 4. A simple loop wrapped around SpMV introduced
in Listing 3 allows us to represent the slightly more complex
SpMM load-balanced computation.

our framework. A simple and natural extension is to im-
plement Sparse-Matrix Matrix Multiplication (SpMM). List-
ing 4 shows the minor change necessary, which adds another
loop over the columns of the B matrix around the existing
code from Listing 3 to implement SpMM. This implementa-
tion could also be extended to support Gustavson’s General
Sparse Matrix-Matrix Multiplication (SpGEMM), using two
kernels and an allocation stage; the first kernel would com-
pute the size of the output rows used to allocate the memory
for the output sparse matrix and the second kernel would
perform the multiply-accumulation.

Beyond sparse linear algebra, we can use our framework to
address applications in other domains. Listing 5 implements
the graph primitive Single-Source Shortest Path (SSSP) using
our group-level load-balancing schedule. SSSP’s performance
on GPUs is largely gated by good load balancing [5, 29],
but if the programmer chooses a load-balancing schedule
from our library, the details of load balancing are completely
hidden. Moreover, the same schedules that were used in one
application domain (e.g., sparse linear algebra) are easily
reusable in this different application domain.

6 Evaluation
We aim to show that our framework, built on our load balanc-
ing abstraction, enables both high performance and better
programmability for sparse-irregular problems. Our evalua-
tion below uses our SpMV implementation as a benchmark
against state-of-the-art implementations provided within
NVIDIA’s (open-source) CUB library and production (closed-
source) cuSparse library. We considered (and implemented)
several additional applications for evaluation, including SSSP,
BFS, and SpMM. We found they led to similar high-level con-
clusions. Thus our evaluation here focuses on SpMV. Our
test corpus consists of approximately the entire SuiteSparse
Matrix Collection [11] with a broad scope of sparse matrices

1 // ... Inside the CUDA kernel.
2 // Loop over all the assigned edges to process.
3 for (auto edge : config.atoms()) {
4 auto source = config.get_tile(edge);
5 // G is the graph data structure
6 auto neighbor = G.get_neighbor(source, edge);
7 auto weight = G.get_edge_weight(edge);
8 float source_dist = dist[source];
9 float neighbor_dist = source_dist + weight;
10 // Check if the destination node has been
11 // claimed as someone's child.
12 float recover_distance =
13 atomicMin(&(dist[neighbor]), neighbor_dist);
14 // Add the neighbor to the frontier.
15 if (neighbor_dist < recover_distance)
16 out_frontier[neighbor] = true;
17 }
18

19 // ... Outside the CUDA kernel.
20 // Loop until the frontier is empty.

Listing 5. The parallel single-source shortest path (SSSP)
graph primitive expressed using our load-balanced schedule.

1 10 100 1,000 10,000 100,000 1,000,000 10,000,000 100,000,000

Number of Nonzeros

0.001

0.002

0.01

0.02

0.1

0.2

1

2

10

20

100

R
u

n
ti

m
e
 (

m
s
)

cub

merge-path

Kernel

Figure 2. SpMV runtime comparison: our merge-path SpMV
implementation vs. CUB across all SuiteSparse datasets. Our
runtimes almost perfectly match CUB’s for all datasets. The
small number of datasets where CUB is faster is due to a
simple heuristic that CUB uses for single-column sparse
matrices (i.e., a sparse vector).

from many different high-performance computing domains.
We ran all experiments on a Ubuntu 20.04 LTS-based work-
station with an NVIDIA Tesla V100 GPU and CUDA 11.7.

6.1 Performance Overhead
Our first and foremost goal is to ensure that the elements
within our abstraction do not add any additional perfor-
mance overhead to the existing load balancing techniques
and algorithms developed using them. To verify this, we

A Programming Model for GPU Load Balancing PPoPP ’23, February 25-March 1, 2023, Montreal, QC, Canada

compare the runtime performance of our SpMV implemen-
tation using the merge-path schedule to the implementation
provided by NVIDIA’s CUB library [24] (also used for Merrill
and Garland’s merge-path SpMV paper [20]) on the Suite-
Sparse collection. As previously mentioned, and in contrast
to our design, CUB contains a hardwired implementation of
the merge-path scheduling algorithms and does not decou-
ple workload balancing from the actual SpMV computation.
CUB’s approach is not reusable for any other irregular par-
allel problem without significant changes to the implemen-
tation.

Figure 2 plots the number of nonzeros (i.e., the total work)
vs. runtime for our work vs. CUB’s implementation. Our
implementation has minimal performance overhead when
using our abstraction: a geomean slowdown of 2.5% vs. CUB,
with 92% of datasets achieving at least 90% of CUB’s perfor-
mance. Figure 2 shows our implementation almost perfectly
matches CUB for all datasets, except for some datasets with
fewer than 100,000 nonzeros. Upon further investigation,
we identify that CUB uses a simple heuristic to launch a
thread-mapped SpMV kernel where the number of columns
of a given input matrix equals 1 (i.e., a sparse vector). Unlike
our more general implementation, CUB’s simple (but spe-
cialized) thread-mapped SpMV kernel has no load-balancing
overhead for a perfectly balanced workload such as SpVV
computation.

6.2 Improved Performance Response
We also compare our work to NVIDIA’s vendor library for
sparse computations, cuSparse. Figure 3 shows the perfor-
mance response of our SpMV implementation using each of
our scheduling algorithms individually vs. cuSparse’s state-
of-the-art implementation. Switching between any of our im-
plementations requires very little code change; in the case of
merge-path and thread-mapped, we need only update a sin-
gle C++ enum (identifier) to select the desired load-balancing
schedule.

We then combine our scheduling algorithms into one im-
plementation for SpMV (Figure 4), demonstrating noticeable
performance improvements over cuSparse. This is primar-
ily possible due to our ability to quickly experiment with
different heuristic schemes with a variety of available load-
balancing schedules. Here, we use merge-path unless either
the number of rows or columns are less than the threshold
𝛼 and the nonzeros of a given matrix are less than thresh-
old 𝛽 (we choose 𝛼 = 500 and 𝛽 = 10000 for SuiteSparse).
In this case, we use thread-mapped or group-mapped load
balancing instead of merge-path. Our system shows a peak
performance speedup of 39× and a geomean performance
speedup of 2.7× vs. cuSparse.
Our framework not only allows programmers to express

computations efficiently and simply (i.e., without worry-
ing about the load-balancing algorithms), but also quickly

Load Balancing Algorithm NVIDIA/CUB Our Work

Merge-Path 503 36
Thread-Mapped 22 21
Group-Mapped N/A 30
Warp-Mapped N/A 30 (free)
Block-Mapped N/A 30 (free)

Table 1. Lines of code (LoC) comparison for NVIDIA’s
CUB library versus our work for SpMV application im-
plemented using merge-path, thread-mapped and group-
mapped (warp- and block-mapped use the exact same code
for group-mapped) load balancing algorithms. We report
only non-commented lines of code, formatted using the
clang-format tool with the Chromium style guide [15], that
contributes to the kernel implementation.

optimize a given application using a range of scheduling
algorithms, both with minor code changes.

6.3 Lines of Code (LOC)
We are able to achieve these performance gains with mini-
mal code complexity. Table 1 shows lines of code (LOC) for
our framework when compared to the state-of-the-art open-
source implementation of merge-path and thread-mapped
within NVIDIA’s CUB library. We deliver the same per-
formance results as highlighted in the previous sections
with 14× and 1× fewer lines of code for merge-path and
thread-mapped scheduling algorithms, respectively. Using
our merge-path implementation only requires∼15 additional
LoC to the trivial thread-mapped schedule.
Furthermore, we extend the same SpMV computation to

our novel group-mapped load balancing schedule (that can
also be specialized to perform block- and warp-mapped load
balancing) within the same 30 LoC.

7 Related Work
Load balancing is the key to achieving high performance on
GPUs for sparse, irregular parallel problems. Several high-
performance computing applications deploy sophisticated
load balancing algorithms on the GPUs. For instance, high-
performance sparse-matrix vector multiplication (SpMV)
leverages merge-path [20] (discussed in detail in this pa-
per) or a nonzero splitting algorithm, which partitions the
number of non-zeros in a sparse-matrix evenly across the
number of threads [3, 9, 26]. Sparse-matrix matrix multipli-
cation (SpMM) and sparse matricized tensor times Khatri-
Rao product (SpMTTKRP) use binning and bundling algo-
rithms [14, 22, 30], which attempt to bin like-length work
together such that they are processed together.
While some applications actively perform work to load-

balance a given input, others store the input in more ef-
ficient, already-load-balanced/-partitioned formats. These
include the F-COO format (a variant of coordinate format)

PPoPP ’23, February 25-March 1, 2023, Montreal, QC, Canada M. Osama, S. D. Porumbescu, and J. D. Owens

0.001

0.002

0.01

0.02

0.1

0.2

1

2

10

20

100

R
u

n
ti

m
e
 (

m
s
)

0.001

0.002

0.01

0.02

0.1

0.2

1

2

10

20

100

R
u

n
ti

m
e
 (

m
s
)

1 10 100 1,000 10,000 100,0001,000,000 100,000,000

Number of Nonzeros
1 10 100 1,000 10,000 100,0001,000,000 100,000,000

Number of Nonzeros

cusparse

group-mapped

merge-path

thread-mapped

Kernel

Figure 3. Complete performance landscape of SpMV across all SuiteSparse datasets using 3 load balancing schedules vs.
NVIDIA’s cuSparse library. This performance comparison highlights the impact of different approaches to load-balancing
SpMV for a given dataset and number of nonzero entries within each dataset. Later in Figure 4 we use this insight to select the
fastest schedule for an improved overall performance. Additionally, our 3 different SpMV implementations are made possible
with very little code change.

used for SpMTTKRP and Sparse-Tensor Tensor Multiplica-
tion (SpTTM), where each thread gets the same number of
nonzeros to process [19].

Many of the above GPU load-balancing algorithms, along
with other novel techniques, were first described in the graph

analytics domain. Davidson et al. and Merrill and Garland
were the first to present Warp, Block-level and Thread-Warp-
CTA dynamic load balancing techniques for Single-Source

A Programming Model for GPU Load Balancing PPoPP ’23, February 25-March 1, 2023, Montreal, QC, Canada

1 10 100 1,000 10,000 100,000 1,000,000 10,000,000 100,000,000

Number of Nonzeros

0.1

0.2

0.3

1

2

3

10

20

30

100

S
p

e
e
d

u
p

 w
.r

.t
 c

u
S

p
a
rs

e

group-mapped

merge-path
thread-mapped

Kernel

Figure 4. Speedup of our framework’s SpMV vs. cuSparse’s
SpMV across SuiteSparse using a heuristic (Section 6.2) to
choose the appropriate load-balancing schedule.

Shortest Path (SSSP) and Breadth-First Search (BFS) respec-
tively [10, 21]. Logarithmic Radix Binning (LRB) is a par-
ticularly effective technique for binning work based on a
logarithmic work estimate, used for the Triangle Counting
graph algorithm and more [13, 16]. Gunrock, GraphIT, and
GraphBLAST are graph analytics libraries that implement
several different graph algorithms such as BFS, SSSP, Page-
Rank, Graph Coloring, and more, built on these previously
mentioned load-balancing techniques [5, 29, 31]. Although
many of these are effective load balancing techniques with
high-performance implementations, they all tightly couple
workload scheduling with the application itself. Our frame-
work is designed to separate these two concerns, allowing
the application to be independent of the load-balancing algo-
rithm, and therefore be expressed simply. Our approach also
allows these previously proposed techniques to be imple-
mented within our framework, and be used for applications
beyond those originally targeted.

Relatively few GPU works target generalized load balanc-
ing for irregular workloads. Most of these are focused on pro-
viding a singular, dynamic load-balancing solution centered
on task parallelism, often using a GPU queue-based data
structure. Cederman and Tsigas proposed a task-based ap-
proach to load balancing an octree partitioning workload us-
ing lock-free and lock-based methods [7]. Two Tzeng works
provide task-management frameworks that implement load
balancing of tasks using a single monolithic task queue and
distributed queues with task stealing and donation [27, 28].
CUIRRE, a framework for load balancing and characteriz-
ing irregular applications on GPUs, also uses a task-pool
approach [33], and more recently, Atos, a task-parallel GPU
dynamic scheduling framework, targets asynchronous algo-
rithms [8]. All of these works deploy either a centralized
or a distributed queue-like data structure on the GPUs, each

making design decisions on how the queue is to be parti-
tioned and updated. Except for the most recent Atos work,
most earlier works focus on a coarse-grained parallelism ap-
proach of effectively distributing tasks to the GPU. Our work
takes advantage of more modern GPU architectures, which
are more effectively utilized by a fine-grained parallelism
approach (parallelizing over work atoms instead of work
tiles). Unlike our abstraction, these aforementioned works
also rely on a singular load-balancing solution, whereas our
abstraction flexibly adapts to many different load-balancing
techniques, static and dynamic, and allows for new schedules
to be implemented within our framework.

8 Conclusion
In this paper, we present a programming model for GPU load
balancing for sparse irregular parallel problems. Ourmodel is
built on the idea of separation of concerns between workload
mapping and work execution. In the future, we are interested
in expanding our model to a multi-GPU environment, and
implementing load-balancing schedules that span across the
GPU boundary covering multiple devices and nodes for mas-
sive parallel problems. Our current work focuses solely on
load balancing, but we also identify locality to be another key
factor for high performance. We are interested in identifying
an orthogonal model that builds an abstraction for caching
and locality into our existing load-balancing framework.

Acknowledgments
This material is based upon work supported by Defense Ad-
vanced Research Projects Agency (DARPA) under Contract
No. HR0011-18-3-0007 and the National Science Foundation
under Contract No. OAC-1740333. Any opinions, findings
and conclusions or recommendations expressed in this mate-
rial are those of the author(s) and do not necessarily reflect
the views of the U.S. Government. Distribution Statement
“A” (Approved for Public Release, Distribution Unlimited).
We would like to acknowledge Michael Garland and Du-
ane Merrill from NVIDIA for their guidance on the frame-
work. We would also like to acknowledge Toluwanimi Ode-
muyiwa, Jonathan Wapman, Matthew Drescher and Muham-
mad Awad for research discussions and feedback on the
work. We also acknowledge the support of AMD, Inc. (Jalal
Mahmud and AMD Research) in the form of travel funding,
which enables us to attend the conference to present this
work.

References
[1] 2017. ISO International Standard ISO/IEC 14882:2017(E) - Program-

ming Language C++. Technical Report. International Organization for
Standardization (ISO). https://isocpp.org/std/the-standard.

[2] Advanced Micro Devices, Inc. 2022. HIP Programming Guide v5.2.
(June 2022). https://docs.amd.com/bundle/HIP-Programming-Guide-
v5.2/page/Introduction.html

https://isocpp.org/std/the-standard
https://docs.amd.com/bundle/HIP-Programming-Guide-v5.2/page/Introduction.html
https://docs.amd.com/bundle/HIP-Programming-Guide-v5.2/page/Introduction.html

PPoPP ’23, February 25-March 1, 2023, Montreal, QC, Canada M. Osama, S. D. Porumbescu, and J. D. Owens

[3] Sean Baxter. 2013–2016. Moderngpu: Patterns and Behaviors for GPU
Computing. (2013–2016). http://moderngpu.github.io/moderngpu.

[4] Guy E. Blelloch. 1990. Prefix Sums and Their Applications. Technical
Report CMU-CS-90-190. School of Computer Science, Carnegie Mellon
University.

[5] Ajay Brahmakshatriya, Yunming Zhang, Changwan Hong, Shoaib
Kamil, Julian Shun, and Saman Amarasinghe. 2021. Compiling Graph
Applications for GPUs with GraphIt. In IEEE/ACM International Sym-
posium on Code Generation and Optimization (CGO 2021). 248–261.
https://doi.org/10.1109/CGO51591.2021.9370321

[6] F. Busato and N. Bombieri. 2015. BFS-4K: An Efficient Implementation
of BFS for Kepler GPU Architectures. IEEE Transactions on Parallel
and Distributed Systems 26, 7 (July 2015), 1826–1838. https://doi.org/
10.1109/TPDS.2014.2330597

[7] Daniel Cederman and Philippas Tsigas. 2008. On Dynamic Load-
Balancing on Graphics Processors. In Graphics Hardware (GH ’08).
57–64. https://doi.org/10.2312/EGGH/EGGH08/057-064

[8] Yuxin Chen, Benjamin Brock, Serban Porumbescu, Aydın Buluç,
Katherine Yelick, and John D. Owens. 2022. Atos: A Task-Parallel
GPU Scheduler for Graph Analytics. In Proceedings of the International
Conference on Parallel Processing (ICPP 2022). https://doi.org/10.1145/
3545008.3545056 arXiv:2112.00132

[9] Steven Dalton, Sean Baxter, Duane Merrill, Luke Olson, and Michael
Garland. 2015. Optimizing Sparse Matrix Operations on GPUs Using
Merge Path. In IEEE International Parallel and Distributed Processing
Symposium. 407–416. https://doi.org/10.1109/IPDPS.2015.98

[10] Andrew Davidson, Sean Baxter, Michael Garland, and John D. Owens.
2014. Work-Efficient Parallel GPU Methods for Single-Source Short-
est Paths. In Proceedings of the 28th IEEE International Parallel and
Distributed Processing Symposium (IPDPS 2014). 349–359. https:
//doi.org/10.1109/IPDPS.2014.45

[11] Timothy A. Davis and Yifan Hu. 2011. The University of Florida Sparse
Matrix Collection. ACM Trans. Math. Softw. 38, 1, Article 1 (Dec. 2011),
25 pages. https://doi.org/10.1145/2049662.2049663

[12] Salvatore Filippone, Valeria Cardellini, Davide Barbieri, and Alessan-
dro Fanfarillo. 2017. Sparse Matrix-Vector Multiplication on GPG-
PUs. ACM Trans. Math. Softw. 43, 4, Article 30 (Jan. 2017), 49 pages.
https://doi.org/10.1145/3017994

[13] James Fox, Alok Tripathy, and Oded Green. 2019. Improving Schedul-
ing for Irregular Applications with Logarithmic Radix Binning. 2019
IEEE High Performance Extreme Computing Conference (2019), 1–7.
https://doi.org/10.1109/HPEC.2019.8916333

[14] Trevor Gale, Matei Zaharia, Cliff Young, and Erich Elsen. 2020. Sparse
GPU Kernels for Deep Learning. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis (Atlanta, Georgia) (SC ’20). Article 17, 14 pages. https://doi.
org/10.1109/SC41405.2020.00021

[15] Google. 2023. Chromium C++ style guide. https://chromium.
googlesource.com/chromium/src/+/HEAD/styleguide/c++/c++.md

[16] Oded Green, James Fox, Alex Watkins, Alok Tripathy, Kasimir Gabert,
Euna Kim, Xiaojing An, Kumar Aatish, and David A. Bader. 2018.
Logarithmic Radix Binning and Vectorized Triangle Counting. In IEEE
High Performance Extreme Computing Conference (HPEC 2018). 1–7.
https://doi.org/10.1109/HPEC.2018.8547581

[17] Oded Green, Robert McColl, and David A. Bader. 2012. GPU Merge
Path: A GPU Merging Algorithm. In Proceedings of the 26th ACM
International Conference on Supercomputing (San Servolo Island, Venice,
Italy) (ICS ’12). 331–340. https://doi.org/10.1145/2304576.2304621

[18] Mark Harris and Kyrylo Perelygin. 2017. Cooperative Groups: Flexible
CUDA Thread Programming. https://developer.nvidia.com/blog/
cooperative-groups/

[19] Bangtian Liu, Chengyao Wen, Anand D. Sarwate, and Maryam Mehri
Dehnavi. 2017. A Unified Optimization Approach for Sparse Tensor

Operations on GPUs. IEEE International Conference on Cluster Com-
puting (Sept. 2017), 47–57. https://doi.org/10.1109/CLUSTER.2017.75

[20] DuaneMerrill andMichael Garland. 2016. Merge-Based Parallel Sparse
Matrix-Vector Multiplication. In International Conference for High Per-
formance Computing, Networking, Storage and Analysis (SC ’16). 678–
689. https://doi.org/10.1109/SC.2016.57

[21] Duane Merrill, Michael Garland, and Andrew Grimshaw. 2012. Scal-
able GPU Graph Traversal. In Proceedings of the 17th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming (New
Orleans, Louisiana, USA) (PPoPP ’12). 117–128. https://doi.org/10.1145/
2145816.2145832

[22] Israt Nisa, Jiajia Li, Aravind Sukumaran-Rajam, Richard Vuduc, and P.
Sadayappan. 2019. Load-Balanced Sparse MTTKRP on GPUs. In IEEE
International Parallel and Distributed Processing Symposium (IPDPS
2019). 123–133. https://doi.org/10.1109/IPDPS.2019.00023

[23] NVIDIA Corporation. 2007–2022. CUDA C++ Programming Guide.
(Dec. 2007–2022). https://docs.nvidia.com/cuda/ PG-02829-001_v12.0.

[24] NVIDIA Corporation. 2023. CUB: Cooperative primitives for CUDA
C++. https://nvlabs.github.io/cub/.

[25] Muhammad Osama, Serban D. Porumbescu, and John D. Owens. 2022.
A Programming Model for GPU Load Balancing. https://doi.org/10.
5281/zenodo.7465053

[26] Markus Steinberger, Rhaleb Zayer, and Hans-Peter Seidel. 2017. Glob-
ally homogeneous, locally adaptive sparsematrix-vectormultiplication
on the GPU. In Proceedings of the International Conference on Supercom-
puting (ICS 2017). ACM, 13:1–13:11. https://doi.org/10.1145/3079079.
3079086

[27] Stanley Tzeng, Brandon Lloyd, and John D. Owens. 2012. A GPU
Task-Parallel Model with Dependency Resolution. IEEE Computer 45,
8 (Aug. 2012), 34–41. https://doi.org/10.1109/MC.2012.255

[28] Stanley Tzeng, Anjul Patney, and John D. Owens. 2010. Task Manage-
ment for Irregular-Parallel Workloads on the GPU. In Proceedings of
High Performance Graphics (HPG ’10). 29–37. https://doi.org/10.2312/
EGGH/HPG10/029-037

[29] Yangzihao Wang, Yuechao Pan, Andrew Davidson, Yuduo Wu, Carl
Yang, Leyuan Wang, Muhammad Osama, Chenshan Yuan, Weitang
Liu, Andy T. Riffel, and John D. Owens. 2017. Gunrock: GPU Graph
Analytics. ACM Transactions on Parallel Computing 4, 1 (Aug. 2017),
3:1–3:49. https://doi.org/10.1145/3108140

[30] Carl Yang, Aydın Buluç, and JohnD. Owens. 2018. Design Principles for
Sparse Matrix Multiplication on the GPU. In Euro-Par 2018: Proceedings
of the 24th International European Conference on Parallel and Distributed
Computing, Marco Aldinucci, Luca Padovani, and Massimo Torquati
(Eds.). 672–687. https://doi.org/10.1007/978-3-319-96983-1_48

[31] Carl Yang, Aydın Buluç, and John D. Owens. 2022. GraphBLAST: A
High-Performance Linear Algebra-based Graph Framework on the
GPU. ACM Trans. Math. Software 48, 1, Article 1 (Feb. 2022), 51 pages.
https://doi.org/10.1145/3466795

[32] Lingqi Zhang, Mohamed Wahib, Peng Chen, Jintao Meng, Xiao Wang,
and Satoshi Matsuoka. 2022. Persistent Kernels for Iterative Memory-
bound GPU Applications. CoRR (April 2022). arXiv:2204.02064

[33] Tao Zhang, Wei Shu, and Min-YouWu. 2014. CUIRRE: An open-source
library for load balancing and characterizing irregular applications on
GPUs. J. Parallel and Distrib. Comput. 74, 10 (Oct. 2014), 2951–2966.
https://doi.org/10.1016/j.jpdc.2014.07.004

http://moderngpu.github.io/moderngpu
https://doi.org/10.1109/CGO51591.2021.9370321
https://doi.org/10.1109/TPDS.2014.2330597
https://doi.org/10.1109/TPDS.2014.2330597
https://doi.org/10.2312/EGGH/EGGH08/057-064
https://doi.org/10.1145/3545008.3545056
https://doi.org/10.1145/3545008.3545056
https://arxiv.org/abs/2112.00132
https://doi.org/10.1109/IPDPS.2015.98
https://doi.org/10.1109/IPDPS.2014.45
https://doi.org/10.1109/IPDPS.2014.45
https://doi.org/10.1145/2049662.2049663
https://doi.org/10.1145/3017994
https://doi.org/10.1109/HPEC.2019.8916333
https://doi.org/10.1109/SC41405.2020.00021
https://doi.org/10.1109/SC41405.2020.00021
https://chromium.googlesource.com/chromium/src/+/HEAD/styleguide/c++/c++.md
https://chromium.googlesource.com/chromium/src/+/HEAD/styleguide/c++/c++.md
https://doi.org/10.1109/HPEC.2018.8547581
https://doi.org/10.1145/2304576.2304621
https://developer.nvidia.com/blog/cooperative-groups/
https://developer.nvidia.com/blog/cooperative-groups/
https://doi.org/10.1109/CLUSTER.2017.75
https://doi.org/10.1109/SC.2016.57
https://doi.org/10.1145/2145816.2145832
https://doi.org/10.1145/2145816.2145832
https://doi.org/10.1109/IPDPS.2019.00023
https://docs.nvidia.com/cuda/
https://nvlabs.github.io/cub/
https://doi.org/10.5281/zenodo.7465053
https://doi.org/10.5281/zenodo.7465053
https://doi.org/10.1145/3079079.3079086
https://doi.org/10.1145/3079079.3079086
https://doi.org/10.1109/MC.2012.255
https://doi.org/10.2312/EGGH/HPG10/029-037
https://doi.org/10.2312/EGGH/HPG10/029-037
https://doi.org/10.1145/3108140
https://doi.org/10.1007/978-3-319-96983-1_48
https://doi.org/10.1145/3466795
https://arxiv.org/abs/2204.02064
https://doi.org/10.1016/j.jpdc.2014.07.004

A Programming Model for GPU Load Balancing PPoPP ’23, February 25-March 1, 2023, Montreal, QC, Canada

A Artifact Description
We provide the source code of our load-balancing frame-
work called loops and our testing harness for evaluating the
results provided within this paper.

A.1 Requirements
1. Operating System Ubuntu 18.04, 20.04, Windows.
2. Hardware NVIDIA GPU (Volta microarchitecture or

newer).
3. Software CUDA 11.7 or above and cmake 3.20.1 or

newer.
4. Compilation NVCC (comes with CUDA), g++ and

gcc, msvc with support for C++14 standard.
5. Output Comma-separated values (CSV) files that are

used to generate the graphs in Section 6.
6. Disk space 886 GB to store the entire SuiteSparse

Matrix Collection [11] compressed and uncompressed.
Can be reduced significantly by running the tests on
only a subset of the dataset.

7. Code License Apache 2.0.

A.2 How to Access
The main repository is hosted on GitHub: https://github.
com/gunrock/loops. Our framework is also available as a
Zenodo archive: https://doi.org/10.5281/zenodo.7465053 [25].
Detailed and well-formatted instructions are available within
the README markdown file in the repositories, and a sum-
mary is available below.

A.3 Getting Started
Before building loops, make sure you have the CUDAToolkit
and cmake installed on your system, and exported in PATH of
your system. Other external dependencies such as thrust,
cub, etc. are automatically fetched using cmake.

cd loops
mkdir build && cd build
cmake -DCMAKE_CUDA_ARCHITECTURES =70 ..
make -j$(nproc)

A.3.1 Sanity Check. Run the following command in the
cmake’s build directory:

bin/loops.spmv.merge_path \
-m ../ datasets/chesapeake/chesapeake.mtx \
--validate -v

Expected Output
Elapsed (ms): 0.063328
Matrix: chesapeake.mtx
Dimensions: 39 x 39 (340)
Errors: 0

A.4 Reproducing Results
We provide the following instructions to regenerate the re-
sults presented in this paper.

1. In the run script, update DATASET_DIR to point to the
path of all the downloaded datasets (set to the path
of the directory containing the MM directory; inside MM
are subdirectories with .mtx files): scripts/run.sh.
• You may change the path to DATASET_FILES_NAME
containing the list of all the datasets (default points
to suitesparse.txt file in the datasets directory).

2. Fire up the complete run using run.sh found in the
scripts directory, cd scripts && ./run.sh. Note one
complete run can take up to 3 days (the run goes over
the entire SuiteSparse matrix collection dataset four
times with four different algorithms; the main bottle-
neck is loading files from disk).
• Warning: Some runs on the matrices are expected to
fail as they are not in proper MatrixMarket Format
although labeled as .mtx. These matrices and the
ones that do not fit on the GPU will result in run-
time exceptions or type overflow and can be safely
ignored.

3. To run N number of datasets, simply adjust the stop
condition here (default set to 10): run.sh#L22, or re-
move this if-condition entirely to run on all available
.mtx files: run.sh#L22-L26.

Additionally, we provide pre-generated results (in the form
of CSV files) to create the plots from Section 6 without need-
ing to run all the experiments. These pre-generated results
are available under the docs directory of the repository.

A.5 Expected Output and Plots
The expected output from the above runs are csv files in
the same directory as the run.sh. These can replace the
existing csv files within docs/data, and a python jupyter
notebook can be used to evaluate the results. The python
notebook includes instructions on generating plots. See a
sample output of one of the csv files below:
kernel ,dataset ,rows ,cols ,nnzs ,elapsed
merge -path ,144 ,144649 ,144649 ,2148786 ,0.07202
merge -path ,08 blocks ,300 ,300 ,592 ,0.0170898
merge -path ,1138 _bus ,1138 ,1138 ,4054 ,0.0200195

https://github.com/gunrock/loops
https://github.com/gunrock/loops
https://doi.org/10.5281/zenodo.7465053

